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Germany
dUniversity of Cyprus, Department of Mathematics and Statistics, P.O.Box 20537, CY-1678, Nicosia, Cyprus

Abstract

The problem of comparing the entire second order structure of two functional processes is considered and
a L2-type statistic for testing equality of the corresponding spectral density operators is investigated. The
test statistic evaluates, over all frequencies, the Hilbert-Schmidt distance between the two estimated spectral
density operators. Under certain assumptions, the limiting distribution under the null hypothesis is derived.
A novel frequency domain bootstrap method is introduced, which leads to a more accurate approximation
of the distribution of the test statistic under the null than the large sample Gaussian approximation derived.
Under quite general conditions, asymptotic validity of the bootstrap procedure is established for estimating
the distribution of the test statistic under the null. Furthermore, consistency of the bootstrap-based test
under the alternative is proved. Numerical simulations show that, even for small samples, the bootstrap-
based test has a very good size and power behavior. An application to a bivariate real-life functional time
series illustrates the methodology proposed.
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1. Introduction

Functional data analysis is a branch of statistics that in recent years has grown considerably and has
created great research interest in the scientific community, especially in connection with the increasing
number of situations in which theoretical and applied scientists have to deal with data of a continuous nature
(i.e., curves, images, surfaces, etc.). For various works and references in different branches of functional
data analysis, we refer to the recent special issues of Goia and Vieu [14] and Aneiros et al. [1]. See also the
monograph by Horváth & Kokoszka [17] which discusses inference problems in a variety of setting concerning
independent as well as dependent functional data.

In our work, we focus on dependent functional data and, in particular, on functional time series analysis.
Functional time series occurs in many applications such as daily curves of financial transactions, daily images
of geophysical and environmental data and daily curves of temperature measurements. Such curves or images
are viewed as functions in appropriate spaces since an observed intensity is available at each point on a line
segment, a portion of a plane or a volume. Moreover, and most importantly, such functional time series
exhibit temporal dependence and ignoring this dependence may result in misleading conclusions and not
approperiate inferential procedures.

Comparing characteristics of two or more groups of functional data forms an important problem of
statistical inference with a variety of applications. For instance, comparing the mean functions between
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independent groups of independent and identically distributed (i.i.d.) functional data has attracted consid-
erable interest in the literature, see, e.g., Benko et al. [3], Zhang et al. [38], Horváth and Kokoszka [17]
(Chapter 5), Horváth et al. [18] and Paparoditis and Sapatinas [24]. In contrast to comparing mean func-
tions, the problem of comparing the entire second order structure of two independent functional time series
has been much less investigated. Notice that for i.i.d. functional data this problem simplifies to the problem
of testing the equality of (the lag zero) covariance operators, see, e.g., Panaretos et al. [21], Fremdt et al.
[13], Pigoli et al. [26] and Paparoditis and Sapatinas [24]. The same problem of testing the equality of the
(lag-zero) covariance operators of two sets of independent functional time series has also been investigated
by Zhang and Shao [37] and by Pilvakis et al. [28].

However, the comparison of the entire second order structure of independent functional time series, is
a much more involved problem due to the temporal dependence between the random elements considered.
In describing the second order structure of functional time series, the spectral density operator, introduced
in the functional set-up by Panaretos and Tavakoli [22], is a very useful tool since it summarizes in a nice
way the entire autocovariance structure of the underlying functional time series; see also Hörmann et al.
[16]. It is, therefore, very appealing to develop a spectral approach for testing equality of the entire second
order structure of two functional time series. Tavakoli and Panaretos [34] proposed an approach based on
projections on finite dimensional spaces of the differences of the estimated spectral density operators of
the two functional time series. Projection-based tests have the advantage to lead to manageable limiting
distributions. However, such tests have no power for alternatives which are orthogonal to the projection space
considered. Furthermore, the number of projections appears as an additional tuning parameter which has to
be chosen by the user. Finally, simulations in the much simpler i.i.d. set-up suggest that the quality of the
large sample Gaussian approximations of the corresponding test, is affected by the number of projections
used; see Paparoditis and Sapatinas [24]. In this paper we focus on tests which evaluate the differences
between the entire, infinite dimensional, structure of the two spectral density operators compared. For this,
the Hilbert-Schmidt norm of the differences between the estimated spectral density operators, evaluated
over all frequencies, is used as the basic building block of the test statistic considered.

The contribution of this paper is twofold. First, we focus on testing the equality of the entire sec-
ond order structure between two independent functional processes by evaluating for each frequency, the
Hilbert-Schmidt norm between the (estimated) spectral density operators of the functional process at hand.
Integrating these differences over all possible frequencies, leads to a global, L2-type, measure of deviation
which is used to test the null hypothesis of interest. We show that under the assumption of a linear Hilber-
tian processes, the limiting distribution of an appropriately centered version of such a test statistic under the
null, is Gaussian. This Gaussian distribution does not depend on characteristics of the underlying functional
processes beyond those of second order. Second, and because of the slow convergence of the distribution of
the considered L2-type test statistic under the null against the derived limiting Gaussian distribution, we
develop a novel frequency domain bootstrap procedure to estimate this distribution. The frequency domain
bootstrap method works under minimal conditions on the underlying functional process and its range of
applicability is not restricted to the particular class of processes considered and which is used to derive the
limiting distribution of our test. We prove under very general conditions, that the bootstrap procedure cor-
rectly approximates the distribution of the proposed test statistic under the null. Furthermore, consistency
of the bootstrap-based test under the alternative is established. Our theoretical deviations are accompanied
by a simulation study which shows a very good behavior of the bootstrap procedure in approximating the
distribution of interest and the good size and power performance of the test based on bootstrap critical
values. Notice that the frequency domain bootstrap method proposed in this paper, can potentially be used
to improve the performance of other tests too, like for instance, the projections based test of Tavakoli and
Panaretos [34].

Developing bootstrap procedures for functional time series has attracted considerable interest in the
literature. Politis and Romano [29] established weak convergence results for the stationary bootstrap,
Dehling et al. [7] for the (non-overlapping) block bootstrap in a testing context, Raña et al. [30] applied a
stationary bootstrap to functional time series, Ferraty and Vieu [10] a residual-based bootstrap and Franke
and Nyarige [12] established consistency of a model-based bootstrap for functional autoregressions. Pilavakis
et al. [27] derived theoretical results for the moving block bootstrap and for the tapered block bootstrap,
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Shang [32] applied a maximum entropy bootstrap and Paparoditis [25] introduced a sieve bootstrap for
functional time series. In contrast to the aforementioned contributions, the bootstrap procedure proposed in
this paper acts solely in the frequency domain and generates replicates of the periodogram kernels stemming
from functional processes that satisfy the null hypothesis of interest.

A test related to ours and proposed after the first preprint of this paper has been appeared (see Leucht et
al. [20]), is that of van Delft and Dette [35], which deals with testing a different set of hypotheses, so-called
relevant hypotheses, about the second order dynamics of two functional processes. Important differences
between the two procedures appear which will be discussed in more detail later on. However, we stress here
the fact that the test statistic proposed in this paper is not a special case of the test statistic used in the
aforementioned paper and, consequently, the limiting distribution of our test statistic is different and not
covered by the asymptotic results derived in that paper. See Remark et al. for more details.

The remainder of the paper is organized as follows. Section 2 contains the main assumptions on the
underlying functional linear processes and states the hypothesis testing problem under study. Section 3 is
devoted to the suggested test statistic and its asymptotic behavior while Section 4 presents the frequency
domain bootstrap procedure proposed to estimate the distribution of the test statistic under the null.
Asymptotic validity of the bootstrap procedure is established and consistency of the corresponding test
under the alternative also is proved. Section 5 contains numerical simulations and an application to a
bivariate meteorological functional time series while Section 6 concludes our findings. Auxiliary results
containing some new results on frequency domain properties of linear Hilbertian processes as well as proofs
of the main results are deferred to the Appendix and to the Supplementary Material.

2. Assumptions and the Testing Problem

Suppose that observationsX1, . . . , XT and Y1, . . . , YT stem from functional processes (Xt)t∈Z and (Yt)t∈Z,
respectively, satisfying the following assumption.
Assumption 1 : (Xt)t∈Z and (Yt)t∈Z are independent functional linear processes, given by

Xt =
∑
j∈Z

Aj(εt−j) and Yt =
∑
j∈Z

Bj(et−j), t ∈ Z, (1)

with values in L2
R([0, 1], µ), where µ denotes the Lebesgue measure. The innovation functions (εt)t∈Z and

(et)t∈Z are two i.i.d. mean zero Gaussian processes with values in L2
R([0, 1], µ) and covariance operators Cε

and Ce with continuous covariance kernels cε and ce, respectively. The sequences (Aj)j∈Z and (Bj)j∈Z of
bounded linear operators from L2

R([0, 1], µ) to L2
R([0, 1], µ) where A0 = B0 is the identity operator, satisfy∑

j∈Z |j|(‖Aj‖L + ‖Bj‖L) <∞ with ‖ · ‖L denoting the operator norm.
We are interested in testing for equality of the entire second order structure of the two functional processes

given in (1). Notice that considering linear processes in Assumption 1 should not be considered as restrictive
since our interest is solely focused on the comparison of the second order structure, i.e., of the autocovariance
structure of the underlying functional processes. Furthermore, and as we will see later on, the assumption of
Gaussian innovation functions εt and et is not essential. It is solely imposed in order to simplify the already
quite involved technical arguments used to derive the limiting distribution of the test.

For the testing problem considered it turns out that a spectral approach is very appealing. Towards this
notice first that we can define a spectral density operator in the sense of Panaretos and Tavakoli [22] in
the present set up which generalizes the concept of spectral densities for univariate time series and spectral
density matrices for multivariate time series. Here and in the sequel, we will abbreviate L2

R([0, 1]d, µ) by L2

if the dimension d becomes clear from the context.

