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Abstract

Spatial regression with di↵erential regularization is an innovative approach at the crossroad between functional data
analysis and spatial data analysis. These models have been shown to be numerically e�cient and capable to handle
complex applied problems. On the other hand, their theoretical properties are still largely unexplored. Here we
consider the discrete estimators in spatial regression models with di↵erential regularization, obtained after numerical
discretization, using an expansion on a finite element basis. We study the consistency and the asymptotic normality
of these discrete estimators. We also propose a nonparametric test procedure for the linear part of the models, based
on random sign-flipping of the score components. The test exploits an appropriate decomposition of the smoothing
matrix, in order to reduce the e↵ect of the spatial dependence, without any parametric assumption on the form of the
correlation structure. The proposed test is shown to be superior to parametric alternatives.
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1. Introduction

This work presents e�cient tests for the linear component of semiparametric penalized spatial regression models.
The proposed procedure focuses on the semiparametric models introduced in [38], named Spatial Regression with
Partial Di↵erential Equation regularization (SR-PDE). These models are at the crossroad of spatial data analysis
[8–10] and functional data analysis [13, 26, 34]. This area, often referred to as spatial functional data analysis, is
receiving an increasing interest, as witnessed by the special issues [1, 16, 30] and the recent collective volume [31].
Moreover, semiparametric penalized regression and partially linear models [18, 35] are extensively used in functional
data analysis, and inference for such models has been addressed by a vast literature; see, e.g., the review in [36].

SR-PDE embraces a set of numerically e�cient regression models, capable to handle complex applied problems
[see, e.g., 5, 12, 27, 37]. The basic formulation of SR-PDE involves a semiparametric (or partially linear) model of the
form zi = w

>
i � + f (pi) + ✏i, i 2 {1, . . . , n}, where the response variable zi observed at location pi in the spatial domain

⌦ is explained by a regression on the covariates wi, with coe�cient vector �, and on a non-linear smooth function f ,
defined on the domain ⌦. The coe�cient vector � (in the linear or parametric part of the model) and the function f
(in the non-linear or nonparametric part of the model) are estimated minimizing a penalized least square functional,
similar to other semiparametric regression models, such as those based on penalized splines regression [see, e.g.,
19, 48], on thin plate splines [see, e.g., 46] and on soap film smoothing [47]. SR-PDE can handle data scattered
over complicated two-dimensional domains ⌦, and can comply with di↵erent conditions at the domain boundary
[5, 38]. Moreover, the regularizing term in SR-PDE can involve general forms of Partial Di↵erential Equations (PDE),
modeling various types of anisotropy and non-stationarity. These peculiarities pose new challenges for the study of
the theoretical properties of these models, that are still largely unexplored. References [5, 38] demonstrate the well
posedness of the estimation problem and describe the characterization of its solution. In particular, SR-PDE estimation
functional cannot be solved analytically; the solution is approximated via an expansion in finite element bases. The
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work [4] shows that the estimator of f is asymptotically unbiased. Moreover, [3] investigates its consistency, under
some simplifying hypothesis. However, these first attempts to study the asymptotic properties of the methods are
restricted to a model where no covariates are present, but only the nonparametric term f is considered.

In this work, we instead consider the general semiparametric (or partially linear) model in [38], that also includes
the covariates, focusing directly on the discrete estimators obtained after numerical discretization of the estimation
problem. In particular, we derive the asymptotic distribution of the estimators of � and f , obtained after expansion on
a finite element basis. Moreover, we demonstrate the consistency of these estimators. We hence focus on hypothesis
testing on �.

A standard way to approach the problem is to consider the asymptotic distribution of the estimator. This natu-
rally leads to Wald-type test statistics, either using the asymptotic variance, or with more robust approaches such as
sandwich estimators [17, 48]. The sandwich estimate corrects for the potentially misspecified variance and induces
an asymptotically exact text under mild assumptions. These approaches might nonetheless have poor performances
in the finite sample scenario, due to the dependence on the regularizing term [see, e.g. 14, 29]. A possible solution
to overcome the problem is to resort to nonparametric tests, such as permutation tests [see, e.g., 20, 33, 45]. These
methods require fewer parametric assumptions and are often more powerful since they avoid imposing restrictive as-
sumptions on the data [22, 43]. Rather than permutations, sometimes other transformations are used, such as rotations
[41] and sign-flipping of residuals [45].

