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Abstract

The analysis of manifold-valued data using embedding based methods is linked to the problem of finding suitable
embeddings. In this paper we are interested in embeddings of quotient manifolds SO(3)/S of the rotation group
modulo finite symmetry groups. Data on such quotient manifolds naturally occur in crystallography, material science
and biochemistry. We provide a generic framework for the construction of such embeddings which generalizes the
embeddings constructed in [2]. The central advantage of our larger class of embeddings is that it includes locally
isometric embeddings for all crystallographic symmetry groups.

Keywords: Euclidean Embedding, Locally Isometric Embedding, Rotation Group

1. Introduction

In the analysis of manifold-valued data there are two different approaches - intrinsic and extrinsic. Intrinsic
methods solely rely on intrinsic properties of the manifold, e.g. the Riemanian curvature tensor, the exponential map
or the Levi-Cevita connection. Those methods often work locally like moving least squares [10], multiscale methods
[20] or subdivision schemes [25]. Other intrinsic approaches make use of function systems that are adapted to the
geometry of the manifold, e.g. diffusion maps [5] or the eigenfunctions of the manifold Laplacian [11, 12, 14, 15, 19].

On the other hand, extrinsic methods rely on an embedding of the manifold into some higher dimensional vector
space [2, 7, 22]. The advantage of embedding-based methods, compared to intrinsic methods, is that they often
are straight forward generalizations of the corresponding linear methods. The central challenges for applying an
embedding-based method to a specific manifoldM are

1. Find a suitable embedding E : M → Rd of the manifold M that approximately preserves distances and has
moderate dimension.

2. Find an efficient algorithm for the projection PM : U → M from some neighborhood U ⊃ E(M) back to the
manifold.

In our paper we are concerned with the specific case when the manifoldM is the quotient SO(3)/S = {[R]S : R ∈
SO(3)} of the rotational group SO(3) with respect to some finite symmetry group S < SO(3). Here the cosets in
the quotient space are defined by [R]S := {RO | O ∈ S}. As a finite subgroup of SO(3) the symmetry group S is
isomorphic to one of the following: the cyclic groups Ck for k ∈ {1, 2, . . .}, the dihedral groups Dk for k ∈ {2, 3, . . .},
the tetrahedral group T , the octahedral group O and the icosahedral group Y . Since the group SO(3) is simple, the
quotient SO(3)/S is not a group for all S , C1 but forms a homogeneous space with canonical left action of the Lie
group SO(3).

To give the reader an idea about the quotient SO(3)/Swe consider the representation of a rotation R = Rz(α)Ry(β)Rz(γ)
as the composition of rotations about the axes z, y, z and Euler angles α, γ ∈ [0, 2π], β ∈ [0, π]. Let us furthermore
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assume that the subgroup Ck is represented by the rotations Rz(` 2π
k ), ` ∈ Z about the z-axis. Then Ck enforces a

periodicity of 2π/k on the last Euler angle γ and the cosets in SO(3)/Ck are of the form

[Rz(α)Ry(β)Rz(γ)]Ck =
{
Rz(α)Ry(β)Rz(γ + 2`π

k ) | ` = 0 . . . k − 1
}
.

Nice geometrical visualizations of these coset spaces can be found in [16].
The analysis of data that are cosets [R]S ∈ SO(3)/S in the homogeneous space SO(3)/S is of central importance

in various scientific areas. For instance, they are used to describe the alignment of crystals in crystallography, material
science and geology [1, 4, 8], the alignment of molecules and proteins in biochemistry [3] or movements in robotics
[26] and motion tracking [21].

Since, locally, the quotient manifolds SO(3)/S are isometric to the rotation group SO(3) itself all intrinsic methods
for the rotation group can be easily adapted to work on the quotients as well. Unfortunately, this is not true for
embedding based-methods, e.g. for the interpolation methods described in [9]. Explicit embeddings for the quotient
manifolds SO(3)/S have been investigated first by R. Arnold, P. Jupp and H. Schaeben in [2]. Our paper aims to
extend their results by developing a general framework for the construction of embeddings of the quotient manifolds
SO(3)/S that include the embeddings described in [2]. Our embeddings pose several nice properties, e.g. they are all
SO(3)-equivariant1, their images are contained in a sphere and the image measure µ ◦ E−1 induced by the rotational
invariant measure µ on SO(3) is centered in Rd, i.e., has zero mean. Furthermore, we find within our framework locally
isometric embeddings of SO(3)/S for all finite symmetry groups S and provide an efficient numerical method for the
projection PM. The practical advantage of isometric embeddings is that locally isotropic methods in Rd translates into
locally isotropic methods on SO(3)/S.

Our paper is organized as follows. In Section 2.1 we introduce the generic embeddings and prove in the Theo-
rem 2.4 and Corollary 2.5 that they are SO(3)-equivariant maps that map the quotient manifold into a subsphere of
an Euclidean vector space. Furthermore, we provide in Table 1 the parameters such that our embeddings coincide
with the embeddings found in [2]. In Section 2.2 we investigate rotational invariant subspaces of Rd and show in
Theorem 2.9 that the embeddings can be centered such that their image is contained in a linear subspace of Rd which
allows us to reduce the effective dimension of the embedding. In Section 2.3 we consider the rotational invariant
Haar measure µ on SO(3) and generalize it to a left invariant measure µS on SO(3)/S. Together with an embedding
E : SO(3)/S → Rd this induces an image measure on Rd. In Theorem 2.10 we show that the centered embeddings
from Section 2.3 result in centered image measures. Finally, we propose in Section 2.4 an iterative algorithm for the
numerical computation of the projection PM of an arbitrary point in some neighborhood of the manifold back to the
manifold. To this end, we derive in Theorem 2.12 the gradient of the distance functional.

In Section 3 we are interested in the discrepancy between the geodesic distance on the quotient manifold and
the Euclidean distance in the embedding. A smooth embedding into Rd, such that the pull back of the Euclidean
metric tensor coincides with the metric tensor of the manifold, is called isometric. According to the Nash embedding
Theorem [18], there exists for every m-dimensional Riemannian manifold an isometric embedding into Rm(3m+11)/2.
As all our quotient manifolds are three-dimensional the result guaranties the existence of an isometric embedding into
the space R30. It turns out that our embeddings are sufficiently general to include locally isometric embeddings for the
quotient manifolds SO(3)/S modulo all crystallographic symmetry groups S. This result is proven separately for the
different types of symmetry groups in Theorems 3.3, 3.6, 3.7, 3.8, 3.9, 3.10. The corresponding parameters as well
as the dimension of the linear space are summarized in Table 2. The dimensions of the locally isometric embeddings
vary from 8 to 32 depending on the symmetry group.

In the last Section 3.2 we investigate the global relationship between the geodesic distance on SO(3)/S and the
Euclidean distance in the embedding. According to [24] it is possible to construct for each smooth and compact
manifoldM an embedding E : M → Rd such that the geodesic distance on the manifold and the Euclidean distance
in the embedding differ only by a given ε > 0, i.e.,

(1 − ε) dM(m1,m2) ≤ d(E(m1),E(m2)) ≤ (1 + ε) dM(m1,m2). (1)

However, the dimension d of the vector space required for such an embedding is much to large for numerical applica-
tions. In Table 3 we provide similar bounds to those in equation (1) for the locally isometric embeddings defined in this

1c.f. Definition 2.3

2



paper. It turns out that locally isometric embeddings do not necessarily lead to globally optimal bounds. Parameters
for our embeddings optimized with respect to global preservation of distances are provided in Table 4.

