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Abstract

Consider the p × p matrix that is the product of a population covariance matrix
and the inverse of another population covariance matrix. Suppose that their difference
has a divergent rank with respect to p, when two samples of sizes n and T from the
two populations are available, we construct its corresponding sample version. In the
regime of high dimension where both n and T are proportional to p, we investigate the
limiting laws for extreme (spiked) eigenvalues of the sample (spiked) Fisher matrix
when the number of spikes is divergent and these spikes are unbounded.

Keywords: Extreme eigenvalue, Fisher matrix, Phase transition phenomenon, Random
matrix theory, Spiked population model.

1 Introduction

In the last few decades, as the remarkable development in storage devices and computing
capability, the demand for processing complex-structured data increases dramatically. One
of the features as well as the challenges of these data sets is their high dimensions. The
difficulty is that the classical limit theory for multivariate statistical analysis fails to en-
sure reliable inference for high-dimensional data analysis. Classical limit theorems require
“small p large n” to keep their validity, which conflicts with the situation “large p large n”
in high-dimensional settings in the sense that p/n → c > 0 as the asymptotic properties
are rather different. To attack the relevant issues, random matrix theory (RMT) serves as a
powerful tool in addressing statistical problems in high dimensions. The first research of
random matrices in multivariate statistics was about the Wishart matrices in [18]. Abundant
research has been established for various topics in this field during the past half century,
especially in recent years. In the area of RMT in statistics, we refer to monographs [2] and
[19] for systematical study and [12] for a comprehensive review.
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A relevant topic in multivariate statistics is about testing the equality of two covariance
matrices:

H0 : Σ1 = Σ2 vs. H1 : Σ1 = Σ2 + ∆, (1.1)

where Σ1 and Σ2 are two covariance matrices corresponding to two p-variate populations,
and ∆ is a non-negative definite matrix with rank q. Let S1 and S2 be the sample covariance
matrices from these two populations, respectively. When S2 is invertible, the random matrix
F = S−1

2 S1 is called a Fisher matrix.
The difference between the null hypothesis and the alternative hypothesis relies on those

extreme eigenvalues of F. Under the null hypothesis, Σ1 = Σ2, [16] established the well-
known Wacheter distribution as the limiting spectral distribution (LSD) of F. Some exten-
sions were built later (see examples in [13], [14] and [15]). Furthermore, [1] pointed out
the fact that the largest eigenvalue of F converges to the upper bound of the support of the
LSD of F. Under the alternative hypothesis, F is called a spiked Fisher matrix (see [17]),
because Σ−1

2 Σ1 has a spiked structure similar to that of a spiked population model proposed
by [10]. More specifically, the matrix Σ−1

2 Σ1 is assumed to have the spectrum

spec(Σ−1
2 Σ1) = {λ1, . . . , λq, 1, . . . , 1}, (1.2)

where λ1 ≥ . . . ≥ λq > 1. When the rank q of ∆ is finite, [6] showed the phase transition
phenomenon of the extreme eigenvalues of F under Gaussian population assumption. That
is, for 1 ≤ i ≤ q, the i-th largest eigenvalue of F will depart from the upper bound of the
support of LSD of F if and only if λ1 exceeds certein phase transition point. [17] extended
it to the cases without Gaussian assumption and established central limit theorems for the
outlier eigenvalues of F.

We in this paper consider, as a reasonable extension in theory and applications, the case
of divergent q with respect to the dimension p. We will investigate the convergence in
probability and central limit theorems for spiked eigenvalues of spiked Fisher matrices. We
formulate our problem as follows.

Assume that

Y = (y1, . . . , yT ) = (yi j)1≤i≤p,1≤ j≤T ∈ R
p×T and Z = (z1, . . . , zn) = (zi j)1≤i≤p,1≤ j≤n ∈ R

p×n

(1.3)

are two independent arrays of independent real-valued random variables with zero mean
and unit variance. We consider two samples {Σ1/2

1 yi}1≤i≤T and {Σ1/2
2 zi}1≤i≤n, then their cor-

responding sample covariance matrices can respectively be written as

S1 =
1
T

T∑
i=1

Σ
1
2
1 yiy>i Σ

1
2
1 =

1
T

Σ
1
2
1 YY>Σ

1
2
1 and S2 =

1
n

n∑
i=1

Σ
1
2
2 ziz>i Σ

1
2
2 =

1
n

Σ
1
2
2 ZZ>Σ

1
2
2 .

Also, define the Fisher matrix F := S−1
2 S1, as the sample version of matrix Σ−1

2 Σ1. We aim
to investigate the limiting properties of the eigenvalues of F. As the eigenvalues of F remain

2



invariant under the linear transformation

(S1,S2)→
(
Σ
− 1

2
2 S1Σ

− 1
2

2 ,Σ
− 1

2
2 S2Σ

− 1
2

2

)
, (1.4)

thus we can assume Σ2 = Ip throughout this paper without loss of generality. Under the
assumption (1.2), eigenvalues of Σ1 are λ1 ≥ . . . ≥ λq > λq+1 = . . . = λp = 1. Recalling
(1.1) that Σ1 is a rank q pertubation of Σ2 = Ip, we simply assume

Σ1 =

Σ11 0
0 Ip−q

 . (1.5)

For the sake of brevity and readability, we write the eigenvalues of F in descending order
λ̂1 ≥ . . . ≥ λ̂p, simplifying the double subscripts as single ones. It should be noted that λ̂i is
related to the sample size n.

We then describe the related work and our contributions in this paper. When the num-
ber of the spiked eigenvalues q is fixed, and all the spiked eigenvalue λi, i = 1, . . . , q, are
bounded, there are some results on the limiting properties of the eigenvalues of F in the
literature. Such as, the almost surely convergence (strong consistency) and central limit
theorem (CLT) of spiked eigenvalues ([17]) and asymptotically Tracy-Widom distribution
for the largest non-spiked eigenvalue ([7] and [8]). In this paper, we consider the case
that the number of spiked eigenvalues q = q(p) → ∞ as p → ∞, and spiked eigenvalues
λi, 1 ≤ i ≤ q diverge as p → ∞. To the best of our knowledge, there is no relevant re-
sult in the literature. A relevant work is [5] who studied spiked population models, where
the asymptotics for spiked eigenvalues, including convergence in probability (weak con-
sistency) and CLT, as well as Tracy-Widom law for the largest nonspiked eigenvalue were
built under a quite general framework. Unlike the case of fixed q and bounded spikes λi,
1 ≤ i ≤ q, normalizations for λ̂i, 1 ≤ i ≤ q are needed for the divergent q case. Consider the
normalized eigenvalues λ̂i/λi in consistency and (̂λi − θi)/θi in CLT, where θi is a centered
parameter defined later.

The basic approach behind the proofs of the asymptotics for spiked eigenvalues is the
analysis of an equation for the determinant of a q × q random matrix (indexed by n). When
q is bounded, [17] derived the almost sure entrywise convergence of the q × q matrix (and
hence the convergence with respect to matrix norms) and then solving the equation to lead
to the almost sure limits of spiked eigenvalues. This argument does not work in the diver-
gent q case where the convergence of a q×q matrix with respect to some norm could not be
directly implied by the entrywise convergence. Instead, we use the CLT for random sequi-
linear forms in [3] to derive the convergence rate of each entry, and then use Chebyshev’s
inequality to put all entries together to derive the convergence rate of the matrix in `∞ norm.
In this way, we achieve the convergence in probability as well as the CLT of spiked eigen-
values (after proper normalizations). This approach is similar to that used in [5], so some
technical assumptions are also imposed similarly.

The remaining parts of the paper are organized as follows. Section 2 establishes the
main results, including the convergence in probability of λ̂i/λi and central limit theorems
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of (̂λi − θi)/θi, for those spiked eigenvalues of spiked Fisher matrix F. Here, θi, 1 ≤ i ≤ q,
is a sequence of centering parameters defined in this section. In the Section 3, we show the
proofs of our main results in Section 2. Some important technical lemmas and their proofs
are displayed in the Section 4.

2 Main results

2.1 Notations and assumptions

Considering the linear transformation (1.4), we assume that Σ2 = Ip without loss of gen-
erality, and then Σ1 has the structure as shown in (1.5). Further, we decompose the Σ11 in
(1.5) as

Σ11 = U>Λ1U.

Here, U ≡ (u1,u2, . . . ,uq)> is a q × q orthogonal matrix and

Λ1 = diag(λ1, . . . , λN1︸       ︷︷       ︸
n1

, . . . , λN`−1+1, . . . , λq︸            ︷︷            ︸
n`

),

where λ1 = . . . = λN1 > . . . > λN`−1+1 = . . . = λq and Ni :=
∑i

j=1 n j for 1 ≤ i ≤ `. In this
case, Σ1 can be decomposed as

Σ1 =

U> 0
0 Ip−q

 Λ1 0
0 Ip−q

 U 0
0 Ip−q

 =:

U> 0
0 Ip−q

 Λ

U 0
0 Ip−q

 .
We give decompositions of the sample covariance matrices S1 and S2 as follows. We

fisrt decompose the matrices Y and Z defined in (1.3) as Y = (Y>1 ,Y
>
2 )> and Z = (Z>1 ,Z

>
2 )>,

where Y1,Z1 ∈ R
q×n and Y2,Z2 ∈ R

(p−q)×n. Let X := Σ
1/2
1 Y. Then we can similarly write

X = (X>1 ,X
>
2 )>, where X1 = Σ

1/2
11 Y1 = U>Λ

1/2
1 UY1 ∈ R

q×T and X2 = Y2 ∈ R
(p−q)×T . It

follows that

S1 =

 1
T X1X>1

1
T X1X>2

1
T X2X>1

1
T X2X>2

 and S2 =

 1
n Z1Z>1

1
n Z1Z>2

1
n Z2Z>1

1
n Z2Z>2

 . (2.1)

For λ ∈ R \ {0}, we introduce

F0 =

(
1
n

Z2Z>2

)−1 (
1
T

X2X>2

)
, M(λ) = Ip−q −

F0

λ
,

m̃θ(z) =
1

p − q
tr

(
zIp−q −

F0

θ

)−1

, θ ∈ R, z ∈ C+. (2.2)

Let µ1 ≥ . . . ≥ µp−q be the eigenvalues of the Fisher matrix F0. Then the empirical spectral
distribution (ESD) of F0 can be defined as

Fn(x) =
1

p − q

p−q∑
j=1

1{µ j≤x}, x ∈ R.
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By the result in [17], under the assumption of p/n → y ∈ (0, 1) and p/T → c > 0, almost
surely, the empirical spectral distribution Fn weakly converges to the limiting spectral dis-
tribution Fc,y, whose Stieltjes transform S(z) =

∫ ∞
−∞

(x − z)−1dFc,y(x) satisfies, for z < [a, b]

S(z) =
1 − c

zc
−

c[z(1 − y) + 1 − c] + 2zy − c
√

[z(1 − y) + 1 − c]2 − 4z
2zc(c + zy)

, (2.3)

where a = (1 −
√

c + y − cy)2(1 − y)−2 and b = (1 +
√

c + y − cy)2(1 − y)−2.
In the following, for any complex matrix A, we use si(A) to denote the i-th largest

singular value, and ‖A‖ to denote the largest singular value throughout the paper. Write
an = Oa.s. (bn) if it almost surely holds that an = O (bn). Throughout this paper C is a
constant that may vary from place to place.

