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Abstract

In recent years, shrinkage priors have received much attention in high-dimensional

data analysis from a Bayesian perspective. Compared with widely used spike-

and-slab priors, shrinkage priors have better computational efficiency. But the

theoretical properties, especially posterior contraction rate, which is important

in uncertainty quantification, are not established in many cases. In this paper,

we apply global-local shrinkage priors to high-dimensional multivariate linear

regression with unknown covariance matrix. We show that when the prior is

highly concentrated near zero and has heavy tail, the posterior contraction rates

for both coefficients matrix and covariance matrix are nearly optimal. Our re-

sults hold when number of features p grows much faster than the sample size

n, which is of great interest in modern data analysis. We show that a class of

readily implementable scale mixture of normal priors satisfies the conditions of

the main theorem.

Keywords: multivariate regression, unknown covariance matrix, Gaussian

scale mixture

1. Introduction

Parameter estimation, variable selection and prediction in high dimensional

regression models have received significant attention in these days, particularly

when the number of regressors p is much larger than the number of observations
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n. Examples abound - brain imaging, microarray experiments, satellite data

analysis, just to name a few. In many of these examples, one key issue is to

address sparsity of effective regression parameters in the midst of a multitude

of inactive ones. For example, there are only a few significant genes associated

with Type I diabetes along with million others of no direct impact for such a

disease.

In a frequentist framework, the most commonly used approach for inducing

sparsity is by imposing regularization penalty on the parameters of interest.

The most popular ones are `1 (lasso) and `2 (ridge) penalties or a combination

of these (elastic net). The `1 and `2 regularization can naturally be extended to

multivariate case where sparsity in the coefficient matrix is desired. Rothman

et al. [26] used `1 penalties on each entry of the coefficient matrix as well as

on each off-diagonal element of the covariance matrix. Wilms and Croux [33]

considered a model which put an `2 penalty on the rows of coefficient matrix

to shrink the entire row to zero, and an `1 penalty on the off-diagonal elements

of the inverse error covariance matrix. Li et al. [15] proposed a multivariate

sparse group lasso imposing `2 penalty on the rows of the regression matrix and

in addition an `1 penalty on individual coefficient of the regression matrix to

perform sparse estimation and variable selection both at the between and within

group levels.

In a Bayesian setting, spike-and-slab priors, originally introduced by Mitchell

and Beauchamp [17] have become very popular for handling sparsity. Spike-

and-slab priors are mixture densities with positive mass at zero to force some

parameters to be zero, and a continuous density to model the nonzero coef-

ficients. These priors have been used in a variety of contexts. For example,

for Bayesian Group Lasso, Xu and Ghosh [34] used these priors for both vari-

able selection and estimation. This work was extended by Liquet et al. [16]

to the multivariate case. More recently, Ročková and George [24] introduced

spike-and-slab lasso for variable selection and estimation. Deshpande et al. [11]

extended it to multivariate case by putting spike-and-slab prior on each entry

of the coefficient matrix as well as on each off-diagonal element of the precision
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matrix.

Spike-and-slab priors face severe computational challenges, when p, the num-

ber of regressors, is very large. This is due to the fact that one needs to search

over 2p possible models. Bai and Ghosh [4] provided an alternative to these

priors by introducing global-local shrinkage priors. These priors approximate

the spike-and-slab priors well and are usually much easier to implement because

they are continuous. Like spike-and-slab priors, global-local shrinkage priors

also put significant probability around zero, but retain heavy enough tails so

that the true signals are very unlikely to be missed.

Bai and Ghosh [4] considered the case when the number of regressors can

grow at a sub-exponential rate when compared to the sample size. They es-

tablished posterior consistency of their prior and showed that the insignificant

regression coefficients converge to zero at an exponential rate. Song and Liang

[28] provided some general posterior contraction rates in the context of variable

selection and estimation in univariate regression models with unknown variance.

Our paper is a follow-up of the works by Bai and Ghosh [4] and Song and

Liang [28]. In particular, unlike the former, we do not need to assume a known

covariance matrix in the original regression model to establish exponential con-

vergence rate of tail probabilities. We propose a set of general conditions on

continuous prior for achieving nearly-optimal posterior contraction rate for both

coefficient matrix and covariance matrix. This extends the work of Song and

Liang [28] to the multivariate case. Also, we have demonstrated that these

regulatory conditions are satisfied by a general class of global-local shrinkage

priors. Our technical results borrowed tools developed by Song and Liang [28],

but handling multivariate data presented some new challenges in proving the

results.

Ning and Ghosal [19] also addressed the issue of variable selection with

unknown covariance matrix and established posterior consistency result similar

to ours. But their results are based on spike-and-slab priors instead of global-

local shrinkage priors and utilized different techniques from ours.

This paper is organized as follows. In Section 2, we establish general condi-
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tions on priors for achieving nearly-optimal posterior contraction rate for both

coefficient matrix and covariance matrix. In Section 3, a class of global-local

shrinkage prior that satisfies these general conditions is proposed. In Section 4,

finite sample performance of the proposed model is evaluated through numerical

experiments. Some final remarks are made in Section 5. Most of the technical

theorems and lemmas are relegated to the Appendix.

2. Posterior Contraction Rate

2.1. Problem Setting

We consider the following multivariate linear regression model

Yi = XiBn + εiΣ
1/2
n , i = 1, · · · , n (1)

where Yi is a 1×qn response vector, and the correlation of responses is assumed

to be captured by the qn× qn covariance matrix Σn. Bn is a pn× qn coefficient

matrix, Xi is a 1×pn regressor vector, εi is a 1×qn noise vector. Throughout this

paper, εi’s are assumed to have i.i.d multivariate normal N (0, Iqn) distribution,

i = 1, · · · , n. Subscripts n denotes that the quantity can vary with n. In matrix

form, Model (1) can be written as

Yn = XnBn + εnΣ1/2
n (2)

where Yn = (Y T1 , · · · , Y Tn )T , Xn = (XT
1 , · · · , XT

n )T and εn = (εT1 , · · · , εTn )T .

Throughout the paper, for notational simplicity, subscript n for Y n, Xn and

Bn will be dropped when there is no ambiguity.

For estimation of B and Σ, we consider the following Bayesian multivariate

linear regression model. This model puts independent prior on each row vector

of B conditioning on Σ and an Inverse-Wishart prior for Σ. General conditions

for π(B|Σ) for establishing a satisfying posterior contraction rate of B and Σ
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is given in Theorem (1).

Yi|Xi,B,Σ
ind∼ Nqn(XiB,Σ) i = 1, · · · , n

Bj |Σ
ind∼ π(Bj |Σ) j = 1, · · · , pn

Σ ∼ IWqn(υ,Φ)

(3)

where Bj is the jth row of B. IWqn(υ,Φ) means a qn-dimensional Inverse-

Wishart distribution with degree of freedom υ > qn − 1 and a qn × qn positive

definite scale matrix Φ.

2.2. Notations

First, a few notations used throughout the paper are defined. We write a∨ b

for max(a, b), where a and b are real numbers. Letters C, c, k with subscripts

denote generic positive constants that do not depend on n. For two sequences

of positive real numbers an and bn, an . bn is equivalent to an = O(bn), i.e.

there exists constant C > 0 such that an ≤ Cbn for all large n. an ≺ bn means

an = o(bn), that is, an/bn → 0 as n → ∞. an ' bn denotes that there exists

constants 0 < C1 ≤ C2 such that C1bn ≤ an ≤ C2bn.

For a vector x ∈ Rp, ‖x‖2 denotes the `2 norm. For a n × m real ma-

trix A with entries aij , ‖A‖F :=
√
tr(AAT ) denotes the Frobenius norm of A;

‖A‖2,∞ := max1≤i≤n
(∑m

j=1 a
2
ij

)1/2
denotesA’s maximum row length; ‖A‖2,1 :=∑n

i=1

(∑m
j=1 a

2
ij

)1/2
denotes the sum of row lengths. For a symmetric real ma-

trix A, λi(A) denotes the ith smallest eigenvalue of A. ‖A‖ = λmax(A) denotes

the spectral norm of A, which is also the maximum eigenvalue of A.

2.3. Conditions for Posterior Contraction Rate

Suppose the data Y is generated by (1) with the true regression parameter

B0 and the true dispersion matrix Σ0. To achieve posterior contraction rate,

we first state some assumptions for sparsity of B0, the eigen-structure of design

matrix X, and eigenvalues of Σ0.

Assumption 1. Sparsity of B0:

A1: s0 log pn ≺ n, where s0 is the size of the true model, i.e., the number of

nonzero rows in B0.
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Assumption 2. Eigen-structure of the design matrix X:

A2(1): Entries (X)ij in design matrix are uniformly bounded. For simplicity,

assume they are bounded by 1.

A2(2): pn →∞ as n→∞.

A2(3): There exist some integer p̄(depending on n and pn) and fixed constant λ0

such that p̄ � s0, and λmin(XT
SXS) ≥ nλ0 for any subset model S with |S| ≤ p̄.

Assumption 3. Dimension and eigenvalues of Σ0:

A3(1): qn . log pn.

A3(2): q2
n log n ≺ n.

A3(3): b1 ≤ λi(Σ0) ≤ b2, i = 1, · · · , qn.

Remark 2.1. Assumption (2) and Assumption (1) are the same as in [28]. Note

that A2(2) does not restrict the rate of pn going to infinity. Along with A1, pn

can grow sub-exponentially fast with n when s0 is finite, e.g., log(pn) . nc for

some c ∈ (0, 1), which is the ultrahigh dimensional setting in [4].