2. Embeddings of the Rotation Group

2.1. General Framework
The group of rotations SO(3) interpreted as a matrix group has a canonical embedding E : SO(3)→ R9 given by

E(R) = (Re1, Re2, Re3) (2)

where e1, e2, e3 is the standard basis in R3. Replacing the basis vectors e1, e2, e3 by any other list of vectors
u1,u2, . . . ,un will always result in an embedding as long as at least two of the vectors are linearly independent.
Unfortunately, this approach is not applicable to quotients SO(3)/S since well definedness requires that E([RS]S) =

E([R]S) for all symmetry operations S ∈ S. For that reason, we generalize the embedding (2) to tensor products of
vectors u1,u2, . . . ,un. In the next definition we will make use of the following notation. Let α = (α1, . . . , αn) ∈ Nn be
a multi-index. Then R3α is defined as the linear space

R3α = ×n
i=1

(
⊗αiR3

)
� R(∑n

i=1 3αi ). (3)

Definition 2.1. Let n ∈ N, α = (α1, . . . , αn) ∈ Nn be a multi-index and u = (u1, . . . ,un) ∈ R3n be a list of n directions
u j ∈ R3. Then we define the mapping Eαu : SO(3)→ R3α as

Eαu (R) = (⊗α1 Ru1, . . . ,⊗
αn Run) .

In order to define mappings that are invariant with respect to a finite subgroup S < SO(3) we utilize the averaging
idea.

Definition 2.2. Let S < SO(3) be a finite subgroup and Eαu : SO(3) → R3α as defined in Definition 2.1. Then we
denote by

Eαu,S : SO(3)/S → R3α , Eαu,S([O]S) =
1
|S|

∑
S∈S

Eαu (OS), [O]S= {OR | R ∈ S} ∈ SO(3)/S

its symmetrized version.

In order to examine the properties of Eαu,S it we consider both, the quotient SO(3)/S and the vector space R3α of
dimension

∑n
i=1 3αi as SO(3) manifolds equipped with the left group actions

R . [O]S = [RO]S, R . v = (⊗αR) v,

where R ∈ SO(3), [O]S ∈ SO(3)/S and v = (v1, . . . , vn) ∈ R3α . The multiplication of tensor product ⊗αR with the
tensor v ∈ R3α is defined component-wise by (⊗αR) v =

(
(⊗αi R) vi

)n
i=1 and

[
(⊗αi R) vi

]
k1,...,kαi

=

3∑
`1=1

· · ·

3∑
`αi =1

Rk1`1 · · ·Rkαi `αi
vi
`1,...,`αi

.

Mappings that intertwines with such group actions are called equivariant.

Definition 2.3. Let G be a group that acts on two sets X,Y via g . x and g . y, g ∈ G, x ∈ X, y ∈ Y. A mapping
f : X → Y is said to be an G-equivariant map if it intertwines with the group action, i.e.,

f (g . x) = g . f (x) for all g ∈ G, x ∈ X.

It turns out that the embeddings from Definition 2.1 and 2.2 are indeed SO(3)-equivariant maps between the
quotients SO(3)/S and Euclidean vector spaces R3α .

3



Theorem 2.4. The mapping Eαu,S : SO(3)/S → R3α is an SO(3)-equivariant map, i.e.,

Eαu,S(R . [O]S) = R . Eαu,S([O]S)

for all R ∈ SO(3) and [O]S ∈ SO(3)/S.

Proof. Let R ∈ SO(3) and [O]S ∈ SO(3)/S. Then straight forward computation reveals

Eαu,S(R . [O]S) =
1
|S|

∑
S∈S

Eαu (ROS)

=
1
|S|

∑
S∈S

(⊗α1 ROSu1, . . . ,⊗
αn ROSun) = R . Eαu,S([O]S).

A direct consequence of Eαu,S beeing a SO(3)-equivariant map is that ‖Eαu,S([R]S)‖ is independent of [R]S ∈
SO(3)/S.

Corollary 2.5. The image Eαu,S(SO(3)/S) ⊂ R3α is contained in a sphere with radius rS, i.e., it exists a constant
rS > 0 such that for all [R]S ∈ SO(3)/S, ∥∥∥Eαu,S([R]S)

∥∥∥ = rS.

Proof. Let R ∈ SO(3) be an arbitrary rotation and I ∈ SO(3) the identity. Then we have by Theorem 2.4 and the fact
that the Kronecker product of orthogonal matrices is again an orthogonal matrix that∥∥∥Eαu,S([R]S)

∥∥∥2
=

〈
Eαu,S([R I]S), Eαu,S([R I]S)

〉
=

〈
R . Eαu,S([I]S), R . Eαu,S([I]S)

〉
=

〈
(⊗αR)Eαu,S([I]S), (⊗αR)Eαu,S([I]S)

〉
=

∥∥∥Eαu,S([I]S)
∥∥∥2
.

2.2. Rotationally Invariant Subspaces

In order to prove further properties of the embeddings Eαu,S we continue by investigating subspaces of R3α that are
invariant with respect to the group action .. More precisely, we search for tensors Mα ∈ R3α , such that R . Mα = Mα.
For α = 1 and v ∈ R3 this means Rv = v has to hold for all R ∈ SO(3). This is only fulfilled for v = 0 and,
hence, the subspace of rotational invariant vectors in the R3 is just the trivial one. In the case α = 2 we have for
v = I ∈ R32

that ⊗2R . I = RIRT = I and, hence, M2 = I spans a rotational invariant subspace of R32
. Indeed, we

find a one-dimensional rotational invariant subspace for all even α.

Lemma 2.6. Let α = (αi)n
i=1 be a multi-index. Then the tensor Mα ∈ R3α defined by

(Mαi ) j1,..., jαi
= symm(⊗αi/2I) =

1
αi!

∑
σ∈Σαi

αi/2∏
k=1

δ jσ(2k−1), jσ(2k) ,

if αi is even and Mαi = 0 ∈ ⊗αiR3 if αi is odd, is SO(3) invariant, i.e., R . Mα = Mα, R ∈ SO(3).

4



Proof. For odd αi there is nothing to prove. For R =
(
Ri j

)3

i, j=1
∈ SO(3) and even α ∈ N0 we have

(R . Mα)i1,...,iα = ((⊗αR) Mα)i1,...,iα

=

3∑
j1,..., jα=1

(Mα) j1,..., jα · Ri1 j1 Ri2 j2 · · ·Riα jα

=
1
α!

3∑
j1,..., jα=1


∑
σ∈Σα

α
2∏

k=1

δ jσ(2k−1), jσ(2k)

 Ri1 j1 Ri2 j2 · · ·Riα jα


=

1
α!

3∑
j1,..., jα=1

∑
σ∈Σα

α
2∏

k=1

δ jσ(2k−1), jσ(2k)

 α∏
l=1

Ril jl

=
1
α!

∑
σ∈Σα

α
2∏

k=1

3∑
j1,..., jα=1

δ jσ(2k−1), jσ(2k) Riσ(2k−1) jσ(2k−1) Riσ(2k) jσ(2k)

=
1
α!

∑
σ∈Σα

α
2∏

k=1

3∑
j1,..., jα=1

Riσ(2k−1) jσ(2k−1) Riσ(2k) jσ(2k) .

All the sums and products are finite, so we can interchange them. Using the orthogonality of R we obtain

3∑
jσ(2k−1)=1

α
2∏

k=1

Riσ(2k−1) jσ(2k−1) Riσ(2k) jσ(2k) = 〈Riσ(2k−1) ,Riσ(2k)〉 =

0 if iσ(2k−1) , iσ(2k)

1 if iσ(2k−1) = iσ(2k)

and eventually,

(R . Mα)i1,...,iα =
1
α!