Here in particular we propose a sign-flip score test for �. The test is influenced by a sign-flip score strategy recently
proposed in [21] for classical generalized linear models. The procedure in [21], although robust against various types
of misspecification, relies on the asymptotic independence of the residuals. Unfortunately, in a spatial regression
setting, the dependence among the residuals can instead be very strong, due to the presence of the nonparametric part
in the model and of the regularizing term in the estimation functional. For this reason, in addition to proposing a sign-
flip score test for the considered SR-PDE models, we also devise a variant of this test that avoids the issues generated
by spatial correlation, exploiting a spectral decomposition of the smoothing matrix. This idea is in turn inspired by
approaches used for instance in [24, 25] in the context of linear regression models. This leads to the definition of
an asymptotically exact test that preserves the finite sample invariance of the covariance structure of the test under
random sign-flips.

The proposed resampling strategy o↵ers a new inference approach that could be extended to other spatial semi-
parametric methods [e.g., 46, 47], as well as to semiparametric regression models extensively used in functional data
analysis, such as those based on splines [e.g., 19, 42, 48].

The paper is organized as follows. In Section 2 we briefly review the SR-PDE framework and outline how the
discrete estimators are obtained. In Section 3 we study the asymptotic properties of these estimators. In Section 4
we present the proposed nonparametric hypothesis testing procedures. In Section 5 we compare such proposals to
more classical parametric approaches through simulation studies. In Section 6 we present an application to the study
of rainfall measurements in Switzerland. Some final discussions and directions for future research are outlined in
Section 7.

2. Model

In this section we briefly review the basic setting of SR-PDE. Let pi = (pi1, pi2) 2 ⌦, i 2 {1, . . . , n}, be n data
locations over a bounded domain ⌦ ⇢ R2 with a boundary @⌦ that is continuous and has continuous first and second
derivatives. Let zi 2 R be the value of the variable of interest observed at point pi and let wi 2 Rq be a vector of
covariates associated with the observation zi. SR-PDE assumes a semi-parametric model of the form

zi = w
>
i � + f (pi) + ✏i, for i 2 {1, . . . , n}, (1)

where � 2 Rq is the vector of true parameters, f is an unknown deterministic mean spatial field that represents the
spatial dependence structure of the problem under study, and ✏1, . . . , ✏n are i.i.d. random errors with zero mean and
variance �2. The estimation problem can be solved minimizing the regularized least squares

1
n

nX

i=1

{zi � w
>
i � � f (pi)}2 + �

Z

⌦

(� f )2 dp, (2)
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Fig. 1: Left: linear finite element basis function on a triangulation of a squared domain. Right: an example of linear finite element function on the
considered triangulation.

where � > 0 is a smoothing parameter and � denotes the Laplace operator, defined as

� f (p) =
@2

@p1
f (p) +

@2

@p2
f (p), (3)

where p = (p1, p2) 2 ⌦. The higher the value of �, the more regular is the estimate of f , and viceversa. References
[4, 38] show that the estimation functional is well posed for � 2 Rq and f in an appropriate space of functions.
Moreover, the estimation problem has a unique solution once imposing appropriate boundary conditions on f ; in
particular, in the following we shall assume that the normal derivative of the spatial field f at the domain boundary @⌦
is zero. The regularizing term in (2), instead of the simple Laplacian, may involve a PDE that formalizes the available
problem-specific information, enabling a very rich modeling of space variation; see [4, 5] for details.

2.1. Finite elements
The solution to the minimization problem (2) cannot be found analytically. It is therefore necessary to use numer-

ical discretization procedures. One possibility in this respect is to use the finite element method, as shown, e.g., in
[37, 38].

To this end, we discretize the domain ⌦ using a constrained Delaunay triangulation; this is a generalization of the
Delaunay triangulation [e.g., 23] for bounded domains. Fig. 1 shows for instance a triangulation of a squared domain.
We denote by T the triangulation, by ⌦T the resulting discretized domain, union of all the triangles in T , and by
⇠k 2 ⌦T , k 2 {1, . . . ,NT }, the vertices (or nodes) of the triangulation. We hence define a set of NT basis functions, that
span the space of continuous functions over ⌦T that are linear once restricted to any triangle of T ; this is the linear
finite element space associated with the triangulation T (higher polynomial orders can as well be considered [see,
e.g., 37, 38]). In particular, we define a basis  k for each node ⇠k: this finite element basis is defined as the piecewise
linear function on ⌦T that has value 1 at node ⇠k and value 0 at any other node ⇠` with ` , k. As highlighted in the
left panel of Fig. 1, such bases have a local support. Through expansions on these bases, it is possible to represent any
globally continuous and piecewise linear function f on ⌦T , as f (·) = f