Remark 2.2. A3(2) and A3(3) are the same as in [19]. Different from many

previous settings where the dimension of response qn is a fixed constant ([4],

[16]), here we allow qn to grow with n. However, the growth of qn is limited by

constraints A3(1) and A3(2). When qn is a fixed constant, A3(1) and A3(2) are

trivially satisfied.

Theorem 1. For the multivariate Bayesian model given in (3), suppose de-

sign matrix X satisfies Assumption (2) and true parameter (B0,Σ0) satisfies

Assumptions (1) and (3). Let the prior density of B be:

π(B|Σ) =

pn∏
i=1

{|Σ|−1/2gτ (BjΣ
−1/2)}

If gτ (x) satisfies ∫
‖x‖2≥an

gτ (x)dx ≤ p−(1+u)
n for some u > 0, (4)

log
(

inf
‖x‖2≤M0

gτ (x)
)
& − log pn (5)
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where M0 = γ‖B0Σ
−1/2
0 ‖2,∞, γ > 1, an ' εn/pn.

Then the following posterior contraction result holds

Πn(‖(B −B0)Σ
−1/2
0 ‖F ≥Mεn|Y )→ 0 in P(B0,Σ0)-probability

Πn(‖Σ−Σ0‖ ≥M‖Σ0‖εn|Y )→ 0 in P(B0,Σ0)-probability

where εn =
√
s0 log pn/n∨

√
q2
n log n/n∨

√
qns0 log n/n and M is a sufficiently

large constant.

Remark 2.3. Conditions (4)) and (5) for gτ (·) have intuitive interpretation.

(4) means that the prior has to be highly concentrated around a small neigh-

borhood of 0, which corresponds to the sparsity structure of the model. Taking

‖B0Σ
−1/2
0 ‖2,∞ as the strength of true signal, (5) means that the prior needs to

put enough mass around the true signal, which is often referred as heavy-tail

condition in [21, 3, 2].

Remark 2.4. When qn is a fixed constant, the contraction rate εn becomes√
s0 log pn/n, which is the same as the univariate optimal posterior contraction

rates for regression coefficient with respect to `1 and `2 norm in [8, 25], where

spike-and-slab priors are used. In addition, this rate is also comparable to the

minimax rate
√
s0 log(pn/s0)/n of lasso and Dantzing selector for `2 loss in `0

ball [23, 35]. Two additional terms
√
q2
n log n/n and

√
qns0 log n/n that may

slower the convergence can be viewed as a compensation of allowing qn →∞.

Remark 2.5. By the fact that ‖Σ0‖2 ≤ ‖Σ0‖F and ‖Σ − Σ0‖F ≤
√
qn‖Σ −

Σ0‖2, we get Πn(‖Σ−Σ0‖F ≥M‖Σ0‖F
√
qnεn|Y )→ 0 in P(B0,Σ0)-probability.

Further, if qn is a constant, the posterior contraction rate of Σ under Frobenius

norm is also
√
s0 log pn/n.

The complete proof of Theorem (1) is provided in Appendix. Here we briefly

summarize the ideas and key steps. We applied the tools developed in [28]. To

extend univariate contraction results to multivariate case, spectral norm is used
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for measuring matrix distance. With its relation to Frobenius norm, we are able

to make straightforward interpretations.

For showing the posterior contraction results, auxiliary sets An, Bn and Cn

are constructed as follow.

An ={at least p̃ entries ‖BjΣ
−1/2‖ is larger than an}

∪{‖Σ−Σ0‖ ≥M(‖Σ‖ ∨ ‖Σ0‖)εn}

∪{‖(B −B0)Σ
−1/2
0 ‖F ≥Mεn}

Define Bn = {at least p̃ entries ‖BjΣ
−1/2‖2 is larger than an}, and Cn =

An\Bn. Let θ = (B,Σ) and θ0 = (B0,Σ0). It suffices to show Pθ0(Πn(An|Y ) ≥

e−c̃1nε
2
n

)
≤ e−c̃2nε2n . By Lemma A.4 in [28], the proof is composed of three parts:

(1) Construction of test φn satisfies Eθ0φn ≤ e−k2nε
2
n and supθ∈Cn Eθ(1−φn) ≤

e−k3nε
2
n .

(2) Showing event Bn has very small probability under the specified prior.

(3) Demonstrating the marginal probability of data is highly likely to be bounded

away from 0 if data is generated with true parameters. Probability bounds of

Inverse Wishart distribution[19] are applied in this part.

2.4. Variable Selection Consistency

Different from spike-and-slab priors, continuous global-local shrinkage priors

put zero probability at the point 0, so the solution is not sparse naturally. In this

subsection, variable selection criteria and corresponding selection consistency

property are discussed. But we want to point out that variable selection is not

always required. Sometimes in practice, lacking exact zeros is deemed to be

more realistic and preferred[29].

By Condition (4) in Theorem (1), where an acts like a partition for “spike”

and “slab” parts, the posterior model selection rule is set to be Sn = {j :

‖BjΣ
−1/2‖ > an}. Consistency of the selection rule is established in the fol-

lowing theorem.

Theorem 2. Suppose assumptions and conditions for Theorem (1) hold with

an ≺
√

log pn/n/pn and u > 1 in (4). Let Bj,εn := Ball(BjΣ
−1/2, c0εn), i.e.,
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a qn-dimensional ball centering at BjΣ
−1/2 with radius c0εn, where c0 > 0 is

a constant. Let Sn be the posterior subset model: Sn = {j : ‖BjΣ
−1/2‖ > an}.

Suppose B0 and gτ (x) satisfies

min
j∈S0

‖B0j‖ ≥M1εn for some large constant M1, (6)

s0 log ln ≺ log pn where ln = max
j∈S0

sup
x1,x2∈Bj,εn

gτ (x1)

gτ (x2)
, (7)

then Πn(Sn = S0|Y )→ 1 in P(B0,Σ0).

Remark 2.6. Compared to Theorem (1), this theorem holds with a more con-

centrated prior peak implied by smaller an and larger u. In addition, condition

(6) requires minimal strength of the true coefficients. Intuitively, if a true pa-

rameter is too small, it would be hard to distinguish it from zero. In condition

(7), ln can be viewed as a measurement of “flatness” of gτ (x) around true co-

efficients. With enough mass around the truth and this flatness constraint, we

can get sufficiently large prior density for points in a small neighborhood of the

true parameters. With stronger conditions than Theorem (1), this result also

gives a stronger posterior contraction that the false coefficients are bounded by

an. As an → 0 when n → ∞, the false coefficients will diminish to zero in the

limit.

3. Extended MBSP Model with Unknown Covariance Matrix

In previous section, we establish general conditions on the priors to obtain

good posterior contraction and variable selection. In this section, we will propose

a class of global-local shrinkage prior that satisfies conditions (4) and (5).

This class of priors we propose is scale mixture of Gaussians, which is closely

related to the Multivariate Bayesian model with Shrinkage Priors (MBSP) in-

troduced by [4]. In MBSP, Σ is assumed to be fixed and known. Here we put

an Inverse-Wishart prior for Σ, extending it to the unknown Σ case and obtain
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the following Extended MBSP model:

Bj |ξj ,Σ
ind∼ Nqn(0, τnξjΣ) j = 1, · · · , pn

ξj
ind∼ π(ξj)

Σ ∼ IWqn(υ,Φ)

(8)

In univariate case(qn = 1), many priors can be expressed as scale mixtures

of Gaussians[30]. Table (1) lists such priors and corresponding mixing density

π(ξ).

Table 1: List of scale mixtures of Gaussian priors

prior π(ξ)

Student’s t ξ−a−1 exp(−a/ξ)

TPBN [1] ξu−1(1 + ξ)−a−u

Horseshoe [7] ξ−1/2(1 + ξ)−1

NEG [13] (1 + ξ)−a−1

GDP [2]
∫∞

0
λ2

2 exp(−λ
2ξ
2 )λ2a−1 exp(−ηλ)dλ

HIB [22] ξu−1(1 + ξ)−a−u exp(− s
1+ξ )(φ2 + 1−φ2

1+ξ )−1

Horseshoe+ [5] ξ−1/2(ξ − 1)−1 log ξ

We now show that when the mixing component π(ξ) follows certain polynomial-

tailed distribution, posterior contraction is obtained with proper global shrink-

age parameter τn.

Theorem 3. Suppose B follow the following prior:

Bj |ξj ,Σ
ind∼ Nqn(0, τnξjΣ) j = 1, · · · , pn

ξj
ind∼ π(ξj)

(9)

where π(ξj) is a polynomial-tailed distribution taking the form π(ξj) = Kξ−rj L(ξj),

r > 1, K > 0. If L(ξ) satisfies either of the two following conditions for all

ξ > 0:

(C1) 1− C11ξ
−t ≤ L(ξ) ≤ C12, C12 ≥ 1, C11 > 0, t > 0;

(C2) C21ξ
−t ≤ L(ξ) ≤ 1, C21 > 0, t > 0,
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then (4) and (5) hold with τn . a2
np
−(1+u′)/(r−1)
n for some u′ > 0 and log τn &

− log pn.

Remark 3.1. It is easy to see that − log pn . log(a2
np
−(1+u′)/(r−1)
n ), therefore

such τn must exist.

Remark 3.2. Many commonly used shrinkage priors satisfy either (C1) or

(C2). As shown in Table (2), mixing component π(ξ) of student’s t, TPBN

(horseshoe, NEG are special cases of TPBN) and HIB satisfies (C1); horse-

shoe+ satisfies (C2). Proofs of these bounds are provided in Appendix.