∑
σ∈Σα

r
2∏

k=1

δiσ(2k−1),iσ(2k) = (Mα)i1,...,iα .

Applying this argument element-wise for all α ∈ {αi}
n
i=1, yields the assertion.

For example in the case α = 4, the tensor M4 can be written as

(M4) j1, j2, j3, j4 =


1 if j1 = j2 = j3 = j4
1
3 if pair-wise two indices are equal, but not all, i.e. j1 = j2 = 1, j3 = j4 = 2
0 else

.

Since, Eαu,S is an SO(3)-equivariant map, any rotationally invariant subspace is orthogonal to the image of the embed-
ding Eαu,S(SO(3)). More precisely, we have the following result:

Lemma 2.7. Let α ∈ N and R ∈ SO(3) an arbitrary rotation. Then the inner product between Eαu(R) and Mα

computes to 〈
Eαu(R), Mα

〉
= 1.

Proof. We can rewrite the definition of Mα for even α to

Mα =
1
α!

∑
σ∈Σα

δ jσ(1), jσ(2) · δ jσ(3), jσ(4) · · · δ jσ(α−1), jσ(α) =
1
α!

2
α
2

(
α

2

)
!
(
δ j1, j2 · δ j3, j4 · · · δ jα−1, jα + . . .

)︸                               ︷︷                               ︸
(α−1)(α−3)···1 summands

. (4)

The product of the δ is 1 only, if pairwise two ji are equal. Hence, we obtain the following for the scalar product if
v = (v1, v2, v3)> = Ru 〈

Eαu(R), Mα
〉

= 〈⊗α(Ru), Mα〉 =
∑
i, j,k

2i+2 j+2k=α

a(i, j, k)v2i
1 v2 j

2 v2k
3
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with coefficients a(i, j, k). These coefficients have to be determined:

a(i, j, k) =
1
α!

2
α
2

(
α

2

)
!︸       ︷︷       ︸

factor in (4)

·

(
α

2i

)(
α − 2i

2 j

)(
α − 2i − 2 j

2k

)
︸                          ︷︷                          ︸

number of entries

· (2i − 1)(2i − 3) · · · 1 · (2 j − 1)(2 j − 3) · · · 1 · (2k − 1)(2k − 3) · · · 1︸                                                                                 ︷︷                                                                                 ︸
number of summands unequal to 0 in (4)

=

(
α

2

)
! ·

2i(2i − 1)(2i − 3) · · · 1
(2i)!

·
2 j(2 j − 1)(2 j − 3) · · · 1

(2 j)!
·

2k(2k − 1)(2k − 3) · · · 1
(2k)!

=

(
α

2

)
! ·

1
i! j!k!

=

( α
2

i, j, k

)
.

With the multinomial theorem it follows that

〈⊗αv, Mα〉 = (v2
1 + v2

2 + v2
3)α = 1.

The previous lemma states that the embedded manifold is contained in the affine subspace of all x ∈ R3α with
〈x, Mα〉 = 1. Next we want to shift the embedding into the corresponding linear subspace. To this end we need to
compute the Frobenius norms ‖Mα‖F of the invariant tensors Mα.

Lemma 2.8. Let α ∈ 2N. Then the Frobenius norm of the tensor Mα satisfies

‖Mα‖
2
F = 〈Mα, Mα〉 = α + 1.

Proof. We use the formulation for the tensor Mα from equation (4). Let i1, i2, i3 ∈ {0, 1, 2, . . . , α2 } with i1 + i2 + i3 = α
2

such that

j1, . . . , j2i1 = 1,
j2i1+1, . . . , j2i1+2i2 = 2,

j2i1+2i2+1, . . . , j2i1+2i2+2i3 = 3.

The corresponding entry in Mα is

1
α!

2
α
2

(
α

2

)
! · (2i1 − 1)(2i1 − 3) · · · 1 · (2i2 − 1)(2i2 − 3) · · · 1(2i3 − 1)(2i3 − 3) · · · 1

=
1
α!

( α
2

i1, i2, i3

)
(2i1)! (2i2)! (2i3)! =

(α2 )! (2i1)! (2i2)! (2i3)!
α! i1! i2! i3!

.

The values in Mα are equal, no matter which ji are 1 and similarly for i2 and i3. Hence, there are
(

α
2i1,2i2,2i3

)
such entries

6



in Mα. Overall we obtain

‖Mα‖
2
F =

α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

(
α

2i1, 2i2, 2i3

) (
(α2 )! (2i1)! (2i2)! (2i3)!

α! i1! i2! i3!

)2

=

α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

α!
(2i1)! (2i2)! (2i3)!

 (α2 )!2 (2i1)!2 (2i2)!2 (2i3)!2

α!2 i1!2 i2!2 i3!2


=

α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

 (α2 )!2 (2i1)! (2i2)! (2i3)!
α! i1!2 i2!2 i3!2


=

1(
α
α
2

) α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

(
2i1
i1

)(
2i2
i2

)(
2i3
i3

)
.

With Lemma Appendix A.1 follows the assertion.

The previous Lemmata motivate to shift the embeddings for even α by a multiple of Mα to reduce the dimension
of the embedding space.

Theorem 2.9. Let Eαu,S : SO(3)/S → R3α be the embedding defined in Definition 2.2. Then the image of the centered
embedding

Ẽαu,S([O]S) = Eαu,S([O]S) −
(

1
α1 + 1

Mα1 , . . . ,
1

αn + 1
Mαn

)
is contained in a linear subspace of R3α of dimension

n∑
i=1

(
αi + 2
αi

)
−

n∑
i=1

(αi + 1 mod 2) .

Proof. By Definition 2.1 all components T j ∈ R3α j of the embedding T = (T1, . . . ,T n) = Eαu (R) of an arbitrary
rotation R ∈ SO(3) are symmetric tensors, i.e., T j

i1,...,iα j
= T j

σ(i1),...,σ(iα j )
for any permutation σ of {1, · · · , α j}.

The linear space S α(R3) of the symmetric α-tensors has the dimension
(
α+2
α

)
, c.f. [6, 3.4]. Thus the images

Eαu (SO(3)) are contained in a subspace of R3α with dimension
∑n

i=1

(
αi+2
αi

)
. For even α the image Eαu(SO(3)) is orthog-

onal to Mα, since for R ∈ SO(3)

〈Ẽαu(R), Mα〉 = 〈Eαu(R) −
1

α + 1
Mα, Mα〉 = 〈Eαu(R), Mα〉 −

1
α + 1

〈Mα, Mα〉 = 0.

Hence, the image Ẽαu(SO(3)) is contained in a hyperplane of the symmetric tensors in R3α for every even com-
ponent. Thus, we can reduce the dimension of every component with even α by 1. The symmetrization with the
symmetry group S does not change the dimensions. Hence, the images Ẽαu,S(SO(3)/S) have dimension

n∑
i=1

(
αi + 2
αi

)
−

n∑
i=1

(αi + 1 mod 2) .

In [2] the authors were especially interested in embeddings of the rotation group modulo crystallographic point
groups. These consist of the cyclic groups Ck, and the dihedral groups Dk with k ∈ {1, 2, 3, 4, 6}, the tetrahedral group
T and the octahedral group O. For all the corresponding quotients Table 1 lists specific choices of the parameters
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α ∈ Rn and u1, . . . ,un ∈ R3 such that the generic embeddings Ẽαu,S coincide with the embeddings reported in Table 2
of [2]. Here we assume the major rotational axis in Ck,Dk and Y to be parallel to e1. For O, T the three-fold axis is
assumed to be parallel to (1, 1, 1)>.