The following assumptions are required.

Assumption 2.1. yp := p/n → y ∈ (0, 1), ỹp := (p − q)/n; cp := p/T → c > 0, c̃p :=
(p − q)/T ; q = q(n)→ ∞ as n→ ∞ but q = o(n

1
6 ).

Assumption 2.2. For any 1 ≤ i ≤ q, λi satisfies q2/λi → 0 and either of the two following
conditions:
(a). λ−1

i
∑q

j=1 λ j = o(q−
1
2 n

1
4 ) and λ−2

i
∑q

j=1 λ j = o(q−1); (b). λi
∑q

j=1 λ
−1
j = o(q−

1
2 n

1
4 ).

Assumption 2.3. Random vectors in {yi : 1 ≤ i ≤ T }
⋃
{zi : 1 ≤ i ≤ n} are independent

identically distributed, Ezi j = 0, E|zi j|
2 = 1 ∀1 ≤ i ≤ p, 1 ≤ j ≤ n and sup1≤i≤p E|zi j|

4 < ∞.

Assumption 2.4. There exists a constant C > 1 such that λNi/λNi+1 ≥ C for any 1 ≤ i ≤
` − 1.

Assumption 2.5. Suppose that {λi}1≤i≤q are of bounded multiplicities, i.e., sup1≤i≤` ni < ∞.

2.2 Weak consistency

The weak consistency of λ̂i is stated below. Due to the fact that λi may go to infinity with
n, consider the limit in probability for the ratio λ̂i/λi, 1 ≤ i ≤ q.

Theorem 2.6. Assume that Assumptions 2.1, 2.2 and 2.3 hold. Then for all 1 ≤ i ≤ q,

λ̂i

λi
=

1
1 − y

+ O
(
yp − y

)
+ κq · Op

(
1
√

n
+ λ−1

i

)
,

where κ := min{κ1, κ2} with κ1 := q + λ−1
i

∑q
j=1 λ j and κ2 := q + λi

∑q
j=1 λ

−1
j .

Remark 2.7. Note that the limit of the ratio λ̂i/λi is 1/(1 − y) > 1, for all 1 ≤ i ≤ q. This
is different from the relevant limit for spiked population model with divergent q, which is
1 (see Theorem 2.1 in [5]). Roughly speaking, when we take y → 0 with 1/(1 − y) → 1,
asymptotically, a spiked Fisher matrix behaves similarly as the sample covariance matrix in
a spiked population model.
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Remark 2.8. In the case of fixed q and bounded spikes λi, 1 ≤ i ≤ q, Theorem 3.1 in [17]
shows that almost surely the spiked eigenvalue λ̂i converges to the limit λi(λi + c − 1)(λi −

λiy − 1)−1. Simply taking λi → ∞, the limit of λi(λi + c − 1)(λi − λiy − 1)−1λ−1
i equals to

1/(1 − y). Thus, Theorem 2.6 indicates that for the divergent q case, the result coincides
with the result for the fixed q case in [17].

Remark 2.9. In Theorem 2.6 we only consider unbounded spikes, but actually it can be
readily extended to handle the case with both bounded and unbounded spikes. Consider the
model

Σ1 =

U> 0
0 Ip−q

 Λ

U 0
0 Ip−q

 ,
where Λ = diag(λ1, . . . , λq, λq+1, . . . , λq+q0 , 1, . . . , 1), q = o(n1/6) and q0 is bounded. As-
sume that spikes λ1 ≥ . . . ≥ λq are unbounded as in Theorem 2.6 and λq+1 ≥ . . . ≥ λq+q0

are bounded. For q + 1 ≤ i ≤ q + q0, by Theorem A.10 in [2], we have

λ̂i = si
(
S−1

2 S1
)
≤ si (S1) s1

(
S−1

2

)
≤ si (Σ1) s1

(
1
T

YY>
)

s1
(
S−1

2

)
< ∞

almost surely. So it holds that

det
 λ̂i

n
Z1Z>1 −

1
T

X1X>1

 , 0.

Similar to the decomposition in (3.3), we have

det


 λ̂i

n
Z2Z>2 −

1
T

X2X>2

 −  λ̂i

n
Z2Z>1 −

1
T

X2X>1

  λ̂i

n
Z1Z>1 −

1
T

X1X>1

−1  λ̂i

n
Z1Z>2 −

1
T

X1X>2

 = 0.

(2.4)

In the same manner as used in the proof of Theorem 2.6, it can be checked that

∣∣∣∣∣∣∣∣∣∣∣∣  λ̂i

n
Z2Z>1 −

1
T

X2X>1

  λ̂i

n
Z1Z>1 −

1
T

X1X>1

−1  λ̂i

n
Z1Z>2 −

1
T

X1X>2

 ∣∣∣∣∣∣∣∣∣∣∣∣
∞

= op(1).

Then the solution of equation (2.4) is close to that of the equation

det
 λ̂i

n
Z2Z>2 −

1
T

X2X>2

 = 0. (2.5)

Note that the solution of (2.5) is an eigenvlaue of the spiked Fisher matrix (Z2Z>2 /n)−1(X2X>2 /T )
which has been well studied by [17]. Thus, the weak consistency for all outliers λ̂i, 1 ≤ i ≤
q + q0, could be achieved by combining Theorem 3.1 in [17] and Theorem 2.6. Such a kind
of extension could also be considered for the CLT in Theorem 2.10.
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2.3 Central limit theorem

As λi, 1 ≤ i ≤ q, goes to infinity, the consistency of λ̂i/λi in Theorem 2.6 does not mean
that (1−y)̂λi is a good estimator of λi. In this section, we establish the CLT for λ̂i to provide
further properties.

We first introduce a centered parameter for λ̂i. Let θi ∈ R, 1 ≤ i ≤ q, satisfy

1 −
1
n

E
[
tr

{
M−1(θi)

}]
=
λi

θi

(
1 +

1
T

E
[
tr

{
M−1 (θi)

F0

θi

}])
, (2.6)

and define δi, for 1 ≤ i ≤ q, as

δi =
λ̂i − θi

θi
. (2.7)

By Lemma 4.1, when n→ ∞, we can easily see that

1
p − q

E
[
tr

{
M−1(θi)

}]
= E

{
m̃θi(1)

}
→ 1 and

1
p − q

E
[
tr

{
M−1(θi)

F0

θi

}]
→ 0.

It follows by (2.6) that

λi

θi
=

(
1 −

p − q
n

)
+ o(1)→ 1 − y.

Since the equation in Definition 2.6 for θi is hard to calculate, an alternative definition for
θi is proposed as follows. Recall the definition of m̃θ(z) in (2.2):

m̃θ(z) =
1

p − q
tr

(
zIp−q −

F0

θ

)−1

, θ ∈ R, z ∈ C+.

Denoting fθ(x) = θ/(θ − x) for any fixed θ ∈ R, we have

m̃θ(1) =
1

p − q
tr

(
Ip−q −

F0

θ

)−1

=

∫ ∞

−∞

θ

θ − x
dFn(x) =: Fn( fθ),

where Fn denotes the ESD of the matrix F0. By the CLT for linear spectral statistics (LSS)
of Fisher matrices (see Theorem 3.10 in [19]), for any fixed θ,

p{Fn( fθ) − Fc̃p ,̃yp( fθ)}

converges weakly to a Gaussian variable. It follows that

m̃θ(1) = Fc̃p ,̃yp( fθ) + Op(n−1) = −θS̃(θ) + Op(n−1)

=
c̃p − 1

c̃p
+

c̃p{θ(1 − ỹp) + 1 − c̃p} + 2θ̃yp − c̃p

√
{θ(1 − ỹp) + 1 − c̃p}

2 − 4θ

2̃cp(̃cp + θ̃yp)
+ Op(n−1),

where S̃(·) denotes the stieltjes transform of Fc̃p ,̃yp . This leads to

E {m̃θ (1)} = −θS̃(θ) + O(n−1). (2.8)
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The definition of θi in (2.6) can be rewritten as

1 − ỹpE
{
m̃θi(1)

}
=
λi

θi

[
1 − c̃p + c̃pE

{
m̃θi(1)

}]
.

According to (2.8), it is equivalent to

1 + ỹpθiS̃(θi) + O(n−1) =
λi

θi

{
1 − c̃p − c̃pθiS̃(θi) + O(n−1)

}
. (2.9)

Thus, we give another definition of θi by the following equation

1 + ỹpθiS̃(θi) =
λi

θi

{
1 − c̃p − c̃pθiS̃(θi)

}
. (2.10)

It is notable that the θi defined by (2.10) is also applicable to the CLT of δi in the later sec-
tion. Comparing two equations (2.9) and (2.10), we can derive that the difference between
two δi’s respectively derived from these two equations is at most O(n−1), which is smaller
than the scale n−1/2 of δi. Even Taylor’s expansion on the stieltjes transformantion S̃(·) can
be simply used to the equation (2.10) and then get the explicit forms of θi, although some
errors would appear. In the remaining parts of this paper, we use θi defined by (2.6) in all
results and their proofs.

Consider the case where all the spiked eigenvalues are simple, that is, ni = 1 for all
1 ≤ i ≤ `, which means that Λ1 = diag(λ1, λ2, . . . , λq).

