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Abstract

In many applications, data often arise from multiple groups that may share similar char-

acteristics. A joint estimation method that models several groups simultaneously can be more

efficient than estimating parameters in each group separately. We focus on unraveling the depen-

dence structures of data based on directed acyclic graphs and propose a Bayesian joint inference

method for multiple graphs. To encourage similar dependence structures across all groups, a

Markov random field prior is adopted. We establish the joint selection consistency of the frac-

tional posterior in high dimensions, and benefits of the joint inference are shown under the

common support assumption. This is the first Bayesian method for joint estimation of multiple

directed acyclic graphs. The performance of the proposed method is demonstrated using simu-

lation studies, and it is shown that our joint inference outperforms other competitors. We apply

our method to an fMRI data for simultaneously inferring multiple brain functional networks.

Key words: Joint selection consistency, Markov random field prior, Cholesky factor

1 Introduction

Suppose we observe data from the following K groups,

Xk,1, . . . , Xk,nk | Ωk
ind.∼ Np(0,Ω

−1
k ), k = 1, . . . ,K, (1)

where Ωk ∈ Rp×p is the precision matrix of the kth group. Here, Np(µ,Σ) denotes the p-dimensional

normal distribution with the mean vector µ ∈ Rp and covariance matrix Σ ∈ Rp×p. We are in-

terested in investigating the dependence structures of each multivariate data set, especially in

high-dimensional settings. To consistently recover the dependence structure of multivariate data,

various sparsity assumptions have been suggested for high-dimensional covariance matrices (Cai

et al.; 2010; Cai and Zhou; 2012b), precision matrices (Banerjee and Ghosal; 2015; Ren et al.;
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2015) and Cholesky factors (Lee and Lee; 2017; Cao et al.; 2019). In this paper, we focus on sparse

Cholesky factors, whose sparsity patterns are related to directed acyclic graph (DAG) models. Our

goal is to develop a theoretically supported Bayesian method for jointly estimating multiple DAGs

under a sparsity assumption.

In many applications, data are collected from multiple groups that share similar characteristics.

For examples, gene expression levels are often measured over the patients with different subtypes

(Cai et al.; 2016; Liu et al.; 2019), where the DAGs may vary across subtypes but share similar

structures. Then, joint estimation can be more efficient than estimating each DAG separately.

Another motivation for this type of problem comes from neuroimaging studies. In neuroimaging

studies, it is common to explore the changes in functional connectivity for different brain regions

through the progression of a certain disease. Taking the Parkinson’s disease (PD) as an example,

during the progression of PD, some patients may develop the comorbidity of depression, and others

may not. Neuroscientists are interested in learning the complex interactions that govern brain

connectivity networks and contribute to the onset of depression. In such applications, statistical

methods for jointly estimating multiple DAGs can serve as a powerful tool to gain insight into the

underlying neurological mechanism.

When data are collected from a homogeneous population, many statistical methods for estimat-

ing high-dimensional sparse Cholesky factors have been developed. Shojaie and Michailidis (2010)

proposed a penalized likelihood method based on a lasso-type penalty and derived its convergence

rate. van de Geer and Bühlmann (2013) showed the convergence rate of the `0-penalized maximum

likelihood estimator for sparse Cholesky factors. Recently, Khare et al. (2019) developed a convex

sparse Cholesky selection, by using a reparameterization trick, and proved the convergence rate

and selection consistency in a moderate high-dimensional setting. From a Bayesian perspective,

Ben-David et al. (2015) introduced a class of DAG-Wishart priors for sparse DAG models, and

Cao et al. (2019) showed the posterior convergence rate and selection consistency of hierarchical

DAG-Wishart priors. Based on the autoregressive model representation of a Gaussian DAG model,

Lee et al. (2019) developed an empirical sparse Cholesky prior. They showed that the proposed

prior attains the minimax optimal posterior convergence rate as well as the selection consistency

under mild conditions. However, the above methods are lack of sharing information across graphs

when estimating multiple graphs with similar structures.

To infer data sets from heterogeneous populations, various methods have been proposed for

estimating multiple graphical models, i.e., precision matrices, by Danaher et al. (2014), Cai et al.

(2016), Peterson et al. (2015) and Gan et al. (2019), to name a few. On the other hand, only

few joint inference methods for multiple DAGs have been proposed in the literature. Wang et al.