Remark 3.3. For application, we recommend using TPBN prior. It has been

shown in [4] that TPBN prior is easy for implementation using Gibbs sampling

and relevant computation R package MBSP is readily available. They compared

their simulation results with other high-dimensional multivariate models.

Table 2: Bounds for L(ξ)

prior L(ξ) lower bound upper bound

Student’s t exp(−a/ξ) 1− aξ−1 1

TPBN (ξ/(1 + ξ))a+u 1− (a+ u)ξ−1 1

Horseshoe ξ/(1 + ξ) 1− ξ−1 1

NEG (ξ/(1 + ξ))a+1 1− (a+ 1)ξ−1 1

GDP

∫ ∞
0

ta exp(−t− η
√

2t/ξ)dt

× 1/Γ(a+ 1)

1−
√

2η Γ(a+3/2)
Γ(a+1) x

−1/2 1

HIB
exp(− s

1 + ξ
)(φ2 +

1− φ2

1 + ξ
)−1

× (
ξ

1 + ξ
)a+u(1 ∨ φ2)es

1− (a+ u)ξ−1 (φ2 ∨ 1
φ2 )es

Horseshoe+ ξ3/4(ξ − 1)−1 log ξ/4 ξ−1/4/4 1
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4. Numerical Experiments and Data Analysis

Through numerical experiments, we examine the uncertainty assessment for

covariance matrix estimate using scale mixture of Gaussians proposed in Section

3. We explore how the difference between estimation and truth varies as n and

pn grows. More simulations that evaluate performances on coefficient matrix

reconstruction, prediction as well as variable selection under various situations

are presented in Bai and Ghosh [4]. A real data analysis is also given.

4.1. Numerical Experiments

In our simulation, horseshoe mixing density π(ξ) = ξ−1/2(1 + ξ)−1 is used.

We focus on performance on ultra high-dimensional and ultra-sparse setting,

where p is approximately n1.5, proportion of nonzero coefficients ranges from

0.38% to 1.6%. Six different experiments settings are listed below.

Experiment 1: n = 25, p = 125, d = 3, s0 = 2, s0/p = 1.6%.

Experiment 2: n = 50, p = 354, d = 3, s0 = 3, s0/p = 0.85%.

Experiment 3: n = 75, p = 650, d = 3, s0 = 4, s0/p = 0.62%.

Experiment 4: n = 100, p = 1000, d = 3, s0 = 5, s0/p = 0.5%.

Experiment 5: n = 125, p = 1398, d = 3, s0 = 6, s0/p = 0.43%.

Experiment 6: n = 150, p = 1837, d = 3, s0 = 7, s0/p = 0.38%.

In all six experiments, data are generated according to the multivariate linear

regression model (1). Each row of X is generated independently from Np(0,Γ),

where Γij = 0.5|i−j|. The true coefficient matrix B0 is generated by uniformly

selecting s0 nonzero rows , and other rows are set to be zero. For nonzero rows,

each entry is independently sampled from Unif([−5,−0.5] ∪ [0.5, 5]). The true

covariance matrix (Σ0)ij = σ2(0.5)|i−j|, σ2 = 2.

By Theorem (3), when Assumption (1)-(3) holds, the global shrinkage pa-

rameter τn for nearly minimax posterior contraction rate should satisfy τn .

a2
np
−(1+u′)/(r−1)
n for some u′ > 0 and log τn & − log pn. But in application,
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this value is very small, e.g., such τn in Experiment 3 would be around 10−13.

Too small τn will cause problems in Gibbs sampling[31]. Currently, infer-

ence for the global hyperparmeter is still an open problem[20]. Here, we set

τn = 1/(pn
√
n log n), which achieves posterior consistency, although theoretical

posterior contraction rate is not available[4]. We use the Gibbs sampler in R

package MBSP, where the major computational complexity is linear in pn[6].

Each experiment is repeated 100 times. In all experiments, Gibbs sampler is

run for 15000 iterations, the first 5000 iterations are burn-in.

Posterior mean Σ̂ is taken to be the point estimators of Σ. ‖Σ̂−Σ0‖2 and

‖Σ̂−Σ0‖F are used to measure the difference between posterior estimates and

the truth in two different norms. Figure (1) illustrates how ‖Σ̂ − Σ0‖2 and

‖Σ̂−Σ0‖F decrease as n and p increase. Although this trend is a finite sample

behavior, it matches our posterior consistency result established in previous

section.
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Figure 1: Box-plots of difference between estimated and true covariance matrix. The x-axis

indicates experiment number and the y-axis indicates ‖Σ̂−Σ0‖2 (left) and ‖Σ̂−Σ0‖F (right)

respectively.

4.2. Data Analysis

We estimate the correlation between multiple responses on a yeast cell cycle

data set. This data set was first analyzed by Chun and Keleş [10] and is available
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in the spls package in R.

In molecular biology, transcription factors (TFs), also known as sequence-

specific DNA-binding factors, are proteins that controls the rate of transcription

of genetic information from DNA to mRNA, by binding to a specific DNA

sequence. To understand the regulatory mechanism of TFs, it is important to

reveal the relationship between TFs and their target genes.

In the original yeast cell cycle data set, the response Y consists of 542

cell-cycle-regulated genes from an α factor arrest method and mRNA levels

measured every 7 minutes at 18 time points, i.e. n = 542, q = 18. The

542× 106 design matrix X consists of 106 TFs’ binding information, represent-

ing the strength of interaction between TFs and the target genes. This data set

has been analyzed in Chen and Huang [9], Goh et al. [12], Bai and Ghosh [4]

with various variable selection and estimation methods for regression matrix B.

Here, we focus on the estimation of covariance Σ between responses. Be-

cause no sparsity is assumed in Σ or Σ−1, q = 18 is too large to get accurate

estimation. We only use the first four measurements, i.e. q = 4. The point

estimator obtained for covariance matrix between responses is

Σ̂ =


0.39 0.17 0.07 −0.03

0.17 0.30 0.13 0.04

0.07 0.13 0.28 0.17

−0.03 0.04 0.17 0.25

 .

Note that Yi’s are mRNA levels measured every 7 minutes, it would be

natural to observe autocorrelation as demonstrated in the above estimator.

5. Conclusion and Future Work

This paper has several contributions. First, we propose a set of general

conditions for continuous prior π(B|Σ) in sparse multivariate Bayesian estima-

tion that can achieve nearly-optimal posterior contraction rate. While previous

Bayesian multivariate models usually assume Σ to be fixed and known, our work

highlights the proof of posterior contraction of both coefficient matrix B and

14



covariance matrix Σ. Moreover, we allow pn to grow nearly at an exponential

rate with n and response dimension qn to go to infinity. To the best of our

knowledge, our work is the first paper showing the nearly-optimal contraction

rate of continuous shrinkage priors under this setting. The tools we developed

in proof can also be utilized in other multivariate Bayesian models. For appli-

cation, we show that a large family of heavy-tailed priors, including Student’s t

prior, horseshoe and horseshoe+ prior, the generalized double Pareto prior, etc,

satisfy the condition with good posterior contraction results.

Although we have established an informative `2 reconstruction rate, there are

still many important issues unexplored. One of them is the sparsity of Σ or its

inverse. In our paper, where no structure of Σ is assumed, although dimension

of response qn is allowed to grow, it has to be much smaller than sample size n

in order to keep Σ consistently estimable[19]. Recently, to encourage sparsity

of precision matrix, Li et al. [14] proposed a model putting horseshoe prior on

regression coefficient and graphical horseshoe prior on precision matrix.

Another interesting problem is whether to adopt the joint scale-invariant

prior framework. We use a scale-invariant prior in the paper, but this may

result in underestimating the model error[18]. Moran et al. [18] recommend

independent priors for regression coefficient and error variance apriori for pre-

venting distortion of the global-local shrinkage mechanism and obtaining better

estimates of the error variance.

Acknowledgments

The authors are grateful to Ray Bai and Qian Qin for helpful comments and

suggestions.

References

[1] Armagan, A., Clyde, M., Dunson, D. B., 2011. Generalized beta mixtures

of gaussians. Advances in neural information processing systems, 523–531.

15



[2] Armagan, A., Dunson, D. B., Lee, J., 2013. Generalized double pareto

shrinkage. Statistica Sinica 23 (1), 119.

[3] Armagan, A., Dunson, D. B., Lee, J., Bajwa, W. U., Strawn, N., 2013.

Posterior consistency in linear models under shrinkage priors. Biometrika

100 (4), 1011–1018.

[4] Bai, R., Ghosh, M., 2018. High-dimensional multivariate posterior consis-

tency under global–local shrinkage priors. Journal of Multivariate Analysis

167, 157–170.

[5] Bhadra, A., Datta, J., Polson, N. G., Willard, B., et al., 2017. The horse-

shoe+ estimator of ultra-sparse signals. Bayesian Analysis 12 (4), 1105–

1131.

[6] Bhattacharya, A., Chakraborty, A., Mallick, B. K., 2016. Fast sam-

pling with gaussian scale mixture priors in high-dimensional regression.

Biometrika, asw042.

[7] Carvalho, C. M., Polson, N. G., Scott, J. G., 2010. The horseshoe estimator

for sparse signals. Biometrika 97 (2), 465–480.

[8] Castillo, I., Schmidt-Hieber, J., Van der Vaart, A., et al., 2015. Bayesian

linear regression with sparse priors. The Annals of Statistics 43 (5), 1986–

2018.