Theorem 2.10. Under Assumptions 2.1, 2.2, 2.3, 2.4 and that ni = 1, 1 ≤ i ≤ `, i.e., ` = q,
it holds that, for all 1 ≤ i ≤ q,

√
p
δi

σi

d
−→ N (0, 1)

with σ2
i := (y + c)νi− c− y(1−3y)(1− y)−1, where νi = E|u>i Z1e1|

4, e1 = (1, 0, . . . , 0)> ∈ Rq

and ui ∈ R
q is the i-th column of the matrix U>.

Remark 2.11. When the value of the variance σ2
i at the population level is unknown, for

statistical inference, estimating σ2
i is in need. A natural estimation way would be to es-

timate the eigenvector ui first. For the spiked population model, [5] shows that when a
leading eigenvalue of the sample covariance matrix is divergent, the corresponding sam-
ple eigenvector is a good estimator for its population counterpart in terms of their in-
ner product. However, the situation becomes much more difficult when it comes to the
spiked Fisher matrix. Recalling the assumed structure Σ

−1/2
2 Σ1Σ

−1/2
2 = Ip + ∆, we sup-

pose that vi := (u>i , 0, . . . , 0)> ∈ Rp is the eigenvector of Σ
−1/2
2 Σ1Σ

−1/2
2 = Ip + ∆ cor-

responding to λi and v̂i is that of S1 = Σ
1/2
1 YY>Σ

1/2
1 . Then Σ

1/2
2 v̂i is the eigenvector of

(Ip + ∆)1/2YY>(Ip + ∆)1/2 corresponding to the i-th largest eigenvalue. If Σ2 is known or
can be consistently estimated, Σ

1/2
2 v̂i is a good estimator of vi, by Theorem 4.1 in [5]. But

actually Σ2 cannot be easily recovered based on S2 because of the delocalization of those
eigenvectors for non-outliers (see [4]). Thus, how to construct a consistent estimation of
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Σ2 becomes a challenging issue. As a special case, when entries of Y and Z are Gaus-
sian, the parameter νi equals to 3, which is independent of the value of ui. In practice, the
bootstrap approximation would be an alternative way to achieve a reliable estimation of
σ2

i . For estimation of the variance of the largest sample eigenvalue in a spiked population
model, spiked population model, [11] shows that the bootstrap approximation works when
the largest eigenvalue is quite large. This deserves a further study.

To check the practical applicability of Theorem 2.10, a simulation is conducted. Set p =

200, T = 600, n = 1000, q = d2 log pe, λi = (3/2)q+1−i(log p/3)3 for 1 ≤ i ≤ q, where dxe
denotes the smallest integer greater than or equal to x. Let Σ1 = diag(λ1, . . . , λq, 1, . . . , 1)
and Σ2 = Ip. Draw a sample {xi}1≤i≤T of size T from N(0,Σ1) and a sample {zi}1≤i≤n of
size n from N(0,Σ2). Compute the largest q eigenvalues λ̂i, 1 ≤ i ≤ q, of the Fisher matrix
F = S−1

2 S1 and then δi accordingly, where S1 =
∑T

i=1 xix>i /T and S2 =
∑n

i=1 ziz>i /n. We
draw qq plots of

√
pδ1/σ1 and

√
pδq/σq from 1000 independent replications in Figure 1. It

suggests that both of
√

pδ1/σ1 and
√

pδq/σq are well approximated by the standard normal
distribution.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(a)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(b)

Figure 1: (a) The qq plot of the normalized largest spiked eigenvalue
√

pδ1/σ1 from 1000
independent replications. (b) The qq plot of the normalized smallest spiked eigenvalue
√

pδq/σq from 1000 independent replications.

Next, consider the case where some spiked eigenvalues are possibly multiple:

Λ1 = diag(λ1, . . . , λN1︸       ︷︷       ︸
n1

, . . . , λN`−1+1, . . . , λq︸            ︷︷            ︸
n`

),

where λ1 = . . . = λN1 > . . . > λN`−1+1 = . . . = λq, Ni :=
∑i

j=1 n j for 1 ≤ i ≤ ` and
there exists a constant C < ∞ such that 1 ≤ ni ≤ C for all 1 ≤ i ≤ `. According to

9



the multiplicities of spiked eigenvalues, we divide the index set {1, . . . , q} into ` subsets,
Ji = {Ni−1 + 1, . . . ,Ni} , 1 ≤ i ≤ `. Here we denote N0 = 0. For any 1 ≤ i ≤ `, and
1 ≤ h, k, h1, k1, h2, k2 ≤ ni, define

MNi,h,k := E
(
u>Ni−1+hZ1e1u>Ni−1+kZ1e1

)
,

MNi,h1,k1,h2,k2 := E
(
u>Ni−1+h1

Z1e1u>Ni−1+k1
Z1e1u>Ni−1+h2

Z1e1u>Ni−1+k2
Z1e1

)
.

Theorem 2.12. Suppose that Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 hold. Define φi(̂λ j) =

(̂λ j − θ j)/θ j, for 1 ≤ i ≤ ` and j ∈ Ji. Then
√

p{φi(̂λ j), j ∈ Ji} converges weakly to the dis-
tribution of the eigenvalues of the ni×ni random matrix<(i), where<(i) =

(
R(i)

hk

)
1≤h,k≤ni

is a
symmetric matrix with independent Gaussian entries of mean zero and covariance structure

cov
(
R(i)

h1,k1
,R(i)

h2,k2

)
=(1 − y)−2ω

(
MNi,h1,k1,h2,k2 −MNi,h1,k1MNi,h2,k2

)
+ (1 − y)−2 (β − ω)

(
MNi,h1,k2MNi,h2,k1 +MNi,h1,h2MNi,k1,k2

)
,

where ω = (y + c) (1 − y)2 and β = y (1 − y) + c (1 − y)2.

3 Proofs of the theorems

We begin with a summary of the proofs. Roughly, the proof of Theorem 2.6 proceeds in
three steps. First, we prove that the spiked eigenvalue λ̂i, 1 ≤ i ≤ q, solves the equation
(3.5) whose left-hand side is the determinant of a q × q matrix which can be decomposed
into four terms, namely UΞAU>, UΞBU>, UΞCU> and UΞDU> defined below. Second,
we derive the limit of each entry of these four matrices and their convergence rates in `∞
norm, where the CLT for random sequilinear forms in [3] and Chebyshev’s inequality are
repeatedly used. Third, using eigenvalue perturbation theorems on (3.5), we estimate the
fluctuation of the scaled eigenvalue λ̂i/λi and reach the result. As for the proof of The-
orem 2.10, we also work on the equation (3.5) in three main steps. First, we rewrite the
matrix in (3.5) as the sum of UΘ1nU>, UδiΘ2nU> and UΘ3nU>. See equation (3.30) below.
Second, we prove the CLT for each diagonal entry of UΘ1nU> (Lemma 4.2) and estimate
the `∞ norm of UΘ1nU> (Lemma 4.3), UΘ2nU> (Lemma 4.4) and UΘ3nU>. Third, we ex-
pand the determinant in (3.30) by Leibniz formula and then achieve the CLT for δi. In this
section, we will cite the lemmas given in the next section without the proofs whose details
are postponed to the next section.

Proof of Theorem 2.6. We first show that for 1 ≤ i ≤ q, λ̂i converges to infinity at the same
order with λi almost surely, i.e., there exists some constant C > 1 such that C−1 < λ̂i/λi < C
almost surely.

For any 1 ≤ i ≤ q, by Theorem A.10 in [2], we have that

λ̂i = si(S−1
2 S1) ≤ si(S1)s1(S−1

2 ) = si(S1)s−1
p (S2) and si(S1) ≤ si(S−1

2 S1)s1 (S2) .
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Noting a basic fact that s1 (S2)→ (1 +
√

y)2 and sp (S2)→ (1−
√

y)2 > 0 almost surely, we
have 0 < C1 < λ̂i/si(S1) ≤ C2 < +∞ almost surely for some constants C1 and C2.

Again, by Theorem A.10 in [2] and Weyl’s inequality, we have

si(S1) ≤ si(Σ1)s1

(
1
T

YY>
)

= λis1

(
1
T

YY>
)

and

si(S1) = si

(
1
T

Y>Σ1Y
)

= si

(
1
T

Y>1 Σ11Y1 +
1
T

Y>2 Y2

)
≥ si

(
1
T

Y>1 Σ11Y1

)
≥ si (Σ11) sq

(
1
T

Y1Y>1

)
= λisq

(
1
T

Y1Y>1

)
.

Due to the fact that

s1

(
1
T

YY>
)
→ (1 +

√
c)2 and sq

(
1
T

Y1Y>1

)
→ 1

almost surely, we have 0 < C3 < si(S1)/λi < C4 < +∞ almost surely for some constants C3

and C4.
Thus, we conclude that C−1 < λ̂i/λi < C almost surely for some constant C.
For any 1 ≤ i ≤ q, by the definition of λ̂i, it solves the equation det

(̂
λiI − S−1

2 S1
)

= 0,
or equivalently,

det
(̂
λiS2 − S1

)
= 0. (3.1)

By the decomposition of S1 and S2 in (2.1), the equation (3.1) can be rewritten as

det

 λ̂i
n Z1Z>1 −

1
T X1X>1

λ̂i
n Z1Z>2 −

1
T X1X>2

λ̂i
n Z2Z>1 −

1
T X2X>1

λ̂i
n Z2Z>2 −

1
T X2X>2

 = 0. (3.2)

By the formula of the determinant of partitioned matrices, we know that det

A B
C D

 =

det(D) det(A − BD−1C) when D is nonsingular. As for 1 ≤ i ≤ q, λ̂i is an outlier eigenvalue
of S−1

2 S1 because λ̂i goes to infinity at the same order with λi, which means

det
 λ̂i

n
Z2Z>2 −

1
T

X2X>2

 , 0,

then it follows by (3.2) that

det


 λ̂i

n
Z1Z>1 −

1
T

X1X>1

 −  λ̂i

n
Z1Z>2 −

1
T

X1X>2

  λ̂i

n
Z2Z>2 −

1
T

X2X>2

−1  λ̂i

n
Z2Z>1 −

1
T

X2X>1

 = 0.