It is important to note that at this point we have not yet proven that the mappings Ẽαu,S are indeed embeddings, i.e.,
that they are injective. This will be done in Section 3.1, where we shall prove that with some modifications they are
even local isometries.

Table 1 Choices of the vectors u and the parameter α such that Ẽαu,S coincides with the embeddings reported in Table 2 of [2].

S u α Dimension
C1 (e1, e2, e3) (1,1,1) 9
C2 (e1, e2) (1,2) 8
Cα (α even, α ≥ 4) (e1, e2) (1, α) (α+2)(α+1)

2 + 2
Cα (α odd, α ≥ 3) (e1, e2) (1, α) (α+2)(α+1)

2 + 3
D2 (e1, e2) (2,2) 10
Dα (α even, α ≥ 4) e1 α (α+2)(α+1)

2 − 1
Dα (α odd, α ≥ 3) e1 α (α+2)(α+1)

2
O e1 4 14
T e1 3 10
Y e1 10 66

2.3. Centered Measure

Since SO(3) is a Lie group it can be equipped with an unique left invariant Haar measure µ. In order to define a
corresponding left invariant measure on the homogeneous space SO(3)/S we consider the quotient mapping

π : SO(3)→ SO(3)/S, π(R) = [R]S

that maps every rotation R ∈ SO(3) onto its coset [R]S ∈ SO(3)/S. Together with the Haar measure the quotient
mapping defines a left invariant measure µS on the quotient SO(3)/S via

µS(A) = µ(π−1(A)), for any measurable set A ⊂ SO(3)/S.

Accordingly, any embedding E : SO(3)/S → R3α defines a push forward measure E ◦ µS on R3α via

E ◦ µS(B) = µS(E−1(B)), for any measurable set B ⊂ R3α .

In the following Theorem we proof that for the centered embedding Ẽαu,S([O]S) the push forward measure Ẽαu,S([O]S)◦
µS is centered in R3α .

Theorem 2.10. Let Eαu,S : SO(3)/S → R3α be the embedding defined in Definition 2.2 and let µ be the Haar measure
on SO(3). Then the centered embedding Ẽαu,S([O]S) is an SO(3)-equivariant map with

‖Ẽαu,S([O]S)‖ = const, [O]S ∈ SO(3)/S

and satisfies that the push forward measure Ẽαu,S ◦ µS is centered as well, i.e., its first moment satisfies

E ˜Eαu,S ◦ µS = 0.

Proof. The SO(3)-equivariant-map-property follows from Theorem 2.4 together with Lemma 2.6. For R ∈ SO(3) and
O ∈ SO(3)/S there holds

Ẽαu,S(R . [O]S) = Eαu,S(R . [O]S) − Mα = R . Eαu,S([O]S) − R . Mα = R . Ẽαu,S([O]S).
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Assume R to be distributed according to the Haar measure on SO(3). Then Ru is distributed according to the
spherical Borel measure σ normalized to σ(S2) = 1 for any u ∈ S2. For the inner products with any vector v ∈ S2 we
calculate

〈E(⊗αRu),⊗αv〉 = E〈⊗αRu,⊗αv〉 = E((Ru)>v)α

=

∫
S2

(ξ>v)αdσ(ξ) =

0 if α odd
1
α+1 if α even

.

If α is odd, the assertion follows directly, because Mα = 0 in this case. By Lemma 2.7 we have for even α

〈EẼαu(R),⊗αv〉 = 〈E(⊗α(Ru) −
1

α + 1
Mα),⊗αv〉 = E〈⊗α(Ru) −

1
α + 1

Mα,⊗
αv〉

= E
(
((Ru)>v)α

)
−

1
α + 1

= 0.

Thanks to the rotational invariance of the tensors Mα the image of centered embedding is also contained in a sphere.

2.4. Projection onto the Embedding
A central operation of embedding-based methods is projecting a point of the vector space back onto the mani-

fold. For our embeddings E : SO(3)/S → R3α this means that for an arbitrary tensor T ∈ R3α we ask for the rotation
[R∗]S ∈ SO(3)/S with minimum distance ‖E(R∗) − T‖ in the embedding. This problem has a unique solution when-
ever T is sufficiently close to the submanifold, cf. [17].

Since, by Corollary 2.5, the submanifold Eαu,S(SO(3)/S) ⊂ R3α is contained in a sphere, i.e., has constant norm,
the above minimization problem is equivalent to the maximization problem

[R∗]S = argmax
R∈SO(3)/S

J(R), J(R) =
〈
Eαu,S(R),T

〉
. (5)

For the symmetry group C1, i.e. no symmetry, u = (u1, . . . ,un), α = (1, . . . , 1) ∈ Rn and T = (T1, . . . ,Tn) ∈ R3n the
functional J : SO(3)→ R simplifies to

J(R) =

n∑
i=1

〈Rui,Ti〉 .

An explicit formula for its maximum is known as the Kabsch Algorithm [13].

Lemma 2.11. Let u1, . . . ,un, v1, . . . , vn ∈ R3 be two lists of vectors. Then the solution of the maximization problem

n∑
i=1

〈Rui, vi〉 → max, R ∈ SO(3)

is given by

R = V

1 0 0
0 1 0
0 0 det VUT

 UT ,

where UΣVT = H is the singular value decomposition of the 3 × 3-matrix

H =

n∑
i=1

ui ⊗ vi.

In the case of arbitrary symmetry groups and a general embedding Eαu,S we are not able to give such a closed form
solution. For this reason, we propose to solve the maximization problem in equation (5) numerically using a manifold
gradient method [23]. The next theorem provides an explicit formula for the required gradient of J.
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Theorem 2.12. Let T ∈ R3α , R ∈ SO(3), s an arbitrary skew-symmetric matrix and hence, sR ∈ TRSO(3) a tangential
vector at R. Then the gradient of J in direction sR is given by the inner product

∇sRJ(R) = α 〈s .1 (R . E),T〉

where E = Eαu(I) ∈ R3α denotes the embedding of the identity matrix and .1 denotes the multiplication of the matrix s
with a tensor T ∈ R3α with respect to the first dimension of T, i.e.,

[s .1 T]k1,...,kα =

3∑
`1=1

sk1`1 T`1,k2,...,kα .

Proof. First of all we note that by Theorem 2.4 the functional J can be written as

J(R) = 〈R . E,T〉 , R ∈ SO(3).

Considering now a tangential vector sR ∈ TRSO(3) the corresponding directional derivative is

∇sRJ(R) = lim
h→0

1
h

(
〈(R + hsR) . E,T〉 − 〈R . E,T〉

)
= lim

h→0

1
h

〈(
⊗α(R + hsR) − ⊗αR

)
E,T

〉
.

In the difference of the tensor products only the terms with h1 remain, as all terms with higher power of h converge to
zero. Since the tensor E is symmetric the derivative simplifies further to

∇sRJ(R) =

α−1∑
i=0

〈(
⊗iR ⊗ sR ⊗α−1−i R

)
E,T

〉
= α 〈s .1 (R . E),T〉 .

Remark 2.13. In the theorem above, we considered only the case α ∈ R, i.e. n = 1. For the case with multiple
components, we have to sum over all components in the function

J(R) =

n∑
i=1

〈
Eαi

ui
(R),Ti

〉
,

as well as in the gradient

∇sRJ(R) =

n∑
i=1

αi

〈
s .1 (R . Eαi

ui
(I)),Ti

〉
.