[9] Chen, L., Huang, J. Z., 2012. Sparse reduced-rank regression for simulta-

neous dimension reduction and variable selection. Journal of the American

Statistical Association 107 (500), 1533–1545.
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Appendix

Proof. (Theorem 1) Define auxiliary sets An, Bn and Cn are constructed as

follow.

An ={at least p̃ entries ‖BjΣ
−1/2‖ is larger than an}

∪{‖Σ−Σ0‖ ≥M(‖Σ‖ ∨ ‖Σ0‖)εn}

∪{‖(B −B0)Σ
−1/2
0 ‖F ≥Mεn},

Bn = {at least p̃ entries ‖BjΣ
−1/2‖ is larger than an}, and Cn = An \ Bn.

Let θ = (B,Σ) and θ0 = (B0,Σ0). By Lemma A.4 in Song and Liang [28], it

suffices to show the following three parts:

π(Bn) ≤ e−k1nε
2
n (10)

There exists a test function φn s.t.

Eθ0φn ≤ e−k2nε
2
n , (11)

sup
θ∈Cn

Eθ(1− φn) ≤ e−k3nε
2
n (12)

And for sufficiently large n,

Pθ0
( m(Dn)

fθ0(Dn)
≥ e−k4nε

2
n
)
≥ 1− e−k5nε

2
n (13)

for some constant 0 < k4 < min(k1, k3), where m(Dn) =
∫

Θ
π(θ)fθ(Dn)dθ is the

marginal of Dn.
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So the proof is composed of three parts: (I)construction of test φn satisfying

(11) and (12), (II) showing that event Bn has very probability under the speci-

fied prior, (III) showing that the marginal probability of data is highly likely to

be bounded away from 0 if data is generated with true parameters.

Part I: Firstly, we show (11) and (12) by constructing testing function φn

in the following way.

For given S ⊆ {1, · · · , p}, consider the following testing functions φ
(1)
n,S and φ

(2)
n,S :

φ
(1)
n,S = 1{‖ 1

n− |S|
Y T (In −HS)Y −Σ0‖ ≥M‖Σ‖0εn/2}

φ
(2)
n,S = 1{‖((XT

SXS)−1XT
SY −B0S)Σ

−1/2
0 ‖F ≥Mεn/2}

where XS is the submatrix of X composed of columns indexed by S, BS

and B0S are the submatrices of B and B0 composed of rows indexed by S

respectively, HS = XS(XT
SXS)−1XT

S .

We have the following two inequalities for E(B0,Σ0)φ
(1)
n,S and E(B0,Σ0)φ

(2)
n,S .

E(B0,Σ0)φ
(1)
n,S = P(B0,Σ0)(‖

1

n− |S|
Y T (In −HS)Y −Σ0‖ ≥M‖Σ‖0εn/2)

≤ e−cM
2nε2n/(4K

2) by Lemma (1)

E(B0,Σ0)φ
(2)
n,S = P (‖(XT

SXS)−1XT
Sε‖F ≥Mεn/2)

≤ P (λmax(XT
SXS)−1tr(εTHSε) ≥M2ε2n/4)

≤ P (χ2
qn|S| ≥M

2λ0nε
2
n/4)

≤ e−λ0M
2nε2n/16

The last inequality holds because qn . log pn, |S| ' s0 and P (χ2
p ≥ x) ≤ e−x/4

if x ≥ 8p[3].

Let φn = max{φ(1)
n , φ

(2)
n }, where

φ(i)
n = max

{S⊃S0,|S|≤p̃+s0}
φ

(i)
n,S , i = 1, 2.
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E(B0,Σ0)φn ≤ E(B0,Σ0)

∑
{S⊃S0,|S|≤p̃+s0}

(φ
(1)
n,S + φ

(2)
n,S)

≤
p̃∑
i=0

(
pn − s0

i

)
2e−k23Mnε2n where k23 = min(

cM

4K2
,
λ0M

16
)

≤ 2(p̃+ 1)(pn − s0)p̃e−k23Mnε2n

Taking logarithm on both sides,

log(E(B0,Σ0)φn) ≤ p̃ log(pn − s0) + log(2(p̃+ 1))− k23Mnε2n

≤ (p̃+ 1) log pn − k23Mnε2n

≤ −k23Mnε2n/2 where p̃ = bk23Mnε2n
2 log pn

c − 1

Note that sufficient large M(> 6/k23) will ensure there is such p̃(≥ 2) such

that E(B0,Σ0)φn ≤ e−k2nε
2
n .

Now we want to show sup(B,Σ)∈Cn E(B,Σ)(1− φn) ≤ e−k3nε
2
n . Consider the

following two sets Cn1
and Cn,2:

Cn,1 ={‖Σ−Σ0‖ ≥M(‖Σ‖ ∨ ‖Σ‖0)εn} ∩ {at most p̃ entries ‖BjΣ
−1/2‖ is larger than an},

Cn,2 ={‖(B −B0)Σ
−1/2
0 ‖F ≥Mεn, ‖Σ−Σ0‖ ≤M(‖Σ‖ ∨ ‖Σ‖0)εn}∩

{at most p̃ entries ‖BjΣ
−1/2‖ is larger than an}.

It’s easy to verify that Cn ⊂ Cn,1 ∪ Cn,2, so we have

sup
(B,Σ)∈Cn

E(B,Σ)(1− φn) = sup
(B,Σ)∈Cn

E(B,Σ) min(1− φ(1)
n , 1− φ(2)

n )

≤ max{ sup
(B,Σ)∈Cn,1

E(B,Σ)(1− φ(1)
n ), sup

(B,Σ)∈Cn,2
E(B,Σ)(1− φ(2)

n )}

By definition of φ
(1)
n , for ∀S ⊃ S0, |S| ≤ p̃+ s0, we have

sup
(B,Σ)∈Cn,1

E(B,Σ)(1− φ(1)
n ) ≤ sup

(B,Σ)∈Cn,1
E(B,Σ)(1− φ

(1)
n,S).

Taking S = {j : ‖BjΣ
−1/2‖2 ≥ an} ∪ S0, note that when (B,Σ) ∈ Cn,1,
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‖Σ−Σ0‖ −M‖Σ‖0εn/2 ≥M‖Σ‖εn/2, then

sup
(B,Σ)∈Cn,1

E(B,Σ)(1− φ
(1)
n,S)

= sup
(B,Σ)∈Cn,1

P (‖ 1

n− |S|
Y T (In −HS)Y −Σ0‖ ≤M‖Σ‖0εn/2)

≤ sup
(B,Σ)∈Cn,1

P (‖ 1

n− |S|
Y T (In −HS)Y −Σ‖ ≥ ‖Σ−Σ0‖ −M‖Σ‖0εn/2)

≤ sup
(B,Σ)∈Cn,1

P (‖ 1

n− |S|
Y T (In −HS)Y −Σ‖ ≥M‖Σ‖εn/2)

≤e−cM
2nε2n/(16K2)

The last inequality follows by Lemma (1) because Y = XB + εΣ1/2 and for

(B,Σ) ∈ Cn,1,

‖(In −HS)XBΣ−1/2‖F 2
= ‖XScBScΣ

−1/2‖F 2

≤ ‖XSc‖F 2‖BScΣ
−1/2‖F 2

≤ (npn)(pna
2
n)

. nε2n.

Now we consider sup(B,Σ)∈Cn,2 E(B,Σ)(1 − φ
(2)
n,S). For (B,Σ) ∈ Cn,2, ‖Σ‖ −

‖Σ0‖ ≤ M‖Σ‖εn or ‖Σ‖ − ‖Σ0‖ ≤ M‖Σ0‖εn, so ‖Σ‖ ≤ 2‖Σ0‖, which gives

‖ΣΣ−1
0 ‖ ≤ 2b2/b1 by assumption A3(3). So we have

‖(BS −B0S)Σ
−1/2
0 ‖F ≥ ‖(B −B0)Σ

−1/2
0 ‖F − ‖BScΣ

−1/2
0 ‖F ≥ 7Mεn/8

since ‖BScΣ
−1/2
0 ‖F ≤ ‖BScΣ

−1/2‖F ‖ΣΣ−1
0 ‖

1/2
, ‖BScΣ

−1/2‖F ≤ anpn ≺ εn

and ‖ΣΣ−1
0 ‖

1/2
is bounded. In addition, we have

‖(XT
SXS)−1XT

SXScBScΣ
−1/2
0 ‖F ≤

√
λmax((XT

SXS)−1)‖XScBScΣ
−1/2
0 ‖F

≤
√

1/(nλ0)‖ΣΣ−1
0 ‖

1/2‖XScBScΣ
−1/2‖F

≤Mεn/8 for M ≥ 8
√
b2/(b1λ0)
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Therefore,

sup
(B,Σ)∈Cn,2

E(B,Σ)(1− φ
(2)
n,S)

= sup
(B,Σ)∈Cn,2

P (‖((XT
SXS)−1XT

SY −B0S)Σ
−1/2
0 ‖F ≤Mεn/2)

=
sup

(B,Σ)∈Cn,2
P (‖(BS −B0S)Σ

−1/2
0 + (XT

SXS)−1XT
SXScBScΣ

−1/2
0

+ (XT
SXS)−1XT

SEΣ1/2Σ
−1/2
0 ‖F ≤Mεn/2)

≤
sup

(B,Σ)∈Cn,2
P (‖(BS −B0S)Σ

−1/2
0 ‖F − ‖(XT

SXS)−1XT
SXScBScΣ

−1/2
0 ‖F

− ‖(XT
SXS)−1XT

SEΣ1/2Σ
−1/2
0 ‖F ≤Mεn/2)

≤ sup
(B,Σ)∈Cn,2

P (‖(XT
SXS)−1XT

SEΣ1/2Σ
−1/2
0 ‖F ≥Mεn/4)

≤P (χ2
qn|S| ≥ λ0b1M

2nε2n/(32b2))

≤e−λ0b1M
2nε2n/(128b2)

The second last inequality holds since

‖(XT
SXS)−1XT

SEΣ1/2Σ
−1/2
0 ‖F 2 ≤ ‖(XT

SXS)−1XT
SE‖F

2‖ΣΣ−1
0 ‖

≤ 2(b2/b1)λmax((XT
SXS)−1)‖HSE‖F 2

≤ 2b2
b1λ0n

χ2
qn|S|

Let k3 = min( cM
2

16K2 ,
λ0b1M

2

128b2
), (12) is proved.