(3.3)

For λ ∈ R, defining

A(λ) = Z>2 M−1(λ)
(
1
n

Z2Z>2

)−1 1
n

Z2,
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B(λ) = X>2 M−1(λ)
(
1
n

Z2Z>2

)−1 1
λT

X2,

C(λ) = Z>2 M−1(λ)
(
1
n

Z2Z>2

)−1 1
λT

X2,

D(λ) = X>2 M−1(λ)
(
1
n

Z2Z>2

)−1 1
λn

Z2,

it holds that A (λ) = A (λ)>, B (λ) = B (λ)> and TC (λ) = nD (λ)>. Then some elementary
calculations lead to

det

̂λi
Z1

{
In − A(̂λi)

}
Z>1

n
−

X1
{
IT + B(̂λi)

}
X>1

T
+ λ̂i

Z1C(̂λi)X>1
n

+ λ̂i
X1D(̂λi)Z>1

T

 = 0.

(3.4)

To ease the notation, we define

ΞA := λ̂i
Z1

{
In − A(̂λi)

}
Z>1

n
,

ΞB :=
X1

{
IT + B(̂λi)

}
X>1

T
,

ΞC := λ̂i
Z1C(̂λi)X>1

n
,

ΞD := λ̂i
X1D(̂λi)Z>1

T
.

Multiplying the matrix in (3.4) by U on the left side hand and by U> on the right side, we
have

det
{
U (ΞA − ΞB + ΞC + ΞD) U>

}
= 0. (3.5)

Next, we analyze these four terms in (3.5) in the following.
For the term UΞAU>, we first consider the decomposition

1
n

Z1
{
In − A(̂λi)

}
Z>1 =

1
n

Z1 {In − A(λi)}Z>1 +
1
n

Z1
{
A(̂λi) − A(λi)

}
Z>1 .

By Lemma 4.1 below, we have m̃λi(1) − 1 = Oa.s.(λ−1
i ), which implies

1
n

tr {In − A(λi)} = 1 −
p − q

n
m̃λi(1) = 1 − yp +

q
n

+ Oa.s.(λ−1
i ).

Note that E(Z1Z>1 /n) = Iq and that (X1,Z1) is independent of (X2,Z2). Under Assump-
tion 2.3, by using Theorem 7.2 of [3], we have that, for all 1 ≤ j ≤ q,

e>j

[
1
n

Z1 {In − A(λi)}Z>1

]
e j −

{
1 −

p − q
n

m̃λi(1)
}

= Op

(
1
√

n

)
(3.6)

and

E
(
e>j

[
1
n

Z1 {In − A(λi)}Z>1

]
e j −

{
1 −

p − q
n

m̃λi(1)
})2

= O
(
1
n

)
(3.7)
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for all 1 ≤ j ≤ q. For those off-diagonal elements, we have that, for any 1 ≤ j1 , j2 ≤ q,

e>j1

[
1
n

Z1 {In − A(λi)}Z>1

]
e j2 = Op

(
1
√

n

)
(3.8)

and

E
(

e>j1

[
1
n

Z1 {In − A(λi)}Z>1

]
e j2

)2

= O
(
1
n

)
, (3.9)

which is implied by Theorem 7.1 and Corollary 7.1 in [3]. Also we can write

A (λi) − A
(̂
λi

)
= Z>2

{
M−1 (λi) −M−1

(̂
λi

)} (1
n

Z2Z>2

)−1 1
n

Z2

= Z>2 M−1 (λi)
{
M

(̂
λi

)
−M (λi)

}
M−1

(̂
λi

) (1
n

Z2Z>2

)−1 1
n

Z2

=
(
λ−1

i − λ̂
−1
i

)
Z>2 M−1 (λi) F0M−1

(̂
λi

) (1
n

Z2Z>2

)−1 1
n

Z2.

It can be bounded by

∥∥∥∥A (λi) − A
(̂
λi

)∥∥∥∥ =

∥∥∥∥∥∥∥(λ−1
i − λ̂

−1
i

)
Z>2 M−1 (λi) F0M−1

(̂
λi

) (1
n

Z2Z>2

)−1 1
n

Z2

∥∥∥∥∥∥∥
≤

∣∣∣∣λ−1
i − λ̂

−1
i

∣∣∣∣ ∥∥∥∥∥∥ 1
√

n
Z>2

∥∥∥∥∥∥ ∥∥∥M−1 (λi)
∥∥∥ ‖F0‖

∥∥∥∥M−1
(̂
λi

)∥∥∥∥
∥∥∥∥∥∥∥
(
1
n

Z2Z>2

)−1
∥∥∥∥∥∥∥
∥∥∥∥∥∥ 1
√

n
Z2

∥∥∥∥∥∥ = O(λ−1
i )

almost surely. It follows that, for any 1 ≤ j1, j2 ≤ q,

e>j1

[
1
n

Z1
{
A(̂λi) − A(λi)

}
Z>1

]
e j2 = Oa.s.(λ−1

i ). (3.10)

Combining (3.6), (3.8)) and (3.10), we can get that, for any 1 ≤ j ≤ q,

e>j

[
1
n

Z1
{
In − A(̂λi)

}
Z>1

]
e j −

(
1 −

p − q
n

)
= Op

(
1
√

n

)
+ Oa.s.(λ−1

i )

and that, for any 1 ≤ j1 , j2 ≤ q,

e>j1

[
1
n

Z1
{
In − A(̂λi)

}
Z>1

]
e j2 = Op

(
1
√

n

)
+ Oa.s.(λ−1

i ).

Replacing Z1 by UZ1, it is easy to check that all the above conclusions still hold:

e>j

[
1
n

UZ1
{
In − A(̂λi)

}
Z>1 U>

]
e j = 1 −

p − q
n

+ Op

(
1
√

n

)
+ Oa.s.(λ−1

i ) (3.11)

for all 1 ≤ j ≤ q, and

e>j1

[
1
n

UZ1
{
In − A(̂λi)

}
Z>1 U>

]
e j2 = Op

(
1
√

n

)
+ Oa.s.(λ−1

i ) (3.12)
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for all 1 ≤ j1 , j2 ≤ q. By the definition of ΞA in (3.4), together with (3.11) and (3.12), we
can see that, for all 1 ≤ j ≤ q,

e>j UΞAU>e j = λ̂i

(
1 −

p − q
n

)
+ λi · Op

(
1
√

n

)
+ Oa.s.(1) (3.13)

and that, for all 1 ≤ j1 , j2 ≤ q,

e>j1UΞAU>e j2 = λi · Op

(
1
√

n

)
+ Oa.s.(1). (3.14)

For the term UΞBU>, by the definition of X1, we can derive that

UΞBU> =
1
T

Λ
1
2
1 UY1

{
IT + B(̂λi)

}
Y>1 U>Λ

1
2
1 =

1
T

Λ
1
2
1 UY1 {IT + B(λi)}Y>1 U>Λ

1
2
1

+
1
T

Λ
1
2
1 UY1

{
B(̂λi) − B(λi)

}
Y>1 U>Λ

1
2
1 ,

where

1
T

tr {IT + B (λi)} =
1
T

tr

IT + X>2 M−1(λi)
(
1
n

Z2Z>2

)−1 1
λiT

X2


=1 +

1
T

tr

M−1(λi)
(
1
n

Z2Z>2

)−1 1
λiT

X2X>2


=1 +

1
T

tr


(
Ip−q −

F0

λi

)−1 F0

λi


=1 +

p − q
T

{
m̃λi(1) − 1

}
and

B(̂λi) − B(λi) =X>2
{̂
λ−1

i M−1
(̂
λi

)
− λ−1

i M−1(λi)
} (1

n
Z2Z>2

)−1 1
T

X2

=λ̂−1
i λ−1

i X>2 M−1
(̂
λi

) {
λiM (λi) − λ̂iM

(̂
λi

)}
M−1(λi)

(
1
n

Z2Z>2

)−1 1
T

X2

=
(̂
λ−1

i − λ
−1
i

)
X>2 M−1

(̂
λi

)
M−1(λi)

(
1
n

Z2Z>2

)−1 1
T

X2.

The same arguments for deriving (3.13) and (3.14) lead to that, for all 1 ≤ j ≤ q,

e>j UΞBU>e j = λ j + λ j · Op

(
1
√

n

)
+ λ j · Oa.s.(λ−1

i ) (3.15)

and that, for 1 ≤ j1, j2 ≤ q,

e>j1UΞBU>e j2 = λ
1
2
j1
λ

1
2
j2
· Op

(
1
√

n

)
+ λ

1
2
j1
λ

1
2
j2
· Oa.s.(λ−1

i ) (3.16)

for all 1 ≤ j1 , j2 ≤ q.
For the term U (ΞC + ΞD) U>, by using the fact that Y1 = U>Λ

− 1
2

1 UX1, we have that

U (ΞC + ΞD) U>
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=U

̂λi
Z1C(̂λi)X>1

n
+ λ̂i

X1D(̂λi)Z>1
T

 U>

=U
{
λi

Z1C(λi)X>1
n

+ λi
X1D(λi)Z>1

T

}
U> + UZ1

{̂
λiC(̂λi) − λiC (λi)

} 1
n

Y>1 U>Λ
1
2
1

+ Λ
1
2
1 UY1

{̂
λiD(̂λi) − λiD (λi)

} 1
T

Z>1 U>,

and that

U
{
λi

Z1C(λi)X>1
n

+ λi
X1D(λi)Z>1

T

}
U>

=U
(
Z1 X1

)  O λiC(λi)
n

λiD(λi)
T O

 Z>1
X>1

 U>

=

(
UZ1 Λ

1
2
1 UY1

)  O λiC(λi)
n

λiD(λi)
T O


 Z>1 U>

Y>1 U>Λ
1
2
1

 .
Then we have that, for all 1 ≤ j1, j2 ≤ q,

e>j1U
{
λi

Z1C(λi)X>1
n

+ λi
X1D(λi)Z>1

T

}
U>e j2

=e>j1
(
UZ1 Λ

1
2
1 UY1

)  O λiC(λi)
n

λiD(λi)
T O


 Z>1 U>

Y>1 U>Λ
1
2
1

 e j2

=e>j1
(
UZ1 λ

1
2
j1

UY1

)  O λiC(λi)
n

λiD(λi)
T O


 Z>1 U>

λ
1
2
j2

Y>1 U>

 e j2

=
λ

1
2
j1

+ λ
1
2
j2

2
· e>j1

(
UZ1 UY1

)  O λiC(λi)
n

λiD(λi)
T O

 Z>1 U>

Y>1 U>

 e j2

+
λ

1
2
j1
− λ

1
2
j2

2i
· e>j1

(
UZ1 UY1

)  O λiC(λi)
n · i

−
λiD(λi)