Lemma 1. Suppose that (Xt)t∈Z and (Yt)t∈Z are functional processes satisfying Assumption 1. Then, for
arbitrary λ ∈ (−π, π],

fX,λ(·, ·) = 1
2π
∑
t∈Z

e−iλt rX,t(·, ·), fY,λ(·, ·) = 1
2π
∑
t∈Z

e−iλt rY,t(·, ·)
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with rX,t and rY,t denoting the autocovariance kernels of X and Y at lag t, respectively, converge absolutely
in L2. Moreover, for all σ, τ ∈ [0, 1],

rX,t(σ, τ) =
∫

(−π,π]
fX,λ(σ, τ) eiλt dλ, rY,t(σ, τ) =

∫
(−π,π]

fY,λ(σ, τ) eiλt dλ ∀t ∈ Z,

where equality holds in L2. The operators FX,λ and FY,λ, induced by right integration of fX,λ and fY,λ, are
self-adjoint, nonnegative definite and it holds

FX,λ = 1
2π
∑
t∈Z

e−iλtRX,t, FY,λ = 1
2π
∑
t∈Z

e−iλtRY,t,

where RX,t and RY,t denote the autocovariance operators of X and Y at lag t, induced by right integration
of rX,t and rY,t, respectively. Convergence holds in nuclear norm.

The kernels fX,λ and fY,λ are called the spectral density kernels (at frequency λ) and the operators FX,λ
and FY,λ are referred to as the corresponding spectral density operators.

Under the assumptions of Lemma 1, we can now state the hypothesis testing problem of interest as
follows

H0 : FX,λ = FY,λ for µ-almost all λ ∈ (−π, π],
H1 : FX,λ , FY,λ ∀λ ∈ A for some A ⊂ [0, π] with µ(A) > 0.

(2)

3. The Test Statistic and its Asymptotic Behavior

We first estimate the unknown spectral density operator FX,λ by an integral operator F̂X,λ induced by
right integration with the kernel

f̂X,λ(σ, τ) = 1
bT

N∑
t=−N

W

(
λ− λt
b

)
p̂X,λt

(σ, τ), for all σ, τ ∈ [0, 1],

and, similarly, FY,λ by an integral operator F̂Y,λ induced by right integration with the kernel

f̂Y,λ(σ, τ) = 1
bT

N∑
t=−N

W

(
λ− λt
b

)
p̂Y,λt

(σ, τ), for all σ, τ ∈ [0, 1].

Here, N = [(T − 1)/2] and λt = 2πt/T, t ∈ {−N, . . . , N}, denote the Fourier frequencies. Furthermore,
b = bT > 0 is an asymptotically vanishing bandwidth and W denotes a weight function. Moreover, as in
Panaretos and Tavakoli [22],

p̂X,λ(σ, τ) = 1
2πT

T∑
s1,s2=1

Xs1(σ)Xs2(τ) exp(−iλ(s1 − s2)), for all σ, τ ∈ [0, 1],

and

p̂Y,λ(σ, τ) = 1
2πT

T∑
s1,s2=1

Ys1(σ)Ys2(τ) exp(−iλ(s1 − s2)), for all σ, τ ∈ [0, 1],

denote the periodogram kernels based on X1, . . . , XT and Y1, . . . , YT , respectively. The periodogram opera-
tors IX,λ, and IY,λ are defined as integral operators induced by right integration of the periodogram kernels
p̂X,λ and p̂Y,λ, respectively.

For the hypothesis testing problem (2), we propose the following test statistic

UT =
∫ π

−π
‖F̂X,λ − F̂Y,λ‖2

HS dλ, (3)
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which evaluates the distance between the estimated spectral density operators via the Hilbert-Schmidt norm
‖ · ‖HS . The following theorem states the asymptotic properties of the suitably normalized test statistic UT
when the null hypothesis H0 is true.

Theorem 1. Suppose that the stretches of observations X1, . . . , XT and Y1, . . . , YT stem from the two
functional processes (Xt)t∈Z and (Yt)t∈Z, respectively, satisfying Assumption 1. Moreover, assume that
(i) b ∼ T−ν for some ν ∈ (1/4, 1/2),
(ii) W is bounded, symmetric, positive, and Lipschitz continuous, has bounded support on (−π, π] and
satisfies

∫ π
−πW (x) dx = 2π.

Then, under H0, √
bT UT − b−1/2µ0

d−→ Z ∼ N (0, θ2
0), (4)

where
µ0 = 1

π

∫ π

−π
{trace(FX,λ) }2

dλ

∫ π

−π
W 2 (u) du,

θ2
0 = 4

π2

∫ 2π

−2π

{∫ π

−π
W (u)W (u− x) du

}2
dx

∫ π

−π
‖FX,λ‖4

HS dλ .

Note that the assumptions (i) and (ii) on the weight function W and the bandwidths (bT )T , respectively,
in Theorem 1 are identical to the assumptions for multivariate time series used in Dette and Paparoditis [8].

Remark 1. In our work, we have considered the case where the sample sizes of both time series (Xt)Tt=1
and (Yt)Tt=1 are equal. In principle, we could also consider time series of different length, that is (Xt)T1

t=1 and
(Yt)T2

t=1. Under certain regularity conditions, such as
√
b1T1/(

√
b1T1 +

√
b2T2) → η ∈ (0, 1) as T1 + T2 →

∞, and with minor, but tedious modifications of the proof, one can also show asymptotic normality of
(
√
b1T1 +

√
b2T2)UT1,T2 , after a suitable centering. Here, UT1,T2 =

∫ π
−π ‖F̂

(T1)
X,λ − F̂

(T2)
Y,λ ‖2

HS dλ relies on the
estimated spectral density operator F̂ (T1)

X,λ , based on (Xt)T1
t=1, and the estimated spectral density operator

F̂ (T2)
Y,λ , based on (Yt)T2

t=1, using bandwidths b1 and b2, respectively.

Remark 2. A careful inspection of the proof of Theorem 1 shows that the assumption of Gaussianity
on the functional innovations (εt)t∈Z and (et)t∈Z in (1) is solely used to simplify somehow the technical
arguments applied in proving asymptotic normality of the quadratic forms involved in proving assertion (4)
of Theorem 1. Notice that this assumption is not required in order to prove convergence of the mean and of
the variance of

√
bT UT to the limits given in the aforementioned theorem. Consequently, this assumption

can be replaced by other assumptions on the stochastic properties of the innovations (εt)t∈Z and (et)t∈Z,
which will allow for the use of different technical arguments, for instance arguments based on the convergence
of all cumulants of the random sequence

√
bT UT − b−1/2µ0 to the appropriate limits, in order to establish

the desired asymptotic normality. Furthermore, the bootstrap approach proposed in the next section does
not rely on and it does not make use of the structural assumptions imposed on the underlying functional
processes in order to derive the limiting distribution of the test.

Remark 3. A closely related null hypothesis H0 :
∫ b
a
‖FX,λ − FY,λ‖2

HS dλ ≤ ∆ has been considered in
van Delft and Dette [35] for prespecified constants a < b ∈ [0, π] and ∆ > 0. Although their test statistic
proposed looks at a first glance similar to ours, see equation (3.19) in the aforecited paper, several differences
appear. Notice first that the convergence rate of the nominator and of the denominator of their statistic is
of order OP (

√
Tb) and not OP (T

√
b), as of the test statistic (3) considered in this paper. Apart from the

fact that a different set of null hypotheses is considered in the two papers, the main reason for this difference
in the convergence rates, lies in the fact that the limiting distribution of the test statistic considered in van
Delft and Dette [35] is essentially dominated by the differences F̂X,λ−FX,λ, respectively, F̂Y,λ−FY,λ, which
are of order

√
Tb. On the other hand, the distribution of our test statistic is dominated by the quadratic

term ‖F̂X,λ − F̂Y,λ‖2
HS , which in the test statistic considered by van Delft and Dette [35] disappears; see

Lemma 3.1 of their paper. Consequently, to establish asymptotic normality of the test statistic considered
in van Delft and Dette [35], essentially, a central limit theorem for

√
Tb(F̂X,λ − FX,λ) , respectively, for
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√
Tb(F̂Y,λ−FY,λ) is involved. In contrast to this, our test statistic deals with weighted sums of the quadratic

terms
〈
F̂X,λ1 − F̂Y,λ1 , F̂X,λ2 − F̂Y,λ2

〉
HS

, for which central limit theorems for generalized quadratic forms
has to be invoked. Even in the finite dimensional case, central limit theorems for generalized quadratic forms
are established under more structural assumptions on the underlying processes than those needed to deal
with the sequence

√
Tb(F̂X,λ − FX,λ); see for instance Eichler [9] who uses summability conditions on the

cumulants of all order or Dette and Paparoditis [8] who use linearity assumptions on the underlying vector
processes. The technical challenges in dealing with the test statistic (3), also justify the additional structural
assumptions imposed in this paper in order to establish the limiting distribution of UT , as compared to those
used in van Delft and Dette [35].

Based on Theorem 1, the procedure to test hypothesis (2) is then defined as follows: Reject H0 if and
only if

tU =
√
bT UT − b−1/2µ̂0

θ̂0
≥ z1−α, (5)

where z1−α is the upper 1 − α percentage point of the standard Gaussian distribution and µ̂0 and θ̂0 are
consistent estimators of µ0 and θ0, respectively. Such estimators can be, for instance, obtained if the unknown
spectral density kernel fX,λ is replaced by the pooled estimator f̂λ(τ, σ) = f̂X,λ(τ, σ)/2+f̂Y,λ(τ, σ)/2. Notice
that, under H0, fX,λ = fY,λ = fX,λ/2 + fY,λ/2, that is (asymptotically), it makes no difference if fX,λ in µ0

and θ0 is replaced by f̂X,λ (or by f̂Y,λ) instead of the pooled estimator f̂λ. However, under H1 it matters
and, for this reason, we use the pooled estimator f̂λ(τ, σ) in applying the studentized test statistic tU defined
in (5); see also Lemma 1 in Section 4. Under the assumption that the pooled estimator f̂λ is uniformly
consistent, (see also Assumption 2 below), it is easily seen that, under H0,

tU =
√
bT UT − b−1/2µ0

θ0
+ oP (1),

i.e., Theorem 1 implies that the studentized test tU is an asymptotically α-level test under H0, for any
desired level α ∈ (0, 1).