Part II: Now we will show π(Bn) ≤ e−k1nε
2
n .

Define N = |{j : ‖BjΣ
−1/2‖2 ≥ an}|, following the proof in Part II of Theorem

A.1 in Song and Liang [28], we have π(Bn) ≤ e−tn/(2
√
πtn), where

tn = (p̃− 1) log(p̃− 1) + (p̃− 1) log
1

pnvn
+ (pn − p̃+ 1) log

pn − p̃+ 1

pn − pnvn

≥ u

2
p̃ log pn − (pn − p̃+ 1) log(1 +

p̃− 1− pnvn
pn − p̃+ 1

) (recall that pnvn ≤ p−un )

≥ u

2
p̃ log pn − (p̃− 1− pnvn)

≥ u

4
p̃ log pn

≥ uk23Mnε2n/16
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Thus π(Bn) ≤ e−k1nε
2
n is proved with k1 = uk23M/16.

Part III: At last, we will show (13).

By Part III in Song and Liang [28], it suffices to show that

Pθ0(π(‖(Y −XB)Σ−1/2‖F 2 − ‖(Y −XB0)Σ
−1/2
0 ‖F 2

+ n log(
|Σ|
|Σ0|

) ≤ k4nε
2
n/2)

≥ e−k4nε
2
n/2) ≥ 1− e−k5nε

2
n

(14)

Proof of (14) has three steps. The first step is to show event Ω := {‖ε‖2F ≤

nqn(1 + c1) and ‖XTε‖2,∞ ≤ c2nεn} has large probability closing to 1. In

second step, we show that on event Ω, and when the data Y is generated un-

der true parameter (B0,Σ0), {‖(Y −XB)Σ−1/2‖2F − ‖(Y −XB0)Σ
−1/2
0 ‖2F +

n log(|Σ|/|Σ0|) ≤ k4nε
2
n/2)} is a super-set of {∩di=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 +

ε2n/qn} and ‖(B −B0)Σ−1/2‖2,1 ≤ ηεn}, where Σ̃ := Σ
−1/2
0 ΣΣ

−1/2
0 , and η is

a constant satisfies ηεn/pn ≥ an. The last step is to get the lower bound of

π({∩di=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn} and ‖(B −B0)Σ−1/2‖2,1 ≤ ηεn}).

Step 1: P ({‖ε‖2F ≤ nqn(1 + c1) and ‖XTε‖2,∞ ≤ c2nεn}) ≥ 1− e−nε2n

It’s easy to see that P (‖ε‖2F > nqn(1 + c1)) ≤ e−c
2
1nqn/4 ≤ e−c

2
1nε

2
n/4 because

‖ε‖2F ∼ χ2
nqn . And (XTε)2

ij/n ≤ (XTε)2
ij/(X

TX)ii by the fact that X is

uniformly bounded by 1. And note that for fixed i, (XTε)ij/
√

(XTX)ii ∼

N (0, 1) independently, j = 1, · · · , qn. Thus we have

P (‖XTε‖2,∞ > c2nεn) = P ( max
1≤i≤n

1

n

qn∑
j=1

(XTε)2
ij > c22nε

2
n)

≤ P ( max
1≤i≤n

Zi > c22nε
2
n) where Zi ∼ χ2

qn

≤ pnP (χ2
qn > c22nε

2
n)

≤ pn exp{−c22nε2n/4}

≤ exp{−(c22/4− 1/s0)nε2n}

≤ e−3nε2n
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P (Ω) ≥ 1− P (‖ε‖2F > nqn(1 + c1))− P (‖XTE‖2,∞ > c2nεn) ≥ 1− e−nε2n .

Step 2: On event Ω and when the data Y is generated under true pa-

rameter (B0,Σ0), if (B,Σ) ∈ {∩di=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn} and ‖(B −

B0)Σ−1/2‖2,1 ≤ ηεn}, then the following four inequalities hold.

n log(|Σ|/|Σ0|) ≤ nε2n (15)

|‖εΣ
1/2
0 Σ−1/2‖2F − ‖ε‖2F | ≤ (1 + c1)nε2n (16)

‖X(B −B0)Σ−1/2‖2F ≤ η2nε2n (17)

|tr(X(B −B0)Σ−1Σ
1/2
0 E)| ≤ c2ηnε2n (18)

(15) holds because

n log(|Σ|/|Σ0|) = n

qn∑
i=1

log λi(Σ̃) ≤ n
qn∑
i=1

log(1 + ε2n/qn) ≤ nε2n.

For (16), it’s easy to see

‖ε‖2Fλ1(Σ̃
−1 − Iqn) ≤ tr(εTε(Σ̃

−1 − Iqn)) ≤ ‖ε‖2Fλqn(Σ̃
−1 − Iqn).

And 1 − ε2n ≤ λ1(Σ̃
−1

) ≤ λqn(Σ̃
−1

) ≤ 1 because 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn ⇒

1− ε2n/qn ≤ λqn−i+1(Σ̃) ≤ 1. So we have

|‖εΣ
1/2
0 Σ−1/2‖2F − ‖ε‖2F | = |tr(εTε(Σ̃

−1 − Iqn))| ≤ ‖ε‖2F ε2n/qn ≤ (1 + c1)nε2n.

For (17), let Xi denote the ith row of X, we have

‖Xi(B −B0)Σ−1/2‖2 = ‖
pn∑
j=1

xij(B −B0)jΣ
−1/2‖2

≤
pn∑
j=1

|xij |‖(B −B0)jΣ
−1/2‖2

≤ ‖(B −B0)Σ−1/2‖2,1

So ‖X(B −B0)Σ−1/2‖2F =
∑n
i=1‖Xi(B −B0)Σ−1/2‖22 ≤ η2nε2n.
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(18) is immediately by Lemma (2)

|tr(X(B −B0)Σ−1Σ
1/2
0 ε)| = |tr(εTX(B −B0)Σ−1Σ

1/2
0 )|

≤ ‖XTε‖2,∞‖(B −B0)Σ−1Σ
1/2
0 ‖2,1

≤ ‖XTε‖2,∞λqn(Σ̃
−1

)1/2‖(B −B0)Σ−1/2‖2,1

≤ c2ηnε2n

Combining (15)-(18), we can get

‖(Y −XB)Σ−1/2‖2F − ‖(Y −XB0)Σ
−1/2
0 ‖2F + n log(|Σ|/|Σ0|)

=‖X(B −B0)Σ−1/2‖2F + 2tr(X(B −B0)Σ−1Σ
1/2
0 E) + ‖εΣ

1/2
0 Σ−1/2‖2F − ‖ε‖2F + n log(|Σ|/|Σ0|)

≤k4nε
2
n when k4 ≥ 2 + c1 + η2 + 2c2η

Step 3: We want to show

π(∩qni=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1+ε2n/qn} and ‖(B−B0)Σ−1/2‖2,1 ≤ ηεn) ≥ e−k4nε
2
n/2.

By Lemma A.4 in Ning and Ghosal [19],

−log(π(∩qni=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1+ε2n/qn}) . q2
n log qn+q2

n log
1

ε2n
. q2

n log n . nε2n

(19)

Now, we look at

π(‖(B −B0)Σ−1/2‖2,1 ≤ εn| ∩qni=1 {Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn}).

It is easy to see that

{‖(B −B0)Σ−1/2‖2,1 ≤ ηεn} ⊃{‖BjΣ
−1/2‖2 ≤ ηεn/pn for all j /∈ S}∩

{‖(Bj −B0j)Σ
−1/2‖2 ≤ ηεn/s0 for all j ∈ S0}

Firstly,

π(‖BjΣ
−1/2‖2 ≤ ηεn/pn for j /∈ S0) ≥

∏
j /∈S0

π(‖BjΣ
−1/2‖2 ≤ an)

≥ (1− p−(1+u)
n )pn → 1

(20)

For a d-dimensional vector x0, let B(x0, r) denotes a ball in Rd with center

x0 and radius r. Note that conditioning on ∩qni=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn},

B(B0jΣ
−1/2, ηεn/s0) ⊂ B(0, ‖B0jΣ

−1/2‖2 + ηεn/s0) ⊂ B(0, γ‖B0Σ
−1/2
0 ‖2,∞)
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because ‖B0jΣ
−1/2‖2 ≤ ‖B0jΣ

−1/2
0 ‖2

√
λqn(Σ̃

−1
) ≤ ‖B0jΣ

−1/2
0 ‖2.