3. Distance Preservation

In this section we are going to investigate how well the embeddings defined in Section 2.1 preserve the geodesic
distance between any two rotations. While the rotation group SO(3) as a submanifold of R3×3 inherits a canonical
Riemanian structure it differs by the factor

√
2 from the commonly used geodesic distance

d(O1,O2) = arccos
(

1
2

(
−1 + tr(O>1 O2)

))
(6)

on the rotation group, which has the nice interpretation of being the angle of rotation between the two rotations
O1,O2 ∈ SO(3). For cosets [O1]S, [O2]S ∈ SO(3)/S the geodesic distance (6) becomes

d([O1]S , [O2]S ) = min
R∈S

d(O1R,O2), (7)

i.e., the minimum geodesic distance between any elements of the cosets [O1]S and [O2]S . We first analyze this problem
locally.
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3.1. Locally Isometric Embeddings
Let us recall that a differentiable embedding E : M → Rd is locally isometric if its differential dE : TmM →

TE(m)E(M) at each point m ∈ M is an isometry between vector spaces. Since in our setting in both spaces, SO(3)/S
and R3α , the metric is invariant with respect to the action . of SO(3) and the embedding is an SO(3)-equivariant map,
it suffices to prove isometry at the identity [I]S ∈ SO(3)/S only.

In order to identify locally isometric embeddings within our framework we need to generalize it slightly by mul-
tiplying the components by different weights β = (β1, . . . , βn) ∈ Rn, i.e., we define

E
α,β
u (R) = (β1 ⊗

α1 Ru1, . . . , βn ⊗
αn Run)

together with its symmetrization

E
α,β
u,S : SO(3)/S → R3α , E

α,β
u,S([O]S) =

1
|S|

∑
S∈S

E
α,β
u (OS). (8)

Choosing the weights β carefully will allow us to explicitly define locally isometric embeddings for the quotients
SO(3)/S of SO(3) with respect to all crystallographic symmetry groups.

We shall analyze the derivative dEα,βu,S([I]S)s(k) of the embedding with respect to the following orthogonal basis of
the tangential space TISO(3) given by the skew-symmetric matrices

s(1) =

0 0 0
0 0 −1
0 1 0

 , s(2) =

0 0 −1
0 0 0
1 0 0

 , s(3) =

0 −1 0
1 0 0
0 0 0

 .
The basis vectors s(1), s(2), s(3) are normalized to

√
2, which is exactly the factor between the geodesic distance

defined in (6) and the geodesic distance induced by the canonical embedding. Hence, we obtain the following char-
acterization on local isometry.

Lemma 3.1. The mapping Eα,βu,S : SO(3)/S → R3α as defined in (8) is locally isometric if and only if the vectors

dEα,βu,S([I]S)s(k) are orthonormal in R3α .

Proof. The mapping dEα,βu,S([I]S) is linear and {s(k)}3k=1 is a basis in TISO(3). Hence, Eα,βu,S is locally isometric if and

only if the vectors dEα,βu,S([I]S)s(k) are orthonormal in the tangent space TE(I)R3α .

For the differential of the mapping Eαβu,S we have the following lemma.

Lemma 3.2. Let α ∈ N, u ∈ S2 be an arbitrary direction and s ∈ TISO(3) be an arbitrary skew-symmetric matrix.
Then

dEαu(I)s =

α−1∑
i=0

(
⊗iu

)
⊗ su ⊗

(
⊗α−i−1u

)
.

Proof. Let γ(t) be a curve in SO(3) such that γ̇(0) = s and γ(0) = I. The image of the map dEα,βu,S([I]S) of s is given
by

dEαu(I)s =
d
dt

(⊗α (γ(t) · u))
∣∣∣∣∣
t=0
.

With the chain rule it follows

dEαu(I)s =

α−1∑
i=0

(
⊗i(γ(t) · u) ⊗ γ̇(t)u ⊗ (⊗α−i−1γ(t)u)

) ∣∣∣∣∣
t=0

=

α−1∑
i=0

(
⊗iu

)
⊗ su ⊗

(
⊗α−i−1u

)
.

11



In the following we will find locally isometric embeddings for all crystallographic symmetry groups. Therefore,
we will proceed as follows. First we consider the cyclic groups Ck, k ∈ N, followed by the dihedral groups Dk, k ∈ N
and finally the tetrahedral group T , the octahedral group O and the icosahedral group Y . The parameters for these
locally isometric embeddings are summarized in Table 2. The differences to the embeddings in [2] are marked in
magenta. For the cyclic and the dihedral groups we assume the major rotational axis to be aligned in e1–direction and
the two-fold axis parallel to e2.

For the symmetry group C1 the canonical embedding (2) of SO(3) in R3×3 is by definition locally isometric, up
to the factor

√
2, so multiplication of all components with

√
2−1 leads to local isometry. The symmetry group C2 is a

special case, because in contrast to Ck for k > 2 the vectors Oe2 for O ∈ Ck do not span the plane orthogonal to e1.
For this reason we need to add an additional component in contrast to the embedding in [2].

Theorem 3.3. Let u = (e1, e2, e3), α = (1, 2, 2) and β = ( 1
√

2
, 1

2 ,
1
2 ). Then Eα,βu,C2

is a locally isometric embedding.

Proof. There holds

dEα,βu,C2
([I]C2 )s(1) =

β1

000
 , β2

0 0 0
0 0 1
0 1 0

 , β3

0 0 0
0 0 −1
0 −1 0


 ,

dEα,βu,C2
([I]C2 )s(2) =

β1

001
 , β2

0 0 0
0 0 0
0 0 0

 , β3

 0 0 −1
0 0 0
−1 0 0


 ,

dEα,βu,C2
([I]C2 )s(3) =

β1

010
 , β2

 0 −1 0
−1 0 0
0 0 0

 , β3

0 0 0
0 0 0
0 0 0


 .

These three vectors are orthogonal. To normalize them, we have to solve

2β2
2 + 2β2

3 = β2
1 + 2β2

3 = β2
1 + 2β2

2 = 1,

which yields β1 = 1
√

2
, β2 = β3 = 1

2 .

For the symmetry groups Ck for k > 2 we first show the orthogonality of the tangent vectors dEαu,Ck
([I]Ck ).

Lemma 3.4. Let k ∈ N with k > 2, u = (e1, e2) and α = (1, k). Then the vectors dEαu,Ck
are orthogonal.

Proof. For the rank one component dE1,β1
e1,Ck

([I]Ck ) of dEα,βu,Ck
([I]Ck ) orthogonality follows from

dE1,β1
e1,Ck

([I]Ck )s(1) = 0, dE1,β1
e1,Ck

([I]Ck )s(2) = β1e3, dE1,β1
e1,Ck

([I]Ck )s(3) = β1e2. (9)

For the rank k component dEk,β2
e2,Ck

([I]Ck ) we use the Lemma 3.2 and define for ` = 1, 2, 3

B` := dEk
e2,Ck

([I]Ck )s(`) =

k−1∑
i=0

1
k

i−1∑
j=0

(
⊗iv j

)
⊗ s(`)v j ⊗

(
⊗k−i−1v j

)
, (10)

where the vectors v j = (0, cos 2π j
k , sin 2π j

k )> result from applying all symmetries from Ck to e2. The inner products
between these rank k tensors B`, ` = 1, . . . , 3 are

〈
B`1 , B`2

〉
=

k(k − 1)
k2

k−1∑
j1=0

k−1∑
j2=0

〈
v j1 , v j2

〉k−2 〈
s(`1)v j1 , v j2

〉 〈
s(`2)v j2 , v j1

〉
+

k
k2

k−1∑
j1=0

k−1∑
j2=0

〈
v j1 , v j2

〉k−1 〈
s(`1)v j1 , s

(`2)v j2

〉
.