> (·), where  := ( 1, . . . , NT )> is the vector
of NT finite element bases and f = ( f1, . . . , fNT )> is the vector of coe�cients of the basis expansion; see the example
in the right panel of Fig. 1. Thanks to the definition of the finite element bases, the vector f coincides with the vector
of evaluations of the function f at the NT mesh nodes: f =

⇣
f (⇠1), . . . , f (⇠NT )

⌘>
. The finite element space, spanned

by  1, . . . , NT , is hence constructed so that any function in this space is defined by its values at the NT mesh nodes.
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2.2. Discrete estimator
Let  be the n ⇥ NT matrix evaluating the NT basis functions  1, . . . , NT at the n data locations

 =

2
66666666664

 1(p1) . . .  NT (p1)
...

. . .
...

 1(pn) . . .  NT (pn)

3
77777777775

and R0, R1 be the NT ⇥ NT matrices

R0 =

Z

⌦T

  >, R1 =

Z

⌦T

r r >.

Let z = (z1, . . . , zn)> be the vector of observed data values. Let also W be the n ⇥ q matrix whose i-th row is given
by w

>
i , the vector of q covariates associated with observation zi at pi, and assume that W has full rank. Moreover, set

Q = I�W(W>
W)�1

W
>, the matrix that projects into the orthogonal complement of Rn with respect to the subspace of

Rn spanned by the columns of W. Finally, for any function f in the finite element space, we denote by f the vector of
evaluations of the function f at the NT nodes of the mesh, f =

⇣
f (⇠1), . . . , f (⇠NT )

⌘>
. Having defined these quantities,

the problem (2) is recast in the finite element space. To this end, as detailed in [38], we introduce an auxiliary function
g = g

> that represents � f (or more generally the misfit of the penalized PDE), leading to the following result.

Proposition 1 ([38]). There exists a unique pair of estimators (�̂, f̂ ) which solve the discrete counterpart of the
estimation problem. Moreover

�̂ = (W>
W)�1

W
>(z � f̂),

and f̂ = f̂
> with f̂ satisfying "

� >Q /n �R
>
1

�R1 �R0

# "
f̂

g

#
=

"
� >Qz/n

0

#
. (4)

Denote by P = R
>
1 R
�1
0 R1 the NT ⇥ NT symmetric positive definite matrix that discretises the penalizing term in

(2). Moreover, let S be the NT ⇥ n matrix

S = ( >Q /n + �P)�1 >Q/n.

With this notation, we can derive the analytic expressions for the estimators f̂ and �̂ as

f̂ = n�1( >Q /n + �P)�1 >Qz = Sz, (5)

�̂ = (W>
W)�1

W
>(I � S)z. (6)

3. Asymptotic properties

In this section we study the asymptotic properties of the estimators in (5) and (6), proving their asymptotic nor-
mality and consistency. The following results are derived implicitly conditioning on the locations {pi, i = 1, . . . , n}
and on the covariates W. This provides the most natural setting for the introduction of the proposed tests in Section
4.2, which are conditioned to the same quantities. Analogous results could be obtained under an unconditioned frame-
work, by imposing appropriate distributional assumptions on the covariates and locations. In particular, the mesh and
locations should satisfy Assumption 1 below.

We introduce the q ⇥ q matrix
⌃n =W

>
W/n,

and the NT ⇥ NT symmetric matrix
An = ( >Q /n)�1,

where the subscript n underlines the dependency on the sample size. We assume that the number of basis NT and the
triangulation T are fixed, and that the triangulation is fine enough to capture all the aspects of the spatial structure of
the problem. We moreover make the following assumption:
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Assumption 1. Either the nodes of the triangulation are a subset of the data locations, i.e., {⇠1, . . . , ⇠NT } ⇢ {p1, . . . ,pn},
or, for n large enough, there are at least q + 1 observations in the support of each basis function  1, . . . , NT .

Assumption 1 gives a su�cient condition for the non-singularity of the matrix An. In fact, a su�cient condition for
 to be full rank is that n � NT , with at least one observation in the support of each basis function. The matrix Q

has rank n � q. This means that, in the product  >Q , the matrix Q has the e↵ect of annihilating q rows of  . If the
mesh nodes correspond to a subset of the data locations, it is enough to have n � q + NT for  >Q to be full rank. If
the mesh nodes do not coincide with a subset of the data locations, a su�cient condition for  >Q to be full rank is
to have at least n � (q + 1)NT observations, with at least q + 1 observations in the support of each basis.