Therefore, we have

π(‖(Bj −B0j)Σ
−1/2‖2 ≤ ηεn/s0 for all j ∈ S0| ∩di=1 {Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn}))

≥
(
Volumn(B(B0jΣ

−1/2, ηεn/s0)) inf
‖BjΣ−1/2‖2≤M0

gτ (BjΣ
−1/2)

)s0
=
( πqn/2

Γ(qn/2 + 1)

)s0(ηεn
s0

)qns0(
inf

‖x‖2≤M0

gτ (x)
)s0

Taking log and multiply by −1 on both sides,

− log π(‖(Bj −B0j)Σ
−1/2‖2 ≤ εn/s0 for all j ∈ S0| ∩qni=1 {Σ̃ : 1 ≤ λi(Σ̃) ≤ 1 + ε2n/qn}))

≤− qns0

2
log η2π + s0 log Γ(

qn
2

+ 1) + qns0 log s0 +
qns0

2
log(1/ε2n)− s0 log inf

‖x‖2≤M0

gτ (x)

≤qns0 log(qns0) +
qns0

2
log(1/ε2n) + s0(− log inf

‖x‖2≤M0

gτ (x))

.qns0 log n+ s0 log pn . nε2n

(21)

From (19), (20) and (21), we get

π(∩di=1{Σ̃ : 1 ≤ λi(Σ̃) ≤ 1+ε2n/qn} and ‖(B−B0)Σ−1/2‖2,1 ≤ ηεn) ≥ e−k4nε
2
n/2

for sufficiently large k4.

Also note that by Lemma A.4 in Song and Liang [28], k4 needs to satisfy k4 <

min(k1, k3). Existence of such k4 is ensured by setting M be a sufficiently large

constant so that k1 and k3 are large.

Proof. (Theorem 2) Let An be the auxiliary set defined in Theorem 1, then

Acn ={at most p̃ entries ‖BjΣ
−1/2‖ is larger than an}

∩{‖Σ−Σ0‖ ≤M(‖Σ‖ ∨ ‖Σ0‖)εn}

∩{‖(B −B0)Σ
−1/2
0 ‖F ≤Mεn}

From Theorem 1, we have P0{Π(Acn|Yn) > 1−exp(−c1nε2n)} > 1−exp(−c2nε2n).

All the following analysis is conditioning on Ωn = Π(Acn|Yn) > 1−exp(−c1nε2n).
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The proof has three parts. Part 1 shows that only the case Sn ⊇ S0 needs

to be considered. Part 2 calculates π(S = S0|Yn) and π(S = S′|Yn) where

S′ ⊇ S0. Part 3 shows that
∑
S′⊇S0,|S′\S0|≥1

π(S = S′|Yn)

π(S = S0|Yn)
→ 0.

Part I: We first show that it suffices to consider Sn ⊇ S0 because π(Sn +

S0|Yn)→ 0. Note that

π(Sn + S0|Yn) = π(∃ j satisfying B0j 6= Bj , ‖BjΣ
−1/2‖ ≤ an|Yn)

≤ π(‖(Bj −B0j)Σ
−1/2
0 ‖ ≥Mεn|Yn)→ 0

The inequality holds because for j satisfying B0j 6= Bj and ‖BjΣ
−1/2‖ ≤ an,

‖(Bj −B0j)Σ
−1/2
0 ‖ ≥ ‖B0jΣ

−1/2
0 ‖ − ‖BjΣ

−1/2
0 ‖

≥
√

1/b2‖B0j‖ −
√

2b2/b1‖BjΣ
−1/2‖

≥
√

1/b2M1εn −
√

2b2/b1an ≥M2εn

since ‖Σ0‖ ≤ b2 and ‖ΣΣ−1
0 ‖ ≤ 2b2/b1 by previous results.

Part II: Let E1 = {(B,Σ) : ‖B1 −B01‖F ≤ c1εn, ‖Σ −Σ0‖ ≤ c2εn}, and

π(B1|Σ) = inf(B1,Σ)∈E1
π(B1,Σ)/π(Σ), π(B1|Σ) = sup(B1,Σ)∈E1

π(B1,Σ)/π(Σ).

Consider π(S = S0|Yn), let subscripts “1” and “2” denote model S0 and Sc0

respectively. It is easy to check that minj‖B1jΣ
−1/2‖ > an for Sn ⊇ S0, so we

have

π(S = S0|Yn) =π(‖B2Σ
−1/2‖2,∞ ≤ an|Yn)

∝
∫
|Σ|−n/2 exp{−1

2

n∑
i=1

(Yi −XiB)Σ−1(Yi −XiB)T }π(B,Σ)

I(‖B2Σ
−1/2‖2,∞ ≤ an)dBdΣ

≥π(‖B2Σ
−1/2‖2,∞ ≤ an)

∫
E1

inf
‖B2Σ−1/2‖2,∞≤an

|Σ|−n/2×

exp{−1

2

n∑
i=1

(Yi −XiB)Σ−1(Yi −XiB)T }π(B1,Σ)dB1dΣ
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∫
E1

inf
‖B2Σ−1/2‖2,∞≤an

|Σ|−n/2 exp{−1

2

n∑
i=1

(Yi −XiB)Σ−1(Yi −XiB)T }π(B1,Σ)dB1dΣ

≥π(B1|Σ)

∫
‖Σ−Σ0‖≤c2εn

inf
‖B2Σ−1/2‖2,∞≤an

|Σ|−n/2π(Σ)×∫
‖B1−B01‖F≤c1εn

exp{−1

2

n∑
i=1

(Yi −Xi1B1 −Xi2B2)Σ−1(Yi −Xi1B1 −Xi2B2)T }dB1dΣ

Let

SSE(B2,Σ) = min
B1

‖(Y −X1B1 −X2B2)Σ−1/2‖2F

= ‖(Y −X1B̂1 −X2B2)Σ−1/2‖2F

where B̂1 = (XT
1 X1)−1XT

1 (Y −X2B2)

Then we have∫
‖B1−B01‖F≤c1εn

exp{−1

2

n∑
i=1

(Yi −Xi1B1 −Xi2B2)Σ−1(Yi −Xi1B1 −Xi2B2)T }dB1

= exp{−1

2
SSE(B2,Σ)}×∫

‖B1−B01‖F≤c1εn
exp{−1

2
tr(XT

1 X1(B1 − B̂1)Σ−1(B1 − B̂1)T )}dB1

≥(2π)−(s0qn/2)|Σ|s0/2|XT
1 X1|−qn/2 exp{−1

2
SSE(B2,Σ)}Pr(‖B1 − B̂1‖F ≤ c

√
s0qn/n)

where B1 ∼MatrixNormal(B̂1,Σ, (X
T
1 X1)−1).

Let TB ∼MatrixNormal(0, Iqn , Is0), then B1−B̂1 = Σ1/2TB(XT
1 X1)−1/2.

Since ‖Σ‖ is bounded and ‖(XT
1 X1)−1‖ ≤ 1/(nλ0), we have

Pr(‖B1 − B̂1‖F ≥ c
√
s0qn/n) = Pr(‖Σ1/2TB(XT

1 X1)−1/2‖F ≥ c
√
s0qn/n)

= Pr(‖TB‖2F ≥ c̃s0qn)

= Pr(χ2
s0qn ≥ c̃s0qn)

≤ exp(−2s0qn) if c̃ ≥ 8
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So we have Pr(‖B1 − B̂1‖F .
√
s0qn/n)→ 1 for large n.

Let function Kn(BS) := (Y − XSBS)T (In − HSc)(Y − XSBS), where

HSc = XSc(X
T
ScXSc)

−1XT
Sc∫

‖Σ−Σ0‖≤c2εn
inf

‖B2Σ−1/2‖2,∞≤an
|Σ|−(n−s0)/2 exp{−1

2
SSE(B2,Σ)}π(Σ)dΣ

≥ inf
‖B2Σ

−1/2
0 ‖2,∞≤an

∫
‖Σ−Σ0‖≤c2εn

|Σ|−(n−s0)/2 exp{−1

2
tr((Kn(B2) + Φ)Σ−1)}π(Σ)dΣ

=

∫
‖Σ−Σ0‖≤c2εn

|Φ|υ/2

2υqn/2Γqn(υ/2)
|Σ|−(υ+qn+1+n−s0)/2 exp{−1

2
tr((Kn(B2) + Φ)Σ−1)}dΣ

=
2(n−s0)qn/2|Φ|υ/2Γqn((υ + n− s0)/2)

|Kn(B2) + Φ|(υ+n−s0)/2Γqn(υ/2)
Pr(‖TYn −Σ0‖ ≤ c2εn)

where TYn ∼ IW(υ + n − s0,Kn(B2) + Φ) and Γqn(·) is multivariate gamma

function.

For simplicity, let TYn ∼ IW(νn,ΨYn), where νn = υ + n− s0 ' n, ΨYn =

Kn(B2) + Φ.

Pr(‖TYn −Σ0‖ ≥ c2εn|Yn) ≤ E(‖TYn −Σ0‖2|Yn)/(c22ε
2
n)

≤ E(‖TYn −Σ0‖2F |Yn)/(c22ε
2
n)

= ‖E(TYn)− Σ0‖2F /(c22ε2n) +
∑
i

∑
j

V ar(TYn,ij)/(c
2
2ε

2
n)

We first show that if Pr(B0,Σ0)(‖
ΨYn

νn − qn − 1
−Σ0‖ ≥

εn
M
√
qn

) ≤ exp(−c̃nε2n/qn)

holds for sufficiently large M , then ‖E(TYn)−Σ0‖2F /(c22ε2n)→ 0 in P(B0,Σ0) and∑
i

∑
j V ar(TYn,ij)/(c

2
2ε

2
n)→ 0 in P(B0,Σ0).