Remark 4. Notice that the test statistic tU is asymptotically pivotal, i.e., its distribution under the null
does not depend on any unknown characteristics of the underlying functional processes. Furthermore,
the denumerator θ0 can be estimated using the estimators of the spectral density operators involved in
calculating the test statistic UT . A problem, however, occurs from the well-known fact that, even in the
finite-dimensional case, the convergence of the distribution of such L2-norm based tests towards their limiting
(Gaussian) distribution is very slow; see, e.g., Härdle and Mammen [15], Paparoditis [23] and Dette and
Paparoditis [8]. In this case, bootstrap-based approaches may be very effective. This issue is addressed in
the next section where a frequency domain bootstrap procedure is developed and its asymptotic validity is
established.

4. Bootstrapping The Test Statistic

In this section we propose a novel frequency domain bootstrap procedure which can be used to estimate
the distribution of the test statistic UT defined in (3) and, of the studentized test tU defined in (5) under H0.
The frequency domain bootstrap approach proposed is of interest on its own and can potentially be applied
to other test statistics or testing problems developed for comparing frequency domain characteristics of the
functional processes.

We begin by recalling the fact that for any k ∈ N and any set of points 0 ≤ s1 < s2 < · · · < sk ≤ 1 in
the interval [0, 1], the corresponding k-dimensional vector of finite Fourier transforms

JX,λ =
(
JX,λ(sj) = (2πT )−1/2

T∑
t=1

Xt(sj)e−itλ, j ∈ {1, 2, . . . , k}
)
,
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satisfies for λ ∈ (0, π),
JX,λ(s1)
JX,λ(s2)

...
JX,λ(sk)

 d→ NC
(

0
0
...
0

 ,


fX,λ(s1, s1) fX,λ(s1, s2) . . . fX,λ(s1, sk)
fX,λ(s2, s1) fX,λ(s2, s2) . . . fX,λ(s2, sk)

...
... . . .

...
fX,λ(sk, s1) fX,λ(sk, s2) . . . fX,λ(sk, sk)


︸                                                                      ︷︷                                                                      ︸

= Σλ

)
, (6)

whereNC denotes a circularly-symmetric complex Gaussian distribution with mean zero and complex-valued
covariance matrix Σλ. Furthermore, for two different frequencies 0 < λj , λk < π, the corresponding vectors
of finite Fourier transforms JX,λj

and JX,λk
are asymptotically independent; see, e.g., Theorem 5 in Cerovecki

and Hörmann [5]. These properties of JX,λ and JY,λ as well as the fact that p̂X,λ(σ, τ) = JX,λ(σ)JX,λ(τ),
for σ, τ ∈ [0, 1], is the periodogram kernel, motivate the following bootstrap procedure to approximate the
distribution of the test statistic UT defined in (3) under H0.

Step 1: For λt = 2πt/T , t ∈ {1, . . . , N}, N = [(T − 1)/2], estimate the pooled spectral density operator Fλt

by
F̂λt

= 1
2 F̂X,λt

+ 1
2 F̂Y,λt

(7)

and denote by f̂λt(σ, τ), for σ, τ ∈ {s1, . . . , sk}, the corresponding estimated pooled spectral density
kernel.

Step 2: Generate two independent vectors J∗X,λt
and J∗Y,λt

as

J∗X,λt
∼ NC(0, Σ̂λt

) and J∗Y,λt
∼ NC(0, Σ̂λt

),

independently for λ1, . . . , λN , where Σ̂λ is the matrix obtained by replacing in Σλ the unknown spectral
density kernel fX,λ by its pooled estimator f̂λ. For σ, τ ∈ {s1, . . . , sk}, let

p∗X,λt
(σ, τ) = J∗X,λt

(σ)J∗X,λt
(τ) and p∗Y,λt

(σ, τ) = J∗Y,λt
(σ)J∗Y,λt

(τ)

while, for t ∈ {−1, . . . ,−N}, set

p∗X,λt
(σ, τ) = p∗X,−λt

(σ, τ) and p∗Y,λt
(σ, τ) = p∗Y,−λt

(σ, τ).

Furthermore, set for simplicity J∗X,0 = J∗Y,0 = 0.

Step 3: For σ, τ ∈ {s1, . . . , sk}, let

f̂∗X,λt
(σ, τ) = 1

bT

N∑
s=−N

W

(
λt − λs

b

)
p̂∗X,λs

(σ, τ)

and

f̂∗Y,λt
(σ, τ) = 1

bT

N∑
s=−N

W

(
λt − λs

b

)
p̂∗Y,λs

(σ, τ).

Step 4: Approximate the distribution of the test statistic UT defined in (3) by the distribution of the bootstrap
test statistic U∗T,k given by

U∗T,k = 2π
Tk2

N∑
l=−N

k∑
i,j=1

∣∣∣f̂∗X,λl
(si, sj)− f̂∗Y,λl

(si, sj)
∣∣∣2.
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Remark 5. The set of points 0 ≤ s1 < s2 < · · · < sk ≤ 1 at which the k-dimensional complex-valued
random vectors J∗X,λt

and J∗Y,λt
are generated can be set equal to the set of sampling points at which the

functional random elements Xt and Yt are observed in reality. However, and as it is commonly done in
functional data analysis, these finite-dimensional vectors can be transformed to functional objects using a
basis in L2, for instance, the Fourier basis. In this case, the bootstrap approximation of the test statistic
UT defined in (3) will then be given by

U∗T = 2π
T

N∑
l=−N

∫ 1

0

∫ 1

0

∣∣∣f̂∗X,λl
(τ, σ)− f̂∗Y,λl

(τ, σ)
∣∣∣2dτdσ = 2π

T

N∑
l=−N

‖F̂∗X,λl
− F̂∗Y,λl

‖2
HS . (8)

From an asymptotic point of view both bootstrap approximations, U∗T,k and U∗T , will lead to the same result,
provided that for U∗T,k the number of points k increases to infinity as the sample size T increases to infinity.
In our theoretical derivations we will concentrate on U∗T .

Remark 6. In the case where the sample sizes of both time series (Xt)T1
t=1 and (Yt)T2

t=1 are different (see
Remark 1), the bootstrap algorithm can be adapted accordingly. In particular, the estimated pooled spectral
density operator F̂λ, used in Step 1 above, can be obtained for any frequency λ ∈ [0, π] as

F̂λ = T1

T1 + T2
F̂ (T1)
X,λ + T2

T1 + T2
F̂ (T2)
Y,λ ,

where the estimated spectral density operators F̂ (T1)
X,λ and F̂ (T2)

Y,λ are given in Remark 1. Then, J∗X,λt1
and

J∗Y,λt2
can be generated as in Step 2, but for the Fourier frequencies λt1 and λt2 corresponding to the sample

sizes T1 and T2, respectively. Although a bootstrap version of the test statistic UT1,T2 given in Remark 1
can be defined, the theoretical derivations to establish bootstrap consistency in this case are more involved
and beyond the scope of this paper.

Following the bootstrap procedure described in Steps 1-4, a bootstrap-based test then rejects H0 if

tU ≥ t∗U,1−α,

where t∗U,1−α denotes the upper 1−α percentage point of the distribution of the bootstrap studentized test

t∗U = (
√
bT U∗T − b−1/2µ̂∗0)/θ̂∗0 , (9)

where U∗T is defined in (8) and µ̂∗0 and θ̂∗0 are obtained by replacing the unknown spectral density kernel
fX,λ in the expressions for µ0 and θ0 given in Theorem 1 by its pooled estimator f̂∗λ(σ, τ) = f̂∗X,λ(σ, τ)/2 +
f̂∗Y,λ(σ, τ)/2, for all σ, τ ∈ [0, 1]. Notice that this distribution can be evaluated by Monte Carlo.

Remark 7. It is worth mentioning that, by the definition of µ̂∗0 and θ̂∗0 , the bootstrap studentized test
t∗U imitates correctly also the randomness in tU which is introduced by replacing the unknown spectral
density kernel fX,λ appearing in µ0 and θ0 by its pooled estimator f̂λ; see (5). A computationally simpler
alternative will be to ignore this asymptotically negligible effect, that is, to use, instead of t∗U given in (9),
the studentized version t+U = (

√
bT U∗T − b−1/2µ̂0)/θ̂0 of the bootstrap-based test.

Before describing the asymptotic behavior of the bootstrap test statistic U∗T defined in (8), we state the
following assumption which clarifies our requirements on the pooled spectral density kernel estimator f̂λ
used.