Under Assumption 1, we can now study the asymptotic behavior of the nonparametric component of SR-PDE
model.

Theorem 1. Let (f̂n) be a sequence of SR-PDE estimators (5). Assume that a nonsingular limit A = lim
n

An exists. If

� = �n = o(n�1/2), then f̂n has asymptotic distribution
p

n(f̂n � f) n⇠ NNT (0,�2
A).

Moreover, f̂n is a consistent estimator for f, with f̂n
p! f, where

p! denotes convergence in probability.

Proof. To obtain the asymptotic distribution of
p

n(f̂n � f) recall from (4) that f̂n is the solution of the linear system
8>><
>>:
� >Q f̂n/n + �R

>
1 g = � >Qz/n,

�R1 f̂n + �R0g = 0.
(7)

Under the model assumption (1), the first equation in (7) can be rewritten as

� >Q f̂n/n + �R
>
1 g = � >Q(W� + f + ✏)/n, (8)

where ✏ = (✏1, . . . , ✏n)> is the vector of i.i.d. errors. Substituting in (8) the expression for g obtained from the second
equation in (7), and noting that QW has all entries equal to 0, we obtain

( >Q /n + �P)(f̂n � f) + �Pf =  >Q✏/n. (9)

From (9) we can explicitly obtain (f̂n � f),

f̂n � f = ��( >Q /n + �P)�1
Pf +

1
n

( >Q /n + �P)�1 >Q✏. (10)

Note that the first term in (10) is not random while the second term is a weighted average of i.i.d. errors. The
asymptotic normality of the estimator thus follow from the central limit theorem.

We now study separately the bias and the variance of f̂n. Recall from (5) that f̂n takes the form

f̂n = n�1( >Q /n + �P)�1 >Q z.

For the bias of f̂n we have:

bn(�) = E(f̂n) � f = E{n�1( >Q /n + �P)�1 >Q z} � f = E{n�1( >Q /n + �P)�1 >Q ( f +W� + ✏)} � f

= ( >Q /n + �P)�1( >Q /n) f � f = {(A�1
n + �P)�1

A
�1
n � I)}f

where we use the fact that by construction QW has all entries equal to 0. Using Taylor expansion of bn(�) as a function
of � we obtain the bias expression

bn(�) = ��AnPf + �2
AnPAnPf + o(�2).
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For the variance, we have

Varn(�) = Var(f̂n) = Var{( >Q /n + �P)�1 >Q/n ( f +W� + ✏)}

=
�2

n
( >Q /n + �P)�1( >Q /n)( >Q /n + �P)�1 =

�2

n
(A�1

n + �P)�1
A
�1
n (A�1

n + �P)�1,

where we used the fact that the matrix Q is idempotent and that the variance of the error vector is Var(✏) = �2
In, with

In the identity matrix. We can then obtain the expansion for the variance of the estimator as

Varn(�) =
�2

n
{An � 2�AnPAn + 3�AnPAnPAn + O(�3)}.

The mean square error for the SR-PDE estimator can hence be computed as

MS En(�) = Varn(�) + bn(�)bn(�)>

=
�2

n
{An � 2�AnPAn + 3�AnPAnPAn + O(�3)} + �2

AnP↵>PAn + o(�2). (11)

The bias of the estimator for the nonparametric component is of the order O(�). If � = o(n�1/2), the asymptotic bias
of
p

n(f̂n � f) vanishes. Otherwise, if � ! 0 slower than n�1/2, the bias term dominates. From (11) it follows that
E(f̂n � f)2 ! 0 for � = o(n�1/2). Thus f̂n converges to f in probability and the estimator in consistent.

Remark 1. In the special case where � = �n = cn�1/2, with c > 0, the first term of bn(�) does not disappear. Therefore,
we obtain p

n(f̂n � f) n⇠ NNT (�cAPf,�2
A).

The field estimator thus achieves the
p

n consistency also in this case, but with a more involved asymptotic mean.

Given (1), we now consider a similar result for the linear component of the model.

Theorem 2. Let (�̂n) be a sequence of SR-PDE estimators (6). Let ⇥ be a compact parameter space, with � as
interior point. Assume ⌃ = lim

n
⌃n exists and is nonsingular. Then, given a consistent estimator f̂n, the estimator �̂n

has asymptotic distribution
p

n(�̂n � �) n⇠ Nq
⇣
0,�2{⌃�1 + (1/n2)⌃�1

W
> A >W⌃�1}

⌘
.

Moreover, �̂n is a consistent estimator for �, with �̂n
p! �.