T · i O

 Z>1 U>

Y>1 U>

 e j2

=
λ

1
2
j1

+ λ
1
2
j2

2
· Op

(
1
√

n

)
+
λ

1
2
j1
− λ

1
2
j2

2i
· Op

(
1
√

n

)
=

(
λ

1
2
j1

+ λ
1
2
j2

)
· Op

(
1
√

n

)
,

where i :=
√
−1 is the imaginary unit and the penultimate equality is implied by Theo-

rem 7.1 in [3]. Due to the fact that

λ̂iC(̂λi) − λiC (λi) =Z>2
{
M−1(̂λi) −M−1(λi)

} (1
n

Z2Z>2

)−1 1
T

X2

=Z>2 M−1(̂λi)
{
M(λi) −M(̂λi)

}
M−1(λi)

(
1
n

Z2Z>2

)−1 1
T

X2

=
(̂
λ−1

i − λ
−1
i

)
Z>2 M−1(̂λi)F0M−1(λi)

(
1
n

Z2Z>2

)−1 1
T

X2,

λ̂iD(̂λi) − λiD (λi) =X>2
{
M−1(̂λi) −M−1(λi)

} (1
n

Z2Z>2

)−1 1
n

Z2

15



=X>2 M−1(̂λi)
{
M(λi) −M(̂λi)

}
M−1(λi)

(
1
n

Z2Z>2

)−1 1
n

Z2

=
(̂
λ−1

i − λ
−1
i

)
X>2 M−1(̂λi)F0M−1(λi)

(
1
n

Z2Z>2

)−1 1
n

Z2,

we can get

e>j1UZ1
{̂
λiC(̂λi) − λiC (λi)

} 1
n

Y>1 U>Λ
1
2
1 e j2 = λ

1
2
j2
· Oa.s.

(
λ−1

i

)
and

e>j1Λ
1
2
1 UY1

{̂
λiD(̂λi) − λiD (λi)

} 1
T

Z>1 U>e j2 = λ
1
2
j1
· Oa.s.

(
λ−1

i

)
for any 1 ≤ j1, j2 ≤ q. By using the similar arguments for proving (3.13) and (3.14), it
holds that

e>j1U (ΞC + ΞD) U>e j2 =

(
λ

1
2
j1

+ λ
1
2
j2

)
· Op

(
1
√

n

)
+

(
λ

1
2
j1

+ λ
1
2
j2

)
· Oa.s.

(
λ−1

i

)
(3.17)

for any 1 ≤ j1, j2 ≤ q.
Combining (3.14)-(3.17) and the determinant (3.5), we can compute the limit of λ̂i/λi

for each 1 ≤ i ≤ q. We use a new notation to denote the matrix in the determinant (3.5).
Define

Ξ := U (ΞA − ΞB + ΞC + ΞD) U>, Ξ̃ := diag
(
ξ11, . . . , ξqq

)
,

where ξ j j = λ̂i {1 − (p − q) /n} − λ j. Then by (3.14)-(3.17), we have that

e>j1
(
Ξ − Ξ̃

)
e j2 =λi · Op

(
1
√

n

)
+ Op(1) + λ

1
2
j1
λ

1
2
j2
· Op

(
1
√

n

)
+ λ

1
2
j1
λ

1
2
j2
· Oa.s.(λ−1

i )

+

(
λ

1
2
j1

+ λ
1
2
j2

)
· Op

(
1
√

n

)
+

(
λ

1
2
j1

+ λ
1
2
j2

)
· Oa.s.

(
λ−1

i

)
=

(
λi + λ

1
2
j1
λ

1
2
j2

) {
Op

(
1
√

n

)
+ Oa.s.

(
λ−1

i

)}
for any 1 ≤ j1, j2 ≤ q, which follows that

e>j1λ
−1
i

(
Ξ − Ξ̃

)
e j2 =

(
1 + λ−1

i λ
1
2
j1
λ

1
2
j2

) {
Op

(
1
√

n

)
+ Oa.s.

(
λ−1

i

)}
. (3.18)

According to (3.7) and (3.9) for ΞA (similar results also hold for ΞB, ΞC and ΞD), it can
be easily checked that the variance of the term in (3.18) has the order(

1 + λ−1
i λ

1
2
j1
λ

1
2
j2

)2 (
n−

1
2 + λ−1

i

)2
.

By Chebyshev’s inequality, we have that, for any ε > 0,

Pr
{

max
1≤ j1, j2≤q

∣∣∣∣e>j1λ−1
i

(
Ξ − Ξ̃

)
e j2

∣∣∣∣ ≥ ε (n− 1
2 + λ−1

i

)}
16



≤
∑

1≤ j1, j2≤q

Pr
{∣∣∣∣e>j1λ−1

i

(
Ξ − Ξ̃

)
e j2

∣∣∣∣ ≥ ε (n− 1
2 + λ−1

i

)}

≤
∑

1≤ j1, j2≤q

E
{
e>j1λ

−1
i

(
Ξ − Ξ̃

)
e j2

}2

ε2
(
n−

1
2 + λ−1

i

)2

=
∑

1≤ j1, j2≤q

(
1 + λ−1

i λ
1
2
j1
λ

1
2
j2

)2
· O

(
ε−2

)
=

q + λ−1
i

q∑
j=1

λ j


2

· O
(
ε−2

)
= κ2

1 · O
(
ε−2

)
,

which means∥∥∥∥λ−1
i

(
Ξ − Ξ̃

)∥∥∥∥
∞

= max
1≤ j1, j2≤q

∣∣∣∣e>j1λ−1
i

(
Ξ − Ξ̃

)
e j2

∣∣∣∣ = κ1 · Op

(
1
√

n
+ λ−1

i

)
and then

|||λ−1
i (Ξ − Ξ̃)|||∞ ≤ q‖λ−1

i (Ξ − Ξ̃)‖∞ = κ1q · Op

(
1
√

n
+ λ−1

i

)
.

Note that the determinant equation det
(
Ξ̃
)

= 0 is equivalent to det
(
λ−1

i Ξ̃
)

= 0, that is,

det

 λ̂i

λi

(
1 −

p − q
n

)
Iq − λ

−1
i Λ1

 = 0.

At the same time, the equation det
(
Ξ
)

= 0 is equivalent to det
(
λ−1

i Ξ
)

= 0, that is,

det

 λ̂i

λi

(
1 −

p − q
n

)
Iq − λ

−1
i Λ1 + λ−1

i

(
Ξ − Ξ̃

) = 0.

By eigenvalue perturbation theorems (see Theorem 6.3.2 in Chapter 6, [9]), we have∣∣∣∣∣∣ λ̂i

λi

(
1 −

p − q
n

)
− 1

∣∣∣∣∣∣ ≤ |||λ−1
i (Ξ − Ξ̃)|||∞ = κ1q · Op

(
1
√

n
+ λ−1

i

)
,

that is

λ̂i

λi
=

1
1 − y

+ O
(
yp − y

)
+ κ1q · Op

(
1
√

n
+ λ−1

i

)
. (3.19)

Instead, we can compare determinant equations

det
(
Λ
− 1

2
1 Ξ̃Λ

− 1
2

1

)
= 0 and det

(
Λ
− 1

2
1 ΞΛ

− 1
2

1

)
= 0,

and then repeat all the derivations above to achieve an upper bound of |||Λ−1/2
1 (Ξ−Ξ̃)Λ−1/2

1 |||∞.
In this case, we can get

λ̂i

λi
=

1
1 − y

+ O
(
yp − y

)
+ κ2q · Op

(
1
√

n
+ λ−1

i

)
. (3.20)

Thus, (3.19) and (3.20) lead to

λ̂i

λi
=

1
1 − y

+ O
(
yp − y

)
+ κq · Op

(
1
√

n
+ λ−1

i

)
,

17



where κq(n−1/2 + λ−1
i ) = o(1) under Assumption 2.2. The proof is finished. �

Proof of Theorem 2.10. We begin with the equation on λ̂i in (3.4). Recall that we have
expressed (3.4) as

det
(
ΞA − ΞB + ΞC + ΞD

)
= 0. (3.21)

For the first term ΞA, we can write

ΞA =
λ̂i

n
Z1

[{
In − A(̂λi)

}
− {In − A(θi)}

]
Z>1 +

λ̂i

n

(
Z1 {In − A(θi)}Z>1 − E

[
Z1 {In − A(θi)}Z>1

])
+
λ̂i

n
E

[
Z1 {In − A(θi)}Z>1

]
.

Using the fact

{
In − A(̂λi)

}
− {In − A(θi)} = −δiA(θi) + δiZ>2 M−1(̂λi)M−1(θi)

(
1
n

Z2Z>2

)−1 1
n

Z2

and λ̂i = θi(1 + δi) by (2.7), we can get

ΞA =θiδi(1 + δi)
1
n

(
Z1 {In − A(θi)}Z>1 − E

[
Z1 {In − A(θi)}Z>1

])
+ θiδi(1 + δi)

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1

− θiδi(1 + δi)
1
n

Z1Z>1 + θiδi(1 + δi)
1
n

E
[
Z1 {In − A(θi)}Z>1

]
+ θi(1 + δi)

1
n

(
Z1 {In − A(θi)}Z>1 − E

[
Z1 {In − A(θi)}Z>1

])
+ θi(1 + δi)

1
n

E
[
Z1 {In − A(θi)}Z>1

]
=θi(1 + δi)2 1

n

(
Z1 {In − A(θi)}Z>1 − E

[
Z1 {In − A(θi)}Z>1

])
+ θiδi(1 + δi)

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1

− θiδi(1 + δi)
1
n

Z1Z>1 + θi(1 + δi)2 1
n

E
[
Z1 {In − A(θi)}Z>1

]
=:θi(1 + δi)2ΞA1 + θiδi(1 + δi)ΞA2 − θiδi(1 + δi)ΞA3 + θi(1 + δi)2ΞA4. (3.22)

For the second term ΞB, we can similarly write

ΞB =
1
T

X1
{
B(̂λi) − B(θi)

}
X>1 +

1
T

(
X1 {IT + B(θi)}X>1 − E

[
X1 {IT + B(θi)}X>1

])
+

1
T

E
[
X1 {IT + B(θi)}X>1

]
=

1
T

(
X1 {IT + B(θi)}X>1 − E

[
X1 {IT + B(θi)}X>1

])
−
δi

λ̂i
·

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1 +
1
T

E
[
X1 {IT + B(θi)}X>1

]
18



=:ΞB1 −
δi

λ̂i
ΞB2 + ΞB3, (3.23)

where the second equality above uses the fact

B(̂λi) − B(θi) = −
δi

λ̂i
X>2 M−1(̂λi)M−1(θi)

(
1
n

Z2Z>2

)−1 1
T

X2.