Assumption 2 : The pooled spectral density kernel estimator f̂λ satisfies

sup
λt∈{2πk/T |k=1,...,N}

∣∣∣ ∫ 1

0

∫ 1

0

(
f̂λt(σ, τ)− fλt(σ, τ)

)
dσdτ

∣∣∣ = oP (
√
b), as T →∞,
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where fλ is the spectral density kernel of the pooled spectral density operator Fλ = (1/2)FX,λ + (1/2)FY,λ.
Notice that the above assumption can be easily verified by using results for uniform consistency of

spectral density estimators of univariate time series, since∫ 1

0

∫ 1

0
f̂X,λ(σ, τ)dσdτ = 1

Tb

N∑
t=−N

W
(λ− λt

b

)∫ 1

0

∫ 1

0
p̂X,λt

(σ, τ)dσdτ

can be interpreted as a kernel estimator of the spectral density of the univariate time series
∫ 1

0 Xt(s)ds,
t = 1, . . . , n, the periodogram of which at frequency λt equals

∫ 1
0
∫ 1

0 p̂X,λt
(σ, τ)dσdτ . For instance, for the

linear functional process {Xt, t ∈ Z} considered in this paper,
∫ 1

0 Xt(s)ds is a univariate linear process as
well and, under certain conditions, Assumption 2 is satisfied; see Franke and Härdle [11]. Assumption 2 can
also be fulfilled under different conditions on the integrated process

∫ 1
0 Xt(s)ds; see Wu and Zaffaroni [36]

for a discussion.

The following theorem establishes the asymptotic validity of the suggested bootstrap procedure.

Theorem 2. Suppose that Assumptions 2 as well as the conditions (i) and (ii) of Theorem 1 are satisfied.
Then, conditional on X1, . . . , XT and Y1, . . . , YT , as T →∞,

√
bT U∗T − b−1/2µ̃0

d→ N (0, θ̃0),

in probability, where

µ̃0 = 1
π

∫ π

−π
{trace(Fλ)}2dλ

∫ π

−π
W 2 (u) du,

θ̃2
0 = 4

π2

∫ 2π

−2π

{∫ π

−π
W (u)W (u− x) du

}2
dx

∫ π

−π
‖Fλ‖4

HS dλ

and Fλ is the pooled spectral density operator given in Assumption 2.

Notice that, under H0, µ0 = µ̃0 and θ2
0 = θ̃2

0 since FX,λ = FY,λ (or, respectively, fX,λ = fY,λ). Thus,
in this case, the asymptotic behavior of the test statistics UT and U∗T is identical, that is, the bootstrap
procedure estimates consistently the distribution of the test statistic UT under H0. Furthermore, under H1,
the following holds true.

Remark 8. As Theorem 2 shows, the limiting distribution of the appropriately centered bootstrap test
statistic U∗T is obtained under validity of Assumption 2 and without imposing any particular assumptions on
the weak dependence structure of the underlying functional processes {Xt, t ∈ Z} and {Yt, t ∈ Z}. That is,
this bootstrap procedure will lead to (asymptotically) valid approximations for the same test if assertion (4)
of Theorem 1 is established under a different set of weak dependence conditions on the underlying functional
processes than those stated in Assumption 1.

Proposition 1. Suppose that the conditions of Theorem 1 are satisfied. Then, under H1 and as T →∞,

tU =
√
bT

∫ π

−π
‖FX,λ −FY,λ‖2

HSdλ+ oP (
√
bT ) → +∞, in probability.

The above result, together with Theorem 2 and Slutsky’s theorem, imply that the power of the stu-
dentized test tU based on the bootstrap critical values obtained from the distribution of the bootstrap
studentized test t∗U converges to unity as T →∞, i.e., the test tU is consistent.
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5. Numerical Results

5.1. Choice of the Smoothing Parameter
Implementing the studentized test tU requires the choice of the smoothing bandwidth b. For univariate

and multivariate time series, this issue has been investigated in the context of a cross-validation type criterion
by Beltrão and Bloomfield [2], Hurvich [19] and Robinson [31]. However, adaption of the multivariate
approach of Robinson [31] to the spectral density estimator f̂X,λ(σr, τs), for r, s ∈ {1, . . . , k}, faces problems
due to the high dimensionality of the periodogram operator involved.

We propose a simple approach to select the bandwidth b used in our testing procedure which is based on
the idea to overcome the high-dimensionality of the problem by selecting a single bandwidth based on the
“on average” behavior of the pooled estimator f̂λ(σr, τs), that is, its behavior over all points r, s ∈ {1, . . . , k}
in [0, 1]2 for which the functional random elements Xt and Yt are observed. To elaborate, define first the
following quantities. The averaged periodogram

ÎT (λ) = 1
k2

k∑
r=1

k∑
s=1

{1
2 p̂X,λ(σr, τs) + 1

2 p̂Y,λ(σr, τs)
}

and the averaged pooled spectral density estimator

ĝb(λ) = 1
k2

k∑
r=1

k∑
s=1

{1
2 f̂X,λ(σr, τs) + 1

2 f̂Y,λ(σr, τs)
}
.

Notice that ÎT (λ) can be interpreted as the periodogram at frequency λ of the pooled, real-valued univariate
process {Vt = 1

2
∫ 1

0 Xt(s)ds + 1
2
∫ 1

0 Yt(s)ds, t ∈ Z} while ĝb(λ) is an estimator of the spectral density g of
{Vt, t ∈ Z}. We then choose the bandwidth b by minimizing the objective function

CV (b) = 1
N

N∑
t=1

{
log(ĝ−t(λt)) + ÎT (λt)/ĝ−t(λt)

}
,

over a grid of values of b, where ĝ−t(λt) = (Tb)−1∑
s∈Nt

W ((λt − λs)/b)ÎT (λs) and Nt = {s : −N ≤ s ≤
N and s , ±t}. That is, ĝ−t(λt) is the leave-one-out kernel estimator of g(λ), i.e., the estimator obtained
after deleting the t-th frequency; see also Robinson [31].

Due to the computational complexity of the simulation analysis studied in the next section, the use of
this automatic choice of the bandwidth b will only be illustrated in the real-life data example considered in
Section 5.3.

5.2. Monte-Carlo Simulations
We generated functional time series stemming from the following functional moving average (FMA)

processes,

Xt = A1(εt−1) + α2εt−2 + εt, (10)
Yt = A1(et−1) + et, (11)

t ∈ {1, . . . , T}, where the εt and et are generated as independent from each other i.i.d Brownian bridges and
A1 is an integral operator with kernel function ψ(·, ·) given by

ψ(u, v) = e−(u2+v2)/2

4
∫ 1

0 e
−t2dt

, (u, v) ∈ [0, 1]2.

All curves were approximated using 21 equidistant points in the unit interval and transformed into functional
objects using the Fourier basis with 21 basis functions. Three sample sizes T = 50, T = 100 and T = 200 were
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considered and the bootstrap test was applied using three nominal levels, α = 0.01, α = 0.05 and α = 0.10.
All bootstrap calculations were based on B = 1, 000 bootstrap replicates and R = 500 model repetitions. To
investigate the empirical size and power behavior of the bootstrap test, we consider a selection of a2 values,
i.e., a2 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, and various bandwidths b. (Notice that a2 = 0 corresponds to the null
hypothesis while a2 , 0 to the alternative.)

We first demonstrate the ability of the bootstrap procedure to approximate the distribution of the test
statistic under the null. For this, and in order to estimate the exact distribution of the studentized test tU
(see (5)), 10,000 replications of the process (10) and (11) with a2 = 0 have been generated, and a kernel
density estimate of this exact distribution has been obtained using a Gaussian kernel with bandwidth h.
The suggested bootstrap procedure is then applied to three randomly selected time series and the bootstrap
studentized test t∗U (see (9)) has been calculated. Two sample sizes of T = 50 and T = 500 observations
have been considered. Fig. 1 shows the results obtained together with the approximation of the distribution
of tU provided by the central limit theorem, i.e., the N (0, 1) distribution. As it can be seen from this figure,
the convergence towards the asymptotic Gaussian distribution is very slow. Even for sample sizes as large
as T = 500, the exact distribution retains its skewness which is not reproduced by the N (0, 1) distribution.
In contrast to this, the bootstrap approximations are very good and the estimates of the exact densities,
especially in the critical right hand tale of this distribution, are very accurate.
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Fig. 1: Density plots of the estimated exact standardized distribution of tU (red line), the standard Gaussian distribution
(black line) and three bootstrap approximations (blue lines). Left panel, T=50 (h = 0.2), right panel T=500 (h = 0.04).

We next investigate the finite sample size and power behavior of the bootstrap studentized test under the
aforementioned variety of process parameters and three different sample sizes, T = 50, T = 100 and T = 200.
The results obtained are shown in Table 1. As it is evident from this table, the bootstrap studentized test
shows a very good empirical size and power behaviour even in the case of T = 50 observations. In particular,
the empirical sizes are close to the nominal ones and the empirical power of the test increases to one as the
deviations from the null become larger (i.e., larger values of a2) and/or the sample size increases.