Proof. Given a consistent estimator f̂n, the vector �̂ is the solution of the score equation

1
n

W
>(z �W�̂n � f̂n) = 0.

Using (1), we get
1
n

W
>

W(�̂n � �) +
1
n

W
> (f̂n � f) =

1
n

W
>✏,

that can be rewritten as
⌃̂n(�̂n � �) =

1
n

W
>✏ � 1

n
W
> (f̂n � f). (12)

From (12) we can explicitly obtain (�̂n � �) as

�̂n � � =
1
n
⌃̂
�1
n W

>✏ � 1
n
⌃̂
�1
n W

> (f̂n � f). (13)
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Note that the first term on the right side of (13) is a weighted average of i.i.d. errors. Moreover, the term (f̂n � f)
is independent of ✏ by construction. Using the central limit theorem and Theorem 1, we thus obtain the asymptotic
distribution of the estimator.

To obtain the consistency, we need E(�̂n � �)2 ! 0. We thus need that both E(✏>WW
>✏) and E(f̂n � f) go to

zero. Convergence to zero of the first term is obtained via central limit theorem and convergence to zero of the second
term follows from Theorem 1 for � = o(n�1/2). The right side of (13) thus converges to 0 in probability, yielding the
consistency of �̂n.

Note that the estimation of the nonparametric component a↵ects the variance of the estimator of the parametric
component. Similar results are derived in [19] in the simpler case of univariate semiparametric models, and in [48] in
the case of multivariate penalized spline regression.

4. Hypothesis testing

The asymptotic results in the previous section lead to the natural question on how to define appropriate inference
procedures. In the case of semiparametric regression, we might be interested to test whether the linear component has
an e↵ect on the variable of interest. We are thus interested in the system of hypotheses

H0 : � = �0 versus H1 : � , �0.

The results in the previous section suggest the use of a Wald-type test [39]. However, since the asymptotic variance in
Theorem 2 is not available, this is estimated by the empirical variance of the estimator, which is biased due to the pres-
ence of the regularization. This may result in poor control of the Type-I error and in general in an under-conservative
behavior of the test, as highlighted by the simulation studies in Section 5. Because of this, some corrections to Wald
type inference have been proposed in the literature on semiparametric and nonparametric penalized regression. For
instance, sandwich estimators [e.g., 48] correct for the potentially misspecified variance and induce an asymptotically
exact text under mild assumptions. In the finite sample scenario, though, the sandwich variant of the Wald test may
nonetheless have poor performance, due to an overestimation of the variance, that leads to low power when a strong
spatial structure in the covariates is present, as indicated by the simulations carried out in Section 5.

To avoid these issues, in Section 4.1 we propose a nonparametric alternative, designing a sign-flip score test for
SR-PDE models. The proposed method uses the score function as test statistic, but does not rely on the estimation of
the Fisher Information matrix to define the null distribution, which is implicitly recovered by random sign-flips of the
contributions of the score. The test follows a similar strategy as the one discussed in [21] for generalized regression.
However, in the standard generalized regression setting considered in [21], the nonparametric component and the
associated penalizing term are not present, and the test can rely on the asymptotic independence of the residuals.
Instead, in the context of SR-PDE, we must face the issues caused by the presence of the nonparametric term, with its
spatial structure. In particular, the spatial regularization induces a strong dependence among the residuals, causing in
turn a loss in the power of the sign-flip score test for SR-PDE models, as highlighted in the simulations carried out in
Section 5. To solve this problem, in Section 4.2 we propose a modification of this nonparametric test, which relies on
a spectral decomposition of the smoothing matrix. This approach leads to an asymptotically exact test, named Eigen
sign-flip score test, which preserves the finite sample invariance of the covariance structure of the test under random
sign-flips.

4.1. Sign-flip score test for SR-PDE
The sign-flip score uses the score function T = W

>(z �W� �  f) as test statistic. The observed score function,
evaluated under the null hypothesis above, i.e. � = �0, is therefore

T obs =W
>(z �W�0 � f̂H0 ),

where f̂H0 is the spatial field in (5) estimated under the null hypothesis, i.e., f̂H0 = ( > /n + �P)�1 >(z �W
>�0)/n.

Under the standard assumption of i.i.d. errors ✏1, . . . , ✏n, the score test can also be viewed as a sum of n contributions
to the score that are 0-centered under the null hypothesis. In the sign-flip approach, this information is used to derive
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the null distribution of the test statistic, that is, the set of test statistics computed under random sign-flips of the
contributions of the score statistic. See also [45] for a review on other proposals based on sign-flipping.