For the term ΞC , we have

ΞC =
λ̂i

n
Z1

{
C(̂λi) − C(θi)

}
X>1 +

λ̂i − θi

n
Z1C(θi)X>1 +

θi

n

[
Z1C(θi)X>1 − E

{
Z1C(θi)X>1

}]
.

Using the fact

C(̂λi) − C(θi) = −
δi

λ̂i
Z>2 M−1(̂λi)M−1(θi)

(
1
n

Z2Z>2

)−1 1
T

X2,

we have the decomposition

ΞC = θi
1
n

[
Z1C(θi)X>1 − E

{
Z1C(θi)X>1

}]
− δi

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1

+ θiδi
1
n

Z1C(θi)X>1

=: θiΞC1 − δiΞC2 + θiδiΞC3. (3.24)

Similarly, we can write the last term ΞD as

ΞD = θi
1
T

[
X1D(θi)Z>1 − E

{
X1D(θi)Z>1

}]
− δi

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1

+ θiδi
1
T

X1D(θi)Z>1

=: θiΞD1 − δiΞD2 + θiδiΞD3. (3.25)

Putting (3.22)-(3.25) into (3.21), we have

det(θiΘ1n + θiδiΘ2n + θiΘ3n) = 0, (3.26)

where

Θ1n := (1 + δi)2ΞA1 − θ
−1
i ΞB1 + ΞC1 + ΞD1, (3.27)

Θ2n := (1 + δi)ΞA2 − (1 + δi)ΞA3 +
1

θîλi
ΞB2 − θ

−1
i ΞC2 + ΞC3 − θ

−1
i ΞD2 + ΞD3, (3.28)

Θ3n := (1 + δi)2ΞA4 − θ
−1
i ΞB3. (3.29)

Multiplying both sides of the matrix in (3.26) by θ−1/2
i U from the left hand side and θ−1/2

i U>

from the right hand side, we get

det
{
U(Θ1n + δiΘ2n + Θ3n)U>

}
= 0. (3.30)
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Recall that ei is the q-dimensional vector whose i-th element is 1 and others are 0. By
Lemma 4.2 below, we have

√
pŜ i :=

√
pe>i UΘ1nU>ei

d
−→ N(0, σ̃2

i ), (3.31)

where σ̃2
i = (y + c) (1 − y)2 νi − y (1 − y) (1 − 3y) − c (1 − y)2. It follows by Lemma 4.3

below that

‖UΘ1nU>‖∞ = Op

(
q
√

n
+

∑
j λ j
√

nλi

)
. (3.32)

By Lemma 4.4 below, we also have

max
1≤ j≤q

∣∣∣e>j UΘ2nU>e j − (y − 1)
∣∣∣ = Op


√

qδi

λi
+

√
q
√

n
+

√∑
j λ

2
j

λ2
i

+

√∑
j λ j

λi

 , (3.33)

max
1≤ j1, j2≤q

∣∣∣e>j1UΘ2nU>e j2

∣∣∣ = Op

qδi

λi
+

q
√

n
+

∑
j λ j

λ2
i

+

√
q
∑

j λ j

λi

 . (3.34)

For the term UΘ3nU> in (3.30), by considering its ( j1, j2) entry for all 1 ≤ j1, j2 ≤ q, we
can easily get that

(1 + δi)2UΞA4U> = (1 + δi)2
[
1 −

p − q
n

E
{
m̃θi(1)

}]
Iq, (3.35)

UΞB3U> =

(
1 +

p − q
T

[
−1 + E

{
m̃θi(1)

}])
Λ1. (3.36)

By the definition of θi in (2.6), we know

1 −
p − q

n
E

{
m̃θi(1)

}
=
λi

θi

(
1 +

p − q
T

[
−1 + E

{
m̃θi(1)

}])
,

which, together with the results in Lemma 4.1 below and Theorem 2.6, yields that

(1 + δi)2
[
1 −

p − q
n

E
{
m̃θi(1)

}]
−
λi

θi

(
1 +

p − q
T

[
−1 + E

{
m̃θi(1)

}])
=2δi

[
1 −

p − q
n

E
{
m̃θi(1)

}]
+ δ2

i

[
1 −

p − q
n

E
{
m̃θi(1)

}]
= 2δi

{
1 −

p − q
n

+ o(1)
}
. (3.37)

Combining (3.35)-(3.37) and the definition of Θ3n in (3.29), we can get that, for 1 ≤
j ≤ q,

e>j UΘ3nU>e>j =

{
(1 + δi)2 −

λ j

λi

} [
1 −

p − q
n

E
{
m̃θi(1)

}]
,

which converges to zero if and only if λ j = λi because (1 + δi)2 − λ j/λi > C > 0 for some
constant C if λ j , λi under Assumption 2.4. When λ j = λi, we have

e>j UΘ3nU>e>j = 2δi

{
1 −

p − q
n

+ o(1)
}
. (3.38)

Note that all off-diagonal entries of the matrix UΘ3nU> is zero, i.e.

e>j1UΘ3nU>e j2 = 0,∀1 ≤ j1 , j2 ≤ q. (3.39)
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Inserting (3.31), (3.32), (3.33), (3.34), (3.38) and (3.39) into (3.30), we can solve the
determinant equation (3.30) and get the limiting distribution of δi(1 ≤ i ≤ q) immediately.
Since diagonal elements of UΘ3nU> are at least constant order, when e>j UΘ3nU>e>j goes to
infinity for some j’s, we can divide these rows by e>j UΘ3nU>e>j . In this way, we can get

det



Op(1) . . . Op (∗) . . . Op (∗)
...

. . .
...

. . .
...

Op (∗) . . . Ŝ i + (1 − y + op(1))δi . . . Op (∗)
...

. . .
...

. . .
...

Op (∗) . . . Op (∗) . . . Op(1)


= 0

where
√

pŜ i
d
−→ N(0, σ̃2

i ) and

∗ =
q
√

n
+

∑
j λ j
√

nλi
+

qδ2
i

λi
+
δi

∑
j λ j

λ2
i

+
δi

√
q
∑

j λ j

λi
.

By Leibniz formula for determinants, we can get that Ŝ i +
{
1 − y + op(1)

}
δi + qOp

(
∗2

)
= 0,

that is

Ŝ i +
{
1 − y + op(1)

}
δi + Op

q3

n
+

q(
∑

j λ j)2

nλ2
i

+
q3δ4

i

λ2
i

+
qδ2

i (
∑

j λ j)2

λ4
i

+
q2δ2

i
∑

j λ j

λ2
i

 = 0.

Under Assumptions 2.1 and 2.2(a), we have q = o(n
1
6 ) and λ−1

i
∑

j λ j = o(q−
1
2 n

1
4 ), then it

follows that

q3

n
= o(n−

1
2 ),

q2 ∑
j λ j

nλ2
i

= o(n−
1
2 ),

q3δ4
i

λ2
i

= op(δ2
i n

1
2 ),

qδ2
i (
∑

j λ j)2

λ4
i

= op(δ2
i n

1
2 ),

q2δ2
i
∑

j λ j

λ2
i

= op(δ2
i n

1
2 ).

It leads to

Ŝ i +
{
1 − y + op(1)

}
δi + op(δ2

i n
1
2 ) + o(n−

1
2 ) = 0.

By multiplying
√

p on both sides, we further obtain that

√
pŜ i +

{
1 − y + op(1)

}
·
√

pδi + op (1) · pδ2
i + o (1) = 0.

Recalling that
√

pŜ i
d
−→ N(0, σ̃2

i ), we can reach to
√

pδi
d
−→ N(0, σ2

i ), where

σ2
i =

σ̃2
i

(1 − y)2 = (y + c)νi − c −
y(1 − 3y)

1 − y
.

Instead, we can consider the determinant

det
{
Λ̃−

1
2 U(θiΘ1n + θiδiΘ2n + θiΘ3n)U>Λ̃−

1
2

}
= 0, (3.40)
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where Λ̃ = diag(θ1, . . . , θq) ∈ Rq×q. Repeating all the derivations above, we can get

‖Λ̃−
1
2 UθiΘ1nU>Λ̃−

1
2 ‖∞ = Op

 q
√

n
+
λi

∑
j λ
−1
j

√
n

 , (3.41)

max
1≤ j≤q

∣∣∣∣∣∣e>j Λ̃− 1
2 θiUΘ2nU>Λ̃−

1
2 e j − (y − 1)

θi

θ j

∣∣∣∣∣∣ = Op

δi

√∑
j

λ−2
j +

λi

√∑
j λ
−2
j

√
n

+

√
q
λi

+

√∑
j

λ−1
j

 ,
(3.42)

max
1≤ j1, j2≤q

∣∣∣∣e>j1Λ̃− 1
2 θiUΘ2nU>Λ̃−

1
2 e j2

∣∣∣∣ = Op

δi

∑
j

λ−1
j +

λi
∑

j λ
−1
j

√
n

+
q
λi

+

√
q
∑

j

λ−1
j

 ,
(3.43)

e>j Λ̃
− 1

2 θiUΘ3nU>Λ̃−
1
2 e>j =

{
(1 + δi)2 −

λ j

λi

} [
1 −

p − q
n

E
{
m̃θi(1)

}]
, (3.44)

e>j1Λ̃
− 1

2 θiUΘ3nU>Λ̃−
1
2 e j2 = 0, ∀1 ≤ j1 , j2 ≤ q. (3.45)

Inserting (3.41)-(3.45) into (3.40), we can similarly prove
√

pδi
d
−→ N(0, σ2

i ) under As-
sumption 2.2(b). Thus the proof is completed. �

Proof of Theorem 2.12. The proof of Theorem 2.12 is similar to that of Theorem 2.10, the
only difference is that we take the Ji × Ji block as a typical object to analyse, some useful
lemmas can also be obtained from Lemmas 4.2-4.4 below. Similar arguments for deriving
the proof of Theorem 4.1 in [17] can be used. Thus, we omit the details. �

4 Some Technical Lemmas

Lemma 4.1. Suppose that Assumptions 2.1 and 2.3 hold. For any θ → ∞, we have m̃θ(1)−
1 = Oa.s.(θ−1).