‖E(TYn)−Σ0‖2F /ε2n = ‖ ΨYn

νn − qn − 1
−Σ0‖2F /ε2n ≤

qn
ε2n
‖ ΨYn

νn − qn − 1
−Σ0‖ →

0 in P(B0,Σ0)

V ar(TYn) =



(νn − qn + 1)Ψ2
Yn,ij

+ (νn − qn − 1)ΨYn,iiΨYn,jj

(νn − qn)(νn − qn − 1)2(νn − qn − 3)
, i 6= j

2Ψ2
Yn,ii

(νn − qn − 1)2(νn − qn − 3)
, i = j
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Because ‖ ΨYn

νn − qn − 1
− Σ0‖F ≤ ‖

ΨYn

νn − qn − 1
− Σ0‖ → 0 in P(B0,Σ0), i.e.

ΨYn,ij

νn − qn − 1
→ Σ0,ij in P(B0,Σ0), V ar(TYn,ij |Yn) = OP(B0,Σ0)

(1/n). Hence∑
i

∑
j V ar(TYn,ij)/(c

2
2ε

2
n) ≤ OP(B0,Σ0)

(
q2
n

nε2n
)→ 0 in P(B0,Σ0).

Now, it suffices to show Pr(B0,Σ0)(‖
ΨYn

νn − qn − 1
−Σ0‖ ≥

εn
M
√
qn

) ≤ exp(−c̃nε2n/qn)

for sufficiently large M .

By Lemma 1, let ε̃n = εn
M
√
qn

, d = qn, Σ = Σ0, A = εnΣ
1/2
0 , P = In −H1,

U = −X2B2, it is easy to verify that ε̃n → 0, nε̃n
2 →∞, qn ≺ nε̃n2, νn−qn−1 '

n and since anpn . (log n/n)1/2, we have

‖(In −H1)X2B2Σ
−1/2
0 ‖2F ≤ ‖X2B2Σ

−1/2
0 ‖2F ≤ np2

na
2
n . log n . nε̃n

2.

Hence, Pr(‖ Sn
νn − qn − 1

−Σ0‖ ≥ ε̃n) ≤ exp(−c̃nε̃n2) by Lemma 1. And ‖ Φ

νn − qn − 1
‖ ≤

‖ Φ

νn − qn − 1
‖F .

qn
n
≺ ε̃n. We have Pr(B0,Σ0)(‖

ΨYn

νn − qn − 1
−Σ0‖ ≥

εn
M
√
qn

) ≤

exp(−c̃nε2n/qn) for sufficiently large M . Therefore, Pr(‖TYn −Σ0‖ . εn) → 1

for large n.

We now calculate π(S = S′|Yn) where S′ ⊃ S0. For notation simplicity, we

abuse subscripts a little bit. Now let subscripts “1”, “2” and “3” denote model

S0, S′\S0 and (S′)c respectively.

π(S = S′|Yn) ∝
∫
|Σ|−n/2 exp{−1

2

n∑
i=1

(Yi −XiB)Σ−1(Yi −XiB)T }π(B,Σ)

I(‖B3Σ
−1/2‖2,∞ ≤ an)I(min

j
‖B2jΣ

−1/2‖ > an)dBdΣ

.π(‖B3Σ
−1/2‖2,∞ ≤ an, min

j
‖B2jΣ

−1/2‖ > an)×

sup
‖B3Σ

−1/2
0 ‖2,∞.an

∫
E1

|Σ|−n/2 exp{−1

2

n∑
i=1

(Yi −XiB)Σ−1(Yi −XiB)T }π(B1,Σ)dB1dΣ
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∫
E1

|Σ|−n/2 exp{−1

2

n∑
i=1

(Yi −XiB)Σ−1(Yi −XiB)T }π(B1,Σ)dB1dΣ

≤π(B1|Σ) exp{−1

2
SSE(B2,B3,Σ)}×∫

|Σ|−n/2 exp{−1

2
tr(XT

1 X1(B1 − B̃1)Σ−1(B1 − B̃1)T )}dB1

=π(B1|Σ)(2π)−(s0qn/2)|XT
1 X1|−qn/2

∫
|Σ|−(n−s0)/2 exp{−1

2
SSE(B2,B3,Σ)}π(Σ)dΣ

=π(B1|Σ)(2π)−(s0qn/2)|XT
1 X1|−qn/2

2(n−s0)qn/2|Φ|υ/2Γqn((υ + n− s0)/2)

|Kn(B2,B3) + Φ|(υ+n−s0)/2Γqn(υ/2)

Part III: Now we want to show
∑
S′⊇S0,|S′\S0|≥1

π(S = S′|Yn)

π(S = S0|Yn)
→ 0.

π(S = S′|Yn)

π(S = S0|Yn)
.
π(B1|Σ)

π(B1|Σ)

π(‖B(S′)cΣ
−1/2‖2,∞ ≤ an, minj‖(BS′\S0

Σ−1/2)j‖ > an)

π(‖BSc0Σ−1/2‖2,∞ ≤ an)
×

sup‖BSc0Σ
−1/2
0 ‖2,∞≤an

|Kn(BSc0
) + Φ|(υ+n−s0)/2

inf‖BS′cΣ
−1/2
0 ‖2,∞≤an

|Kn(BS′\S0
,BS′c) + Φ|(υ+n−s0)/2

Firstly,
π(B1|Σ)

π(B1|Σ)
≤ ls0n by (7)

And we also have

π(‖B(S′)cΣ
−1/2‖2,∞ ≤ an, minj‖(BS′\S0

Σ−1/2)j‖ > an)

π(‖BSc0Σ−1/2‖2,∞ ≤ an)

=
π(minj‖(BS′\S0

Σ−1/2)j‖ > an)

π(‖B(S′\S0)cΣ
−1/2‖2,∞ ≤ an)

≤
( p

−(1+u)
n

1− p−(1+u)
n

)|S′\S0|

Next, we examine the behavior of
|Kn(BSc0

) + Φ|
|Kn(BS′c) + Φ|

under constraints ‖BSc0Σ
−1/2
0 ‖2,∞ ≤

an and ‖BS′cΣ−1/2
0 ‖2,∞ ≤ an. It is easy to verify that

|Kn(BSc0
) + Φ|

|Kn(BS′c) + Φ|
≤
|Kn(BSc0

) + Φ|
|Kn(BS′c)|
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where

Kn(BSc0
) =(Yn −XSc0

BSc0
)T (In −HS0)(Yn −XSc0

BSc0
)

=Σ
1/2
0 εn

T (In −HS0
)εnΣ

1/2
0 + (XSc0

BSc0
)T (In −HS0

)(XSc0
BSc0

)

− 2Σ
1/2
0 εn

T (In −HS0
)(XSc0

BSc0
)

Kn(BS′c) =(Yn −XS′cBS′c)
T (In −HS′)(Yn −XS′cBS′c)

=Σ
1/2
0 εn

T (In −HS′)εnΣ
1/2
0

+ (XS0BS0 −XS′cBS′c)
T (In −HS′)(XS0BS0 −XS′cBS′c)

− 2Σ
1/2
0 εn

T (In −HS′)(XS0
BS0

−XS′cBS′c)

Because ‖XSc0
BSc0
‖2F ≤ ‖XSc0

‖2F ‖BSc0
‖2F . np2

na
2
n . nε2n ≺ n and

‖Σ1/2
0 εn

T (In −HS0
)(XSc0

BSc0
)‖F . ‖εn‖‖XSc0

BSc0
‖F

.
√
n
√
nε2n with probability → 1

≺ n

we have |Kn(BSc0
)| ' |εnT (In −HS0

)εn||Σ0|.

Similarly, ‖(XS0
BS0
−XS′cBS′c)‖2F ≺ n and ‖Σ1/2

0 εn
T (In−HS′)(XS0

BS0
−

XS′cBS′c)‖F ≺ n, so we have |Kn(BS′c)| ' |εnT (In −HS′)εn||Σ0|.

By the bounds for eigenvalues in Vershynin [32], with probability going to

1,

n− s0 . λmin(εn
T (In −HS0

)εn) ≤ λmax(εn
T (In −HS0

)εn) . n− s0

n− s0 . λmin(εn
T (In −HS′)εn) ≤ λmax(εn

T (In −HS′)εn) . n− s0.

Therefore,

|Kn(BSc0
) + Φ|

|Kn(BS′c)|
' |εn

T (In −HS0
)εn|

|εnT (In −HS′)εn|
. (

n− s0

n− s′
)qn .

Note that (
n− s′

n− s0
)qn(υ+n−s0) '

(
(1−s

′ − s0

n− s0
)n−s0

)qn ≥ exp(−c(s′−s0)qn) ≥

exp(−c(s′ − s0) log pn) because (1 − s′ − s0

n− s0
)n−s0 ≥ exp(−c(s′ − s0)) for large

n, c > 1 and qn . log pn.
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Therefore,

sup‖BSc0
Σ
−1/2
0 ‖2,∞≤an

|Kn(BSc0
) + Φ|(υ+n−s0)/2

inf‖BS′cΣ
−1/2
0 ‖2,∞≤an

|Kn(BS′c) + Φ|(υ+n−s0)/2
≤ exp(c|S′\S0| log pn).

Combining the above parts, we have
π(S = S′|Yn)

π(S = S0|Yn)
≤ ls0n (1+p

c−(1+u)
n )|S

′\S0|

and∑
S′⊇S0,|S′\S0|≥1

π(S = S′|Yn)

π(S = S0|Yn)
≤ ls0n ((1 + p

−(1+u−c)
n )pn − 1) ' ls0n p

−(u−c)
n .

By (7), we can get
∑
S′⊇S0,|S′\S0|≥1

π(S = S′|Yn)

π(S = S0|Yn)
→ 1 for 1 ≤ c < u.