More formally, let ⇡ = (⇡1, . . . , ⇡n)> be a random vector uniformly distributed in {�1, 1}n. Let also⇧ be a diagonal
matrix with entries ⇧ii = ⇡i. Given a matrix ⇧, we define the sign-flip score statistic T⇧ as

T⇧ =W
>⇧(z �W�0 � f̂H0 ).

Note that the observed statistic T obs corresponds to the case where ⇡i = 1, for i = 1, . . . , n. As standard in permuta-
tional approaches, the p-value is thus computed as the rank of T obs with respect to a sample of M sign-flips divided
by M [32].

We first consider the behavior of both the expected value and the variance of T⇧ under the null hypothesis. In
what follows we drop the subscript of f̂H0 to ease the notation. Without loss of generality, we consider the case where
�0 = 0.

Proposition 2. For a given ⇧, the expected value and the variance of the test statistic T , under the null hypothesis,
are

E(T⇧) = �W
>⇧ BnPf, Var(T⇧) = �2

W
>
(

I +
1
n2⇧( Bn 

>)2⇧

)
W,

where Bn = ( > /n + �P)�1.

Proof. For the expected value, we have

E(T⇧) = E{W>⇧(z � f̂)} =W
>⇧E( f � f̂ + ✏).

Using the expression in (9), we obtain

E(T⇧) = �W
>⇧ E(�BnPf + Bn 

>✏/n) + E(✏) = ��W
>⇧ BnPf.

A similar procedure can be used to compute the variance:

Var(T⇧) = Var{W>⇧(z � f̂)} =W
>⇧Var( f � f̂ + ✏)⇧W.

Using again the expression in (9) and the independence of the residuals, we obtain

Var(T⇧) =W
>⇧ Var(�BnPf + Bn 

>✏/n) >⇧W +WVar(✏)W =
�2

n2 W
>⇧( Bn 

>)2⇧W + �2
W
>

W.

The following proposition demonstrates that the test T⇧ is asymptotically exact.

Proposition 3. If � = o(n�1/2), the test T⇧ is asymptotically exact. In particular, the test T⇧ is asymptotically unbiased
and second order exchangeable.

Proof. We consider the expected value and the variance under the null hypothesis. For the expected value, for any
given ⇧, we have

E(T⇧) = �W
>⇧ E(f̂ � f) +W

>⇧E(✏).

Using Theorem 1, we derive
E(T⇧)

n! 0, n! 1,
thus proving the asymptotic unbiasedness of the test. For the variance, for any given ⇧, we have

Var(T⇧) = Var{W>⇧(z � f̂)} =W
>⇧Var( f � f̂ + ✏)⇧W

=W
>⇧ Var(f̂ � f) >⇧W + �2

W
>

W.

8



Using again Proposition 1, we obtain

Var(T⇧)
n! �2

W
>

W, n! 1,
concluding the proof.

Note that the finite-sample variance Var(T⇧) derived in Proposition 2 depends on the sign-flip and it is only
asymptotically second order exchangeable. This may lead to a decrease in power in the finite sample scenario. This
problem is discussed in detail in the next section, where we propose a possible solution that preserves the finite sample
invariance of the covariance structure of the test under random sign-flips.

4.2. Eigen sign-flip score test for SR-PDE
We now propose a modification of the sign-flip test introduced in Section 4.1, which is aimed to avoid the issues

related to the lack of invariance under sign-flips of the covariance of the statistics T⇧. We name this new test Eigen
sing-flip test.

Let us define the eigen decomposition Bn 
> = UDU

>, where U is the square NT ⇥NT matrix having as columns
the eigenvectors of Bn 

>, and D is the diagonal matrix whose diagonal elements are the corresponding eigenvalues.
We define a new test statistic as

T̃⇧ =W
>

U⇧U
>(z � f̂). (14)

The post-multiplication by U of W and the pre-multiplication by U
> of the vector of residuals act as distance-

preserving transformations, orthogonal to each other. We now show the e↵ect of this transformation on the variance
of the test statistic.

Proposition 4. The variance of the test T̃⇧, under the null hypothesis, is invariant with respect to ⇧, that is

Var(T̃⇧) = �2
W
>
(

I +
1
n2 ( Bn 

>)2
)

W.

Proof. For any given ⇧, we have

Var(T̃⇧) = Var{W>
U⇧U

>(z � f̂)} =W
>

U⇧U
> Var(�BnPf + Bn 

>✏/n)U⇧U
>

W +WVar(✏)W

=
�2

n2 W
>

U⇧U
>( Bn 

>)( Bn 
>)U⇧U

>
W + �2

W
>

W.