5.3. A Real-Life Data Example
We applied the bootstrap studentized test to a data set consisting of temperature measurements recorded

in Nicosia, Cyprus, for the winter period, December 2006 to beginning of March 2007 and for the summer
period, June 2007 to end of August 2007. It is well-known that the mean temperatures during winter periods
are smaller than those of summer periods. Our aim is to test whether there is also a significant difference in
the autocovariance structure of the winter and summer periods. The data consists of two samples of curves
{(Xt, Yt), t ∈ {1, . . . , 92}}, where Xt represents the temperature of day t for Dec2006-Jan2007-Feb2007-
March2007 and Yt for Jun2007-Jul2007-Aug2007. More precisely, X1 represents the temperature of the 1st

11



Table 1: Empirical size and power of the bootstrap studentized test for functional time series generated according to models
(10) and (11).

b=0.2 b=0.3
T a2 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10
50 0.0 0.010 0.048 0.096 0.020 0.058 0.106

0.2 0.016 0.082 0.158 0.030 0.092 0.164
0.4 0.062 0.238 0.338 0.048 0.154 0.276
0.6 0.178 0.390 0.518 0.124 0.334 0.500
0.8 0.346 0.616 0.736 0.258 0.502 0.670
1.0 0.488 0.768 0.872 0.464 0.728 0.840

b=0.1 b=0.2
a2 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

100 0.0 0.018 0.050 0.092 0.008 0.046 0.080
0.2 0.028 0.112 0.210 0.028 0.112 0.196
0.4 0.138 0.328 0.472 0.122 0.344 0.470
0.6 0.382 0.652 0.764 0.374 0.622 0.766
0.8 0.650 0.858 0.922 0.624 0.836 0.922
1.0 0.872 0.968 0.984 0.874 0.966 0.990

b=0.06 b=0.1
a2 α = 0.01 α = 0.05 α = 0.10 α = 0.01 α = 0.05 α = 0.10

200 0.0 0.014 0.042 0.088 0.004 0.044 0.100
0.2 0.046 0.154 0.272 0.056 0.164 0.290
0.4 0.298 0.576 0.698 0.364 0.620 0.760
0.6 0.708 0.910 0.956 0.788 0.956 0.978
0.8 0.924 0.992 0.998 0.960 0.996 0.998
1.0 0.992 1.000 1.000 1.000 1.000 1.000

of December 2006 and X92 the temperature of the 2nd of March 2007, whereas Y1 represents the temperature
of the 1st of June 2007 and Y92 the temperature of the 31st of August 2007. The temperature recordings
were taken in 15 minutes intervals, i.e., there are k = 96 temperature measurements for each day for a total
of T = 92 days in both groups. These measurements were transformed into functional objects using the
Fourier basis with 21 basis functions. All curves were rescaled in order to be defined in the unit interval.
Fig. 2 shows the centered temperature curves of the winter and summer periods, i.e., the curves in each
group are transformed by subtracting the corresponding group sample mean functions.

Using the cross-validation algorithm described in Section 5.1, the bandwidth chosen is equal to bCV =
0.075 and the corresponding p-value of the bootstrap based studentized test is equal to 0.030 (based on
B = 10, 000 bootstrap replications), leading to a rejection of the null hypothesis for almost all commonly used
α-levels. This implies that the dependence properties, as measured by autocovariances, of the temperature
measurements of the winter period differ significantly from those of the summer period.

In order to understand the reasons leading to this rejection, we decompose the standardized test tU after
ignoring the centering sequence b−1/2µ̂0 and approximating the integral of the (squared) Hilbert-Schmidt
norm by the corresponding Riemann sum over the Fourier frequencies λj = 2πj/T , as follows:

√
bT UT

/
θ̂0 ≈ 2π

√
b

N∑
j=−N
j,0

‖F̂X,λj
− F̂Y,λj

‖2
HS

/
θ̂0 =

N∑
j=−N
j,0

Q̂T,λj
, (12)
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Fig. 2: Centered temperature curves of winter period (left panel) and of summer period (right panel). There are 92 centered
curves in each period, rescaled in order to be defined in the unit interval.

where
Q̂T,λj

= 2π
√
b ‖F̂X,λj

− F̂Y,λj
‖2
HS

/
θ̂0 ≥ 0.

Expression (12) shows the contributions of the differences ‖F̂X,λj
− F̂Y,λj

‖2
HS for each frequency λj to the

total value of the test statistic UT . Large values of Q̂T,λj
pinpoint, therefore, to frequency regions from

which large contributions to the test statistic UT occur. A plot of the estimated quantities Q̂T,λj
against

the frequencies λj , j ∈ {0, . . . , N}, is, therefore, very informative in identifying frequency regions where
differences between the two spectral density operators are large and is very helpful for interpreting the
results of the testing procedure.

Complementary to the decomposition Q̂T,λj
of the test statistic UT , one also can identify the regions in

[0, 1] × [0, 1] which deliver large contributions to the test statistic and which lead to a rejection of the null
hypothesis. In particular, the test statistic also can be written as

Q̂T,λj ≈
T∑
r=1

T∑
l=1

D̂2
T (σr, τl), D̂2

T (σ, τ) = 2π
√
b

T 2

N∑
j=−N
j,0

∣∣f̂X,λj
(σ, τ)− f̂Y,λj

(σ, τ)
∣∣2/θ̂0.

Notice that D̂2
T (σr, τl) shows the contribution of the differences between the estimated spectral density

kernels (averaged over all Fourier frequencies) at the points (σr, τl) ∈ [0, 1] × [0, 1] to the test statistic
UT . Large values of D2

T (σr, τl) pinpoint to points (σr, τl) ∈ [0, 1] × [0, 1] where large differences (averaged
over all frequencies) between the corresponding spectral density kernels occur. Combined with the frequency
decomposition QT,λj

, the decomposition DT (σr, τl) may further help in better understanding the test results.

Fig. 3(a) shows for the real-life temperature data example considered the plot of Q̂T,λj
at a log-scale.

Fig. 3(b) shows, for the same data set, a plot of the differences D̂T (σr, τl). As it can be seen from Fig. 3(a),
the large values of the test statistic UT which leads to a rejection of the null hypothesis, are mainly due
to the large differences between the two spectral density operators at the low frequency region. That is,
differences in the long term periodicities between the winter and the summer temperature curves seem to
be the main reason for rejecting the null hypothesis. Fig. 3(b) shows that the main differences between the
spectral density kernels of the two functional time series, occur in the afternoon period and, more specifically,
between the hours 12.00 to 4.00 p.m. The differencies of the (averaged) spectral density kernels, for values
of τ and σ within this time frame, seem to be the largest. These findings are probably due to the fact that
in Cyprus, compared to the rather day-long stable weather conditions of the summer period, the weather
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Fig. 3: (a) Plot of Q̂T,λj
(vertical axes, log-scale) against the frequencies λj , j ∈ {0, 1, . . . , N} (horizontal axes), for the

temperature data, using the bandwidth b = bCV =0.075. (b) Plot of the difference D̂T (σr, τl) between the estimated spectral
density kernels using the same bandwidth for the values (σr, τl), with (r, l) ∈ {1, . . . , 96} × {1, . . . , 96}.

conditions in the winter period are more volatile, change gradually during the day and reach their peak in
the afternoon.
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Appendix: Auxiliary Results and Proofs

First, we introduce some notation that will be used throughout our proofs. ‖ ·‖2 denotes the norm of L2,
‖ · ‖N the nuclear norm of an operator T , T ∗ is the adjoint operator and 〈·, ·〉HS the inner product on the
space of Hilbert-Schmidt operators; see the Supplementary Material for more details. Furthermore, we write
A(e−iλ) =

∑
j∈ZAje

−ijλ with the operators Aj defined as in Assumption 1. The periodogram operators of
the innovations time series εt and et, t = 1, . . . , n, at frequency λ, Iε,λ and Ie,λ, respectively, are defined as
the integral operators induced by right integration of

p̂ε,λ(σ, τ) = 1
2πT

T∑
s1,s2=1

εs1(σ)εs2(τ) exp(−iλ(s1 − s2)),

p̂e,λ(σ, τ) = 1
2πT

T∑
s1,s2=1

es1(σ)es2(τ) exp(−iλ(s1 − s2)).

(13)

The centered counterparts are denoted by Icε,λ and Ice,λ. Finally, define

QcX,λ := A(e−iλ)Icε,λA(e−iλ)∗, QcY,λ := B(e−iλ)Ice,λB(e−iλ)∗.
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Here, ST denotes the composition S(T (·)) of the operators S and T .

Proof of Lemma 1. The assertions of the lemma are immediate consequences of Proposition 2.1 in
Panaretos and Tavakoli [22] if

∑
t∈Z ‖RX,t‖N < ∞ and

∑
t∈Z ‖rX,t‖2 < ∞ and similar results for the

process (Yt)t∈Z hold true. The first inequality follows from expression (1.4) of the supplement. For the second
result, use the expression RX,t =

∑
j∈ZAj+tCεA

∗
j , see the Supplement Material, and get

∑
t∈Z ‖rX,t‖2 =∑

t∈Z ‖RX,t‖HS ≤
∑
t∈Z
∑
j∈Z ‖Aj+t‖L ‖Cε‖HS ‖Aj‖L, which is finite under Assumption 1.

The proof of Theorem 1 uses the following two lemmas, the proofs of which are given in the Supplementary
Material.

Lemma 2. Suppose that the assumptions of Theorem 1 hold true. Then
√
bT MT,0 − b−1/2 µ0 = oP (1),

where

MT,0 =
∫ π

−π

1
b2T 2

N∑
t=−N

W 2
(
λ− λt
b

)∥∥QcX,λt
−QcY,λt

∥∥2
HS

dλ . (14)

Lemma 3. Suppose that the assumptions of Theorem 1 hold true. Then,

var(
√
bT LT,0) −→

T→∞
θ2

0

for θ0 defined in Theorem 1, where

LT,0 = 1
b2T 2

∫ π

−π

∫ 1

0

∫ 1

0

N∑
t1,t2=−N, t1,t2

W

(
λ− λt1

b

)
W

(
λ− λt2

b

)
dλ

×
〈
QcX,λt1

−QcY,λt1
, QcX,λt2

−QcY,λt2

〉
HS
.

(15)

Proof of Theorem 1. From Theorem 1.2 of the Supplementary Material we obtain

IX,λ = A(e−iλ)Iε,λA(e−iλ)∗ +RT,λ with sup
λ∈{2πt/T |t=−N,...,N}

E‖RT,λ‖2
HS = O(T−1).

This gives

√
bT UT =

√
bT

∫ π

−π

∥∥∥∥∥ 1
bT

N∑
t=−N

W

(
λ− λt
b

)[
A(e−iλt)Iε,λt

A(e−iλt)∗ −B(e−iλt)Ie,λt
B(e−iλt)∗

]∥∥∥∥∥
2

HS

dλ

+OP (b1/4) =:
√
bT UT,0 + oP (1) (16)

if we can show that
√
bT UT,0 = OP (1). To this end, first note that under H0 FX = FY . Now, it follows

from (1.5) in the Supplementary Material that

1
2π A(e−iλt)CεA(e−iλt)∗ = FX = FY = 1

2π B(e−iλt)CeB(e−iλt)∗.