(11)
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Using

s(1)v j =


0

− sin 2π j
k

cos 2π j
k

 , s(2)v j =

− sin 2π j
k

0
0

 , s(3)v j =

− cos 2π j
k

0
0


we observe for all j1, j2 and ` = 2, 3 the orthogonality

〈
s(`)v j1 , v j2

〉
= 0 and hence, the first double sum in (11) is zero

whenever `1 , `2.
In the second double sum we have

〈
s(`1)v j1 , s(`2)v j2

〉
= 0 for all `1 , `2 except for the pair `1, `2 ∈ {2, 3}. For this

specific case we use the calculation in (B.1) and get

〈B2, B3〉 =

k−1∑
j1, j2=0

〈
v j1 , v j2

〉k−1 〈
s(2)v j1 , s

(3)v j2

〉
=

k−1∑
j1, j2=0

cosk−1 2π( j1− j2)
k sin 2π j1

k cos 2π j2
k

= 0.

In order to prove ‖dEα,βu,Ck
([I]Ck )s(k)‖ = 1 we continue by calculating ‖B`‖

2 = 〈B`, B`〉 for ` = 1, 2, 3.

Lemma 3.5. For the tensors B` defined in equation (10) we have

‖B1‖
2 =


k2

2k−1 if k odd

−
k(k−1)

2k−2

(
k−2
k
2−1

)
+ k2

2k

((
k
k
2

)
+ 2

)
if k even

,

‖B2‖
2 = ‖B3‖

2 =


k
2k if k is odd

k
2k+1

(
2 +

(
k−1

k
2

)
+

(
k−1
k
2−1

))
if k is even

.

Proof. By equation (11) and the calculations in (B.2) we obtain

‖B1‖
2 =

(k − 1)
k

k−1∑
j1=0

k−1∑
j2=0

〈
v j1 , v j2

〉k−2 〈
s(1)v j1 , v j2

〉 〈
s(1)v j2 , v j1

〉
+

1
k

k−1∑
j1=0

k−1∑
j2=0

〈
v j1 , v j2

〉k−1 〈
s(1)v j1 , s

(1)v j2

〉
= −

(k − 1)
k

k−1∑
j1=0

k−1∑
j2=0

cosk−2
(

2π( j1 − j2)
k

)
sin2

(
2π( j1 − j2)

k

)

+
1
k

k−1∑
j1=0

k−1∑
j2=0

cosk−1
(

2π( j1 − j2)
k

)
cos

(
2π( j1 − j2)

k

)

=


k2

2k−1 if k odd

−
k(k−1)

2k−2

(
k−2
k
2−1

)
+ k2

2k

((
k
k
2

)
+ 2

)
if k even

.
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Next we investigate the tensor B3. With the calculations in (B.3) in the appendix we get the following.

‖B3‖
2 =

1
k

k−1∑
j1=0

k−1∑
j2=0

〈
v j1 , v j2

〉k−1 〈
s(3)v j1 , s

(3)v j2

〉
=

1
k

k−1∑
j1=0

k−1∑
j2=0

cosk−1
(

2π( j1 − j2)
k

)
cos

(
2π j1

k

)
cos

(
2π j2

k

)

=


k
2k if k is odd

k
2k+1

(
2 +

(
k−1

k
2

)
+

(
k−1
k
2−1

))
if k is even

.

For the norm ‖B2‖
2 we only have to change some signs in the previous calculation and receive in the end ‖B2‖

2 = ‖B3‖
2.

Summarizing these Lemmata we find weights β for all crystallographic symmetry groups S such that the corre-
sponding embeddings are isometries.

Theorem 3.6. Let k ∈ N with k > 2, u = (e1, e2) and α = (1, k). Then the embeddings Eα,βu,Ck
with the factors

β =


√

1 −
‖B2‖

2

‖B1‖
2 ,

1
‖B1‖


>

with the norms from Lemma 3.5 are locally isometric embeddings. The concrete factors for k = 3, 4, 6 are listed in
Table 2.

Proof. We use equation (9) for the rank 1 tensor. To normalize the vectors dEα,βu,Ck
([I]Ck )s(`) for ` = 1, 2, 3 we have to

solve for every k equations of the form

β2
2 · ‖B1‖

2 = β2
1 + β2

2 · ‖B2‖
2 = β2

1 + β2
2 · ‖B3‖

2 = 1,

which always has a solution since ‖B2‖ = ‖B3‖. We receive the positive solution by

β1 =

√
1 −
‖B2‖

2

‖B1‖
2 , β2 =

1
‖B1‖

.

For the symmetry groups Dk the case k = 2 is a special case for the same reasons as C2.

Theorem 3.7. Let u = (e1, e2, e2), α = (2, 2, 2) and β = ( 1
2 ,

1
2 ,

1
2 ). Then Eα,βu,D2

is an locally isometric embedding.

Proof. The second and third component are the same as in the case C2. Analogously to this case we have to solve

2 β2
1 + 2 β2

2 = 2 β2
2 + 2 β2

3 = 1,

which yields β1 = β2 = β3 = 1
2 .

Theorem 3.8. Let k ∈ N with k > 2, u = (e1, e2) and α = (2, k). Then there exist factors β, such that Eα,βu,Dk
is an

locally isometric embedding.

Proof. As in the case Ck we get the same second components B1, B2 and B3. Only the first component is now a
3×3-matrix and not just a vector. The three vectors dE([I]Dk )s(`) are again orthogonal. For the normalization we have
to solve

β2
2 · ‖B1‖

2 = 2 β2
1 + β2

2 · ‖B2‖
2 = 2 β2

1 + β2
2 · ‖B3‖

2 = 1,

which yields the same solutions for β2 as in the case Ck, but for β1 we have to divide the solution from Ck by
√

2.
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Table 2 Choices of the vectors u and the parameters α,β such that the embeddings Ẽα,βu,S are locally isometric.

S u α β Dimension
C1 (e1, e2, e3) (1, 1, 1) ( 1

√
2
, 1
√

2
, 1
√

2
) 9

C2 (e1, e2, e3) (1, 2, 2)
(

1
√

2
, 1

2 ,
1
2

)
13

C3 (e1, e2) (1, 3)
(√

5
6 ,
√

4
3

)
13

C4 (e1, e2) (1, 4) ( 1
√

2
, 1
√

2
) 17

C6 (e1, e2) (1, 6)
(

1
√

12
, 2
√

2
3

)
30

D2 (e1, e2, e3) (2, 2, 2)
(

1
2 ,

1
2 ,

1
2

)
15

D3 (e1, e2) (2, 3)
(√

5
12 ,

√
4

3

)
15

D4 (e1, e2) (2, 4)
(

1
2 ,

1
√

2

)
19

D6 (e1, e2) (2, 6)
(

1
√

24
, 2
√

2
3

)
32

O e1 4 3
2
√

2
14

T e1 3 3
2
√

2
10

Y e1 10 75
8
√

95
66

For the cubic symmetry group the locally isometric embedding requires only a single vector. More precisely, we
have the following result.