We can now use the spectral decomposition  Bn 
> = UDU

> and the fact that U is an orthogonal matrix to obtain

Var(T̃⇧) =
�2

n2 W
>

U⇧U
>(UDU

>)(UDU
>)U⇧U

>
W + �2

W
>

W =
�2

n2 W
>

UD
2
U
>

W + �2
W
>

W,

leading to the desired result.

The idea behind the eigen decomposition is inspired by similar approaches proposed by [24, 25] for the classical
linear model. In the context of classical linear models, the covariance matrix of the residuals is not diagonal, thus
making the observations not exchangeables. To ensure a safe application of the permutation principle, the authors
thus introduce the premultiplication of residuals and predictors by the eigenvectors of the residual projection matrix.
Since the residual projection matrix is positive semi-definite and idempotent, its eigenvalues are only ones and zeros.
This makes the resulting transformed residuals exchangeable (and reduced in number, equal to the rank of the residual
projection matrix). In our case, the smoothing matrix is not a projection matrix; therefore, the eigenvalues do not
take values in {0, 1}. Because of this, the rescaled residuals, on which the test statistic in (14) is based, are not
homoscedastic, and the permutation approach is hence inapplicable. For this reason our proposal, unlike the method
of [25], leverages instead on the sign-flip procedure. The proposed approach, together with the decomposition of the
smoothing matrix, leads to a preservation of the covariance structure with respect to random sign-flips, as shown in
Proposition 4.

As highlighted by the simulations in Section 5, the Eigen sign-flip score test here presented, with respect to the
sign-flip score test in Section 4.1, ensures an higher power, while keeping a good control of the Type-I error.
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5. Simulation studies

In this section we present some simulation studies that investigates the finite sample performances of the proposed
tests. We compare our tests to a classical Wald type test, based on the asymptotic distribution of �̂, and to the possibly
more robust sandwich version of the same test, that can be derived along the lines detailed in [48].

We consider the true spatial field f (x, y) = cos{(2x+y)/4}+{(x+y)/15}2 on the square with vertices [0, 10]⇥[0, 10].
We generate the covariates as random fields with zero mean and di↵erent covariance structures, using the function
RFsimulate of the R package RandomFields [40]. In particular, we consider four di↵erent test cases, with one
covariate each, generated as follows:

a. Gaussian random field with scale s = 0.3;

b. Matérn random field with scale s = 0.5, smoothness ⌘ = 1 and variance v = 8;

c. Exponential random field with scale s = 2 and variance v = 1;

d. Matérn random field with scale s = 1, smoothness ⌘ = 5 and variance v = 2.

The covariates considered in test cases a-d have increasing spatial dependence. We sample the spatial field and
covariates at n random locations on the square, considering increasing values of n, equal to 100, 300 and 500. We
hence obtain the samples of the response variable from model (1), adding i.i.d. random errors with standard deviation
0.25, and considering increasing values of the coe�cient �. The value � = 0 corresponds to the null hypothesis and
is used to check the control of Type-I error. The other values of � are considered to verify the power of the test with
increasing values of the true regression coe�cient. Data generation is repeated 500 times, keeping fixed the data
locations and covariates, and regenerating the i.i.d. noise.

The SR-PDE model is estimated using the R package fdaPDE [28], with a regular mesh with 278 nodes, and
selecting the smoothing parameter via generalized cross-validation. The critical value of the sign-flip test statistics are
computed using 1000 random sign-flips.

The results are presented in Fig. 2, which shows the power curves for the considered tests: the dotted olive lines
correspond to the classical parametric Wald test (Par), the dashed cyan lines to the sandwich variant of the Wald
test (Sand), the dashed-dotted purple lines to the sign-flip test in Section 4.1 (S-F), and the solid red lines to the
Eigen sign-flip test in Section 4.2 (Eig S-F). The classical Wald test (dotted olive lines) shows a poor control of the
Type-I error in all test cases, especially for small samples. This behavior is possibly due to the poor estimation of
the variance induced by the regularized estimates. The sandwich variant (dashed cyan lines) is more robust and has
a better control of Type-I error; on the other hand, this test is over-conservative, especially when a strong spatial
dependence is present (see in particular cases c and d), showing a lower power with respect to the alternatives. The
sign-flip procedure (dashed-dotted purple lines) displays a similar behaviour: although it has a decent control of Type-
I error, it looses power in the case of strong dependence between the score contributions (see in particular cases c and
d). This is due to the non exchangeability of the score contributions, that leads to an over-estimation of the variance of
the estimator and therefore to a lower power. The eigen sign-flip (solid red lines), on the contrary, it is not a↵ected by
such problem and it is able to preserve the covariance structure of the test statistic also in the finite sample scenario,
even when the covariate exhibits a strong spatial dependence. This leads, even in the more complicated cases, to a
very good control of Type-I error, accompanied by an high power.