Proof of lemma 4.1. By the definition of m̃θ(z) in (2.2),

m̃θ(1) =
1

p − q
tr

(
Ip−q −

F0

θ

)−1

= 1 +
1

p − q
tr

F0

θ

(
Ip−q −

F0

θ

)−1
 ,

we have

m̃θ(1) − 1 =
1

p − q
tr

F0

θ

(
Ip−q −

F0

θ

)−1
 = θ−1

 1
p − q

∑
1≤ j≤p−q

µ j

1 − µ j/θ

 .
Since all the eigenvalues of F0, namely µ1 ≥ . . . ≥ µp−q, are almost surely bounded, we can
get that m̃θ(1) − 1 = Oa.s.(θ−1). �

Recall that ei is the q-dimensional vector whose i-th element is 1 and others are 0,
U> = (u1,u2, . . . ,uq), where ui ∈ R

q is the i− th column of the matrix U>. Then we get the
following lemma.
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Lemma 4.2. For any fixed 1 ≤ i ≤ q, denote Gni =
√

pUΘ1nU>. Under the assumptions
of Theorem 2.10, we have

e>i Gniei
d
−→ N(0, σ̃2

i ),

where σ̃2
i = (y + c) (1 − y)2 νi − y (1 − y) (1 − 3y) − c (1 − y)2 and νi = E|u>i Z1e1|

4 for 1 ≤
i ≤ q.

Proof of Lemma 4.2. From the definition of Θ1n in (3.27) and the fact that Y1 = Σ
− 1

2
1 X1 =

U>Λ−
1
2 UX1, we have the decomposition

e>i Gniei =u>i
[ (1 + δi)2 √p

n
Z1 {In − A(θi)}Z>1 −

λi

θi

√
p

T
Y1 {IT + B(θi)}Y>1

+

√
pλi

n
Z1C(θi)Y>1 +

√
pλi

T
Y1D(θi)Z>1

]
ui − E(·), (4.1)

where E[·] is the expectation of all the preceding terms after the equal sign.
By Theorem 2.6, δi converges in probability to 0, thus we only need to consider the

limit of

e>i G̃niei :=u>i
[ √p

n
Z1 {In − A(θi)}Z>1 −

λi

θi

√
p

T
Y1 {IT + B(θi)}Y>1 +

√
pλi

n
Z1C(θi)Y>1

+

√
pλi

T
Y1D(θi)Z>1

]
ui − E[·].

For the first two terms, Theorem 7.2 in [3] implies that, for any 1 ≤ i ≤ q,

1
√

n

[
u>i Z1 {In − A(θi)}Z>1 ui − tr {In − A(θi)}

] d
−→ N(0, σ̃2

iA),

1
√

T

[
u>i Y1 {IT + B(θi)}Y>1 ui − tr {IT + B(θi)}

] d
−→ N(0, σ̃2

iB),

with σ̃2
iA = ωIn−A(θi)(νi − 3) + 2βIn−A(θi) and σ̃2

iB = ωIT +B(θi)(νi − 3) + 2βIT +B(θi), where

νi = E|u>i Z1e1|
4 = E|u>i Y1e1|

4,

ωIn−A(θi) = lim
n→∞

1
n

∑
1≤k≤n

[{In − A(θi)} (k, k)]2 ,

βIn−A(θi) = lim
n→∞

1
n

tr {In − A(θi)}2 ,

ωIT +B(θi) and βIT +B(θi) are similarly defined. Here the fact that E|u>i Z1e1|
4 = E|u>i Y1e1|

4 is
implied by Assumption 2.3. Based on the facts that

E
[
u>i Z1 {In − A(θi)}Z>1 ui

]
= E

(
tr

[
Z>1 uiu>i Z1 {In − A(θi)}

])
=tr

[
E

(
Z>1 uiu>i Z1

)
E {In − A(θi)}

]
= E [tr {In − A(θi)}] = n − (p − q)E

{
m̃θi(1)

}
,

and that m̃θi(1) − E
{
m̃θi(1)

}
= Op(n−1), we can get that

1
√

n

(
E

[
u>i Z1 {In − A(θi)}Z>1 u>i

]
− tr {In − A(θi)}

)
= op(1).
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Then it follows that

1
√

n

(
u>i Z1 {In − A(θi)}Z>1 ui − E

[
u>i Z1 {In − A(θi)}Z>1 u>i

]) d
−→ N(0, σ̃2

iA),

and similarly,

1
√

T

(
u>i Y1 {IT + B(θi)}Y>1 ui − E

[
u>i Y1 {IT + B(θi)}Y>1 ui

]) d
−→ N(0, σ̃2

iB).

For other two terms, by the same approach in the proof of Theorem 2.6, we have that

u>i

{ √
pλi

n
Z1C(θi)Y>1 +

√
pλi

T
Y1D(θi)Z>1

}
ui = Op

(
1
√
λi

)
.

By all these arguments above, we can derive that e>i Gniei
d
−→ N(0, σ̃2

i ) with σ̃2
i = yσ2

iA +

c(1 − y)2σ2
iB.

We compute ωIn−A(θi), βIn−A(θi), ωIT +B(θi) and βIT +B(θi) in the following. By the deriva-
tions in the proof of Lemma 6 in [17],

{In − A(θi)} (k, k) = 1 −

Z>2 M(θi)−1
(
1
n

Z2Z>2

)−1 1
n

Z2

 (k, k)

= 1 −
θi

n

Z>2

(
θi ·

1
n

Z2Z>2 −
1
T

X2X>2

)−1

Z2

 (k, k)

=
1

1 +
θi
n

{
η>k

(
θi

1
n Z2kZ>2k −

1
T X2X>2

)−1
ηk

} ,
where ηk is the k-th column of Z2 and Z2k is defined by removing the k-th column of Z2.

Note that(
1
n

Z2kZ>2k −
1
θiT

X2X>2

)−1

−

(
1
n

Z2kZ>2k

)−1

=

(
1
n

Z2iZ>2i −
1
θiT

X2X>2

)−1 {
1
n

Z2kZ>2k −

(
1
n

Z2kZ>2k −
1
θiT

X2X>2

)} (
1
n

Z2kZ>2k

)−1

=θ−1
i

(
1
n

Z2iZ>2i −
1
θiT

X2X>2

)−1 (
1
T

X2X>2

) (
1
n

Z2kZ>2k

)−1

(4.2)

and

1
p − q − 1

tr
(
1
n

Z2kZ>2k

)−1

= SMP (0) + Op
(
p−1

)
=

1
1 − y

+ Op
(
p−1

)
, (4.3)

where SMP denotes the Stieltjes transform of the Marcenko-Pastur law. Then we have that

1
p − q

θiE

tr
(
θi

1
n

Z2kZ>2k −
1
T

X2X>2

)−1
 = E

 1
p − q

tr
(
1
n

Z2kZ>2k

)−1

+ Oa.s.
(
θ−1

i

)
= E

{
1

1 − y
+ Oa.s.

(
θ−1

i

)
+ Op

(
p−1

)}
→

1
1 − y

.
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By Lemma A.2. in [17], it holds that

{In − A(θi)} (k, k)→
1

1 + y(1 − y)−1 = 1 − y,

which implies

ωIn−A(θi) = lim
n→∞

1
n

∑
1≤k≤n

[{In − A(θi)} (k, k)]2 = (1 − y)2.

By the similar argument, we can obtain that

ωIT +B(θi) = lim
T→∞

1
T

∑
1≤k≤T

[{IT + B(θi)} (k, k)]2 = 1.

Now we come to the calculation of βIn−A(θi) and βIT +B(θi). Since θi → +∞ as n goes to
infinity, we have

lim
n→∞

∫ ∞

−∞

θi

θi − x
dFn(x) = 1, lim

n→∞

∫ ∞

−∞

θ2
i

(θi − x)2 dFn(x) = 1,

lim
T→∞

∫ ∞

−∞

x
θi − x

dFn(x) = 0, lim
T→∞

∫ ∞

−∞

x2

(θi − x)2 dFn(x) = 0.

Then these calculations lead to

βIn−A(θi) = lim
n→∞

1
n

tr {In − A(θi)}2 = lim
n→∞

1
n

tr
{
In − 2A(θi) + A2(θi)

}
= 1 − 2 lim

n→∞

(
p − q

n

∫ ∞

−∞

θi

θi − x
dFn(x)

)
+ lim

n→∞

 p − q
n

∫ ∞

−∞

θ2
i

(θi − x)2 dFn(x)


= 1 − 2y + y = 1 − y,

βIT +B(θi) = lim
T→∞

1
T

tr {IT + B(θi)}2 = lim
T→∞

1
T

tr
{
IT + 2B(θi) + B2(θi)

}
= 1 + 2 lim

T→∞

{
p − q

T

∫ ∞

−∞

x
θi − x

dFn(x)
}

+ lim
T→∞

{
p − q

T

∫ ∞

−∞

x2

(θi − x)2 dFn(x)
}

= 1 + 0 + 0 = 1.

Thus, we can write

σ̃2
i = yσ̃2

iA + c(1 − y)2σ̃2
iB

= y{ωIn−A(θi)(νi − 3) + 2βIn−A(θi)} + c(1 − y)2{ωIT +B(θi)(νi − 3) + 2βIT +B(θi)}

= (y + c) (1 − y)2 νi − y (1 − y) (1 − 3y) − c (1 − y)2 .