Theorem 3.9. Let u = e1, α = 4 and β = 3
2
√

2
. Then Eα,βu,O is a locally isometric embedding.

Proof. The vectors Re1 for R ∈ O are in the set {±e1,±e2,±e3}. Since ⊗4x = ⊗4(−x), we only have to consider the
three vectors vi = ei for i = 1, 2, 3. With respect to the skew-symmetric basis s(k), k = 1, 2, 3 we obtain

s(1)v1 = 0, s(1)v2 = e3, s(1)v3 = −e2,

s(2)v1 = e3, s(2)v2 = 0, s(2)v3 = −e1,

s(3)v1 = e2, s(3)v2 = −e1, s(3)v3 = 0.

By Lemma 3.2 the scalar products in the embedding are

〈
dEα,βu,Os(`1), dEα,βu,Os(`2)

〉
=

4 · 3
32

3∑
j1=1

3∑
j2=1

〈
v j1 , v j2

〉2 〈
s(`1)v j1 , v j2

〉 〈
s(`2)v j2 , v j1

〉
+

4
32

3∑
j1=1

3∑
j2=1

〈
v j1 , v j2

〉3 〈
s(`1)v j1 , s

(`2)v j2

〉
=

4 · 3
32

3∑
j=1

〈
s(`1)v j, v j

〉 〈
s(`2)v j, v j

〉
+

4
32

3∑
j=1

〈
s(`1)v j, s(l2)v j

〉
=

4
32

3∑
j=1

〈
s(`1)v j, s(`2)v j

〉
=

8
9
δ`1,`2 .

Hence, the tangential vectors are orthogonal and normalized for β1 = 3
2
√

2
.

The tetrahedral symmetry T also requires only one component, so we have the following result.

Theorem 3.10. Let u = 1
√

3

111
, α = 3 and β = 3

2
√

2
. Then Eα,βu,T is a locally isometric embedding.

15



Proof. The vectors Ru1 for R ∈ T are

v1 =
1
√

3

111
 , v2 =

1
√

3

−1
−1
1

 , v3 =
1
√

3

−1
1
−1

 , v4 =
1
√

3

 1
−1
−1


and satisfy 〈vi, v j〉 = − 1

3 for i , j. By Lemma 3.2 we have

dEαu,T (I)s(`) =

4∑
j=1

2∑
i=0

(
⊗iv j

)
⊗ s(`)v j ⊗

(
⊗2−iv j

)
and hence, the scalar products of the basis vectors are

〈
dEαu,T s(`1), dEαu,T s(`2)

〉
=

3 · 2
42

4∑
j1=1

4∑
j2=1

〈
v j1 , v j2

〉 〈
s(`1)v j1 , v j2

〉 〈
s(`2)v j2 , v j1

〉
+

3
42

4∑
j1=1

4∑
j2=1

〈
v j1 , v j2

〉2 〈
s(`1)v j1 , s

(`2)v j2

〉
.

Using the symmetry of vectors v j and s(l)v j

s(1)v1 =
1
√

3

 0
−1
1

 , s(1)v2 =
1
√

3

 0
−1
−1

 , s(1)v3 =
1
√

3

011
 , s(1)v4 =

1
√

3

 0
1
−1


s(2)v1 =

1
√

3

−1
0
1

 , s(2)v2 =
1
√

3

−1
0
−1

 , s(2)v3 =
1
√

3

 1
0
−1

 , s(2)v4 =
1
√

3

101


s(3)v1 =
1
√

3

−1
1
0

 , s(3)v2 =
1
√

3

 1
−1
0

 , s(3)v3 =
1
√

3

−1
−1
0

 , s(3)v4 =
1
√

3

110


it is sufficient to consider the scalar products for l1 = 1, l2 = 2 and l1 = l2 = 1:

〈
dEαu,T s(1), dEαu,T s(2)

〉
=

3
8

4∑
j1 , j2=1
j1, j2

−
1
3

〈
s(1)v j1 , v j2

〉 〈
s(2)v j2 , v j1

〉
= 0,

〈
dEαu,T s(1), dEαu,T s(1)

〉
=

3
8

4∑
j1 , j2=1
j1, j2

−
1
3

〈
s(1)v j1 , v j2

〉 〈
s(1)v j2 , v j1

〉

+
3
8

4∑
j1=1

2
6

+
3
42

4∑
j1 , j2=1
j1, j2

1
9

〈
s(1)v j1 , s

(1)v j2

〉

=
3
8
·

1
3
·

64
18

+
3
8
·

4 · 2
6

+
3
42 ·

1
9
·
−16

6
=

8
9
.

Hence, with β1 = 3
2
√

2
the proposed embedding is locally isometric.

Finally, we consider icosahedral symmetry Y .

Theorem 3.11. Let u =

0
1
Φ

, where Φ = 1+
√

5
2 is the golden ratio, α = 10 and β = 75

8
√

95
. Then Eα,βu,Y is a locally

isometric embedding.
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Proof. This proof is similar to the proof of the tetrahedral symmetry T . The vectors vi ∈ {Ru1}R∈Y are 0
±1
±Φ

 ,
±1
±Φ

0

 ,
±Φ

0
±1

 ,
and satisfy |〈vi, v j〉| = 5−1/2 for i , j. Since α is even, we have ⊗α(x) = ⊗α(−x) and do not have to consider −x, if
we use x. Hence, we only need six vectors vi. Again, with Lemma 3.2 we can calculate dEα,βu,Y and the scalar products
of these. We omit these calculations here, as they are similar to the case for the tetrahedral symmetry T , but with
higher-dimensional tensors.

3.2. Global Inequalities

Although the embeddings found in the previous section are locally isometric they obviously do not preserve the
metric globally. In this section we are interested in inequalities of the form

cmin d([O1]S , [O2]S ) ≤ d(ES ([O1]S ),ES ([O2]S )) ≤ cmax d([O1]S , [O2]S ) (12)

that relate the Euclidean distance in R3α and the geodesic distance from equation (7).
The situation is easiest for S = C1, i.e., we just look at SO(3). In this case the Euclidean distance in the embedding

is directly related to the geodesic distance on the manifold via

d(EC1 (R1),EC1 (R2)) =
√

2
√

1 − cos(d(R1, R2)).

and we have cmin = 2
π

and cmax = 1.
For higher symmetries there is no such one to one relationship. In order to illustrate the dependency between

the geodesic distance on the manifold and the Euclidean distance in the embedding for higher symmetries we have
visualized the regions of suitable combinations in Fig. 1 and 2. While Fig. 1 illustrates the embeddings from [2],
Fig. 2 visualizes the locally isometric embeddings from Table 2.

In Table 3 the upper and lower bounds cmin and cmax are listed for locally isometric embeddings from Table 2 .
We would like to stress that non-locally-isometric embeddings might very well lead to better global bounds. Indeed,
Table 4 provides alternative coefficients for the embeddings Eα,βu,S which have better upper and lower bounds.