Proof. (Theorem 3) It is easy to verify that when B follows the given distribu-

tion, gτ (·) takes the form gτ (·) = g(·/
√
τ)/τ qn/2, where τ = τn and

g(x) =

∫ ∞
0

(2π)−qn/2ξ−qn/2 exp(−‖x‖
2
2

2ξ
) ·Kξ−rL(ξ)dξ.

We first show that (4) holds when L(ξ) has upper bound. When L(ξ) ≤ C12,

we have

g(x) ≤ C12K2r−1π−qn/2Γ(
d

2
+ r − 1)‖x‖2−(d+2r−2)

.

And by Lemma (3),

∫
‖x‖2≥an

gτ (x)dx =

∫
‖x‖2≥an

g(x/
√
τn)/τ qn/2n dx

=

∫
‖z‖2≥an/

√
τn

g(z)dz (z = x/
√
τn)

≤ C12K2r−1π−qn/2Γ(
qn
2

+ r − 1)

∫
‖z‖2≥an/

√
τn

‖z‖2−(d+2r−2)
dz

≤ C12K2r−1

2(r − 1)
(
d

2
+ r − 1)r

( τn
a2
n

)r−1

≤ p−(1+u)
n (0 < u < u′)

since qn/2+r−1 . log pn ≺ pu
′−u
n for any 0 < u < u′ and (τn/a

2
n)r−1 . p

−(1+u′)
n .

L(ξ) ≤ 1 is a special case of L(ξ) ≤ C12.
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Now, we want to show that (5) holds with log τn & − log pn. It is obvious that

g(x) is a decreasing function of ‖x‖2, so inf‖x‖2≤M0
gτn(x) ≥ gτn(x)|‖x‖2=M0

.

When L(ξ) ≥ 1− C11ξ
−t,

g(x) ≥ K2r−1π−qn/2Γ(
qn
2

+r−1)‖x‖2−(d+2r−2)(
1−C112t

Γ(d2 + r + t− 1)

Γ(d2 + r − 1)
‖x‖2−2t)

.

Since τn . a2
np
−(1+u′)/(r−1)
n ,

C112t
Γ( qn2 + r + t− 1)

Γ( qn2 + r − 1)
‖M0/

√
τn‖2−2t ≤ C11M

−2t
0 [(d+ 2(r + t− 1))τn]t → 0.

So we have

log gτn(x)|‖x‖2=M0
≥ log

(
τ−qn/2n K̃2r−1π−qn/2Γ(

qn
2

+ r − 1)‖M0/
√
τn‖2−(qn+2r−2))

≥ constant− d log(
√
πM0) + (r − 1) log τn

& − log pn

because d . log pn and log τn & − log pn.

When L(ξ) ≥ C21ξ
−t1 , g(x) ≥ KC212t1+r−1π−d/2Γ(d2 +t1+r−1)‖x‖2−(d+2(t1+r−1))

,

the rest follows the above inequalities.

Corollary 1. Polynomial-tailed distribution: Student’s t-distribution, TPBN,

HIB, GDP and Horseshoe+ satisfy either condition (1) or (2) in Theorem (3).

Proof. For t-distribution, let L(ξ) = exp(−a/ξ), a > 0, and 1 − aξ−1 ≤

exp(−a/ξ) ≤ 1 for ξ > 0.

For TPBN distribution, let L(ξ) = (ξ/(1+ξ))a+u ≤ 1, a, u > 0, and by Bernoulli

inequality, (ξ/(1 + ξ))a+u = (1 + 1/ξ)−(a+u) ≥ 1 − (a + u)ξ−1 for ξ > 0. Note

that Horseshoe and NEG are special cases of TPBN with a = u = 1/2 and

u = 1, respectively.

For HIB distribution, let

L(ξ) = (1 ∨ φ2)es(ξ/(1 + ξ))a+u exp(− s
1+ξ )(φ2 + 1−φ2

1+ξ )−1, a, u, φ2 > 0, s ∈ R.

Because 1∧ 1
φ2 ≤ ( 1−φ2

1+ξ )−1 ≤ 1∨ 1
φ2 , we have 1−(a+u)ξ−1 ≤ L(ξ) ≤ (φ2∨ 1

φ2 )es.

For GDP distribution, L(ξ) =
∫∞

0
ta exp(−t−η

√
2t/ξ)dt. Because 1−

√
2ηt1/2ξ−1/2 ≤

exp(−η
√

2t/ξ) ≤ 1, we have 1−
√

2η Γ(a+3/2)
Γ(a+1) ξ

−1/2 ≤ L(ξ)/Γ(a+ 1) ≤ 1.
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For Horseshoe+ distribution, L(ξ) = ξ3/4(ξ − 1)−1 log ξ/4, ξ > 1. Note that

log ξ/4 = log ξ1/4 ≤ ξ1/4 − 1, so L(ξ) ≤ 1. And log ξ ≥ 1 − ξ−1 > 0, so

L(ξ) ≥ ξ−1/4/4.

Lemma 1. Let A be a n × d random matrix with independent rows Ai ∼

Nd(0,Σ). If εn → 0 and nε2n → ∞ as n → ∞ and d ≺ nε2n, then for any

n × n projection matrix P with rank r ' n and any n × d fixed matrix U

with ‖PUΣ−1/2‖2F . nε2n, we have the following inequalities for some constants

K, c > 0 and sufficiently large n,

Pr(‖1

r
ATPA−Σ‖ ≥ K‖Σ‖εn) ≤ e−cnε

2
n

Pr(‖1

r
(A+ U)TP (A+ U)−Σ‖ ≥ 2K‖Σ‖εn) ≤ e−cnε

2
n/2

Proof. Let P = QTΛQ be a spectral decomposition of P, where the first r

diagonal elements of Λ are 1 and the rest n − r elements are 0. Because Q is

orthogonal, Z = QA is a n × d matrix with independent rows Zi ∼ Nd(0,Σ)

and ATPA = ZTΛZ =
∑r
i=1 ZiZ

T
i , where ZTi is the ith row of Z. By Theorem

5.39 and Remark 5.40 in Vershynin [32],

Pr(‖1

r

r∑
i=1

ZiZ
T
i −Σ‖ ≥ max(δ, δ2)‖Σ‖) ≤ 2e−ct

2

where δ = C
√
d/r + t/

√
r

Let t =
√
nεn, the first part is proved because max(δ, δ2) ≤ Kεn for large K.

Now we prove the second inequality. Let E = AΣ−1/2, then E has iid

standard normal entries. It suffices to show

Pr(‖1

r
(E + UΣ−1/2)TP (E + UΣ−1/2)− Id‖ ≥ 2Kεn) ≤ e−cnε

2
n/2,

since ‖ 1
r (A+U)TP (A+U)−Σ‖ ≤ ‖ 1

r (E+UΣ−1/2)TP (E+UΣ−1/2)−Iqn‖‖Σ‖

Because ‖PUΣ−1/2‖2F . nε2n, we get 1
r‖PUΣ−1/2‖F ≺ εn. By first part of

Lemma (1), Pr(‖ 1
nE

TE − Id‖ ≥ Kεn) ≤ e−cnε
2
n and by the triangle inequality

‖ 1
nE

TE−Id‖ ≥ 1
n‖E

TE‖−1, we have Pr(‖ETE‖ ≥ 2n) ≤ e−cnε2n . Conditioned

on ‖ETE‖ ≤ 2n, 2
r‖E

TPUΣ−1/2‖ ≤ 2
r‖E

TE‖1/2‖PUΣ−1/2‖F ≤ Kεn/2 for
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sufficiently large K. So we have

Pr(‖1

r
(E + UΣ−1/2)TP (E + UΣ−1/2)− Id‖ ≥ 2Kεn)

≤Pr(1

r
‖PUΣ−1/2‖F +

2

r
‖ETPUΣ−1/2‖+ ‖1

r
ETPE − Id‖ ≥ 2Kεn|‖ETE‖ ≤ 2n)

+ Pr(‖ETE‖ ≥ 2n)

≤Pr(‖1

r
ETPE − Id‖ ≥ Kεn) + e−cnε

2
n

≤e−cnε
2
n/2 for large n

Lemma 2. For compatible matrices A and B, we have |tr(AB)| ≤ ‖AT ‖2,∞‖B‖2,1.

Further, if B is a square matrix, then ‖AB‖2,1 ≤
√
λmax(BBT )‖A‖2,1

Proof.

tr(AB) ≤
m∑
j=1

n∑
i=1

|aijbji| ≤
m∑
j=1

√√√√ n∑
i=1

a2
ij

n∑
i=1

b2ji ≤ ‖A
T ‖2,∞

n∑
i=1

‖B‖2,1

‖AB‖2,1 =

n∑
i=1

√
AiBBTATi ≤

n∑
i=1

√
λmax(BBT )‖Ai‖2 =

√
λmax(BBT )‖A‖2,1

Lemma 3. For a d-dimentional vector x,∫
‖x‖2≥a

‖x‖2−(d+k)
dx =

2πd/2a−k

kΓ(d/2)
k, a > 0

Proof. The result is immediate by polar coordinate transformation in Scott [27],∫
‖x‖2≥a

‖x‖2−(d+k)
dx =

( ∫ ∞
a

r−k−1dr
)( d−2∏

i=1

∫ π/2

−π/2
cosd−i−1 θidθi

)( ∫ 2π

0

1dθd−1

)
and

∫ π/2
−π/2 cosd−i−1 θdθ = π1/2 Γ((d−i)/2)

Γ((d−i+1)/2) .
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