(2020) proposed the joint greedy equivalence search for estimating multiple DAGs and proved its

convergence rate under the Frobenius norm. They showed that the cardinality of the union of

estimated DAGs has the same rate with that of the union of true DAGs. Recently, Liu et al. (2019)
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proposed a two-step method, called the multiple PenPC, to jointly estimate the skeletons of DAGs

and showed the joint selection consistency of the skeletons in high-dimensional settings. To the best

of our knowledge, no Bayesian method, which enjoys theoretical guarantees in high-dimensional

settings, has yet been suggested for multiple DAGs.

In this paper, we propose a prior for Bayesian joint inference, called the joint empirical sparse

Cholesky prior, for multiple DAGs in high-dimensional settings. We show that the proposed prior

achieves the joint selection consistency under mild conditions, which means that the marginal

posterior at the true DAGs converges to one as more data are collected (Theorem 3.1). To the

best of our knowledge, this is the first work that has established the joint selection consistency for

multiple DAGs under a Bayesian framework. We also prove theoretical benefits of the joint inference

under the common support assumption. Specifically, it is shown that the proposed method attains

the joint selection consistency under much weaker beta-min conditions (Theorems 3.3 and 3.4)

compared with separate inferences. In simulation studies, our joint inference method outperforms

the other state-of-the-art methods including frequentist joint estimators and Bayesian separate

inferences especially in high overlapping scenarios. These finding support our motivation for joint

inference: when multiple DAGs share similar structures, joint estimation can be more efficient than

separate estimations.

The rest of paper is organized as follows. Section 2 introduces multiple Gaussian DAG models,

the joint empirical sparse Cholesky prior and the fractional posterior distribution. In Section 3,

we show the joint selection consistency of the proposed method and benefits of the joint inference

compared with separate inferences. The finite sample performance of our method is investigated

in Section 4, and we conduct a real data analysis using a functional magnetic resonance imaging

(fMRI) dataset in Section 5. Section 6 concludes the paper with a discussion. The proofs of the

main results are given in Section 7.

2 Preliminaries

2.1 Multiple Gaussian DAG models

For a given precision matrix Ω ∈ Rp×p, let Ω = (Ip − A)TD−1(Ip − A) be its modified Cholesky

decomposition (MCD), where A = (ajl) is a lower triangular matrix with ajj = 0 and D = diag(dj)

with dj > 0, for all j = 1, . . . , p. Then, it is well known that X = (X1, . . . , Xp)
T ∼ Np(0,Ω

−1) can

be represented as a sequence of linear autoregressive models as follows:

X1 | dj ∼ N(0, d1),

Xj | aSj , dj , Sj ∼ N
(∑
l∈Sj

Xlajl, dj

)
, j = 2, . . . , p,
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where aSj = (ajl)
T
l∈Sj ∈ R|Sj |, Sj ⊆ {1, . . . , j − 1} and |Sj | is the cardinality of Sj (Bickel and

Levina; 2008). The support of the Cholesky factor, {S2, . . . , Sp}, determines the DAG, D = (V,E).

Here, V = {1, . . . , p} is a set of vertices, and E is a set of directed edges, where {l→ j} ∈ E if and

only if ajl 6= 0. In this paper, we assume that a parent ordering of variables is known in which no

edges exist from larger vertices to smaller vertices. The above model is called the Gaussian DAG

model.

Similarly, for a given 1 ≤ k ≤ K, we denote the MCD of Ωk by Ωk = (Ip − Ak)TD−1
k (Ip − Ak),

where Ak = (ak,jl) and Dk = diag(dkj). Let Skj = (Sk,j1, . . . , Sk,jj−1) ∈ {0, 1}j−1 be the support

of the jth row of Ak with Sk,jl = I(ak,jl 6= 0). With a slight abuse of notation, if there is no

confusion, Skj is sometimes used to denote the set of nonzero indices in the jth row of Ak, i.e.,

Skj = {l : ak,jl 6= 0} ⊆ {1, . . . , j − 1}. We denote the data from the kth group and the whole

data by Xk = (Xk,1, . . . , Xk,nk)T ∈ Rnk×p and X̃n = (XT
1 , . . . ,X

T
K)T ∈ Rn×p, respectively, where

n =
∑K

k=1 nk. Then, model (1) can be expressed as follows:

Xk,1 | dkj
ind.∼ Nnk(0, dkjInk),

Xk,j | ak,Skj , dkj , Skj
ind.∼ Nnk

(
Xk,Skjak,Skj , dkjInk

)
, j = 2, . . . , p, k = 1, . . . ,K,

(2)

where ak,Skj = (ak,jl)
T
l∈Skj ∈ R|Skj | and Xk,S ∈ Rnk×|S| is the submatrix consisting of Sth columns

of Xk for any S ⊆ {1, . . . , j − 1}. We call model (2) the multiple Gaussian DAG models. Note that

the lower triangular part of Ak can be seen as a set of regression vectors, thus we can use a prior

tailored to each row of the sparse regression coefficient vectors. We assume that the sample size

for each group, nk, can be different across all groups. We consider the high-dimensional setting in

which p ≥ n and allow the number of groups, K, grow to infinity as we observe more data.