Table 3 The constants in equation (12) for all crystallographic symmetry groups S

S cmin cmax cmax/cmin

C2 0.452 1 2.21
C3 0.583 1 1.72
C4 0.452 1 2.21
C6 0.186 1 5.36
D2 0.590 1 1.70
D3 0.581 1 1.72
D4 0.546 1 1.83
D6 0.443 1 2.26
O 0.604 1 1.66
T 0.609 1 1.64
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(a) Symmetry Group C2 (b) Symmetry Group C3 (c) Symmetry Group C4

(d) Symmetry Group C6 (e) Symmetry Group D2 (f) Symmetry Group D3

(g) Symmetry Group D4 (h) Symmetry Group D6

Fig. 1 Relation between the geodesic distance on the manifold and the Euclidean distance in the embedding for the embeddings reported in [2].
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(a) Symmetry Group C2 (b) Symmetry Group C3 (c) Symmetry Group C4

(d) Symmetry Group C6 (e) Symmetry Group D2 (f) Symmetry Group D3

(g) Symmetry Group D4 (h) Symmetry Group D6 (i) Symmetry Group T

(j) Symmetry Group O

Fig. 2 Relation between the geodesic distance on the manifold and the Euclidean distance in the embedding for the locally isometric embeddings
summarized in Table 2.
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Table 4 Factors for globally almost isometric embeddings for some symmetry groups S

S β cmax/cmin

C2 (1, 0.5, 0.5) 1.92
C3 (1, 0.67) 1.68
C4 (1, 0.6) 1.91
C6 (1, 0.93) 2.15
D3 (1, 1.03) 1.72
D4 (1, 1.11) 1.80
D6 (1, 1.65) 1.95

Appendix A. A binomial identity

For the calculation of ‖Mα‖ in Lemma 2.8 we need the following nice Lemma for binomial coefficients.

Lemma Appendix A.1. Let α ∈ 2N be an even integer. Then we have the equality

(α + 1)
(
α
α
2

)
=

α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

(
2i1
i1

)(
2i2
i2

)(
2i3
i3

)
.

Proof. With the general definition of the binomial coefficient
(

n
k

)
=

n(n−1)···(n−(k−1))
k! for k > 0 we obtain(

2n
n

)
= (−1)n · 4n ·

(
− 1

2
n

)
.

With this equation and the Chu-Vandermonde-identity it follows that
α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

(
2i1
i1

)(
2i2
i2

)(
2i3
i3

)
=

α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

(−1)i1+i2+i3 · 4i1+i2+i3

(
− 1

2
i1

) (
− 1

2
i2

) (
− 1

2
i3

)

= (−1)
α
2 · 4

α
2

α
2∑

i1,i2,i3=0
i1+i2+i3= α

2

(
− 1

2
i1

) (
− 1

2
i2

) (
− 1

2
i3

)

= (−1)
α
2 · 4

α
2

(
− 3

2
α
2

)

= (−1)
α
2 · 4

α
2

− 3
2

(
− 3

2 − 1
)
· · ·

(
− 3

2 − (α2 − 1)
)(

α
2

)
!


= 4

α
2

 3
2

(
3
2 + 1

)
· · ·

(
3
2 + (α2 − 1)

)(
α
2

)
!


= 2

α
2

3 · 5 · 7 · · · (α + 1)(
α
2

)
!


= (α + 1)

2
α
2

(
α
2

)
! · 3 · 5 · 7 · · · (α − 1)(

α
2

)
!2

= (α + 1)
(
α
α
2

)
.
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Appendix B. Some trigonometrical sums

Here we calculate some trigonometric sums of the proofs in section 3. For the proof of Lemma 3.4 we need

k−1∑
j1, j2=0

cosk−1 2π( j1− j2)
k sin 2π j1

k cos 2π j2
k =

1
2

k−1∑
j1, j2=0

cosk−1 2π( j1− j2)
k

(
sin 2π( j1− j2)

k + sin 2π( j1+ j2)
k

)
=

1
2

k−1∑
j1, j2=0

cosk−1 2π j1
k

(
sin 2π j1

k + sin 2π j2
k

)
= 0. (B.1)

For the proof of Lemma 3.5 we need the following calculations. Using

k−1∑
j=0

e
2πi jn

k =

k n ∈ Z
0 else

we compute

k−1∑
j=0

cosk
(

2π j
k

)
=

1
2k

k−1∑
j=0

(
e

2πi j
k + e

−2πi j
k

)k
=

1
2k

k−1∑
j=0

k∑
`=0

(
k
`

)
e

4πi j`
k

=
1
2k

k∑
`=0

(
k
`

) k−1∑
j=0

e
2πi j(2 `)

k =


k

2k−1 if k odd
1
2k

((
k
k
2

)
· k + 2k

)
if k even

,

k−1∑
j=0

cosk−2
(

2π j
k

)
=

1
2k−2

k−1∑
j=0

(
e

2πi j
k + e

−2πi j
k

)k−2
=

1
2k−2

k−1∑
j=0

k−2∑
`=0

(
k − 2
`

)
e

2πi j(2 `+2)
k

=
1

2k−2

k−2∑
`=0

(
k
`

) k−1∑
j=0

e
2πi j(2 `+2)

k =

0 if k odd
k

2k−2

(
k−2
k
2−1

)
if k even

.

We use this for the following calculations.

−
(k − 1)

k

k−1∑
j1=0

k−1∑
j2=0

cosk−2
(

2π( j1 − j2)
k

)
sin2

(
2π( j1 − j2)

k

)
+

1
k

k−1∑
j1=0

k−1∑
j2=0

cosk−1
(

2π( j1 − j2)
k

)
cos

(
2π( j1 − j2)

k

)

= −(k − 1)
k−1∑
j=0

cosk−2
(

2π j
k

)
sin2

(
2π j
k

)
+

k−1∑
j=0

cosk
(

2π j
k

)

= −(k − 1)
k−1∑
j=0

cosk−2
(

2π j
k

)
+ k

k−1∑
j=0

cosk
(

2π j
k

)

=


k2

2k−1 if k odd

−
k(k−1)

2k−2

(
k−2
k
2−1

)
+ k2

2k

((
k
k
2

)
+ 2

)
if k even

. (B.2)
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Also for the proof of Lemma 3.5 we calculate the following.

1
k

k−1∑
j1=0

k−1∑
j2=0

cosk−1
(

2π( j1 − j2)
k

)
cos

(
2π j1

k

)
cos

(
2π j2

k

)

=
1

k 2k+1

k−1∑
j1=0

k−1∑
j2=0

(
e

2πi( j1− j2)
k + e−

2πi( j1− j2)
k

)k−1 (
e

2πi j1
k + e−

2πi j1
k

) (
e

2πi j2
k + e−

2πi j2
k

)

=
1

k 2k+1

k−1∑
j1=0

k−1∑
j2=0

(
e

2πi( j1+ j2)
k + e−

2πi( j1+ j2)
k + e

2πi( j1− j2)
k + e

2πi( j2− j1)
k

) k−1∑
l=0

(
k − 1

l

)
e

2πi( j1− j2)(2l+1)
k

=
1

k 2k+1

k−1∑
l=0

(
k − 1

l

) k−1∑
j1=0

k−1∑
j2=0

(
e

2πi(( j1− j2)(2l+1)+ j1+ j2)
k + e

2πi(( j1− j2)(2l+1)− j1− j2)
k + e

2πi( j1− j2)(2l+2)
k + e

2πi( j1− j2)(2l)
k

)
=

1
k 2k+1

k−1∑
l=0

(
k − 1

l

) k−1∑
j1=0

k−1∑
j2=0

(
e

2πi( j1(2l+2)−2l j2)
k + e

2πi(2l j1− j2(2l+2))
k + e

2πi( j1− j2)(2l+2)
k + e

2πi( j1− j2)(2l)
k

)
=

k
k 2k+1

k−1∑
l=0

(
k − 1

l

) k−1∑
j=0

e
2πi j(2l+2)

k + e
2πi j(2l)

k

=


k
2k if k is odd

k
2k+1

(
2 +

(
k−1

k
2

)
+

(
k−1
k
2−1

))
if k is even

. (B.3)
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