Additionally, we have Ep̂ε,λ(σ, τ) = cε(σ, τ)/(2π) and Ep̂e,λ(σ, τ) = ce(σ, τ)/(2π) in L2 for the i.i.d. noises.
Combining both facts, we can rewrite UT,0 as

UT,0 =
∫ π

−π

∥∥∥∥∥ 1
bT

N∑
t=−N

W

(
λ− λt
b

)[
A(e−iλt)Icε,λt

A(e−iλt)∗ −B(e−iλt)Ice,λt
B(e−iλt)∗

]∥∥∥∥∥
2

HS

dλ. (17)
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We can further split up UT,0 = MT,0 +LT,0 where MT,0 and LT,0 are defined as in Lemma 2 and Lemma 3,
respectively. In view of Lemma 2, it remains to show that

√
bTLT,0

d−→ Z. To this end, we abbreviate

wt1,t2,T = 1
b3/2T

∫ π

−π
W

(
λ− λt1

b

)
W

(
λ− λt2

b

)
dλ

and use the Karhunen-Lóeve expansion for the Gaussian innovations εt and et. In particular, we have

εs(σ) =
∑
l

ξ
(s)
l ϕl(σ), s ∈ Z, σ ∈ [0, 1],

where ϕl ∈ L2, l ∈ N, denotes the set of orthonormal eigenfunctions of the operator Cε and the random
variables ξ(s)

l =
∫ 1

0 εs(σ)ϕl(σ) dσ are centered normal and satisfy cov(ξ(s)
l1
, ξ

(s)
l2

) = 0 for l1 , l2. Notice that
the above expression for εs(σ) is valid in L2-sense and that Fubini’s theorem gives cov(ξ(s1)

l1
, ξ

(s2)
l2

) = 0 for
s1 , s2. A similar expansion holds true for es with a possibly different set of othonormal eigenfunctions
(φl)l∈N instead of (ϕl)l∈N. Now, we define approximating periodogram operators Ic,Kε,λt

, K ∈ N, with kernels

p̂c,Kε,λt
=

K∑
l1,l2=1

ϕl1ϕl2
1

2πT
∑
s1,s2

eiλt(s1−s2) [ξ(s1)
l1

ξ
(s2)
l2
− E(ξ(s1)

l1
ξ

(s2)
l2

)]

and similarly for Ic,Ke,λt
. Moreover, define

Qc,KX,λ := A(e−iλ)Ic,Kε,λ A(e−iλ)∗ and Qc,KY,λ := B(e−iλ)Ic,Ke,λ B(e−iλ)∗.

Then, we can introduce

√
bT L

(K)
T,0 =

N∑
t1,t2=−N, t1,t2

wt1,t2,T

〈
Qc,KX,λt1

−Qc,KY,λt1
, Qc,KX,λt2

−Qc,KY,λt2

〉
HS

=:
N∑

t1,t2=−N,t1,t2

Ht1,t2,T .

From this, we get
lim
K→∞

lim sup
T→∞

E(
√
bT (LT,0 − L

(K)
T,0 ))2 = 0. (18)

To this end, first note that under Gaussianity |ELT,0|+ |EL(K)
T,0 | = o(1) for any K due to independence of the

spectral density operators at different frequencies |t1| , |t2|. Thus, it suffices to investigate var(
√
bT (LT,0−

L
(K)
T,0 )). With the same arguments as in the proof of Lemma 3 it suffices to show that

sup
|t1|,|t2|,|s1|,|s2|

cov
(〈
QcX,λt1

−QcY,λt1
, QcX,λt2

−QcY,λt2

〉
HS
−
〈
Qc,KX,λt1

−Qc,KY,λt1
, Qc,KX,λt2

−Qc,KY,λt2

〉
HS
,〈

QcX,λs1
−QcY,λs1

, QcX,λs2
−QcY,λs2

〉
HS
−
〈
Qc,KX,λs1

−Qc,KY,λs1
, Qc,KX,λs2

−Qc,KY,λs2

〉
HS

)
converges to zero as K →∞ in the cases t1 = ±s1, t2 = ±s2 and t1 = ±s2, t2 = ±s1. Exemplarily we only
investigate

sup
|t1|,|t2|

cov
(〈
QcX,λt1

, QcX,λt2

〉
HS
−
〈
Qc,KX,λt1

, Qc,KX,λt2

〉
HS
,〈

QcX,λt1
, QcX,λt2

〉
HS
−
〈
Qc,KX,λt1

, Qc,KX,λt2

〉
HS

)
in detail. With similar arguments as in Lemma 3 it can be shown that all remaining summands vanish, too.
Using symmetry arguments and adding zeros, it suffices to consider

sup
|t1|,|t2|

cov
(〈
QcX,λt1

−Qc,KX,λt1
, QcX,λt2

〉
HS
,
〈
QcX,λt1

, QcX,λt2

〉
HS

)
(19)
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and similar terms. To this end, let

C(K)
ε = E

[(
K∑
l=1

ξ
(0)
l ϕl

)
⊗

(
K∑
l=1

ξ
(0)
l ϕl

)]
.

In analogy to the proof of Lemma 3, (19) can be bounded from above by

sup
|t1|,|t2|

‖A(e−iλt1 )‖4
L

∥∥∥E
(

[Icε,λt1
− Ic,Kε,λt1

]⊗ Icε,λt1

)∥∥∥
HS
‖FX,λt2

‖2
HS ≤ K‖Cε − C(K)

ε ‖HS + o(1)

for some finite constant K, where the last inequality can be obtained similarly to Lemma 1.7 and Theorem
1.3 in the supplement. Mercer’s Theorem finally gives ‖Cε−C(K)

ε ‖HS → 0 as K →∞. We aim at applying
a CLT of de Jong [6] for weighted U -statistics of independent random vectors. To this end, we rewrite

√
bT L

(K)
T,0 =

N∑
t1,t2=1,t1,t2

H̃t1,t2,T +
N∑

t=−N
[Ht,0,T +H0,t,T ] +

N∑
t1=−N

Ht1,−t1,T − 2H0,0,T ,

where
H̃t1,t2 = Ht1,t2,T +H−t1,t2,T +Ht1,−t2,T +H−t1,−t2,T .

Straightforward calculations yield that

N∑
t=−N

[Ht,0,T +H0,t,T ] +
N∑

t1=−N
Ht1,−t1,T − 2H0,0,T = oP (1)

in L2. Now, we apply Theorem 2.1 of de Jong [6] to

W̃T =
N∑

t1,t2=1
t1,t2

H̃t1,t2 =
N∑

t1,t2=1
t1,t2

H̃t1,t2(Xt1 ,Xt2),

where Ht1,t2 is a Borel function and

Xt = 1√
2πT

T∑
s=1

(ξ(1)
s cos(λts), ξ(1)

s sin(λts), . . . , ξ(K)
s cos(λts), ξ(K)

s sin(λts))′

in their notation. First, note that the assumption of Gaussian innovations implies independence of X1, . . . ,XN .
Moreover, this yields E(H̃t1,t2 | Xt1) = E(H̃t1,t2 | Xt2) = 0 a.s. for t1 , t2 which implies that W̃T is clean
(see Definition 2.1 in de Jong [6]). It remains to check conditions (a) and (b) of Theorem 2.1 of de Jong [6].
Similar to Lemma 3 we obtain that var(W̃T ) converges to the finite constant

θK := 4
π2

∫ 2π

−2π

{∫ π

−π
W (u)W (u− x) du

}2
dx

∫ π

−π
‖A(e−iλt1 )E[Ic,Kε,λt1

]A(e−iλt1 )∗‖4
HS dλ.

Subsequently, we only consider the non-trivial case of θL > 0. For condition (a), it remains to verify that

max
t1∈{1,...,N}

N∑
t2=1
t2,t1

var
(
H̃t1,t2

)
= o(1).

This is an immediate consequence of var(Ht1,t2) = 0 for |t1 − t2| > bT and

var(Ht1,t2) = O

(
1
b T 2

)
= o

(
1
bT

)
17



for |t1 − t2| ≤ bT . Finally, we have to check assumption (b) of Theorem 2.1 of de Jong [6], i.e.,

EW̃ 4
T −→
T→∞

3θ2
K .

To this end, we argue that EW̃ 2
T −→
T→∞

θ2
K and that the forth-order cumulant of W̃T vanishes asymptotically

due to the independence of the periodograms at different Fourier frequencies. Finally, note that θK → θ0 as
K →∞ which finishes the proof by Proposition 6.3.9 in Brockwell and Davis [4].

Proof of Theorem 2. Recall first that in the following calculations all indices in the sums considered, run
in the set {−N,−N+1, . . . ,−1, 1, . . . , N−1, N}, where N = [(T −1)/2]. Let {vj , j ∈ N} be an orthonormal
basis of L2

C := L2
C([0, 1], µ) and recall that {vi ⊗ vj , i, j ∈ N} is an orthonormal basis of the Hilbert space

HS(L2
C). The bootstrap test statistic

U∗T = 2π
T

N∑
l=−N

‖F̂∗X,λt
− F̂∗Y,λt

‖2
HS (20)

can then be decomposed as

U∗T = 2π
T 3b2

N∑
t1=−N

N∑
t2=−N

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

)
〈I∗X,λt1

− I∗Y,λt1
, I∗X,λt2

− I∗Y,λt2
〉HS

= 2π
T 3b2

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

)
‖I∗X,λt

− I∗Y,λt
‖2
HS

+ 2π
T 3b2

N∑
t1,t2=−N
t|,t2

W
(λl − λt1

b

)
W
(λl − λt2

b

)
〈I∗X,λt1

− I∗Y,λt1
, I∗X,λt2

− I∗Y,λt2
〉HS := M∗T + L∗T ,

with an obvious notation for M∗T and L∗T . In the following we use the notation

D∗t (j1, j2) := 〈I∗X,λt
− I∗Y,λt

, vj1 ⊗ vj2〉 = 〈J∗X,λt
, vj1〉〈vj2 , J

∗
X,λt
〉 − 〈J∗Y,λt

, vj1〉〈vj2 , J
∗
Y,λt
〉,

and the expansion

I∗X,λt
− I∗Y,λt

= J∗X,λt
⊗ J∗X,λt

− J∗Y,λt
⊗ J∗Y,λt

=
∞∑
j1=1

∞∑
j2=1

D∗t (j1, j2)(vj1 ⊗ vj2).