Thus the proof is completed. �

Lemma 4.3. Under the assumptions of Theorem 2.10,

‖UΘ1nU>‖∞ = Op

(
q
√

n
+

∑
j λ j
√

nλi

)
.
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Proof of Lemma 4.3. By the definition of Θ1n in (3.27) again, we know

Θ1n =(1 + δi)2 1
n

Z1 {In − A(θi)}Z>1 − θ
−1
i

1
T

X1 {IT + B(θi)}X>1

+
1
n

Z1C(θi)X>1 +
1
T

X1D(θi)Z>1 − E(·), (4.4)

where E(·) is the expectation of all the preceding terms.
Denote

ηn1 =
1
n

Z1 {In − A(θi)}Z>1 − E
[
1
n

Z1 {In − A(θi)}Z>1

]
,

ηn2 =
1
T

Y1 {IT + B(θi)}Y>1 − E
[

1
T

Y1 {IT + B(θi)}Y>1

]
,

ηn3 =
√
θi

1
n

Z1C(θi)Y>1 − E
{√

θi
1
n

Z1C(θi)Y>1

}
,

ηn4 =
√
θi

1
T

Y1D(θi)Z>1 − E
{√

θi
1
T

Y1D(θi)Z>1

}
.

By the fact X1 = U>Λ
1
2
1 UY1, we can write

UΘ1nU> :=
4∑

i=1

Vni, (4.5)

where

Vn1 = (1 + δi)2U
(
1
n

Z1 {In − A(θi)}Z>1 − E
[
1
n

Z1 {In − A(θi)}Z>1

])
U>

= (1 + δi)2Uηn1U>, (4.6)

Vn2 = −θ−1
i U

(
1
T

X1 {IT + B(θi)}X>1 − E
[

1
T

X1 {IT + B(θi)}X>1

])
U>

= −θ−1
i Λ

1
2 U

(
1
T

Y1 {IT + B(θi)}Y>1 − E
[

1
T

Y1 {IT + B(θi)}Y>1

])
U>Λ

1
2

= −θ−1
i Λ

1
2 Uηn2U>Λ

1
2 , (4.7)

Vn3 = U
[
1
n

Z1C(θi)X>1 − E
{

1
n

Z1C(θi)X>1

}]
U>

= U
[
1
n

Z1C(θi)Y>1 − E
{

1
n

Z1C(θi)Y>1

}]
U>Λ

1
2

= U
[
1
n

Z1C(θi)Y>1 − E
{

1
n

Z1C(θi)Y>1

}]
U>Λ

1
2

= θ
− 1

2
i Uηn3U>Λ

1
2 (4.8)

Vn4 = U
[

1
T

X1D(θi)Z>1 − E
{

1
T

X1D(θi)Z>1

}]
U> = θ

− 1
2

i Λ
1
2 Uηn4U>. (4.9)

Similarly as the arguments in the proof of Lemma 4.2, it holds that, for 1 ≤ j1, j2 ≤ q,

e>j1ηn1e j2 = Op

(
1
√

n

)
, e>j1ηn2e j2 = Op

(
1
√

n

)
,

26



e>j1ηn3e j2 = Op

(
1
√

nλi

)
, e>j1ηn4e j2 = Op

(
1
√

nλi

)
.

Noting that U is an orthogonal matrix, we have that

e>j1Vn1e j2 = e>j1(1 + δi)2Uηn1U>e j2 = Op

(
1
√

n

)
,

e>j1Vn2e j2 = −e>j1θ
−1
i Λ

1
2 Uηn2U>Λ

1
2 e j2 = λ−1

i λ
1
2
j1
λ

1
2
j2
· Op

(
1
√

n

)
,

e>j1Vn3e j2 = e>j1θ
− 1

2
i Uηn3U>Λ

1
2 e j2 = λ−1

i λ
1
2
j2
· Op

(
1
√

n

)
,

e>j1Vn4e j2 = e>j1θ
− 1

2
i Λ

1
2 Uηn4U>e j2 = λ−1

i λ
1
2
j1
· Op

(
1
√

n

)
.

Then by Chebyshev’s inequality, we can deduce that

‖Vn1‖∞ = Op

(
q
√

n

)
, ‖Vn2‖∞ = Op

(∑
j λ j
√

nλi

)
, ‖Vn3 + Vn4‖∞ = Op

 √
q
∑

j λ j
√

nλi

 ,
where

√
q
∑

j λ j = o(
∑

j λ j). Thus we complete the proof by (4.5). �

Lemma 4.4. Under the assumptions of Theorem 2.10,

max
1≤ j≤q

∣∣∣e>j UΘ2nU>e j − (y − 1)
∣∣∣ = Op


√

qδi

λi
+

√
q
√

n
+

√∑
j λ

2
j

λ2
i

+

√∑
j λ j

λi

 , (4.10)

max
1≤ j1, j2≤q

|e>j1UΘ2nU>e j2 | = Op

qδi

λi
+

q
√

n
+

∑
j λ j

λ2
i

+

√
q
∑

j λ j

λi

 . (4.11)

Proof of Lemma 4.4. Recall the definition of Θ2n in (3.28):

Θ2n =(1 + δi)
1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 − (1 + δi)
1
n

Z1Z>1

+
1

λ̂iθi

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1

−
(1 + δi)

λ̂i

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1 +
1
n

Z1C(θi)X>1

−
(1 + δi)

λ̂i

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 +
1
T

X1D(θi)Z>1 .

Noting that

M−1(̂λi) −M−1(θi) = M−1(̂λi)
{
M(θi) −M(̂λi)

}
M−1(θi) = −

δi

λ̂i
M−1(̂λi)F0M−1(θi),

we decompose the first term in Θ2n as

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1
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=
1
n

Z1Z>2
{
M−1(̂λi) −M−1(θi)

}
M−1(θi)

(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 +
1
n

Z1Z>2 M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1

= −
δi

λ̂i

1
n

Z1Z>2 M−1(̂λi)F0M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 +
1
n

Z1Z>2 M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 .

On one hand, similar to the arguments in the proof of Theorem 2.6, we can derive that

max
1≤ j≤q

∣∣∣∣∣∣∣e>j δi

λ̂i

1
n

Z1Z>2 M−1(̂λi)F0M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j

∣∣∣∣∣∣∣ = Op

( √
qδi

λi

)
,

max
1≤ j1, j2≤q

∣∣∣∣∣∣∣e>j1 δi

λ̂i

1
n

Z1Z>2 M−1(̂λi)F0M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j2

∣∣∣∣∣∣∣ = Op

(
qδi

λi

)
.

On the other hand, similar to the proof of Lemma 4.2, we can get that

1
n

e>j Z1Z>2 M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j − E
[
tr

{
M−2(θi)

}] = Op

(
1
√

n

)
,

1
n

e>j1Z1Z>2 M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j2 = Op

(
1
√

n

)
,

where 1
n E

{
trM−2(θi)

}
→ y. It follows that

max
1≤ j≤q

∣∣∣∣∣∣∣1ne>j (1 + δi)Z1Z>2 M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j −
1
n

E
[
tr

{
M−2(θi)

}]∣∣∣∣∣∣∣ = Op

( √
q
√

n

)

max
1≤ j1, j2≤q

∣∣∣∣∣∣∣1ne>j1(1 + δi)Z1Z>2 M−2(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j2

∣∣∣∣∣∣∣ = Op

(
q
√

n

)
.

Similarly, we can get the following for other terms:

max
1≤ j≤q

∣∣∣∣∣e>j (1 + δi)
1
n

Z1Z>1 e j − 1
∣∣∣∣∣ = Op

( √
q
√

n

)
, max

1≤ j1, j2≤q

∣∣∣∣∣e>j1(1 + δi)
1
n

Z1Z>1 e j2

∣∣∣∣∣ = Op

(
q
√

n

)
,

max
1≤ j≤q

∣∣∣∣∣∣∣e>j 1

λ̂iθi

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1 e j

∣∣∣∣∣∣∣ = Op


√∑

j λ
2
j

λ2
i

 ,
max

1≤ j1, j2≤q

∣∣∣∣∣∣∣e>j1 1

λ̂iθi

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1 e j2

∣∣∣∣∣∣∣ = Op

∑ j λ j

λ2
i

 ,
max
1≤ j≤q

∣∣∣∣∣∣∣e>j (1 + δi)

λ̂i

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1 e j

∣∣∣∣∣∣∣ = Op

 √∑
j λ j

λi

 ,
max

1≤ j1, j2≤q

∣∣∣∣∣∣∣e>j1 (1 + δi)

λ̂i

1
n

Z1Z>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
T

X2X>1 e j2

∣∣∣∣∣∣∣ = Op

 √
q
∑

j λ j

λi

 ,
max
1≤ j≤q

∣∣∣∣∣e>j 1
n

Z1C(θi)X>1 e j

∣∣∣∣∣ = Op

 √∑
j λ j

√
nλi

 , max
1≤ j1, j2≤q

∣∣∣∣∣e>j1 1
n

Z1C(θi)X>1 e j2

∣∣∣∣∣ = Op

 √
q
∑

j λ j
√

nλi

 ,
max
1≤ j≤q

∣∣∣∣∣∣∣e>j (1 + δi)

λ̂i

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j

∣∣∣∣∣∣∣ = Op

 √∑
j λ j

λi

 ,
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max
1≤ j1, j2≤q

∣∣∣∣∣∣∣e>j1 (1 + δi)

λ̂i

1
T

X1X>2 M−1(̂λi)M−1(θi)
(
1
n

Z2Z>2

)−1 1
n

Z2Z>1 e j2

∣∣∣∣∣∣∣ = Op

 √
q
∑

j λ j

λi

 ,
max
1≤ j≤q

∣∣∣∣∣e>j 1
T

X1D(θi)Z>1 e j

∣∣∣∣∣ = Op

 √∑
j λ j

√
nλi

 , max
1≤ j1, j2≤q

∣∣∣∣∣e>j1 1
T

X1D(θi)Z>1 e j2

∣∣∣∣∣ = Op

 √
q
∑

j λ j
√

nλi

 .
Thus, all these inequalities lead to

max
1≤ j≤q

∣∣∣e>j Θ2ne j − (y − 1)
∣∣∣ = Op


√

qδi

λi
+

√
q
√

n
+

√∑
j λ

2
j

λ2
i

+

√∑
j λ j

λi

 ,
max

1≤ j1, j2≤q

∣∣∣e>j1Θ2ne j2

∣∣∣ = Op

qδi

λi
+

q
√

n
+

∑
j λ j

λ2
i

+

√
q
∑

j λ j

λi

 .
The proof is completed. �
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