6. Application to Switzerland rainfall

We finally show an application of the proposed Eigen sign-flip test to real data, concerning rainfall measurements.
In particular, we consider a dataset of daily rainfall values recorded in Switzerland on May 8, 1986, in 467 meteo-
rological stations; this dataset was used for the Spatial Interpolation Comparison 97 [11]. The data are displayed in
the left panel of Fig. 3: the size and color of the point marker represent the rainfall measurement. These data display
a strong spatial correlation, with a clearly anisotropic structure, with dominating North-East/South-West direction.
The data also include the elevation at the same 467 locations, shown in the right panel of the same figure, that we
here consider as a covariate. Intuition in fact suggests that the orography of the region may play an important role
in the rainfall phenomenon; this is also hinted by a visual inspection of the map of altitudes of the meteorological
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Daily rainfall Altitude

Fig. 3: Switzerland rainfall data. Left: values of daily rainfall recorded at 467 meteorological stations in Switzerland on May 8, 1986; darker color
and bigger size of the point marker represent higher rainfall; a strongly anisotropic pattern is clearly appreciable, with dominating North-East /
South-West direction. Right: altitude of the meteorological stations; darker color and bigger size of the point marker represent higher altitude).

stations, which highlights elongated mountain chains and valleys with North-East/South-West orientation. We here
explore such intuition, formalizing the analysis as a testing problem on the linear regression term of a semiparametric
SR-PDE model.

To appropriately account for the strong anisotropy in the rainfall data, we consider the anisotropic SR-PDE method
described in [6]. In particular, we consider a regularizing term involving the di↵usion term r · (Kr f ), where r =
(@/@p1, @/@p2)> and K is a 2 ⇥ 2 symmetric and positive definite matrix that controls the anisotropy; this operator
coincide with the Laplacian in (3) when the matrix K is the identity. The matrix K is considered unknown and
estimated from data, thus identifying the main direction and the intensity of the anisotropy, as detailed in [6]. The
proposed Eigen sign-flip test naturally extends to this setting, by appropriate changes of the matrix P that discretises
the penalty term. More generally, as discussed in the final Discussion, the Eigen sign-flip test could be extended to
SR-PDE models with complex regularizations involving general forms of PDEs, as considered in [5], thus broadening
the range of applicability of the test to complex spatial variation settings.

The anisotropic SR-PDE model is constructed under the same specifications in [6], where these data are also
analysed. In [6] elevation was considered not-significant, on the basis of parametric inference. We may though
wonder about the validity of this result, in the light of the poor performances of parametric inference on �, in the
context of semiparametric spatial regression, evidenced by the simulations in Section 5. We hence apply the Eigen
sign-flip test, with 1000 resamples, testing the null hypothesis �0 = 0. The test returns a p-value of 0.326; this
concludes quite clearly that the elevation does indeed not have a significant impact on the rainfall. This is probably
due to the fact that the e↵ect of elevation on rainfall is not linear, so that this e↵ect is not captured by a model where
elevation is included as a linear regressor. Rather, the distribution of rainfall is the result of complex interaction
between the geomorphology of the region and the atmospheric circulation.

7. Discussion

The definition of the proposed test is fairly flexible and allows for various types of generalization. In particular,
the proposed approach could be extended to deal with the semiparametric regression models based on penalized
regression splines [19, 42, 48], thin plate splines [46] and soap film smoothing [47]. The main di↵erence would
reside in the construction of the smoothing matrices. A thorough analysis of the estimators and the properties of
the derived test statistics in these cases is necessary, and will be the object of future studies. Moreover, extension to
SR-PDE models over nonplanar two-dimensional domains proposed in [12] appears natural. An interesting direction
for future research also concerns the extension to the generalized linear SR-PDE model framework presented in [44].
The definition of eigen sign-flip tests for the spatio-temporal regression models in [2, 7] is also highly desirable, even

12



more since the study of the asymptotic properties of these models is far from trivial. Finally, while this paper focuses
on hypothesis testing, similar ideas could be used for the definition of appropriate confidence intervals, as in [15].

Acknowledgments. We are grateful to the Guest Editor and external Reviewers for constructive comments.
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