Notice that 〈J∗X,λt
, vj〉 is for every j ∈ N, a complex Gaussian random variable. We show that

√
bTM∗T − b−1/2 µ̃0

P→ 0, (21)

and √
bTL∗T

d→ N (0, θ̃2
0). (22)

Let I∗C

X,λt
= IX,λt

− F̂λt
and similarly for I∗C

Y,λt
. Verify that

E?〈I∗
C

X,λt
, vj1 ⊗ vj2〉HS〈I∗

C

X,λt
, vj1 ⊗ vj2〉HS = E?〈I∗

C

X,λt
(vj2), vj1〉〈I∗

C

X,λt
(vj2), vj1〉

= 〈E?I∗
C

X,λt
(vj2)⊗ I∗

C

X,λt
(vj1), vj1 ⊗ vj2〉HS

= 〈F̂λt
(vj1)⊗ F̂λt

(vj2), vj1 ⊗ vj2〉HS
= 〈F̂λt(vj1), vj1〉〈vj2 , F̂λt(vj2)〉. (23)
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Furthermore,

cov∗(D∗t (j1, j2),D∗t (r1, r2)) = E?(D∗t (j1, j2)D∗t (r1, r2))

= E?〈I∗
C

X,λt
, vj1 ⊗ vj2〉HS〈I

∗C

X,λt
, vr1 ⊗ vr2〉HS + E?〈I∗

C

Y,λt
, vj1 ⊗ vj2〉HS〈I

∗C

Y,λt
, vr1 ⊗ vr2〉HS

= 2〈F̂λt
(vr2), vj1〉〈vj2 , F̂λt

(vr1)〉 = 2〈F̂λt
(vr2)⊗ F̂λt

(vr1), vj1 ⊗ vj2〉HS , (24)

where the last two equalities follow using the derivations in (23).
Consider first (21). Using (23), we get

E∗(
√
bTM∗T ) = 2π

T 2b3/2

∞∑
j1,j2=1

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

)
E?〈I∗

C

X,λt
− I∗

C

Y,λt
, vj1 ⊗ vj2〉2HS

= 2π
T 2b3/2

∞∑
j1,j2=1

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

){
E?〈I∗

C

X,λt
, vj1 ⊗ vj2〉HS〈I∗

C

X,λt
, vj1 ⊗ vj2〉HS

+ E?〈I∗
C

Y,λt
, vj1 ⊗ vj2〉HS〈I∗

C

Y,λt
, vj1 ⊗ vj2〉HS

}
= 4π
T 2b3/2

∞∑
j1,j2=1

N∑
t=−N

N∑
l=−N

W 2
(λl − λt

b

)
〈F̂X,λt

(vj1), vj1〉〈vj2 , F̂X,λt
(vj2)〉

= 4π
T 2b3/2

N∑
t=−N

N∑
l=−N

W 2(λl − λt
b

)(
trace(F̂λt

)
)2

= 4π
T 2b3/2

N∑
t=−N

N∑
l=−N

W 2(λl − λt
b

)(
trace(Fλt

)
)2 + oP (1).

and, therefore,

b1/2E∗(
√
bTM∗T ) = 4π

T 2b

N∑
t=−N

N∑
l=−N

W 2(λl − λt
b

)(
trace(Fλt)

)2 + oP (1) P→ µ̃0. (25)

Furthermore,

var∗(
√
bTM∗T ) = 4π2

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N

N∑
l1,l2=−N

W 2
(λl1 − λt1

b

)
W 2
(λl2 − λt2

b

)
× cov∗(D∗t1(j1, j2), D∗t2(r1, r2))

which due to the independence of D∗t1(j1, j2) and D∗t2(j1, j2) for |λt1 | , |λt2 |, is reduced to four terms with
a typical one given by

4π2

T 4b3

N∑
t=1

N∑
l1,l2=−N

W 2
(λl1 − λt

b

)
W 2
(λl2 − λt

b

)
×

∞∑
j1,j2=1

∞∑
r1,r2=1

cov∗(D∗t (j1, j2), D∗t (r1, r2))

and which is easily seen to be of order OP ((Tb)−1). Similar arguments applied to the other three terms
show that they also are asymptotically negligible from which we get that var∗(

√
bTM∗T ) P→ 0. In view of

(25) this implies that
√
bTM∗T − b−1/2 µ̃0

P→ 0.
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Consider next (22). Notice that

var∗(
√
bTL∗T ) = 4π2

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N
t1,t2

N∑
t3,t4=−N
t3,t4

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl1 − λt2

b

)

×W
(λl2 − λt3

b

)
W
(λl2 − λt4

b

){
E∗
(
D∗t1(j1, j2)D∗t3(r1, r2)

)
E∗
(
D∗t2(j1, j2)D∗t4(r1, r2)

)
+ E∗

(
D∗t1(j1, j2)D∗t4(r1, r2)

)
E∗
(
D∗t2(j1, j2)D∗t3(r1, r2)

)
+ cum?

(
D∗t1(j1, j2), D∗t2(j1, j2), D∗t3(r1, r2), D∗t4(r1, r2)

)}
= V ∗1,T + V ∗2,T + V ∗3,T ,

with an obvious notation for V ∗i,T , i ∈ {1, 2, 3}. Since E∗
(
D∗t (j1, j2)D∗s(r1, r2)

)
= 0 for |t| , |s| we get using

(24) and
∑∞
j1,j2=1〈F̂λt1

(vr2)⊗ F̂λt1
(vr1), vj1 ⊗ vj2〉HS(vj1 ⊗ vj2) = F̂λt1

(vr2)⊗ F̂λt1
(vr1), that

V ∗1,T = 16π2

T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl2 − λt1

b

)
W
(λl2 − λt2

b

)
W
(λl1 − λt2

b

)
× 〈F̂λt1

(vr2)⊗ F̂λt1
(vr1), vj1 ⊗ vj2〉HS〈F̂λt2

(vr2)⊗ F̂λt2
(vr1), vj1 ⊗ vj2〉HS

= 16π2

T 4b3

∞∑
r1,r2=1

N∑
t1,t2=−N

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl2 − λt1

b

)
W
(λl2 − λt2

b

)
W
(λl1 − λt2

b

)
× 〈F̂λt2

(vr2), F̂λt1
(vr2)〉〈F̂λt1

(vr1), F̂λt2
(vr1)〉

= 16π2

T 4b3

N∑
t1,t2=−N

N∑
l1,l2=−N

W
(λl1 − λt1

b

)
W
(λl2 − λt1

b

)
W
(λl2 − λt2

b

)
W
(λl1 − λt2

b

)
〈F̂λt1

, F̂λt2
〉2HS

= 4
T 2b3

N∑
t1,t2=−N

(2π
T

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

))2
〈F̂λt1

, F̂λt2
〉2HS

→ 2
π2

∫ 2π

−2π

(∫ π

−π
W (u)W (u− x)du

)2
dx

∫ π

−π
‖Fλ‖4dλ,

where the last convergence follows by the same arguments as in proving assertion (i) appearing in the proof
of Lemma 3 in the Supplementary Material.

Along the same lines, the same expression is obtained for the probability limit of V ∗2,T , while under the
assumptions made, V ∗3,T → 0 in probability. To see why the last statement is true, use the notation

w(i, j, k, l) = W
(λli − λk

b

)
W
(λlj − λk

b

)
W
(λli − λl

b

)
W
(λlj − λl

b

)
,

and observe that D∗−t(j1, j2) = D∗t (j1, j2). By the independence of the random variables D∗t (j1, j2) and
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D∗s(j1, j2) for frequencies |t| , |s|, we get that

V ∗3,T = 1
T 4b3

∞∑
j1,j2=1

∞∑
r1,r2=1

N∑
t1,t2=−N
t1,t2

N∑
l1,l2=−N

w(l1, l2, t1, t2)cum∗
(
D∗t1(j1, j2), D∗t1(r1, r2), D∗t2(j1, j2), D∗t2(r1, r2

)

= 1
T 4b3

N∑
t1,t2=1
t1,t2

N∑
l1=−N

N∑
l2=−N

{
w(l1, l2,−t1,−t2)cum∗

(
D∗t1(j1, j2), D∗t1(r1, r2), D∗t2(j1, j2), D∗t2(r1, r2

)

+ w(l1, l2,−t1, t2)cum∗
(
D∗t1(j1, j2), D∗t1(r1, r2), D∗t2(j1, j2), D∗t2(r1, r2

)
+ w(l1, l2, t1,−t2)cum∗

(
D∗t1(j1, j2), D∗t1(r1, r2), D∗t2(j1, j2), D∗t2(r1, r2

)
+ w(l1, l2, t1, t2)cum∗

(
D∗t1(j1, j2), D∗t1(r1, r2), D∗t2(j1, j2), D∗t2(r1, r2

)}
which vanishes due to the independence of the bootstrap finite Fourier transforms and consequently of the
random variables D∗t1(·) and D∗t2(·) for 1 ≤ t1 , t2 ≤ N .

We next show that
√
bTL∗T

D→ N (0, θ̃0). Toward this we write
√
bTL∗T =

∑∞
j1,j2=1

∑
1≤t1<t2≤N

H∗t1,t2(j1, j2), where

H∗t1,t2(j1, j2) = 2
{
h∗t1,t2(j1, j2) + h∗−t1,t2(j1, j2) + h∗t1,−t2(j1, j2) + h∗−t1,−t2(j1, j2)

}
(26)

and

h∗t,s(j, r) = 2π
b3/2T 2

N∑
l=−N

W
(λl − λt

b

)
W
(λl − λs

b

)
D∗t (j, r)D∗s(j, r).

Let
√
bTL∗T,K =

∑K
j1,j2=1

∑
1≤t1<t2≤N H

∗
t1,t2(j1, j2) and

θ̃2
0,K = 4

π2

∫ 2π

−2π

(∫ π

−π
W (u)W (u− x)du

)2
dx

K∑
j1,j2,r1,r2=1

∫ π

−π
〈vj1 ⊗ vj2 ,Fλ〉2HS〈vr1 ⊗ vr2 ,Fλ〉2HSdλ .

Then, to establish the desired weak convergence it suffices to prove that
(i)
√
bTL∗T,K

D→ N (0, θ̃2
0,K) as n→∞ for every K ∈ N,

(ii) θ̃2
0,K → θ̃2

0 as K →∞,
(iii) For every ε > 0, limK→∞ lim supn Pr

(∣∣√bTL∗T,K − √bTL∗T ∣∣ > ε
)

= 0.
Consider (i). Observe that

√
bTL∗T,K is a quadratic form in the independent random variables Dt(i, j) and

Ds(i, j), t , s. We can, therefore, use Theorem 2.1 of de Jong [6] to establish the weak convergence (i). For
this we need to show that

(a) σ−2(T ) max1≤i≤N
∑

1≤j≤N σ
2
i,j → 0,

(b) E∗
(∑K

j1,j2=1
∑

1≤t1<t2≤N H
∗
t1,t2(j1, j2)

)4
/σ4(T )→ 0,

in probability as T →∞, where σ2(T ) =
∑

1≤t1<t2≤N σ
2
t1,t2 and

σ2
t1,t2 =

K∑
j1,j2,r1,r2=1

cov∗(H∗t1,t2(j1, j2), H∗t1,t2(r1, r2)).

Evaluating σ2
t1,t2 = E∗(

∑K
j1,j2=1 H

∗
t1,t2(j1, j2))2 for 1 ≤ t1 < t2 ≤ N , using (26), yields the expression

4
K∑

j1,j2,r1,r2=1

∑
m1∈{−t1,t1}

∑
s1∈{−t2,t2}

∑
m2∈{−t1,t1}

∑
s2∈{−t2,t2}

cov∗(h∗m1,s1
(j1, j2), h∗m2,s2

(r1, r2)).
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Taking into account the independence of the random variables involved, (t1 , t2), the covariance terms in the
above sum are very similar with a typical one given, for instance for m1 = t1, s1 = t2,m2 = −t1, s2 = −t2,
by

1
T 4b3

∑
l1

∑
l2

W
(λl1 − λt1

b

)
W
(λl1 − λt2

b

)
W
(λl2 + λt1

b

)
W
(λl2 + λt2

b

)
× 〈F̂λt1

(vr2)⊗ F̂−λt1
(vr1), vj1 ⊗ vj2〉HS〈F̂λt2

(vr2)⊗ F̂−λt2
(vr1), vj1 ⊗ vj2〉HS

= 1
4π2T 2b3

(2π
T

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

))(2π
T

N∑
l=−N

W
(λl + λt1

b

)
W
(λl + λt2

b

))
× 〈F̂λt1

(vr2)⊗ F̂−λt1
(vr1), vj1 ⊗ vj2〉HS〈F̂λt2

(vr2)⊗ F̂−λt2
(vr1), vj1 ⊗ vj2〉HS = OP (T−2b−1),

where the OP (T−2b−1) term is uniform in t1 and t2 because

|〈F̂λt1
(vr2)⊗ F̂−λt1

(vr1), vj1 ⊗ vj2〉HS | ≤ ‖F̂λt1
‖HS‖F̂−λt1

‖HS = OP (1),

uniformly in t1, t2, and

2π
T

N∑
l=−N

W
(λl − λt1

b

)
W
(λl − λt2

b

)
=
∫
W
(λ− λt1

b

)
W
(λ− λt2

b

)
+O(T−1)

= b

∫
W
(
u− λt1

b

)
W
(
u− λt2

b

)
du+O(T−1) = b

∫
W
(
x− λt1 − λt2

b

)
W
(
x
)
dx+O(T−1) = O(b),

uniformly in t1, t2. Taking into account that 0 < σ2(T ) = E∗(
∑K
j1,j2=1

∑
1≤t1<t2≤N H

∗
t1,t2(j1, j2))2 = OP (1),

which follows from the calculations of var∗(
√
bTL∗T ), we get that

1
σ2(T ) max

1≤t1≤N

∑
1≤t2≤N

σ2
t1,t2 = OP (T−1b−1)→ 0,

as T →∞, which establishes (a).
Consider Condition (b). From (26), the fourth moment of∑K
j1,j2=1

∑
1≤t1<t2≤N H

∗
t1,t2(j1, j2) equals

16
K∑

j1,...,j8=1

∑
1≤t1<t2≤N

∑
1≤t3<t4≤N

∑
1≤t5<t6≤N

∑
1≤t7<t8≤N

∑
r1∈{−t1,t1}
r2∈{−t2,t2}

∑
k1∈{−t3,t3}
k2∈{−t4,t4}

×
∑

n1∈{−t5,t5}
n2∈{−t6,t6}

∑
v1∈{−t7,t7}
v2∈{−t8,t8}

E∗
(
h∗r1,r2

(j1, j2)h∗k1,k2
(j3, j4)h∗n1,n2

(j5, j6)h∗v1,v2
(j7, j8)

)
,

where only for the following four cases the expectation term is different from zero: 1) (r1, r2) = (k1, k2) ,
(n1, n2) = (v1, v2), 2) (r1, r2) = (n1, n2) , (k1, k2) = (v1, v2), 3) (r1, r2) = (v1, v2) , (k1, k2) = (n1, n2) and
4) (r1, r2) = (k1, k2) = (n1, n2) = (v1, v2) and where the notation (i, j) = (l, k) means i = l and j = k.
Straightforward calculations show that case 4) vanishes asymptotically while cases 1), 2) and 3) converge to
the same limit as σ4(T ) converges, from which we conclude assertion (b).

Condition (ii) follows immediately from the fact that, as K →∞,

K∑
j1,j2=1

〈vj1 ⊗ vj2 ,Fλ〉2HS →
∞∑

j1,j2=1
〈vj1 ⊗ vj2 ,Fλ〉2HS = ‖Fλ‖2

HS .
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Finally to establish the validity of condition (iii) notice that

√
bT (L∗T − L∗T,K) =

√
bT
( K∑
j1=1

∞∑
j2=K+1

∑
1≤t1<t2≤N

H∗t1,t2(j1, j2)

+
∞∑

j1=K+1

K∑
j2=1

∑
1≤t1<t2≤N

H∗t1,t2(j1, j2) +
∞∑

j1=K+1

∞∑
j2=K+1

∑
1≤t1<t2≤N

H∗t1,t2(j1, j2)
)

=
3∑
r=1

Q∗r,T ,

with an obvious notation for Q∗r,T , r = 1, 2, 3. Consider Q∗1,T . We then have

E∗(Q∗1,T )2 =
∞∑

j1,r1=1

∞∑
j2,r2=K+1

∑
1≤t1<t2≤N

∑
1≤s1<s2≤N

cov∗(H∗t1,t2(j1, j2), H∗s1,s2
(r1, r2)).

Now, evaluating the covariance term cov∗(H∗t1,t2(j1, j2), H∗s1,s2
(r1, r2)) as in the calculations for var∗(

√
bTL∗T ),

using (24) and the fact that Fλ is self adjoint, we get that

lim
n→∞

∑
1≤t1<t2≤N

∑
1≤s1<s2≤N

cov∗(H∗t1,t2(j1, j2), H∗s1,s2
(r1, r2))

= 4
π2

∫ 2π

−2π

(∫ π

−π
W (u)W (u− x)du

)2 ∫ π

−π
〈Fλ(vr2), vj1〉2〈Fλ(vj2), vr1〉2dλ.

Therefore,

lim
n→∞

E∗(Q∗1,T )2 = 4
π2

∫ 2π

−2π

(∫ π

−π
W (u)W (u− x)du

)2 ∫ π

−π

( K∑
j1=1

∞∑
j2=K+1

〈vj1 ,Fλ(vj2)〉2
)2

≤ 4
π2

∫ 2π

−2π

(∫ π

−π
W (u)W (u− x)du

)2 ∫ π

−π

( ∞∑
j2=K+1

∞∑
j1=1
〈vj1 ,Fλ(vj2)〉2

)2

= 4
π2

∫ 2π

−2π

(∫ π

−π
W (u)W (u− x)du

)2 ∫ π

−π

( ∞∑
j2=K+1

‖Fλ(vj2)‖2
)2
→ 0,

as K →∞ since limK→∞
∑∞
j2=K+1 ‖Fλ(vj2)‖2 = 0. By the same arguments we get that

limK→∞ lim supn→∞ E∗(Q∗2,T )2 = 0 and limK→∞ lim supn→∞ E∗(Q∗3,T )2 = 0, in probability. Condition (iii)
follows then using the bound

√
bTE∗(L∗T − L∗T,K)2 ≤ C

∑3
r=1 E∗(Q∗r,T )2.

Supplement to “Bootstrap-Based Testing of the Equality of Spectral Density Operators for Functional Pro-
cesses” The online supplement contains some useful technical tools, some new results on frequency domain
properties of linear Hilbertian stochastic processes and the proofs that were omitted in this paper.
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