2.2 Joint empirical sparse Cholesky priors

Lee et al. (2019) proposed the empirical sparse Cholesky (ESC) prior for a sparse DAG model on

the basis of the interpretation (2). In this paper, we extend this prior to deal with multiple DAGs.

For given 1 ≤ k ≤ K and Skj , we use the following conditional prior for Ak and Dk:

ak,Skj | dkj , Skj
ind.∼ N|Skj |

(
âk,Skj ,

dkj
γ

(
XT
k,Skj

Xk,Skj

)−1
)
, j = 2, . . . , p,

π(dkj) ∝ d
−ν0/2−1
kj , j = 1, . . . , p,

(3)

for some positive constants γ and ν0, where âk,Skj = (XT
k,Skj

Xk,Skj )
−1XT

k,Skj
Xk,j . This corresponds

to the ESC prior when K = 1. Note that the conditional prior for ak,Skj is an empirical version of

the Zellner’s g-prior (Zellner; 1986) centered at âk,Skj , and the prior for dkj becomes the Jeffreys

prior (Jeffreys; 1946) when ν0 = 0.
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For joint inference on multiple DAGs, given an integer j ∈ {2, . . . , p}, we propose the following

joint prior for (S1j , . . . , SKj):

π(S1j , . . . , SKj) ∝ f(S1j , . . . , SKj)
K∏
k=1

π(Skj), (4)

where

π(Skj) ∝
(
j − 1

|Skj |

)−1

p−c1|Skj |I(0 ≤ |Skj | ≤ Rj)

for some positive integers 0 < Rj ≤ j−1. Here, π(Skj) plays a role as a penalty term for the model

size |Skj |, which prefers sparse models. Similar priors have been used in the literature including

Martin et al. (2017) and Lee et al. (2019). For f(S1j , . . . , SKj) in (4), we suggest using the following

Markov random field (MRF) type prior to reflect the expectation that different groups share similar

DAG structures:

f(S1j , . . . , SKj) = exp
{
c2j

j−1∑
l=1

S̃Tjl(1K1TK − IK)S̃jl

}

= exp
{

2c2j

j−1∑
l=1

∑
k<k′

I(Sk,jl = Sk′,jl = 1)
}
, j = 2, . . . , p

for some constant c2j > 0, where S̃jl = (S1,jl, . . . , SK,jl)
T and 1K = (1, . . . , 1)T ∈ RK . This

MRF prior encourages similar patterns of sparsity for (S1j , . . . , SKj). Peterson et al. (2015) used a

similar MRF prior for inferring multiple graphical models. By putting together priors (3) and (4),

we propose a prior for multiple DAGs,

π(Ω1, . . . ,ΩK) ∝
p∏
j=2

π(S1j , . . . , SKj)

K∏
k=1

{ p∏
j=2

π(ak,Skj | dkj , Skj)
p∏
j=1

π(dkj)
}
,

which we call the joint empirical sparse Cholesky (JESC) prior hearafter.

2.3 α-fractional posterior

We adopt the fractional likelihood framework, which has received increasing attention in recent

years (Martin and Walker; 2014; Martin et al.; 2017; Lee et al.; 2019). Let θ and L(θ) be a parameter

and a likelihood function, respectively. For a given constant α ∈ (0, 1), α-fractional likelihood Lα(θ)

is the likelihood with power α, i.e., {L(θ)}α. Based on the JESC prior and α-fractional likelihood,

we have the following posterior distributions:

ak,Skj | dkj , Skj ,Xk
ind.∼ N|Skj |

(
âk,Skj ,

dkj
α+ γ

(
XT
k,Skj

Xk,Skj

)−1
)
, j = 2, . . . , p,

dkj | Skj ,Xk
ind.∼ IG

(αnk + ν0

2
,
αnk

2
d̂k,Skj

)
, j = 1, . . . , p,
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and

πα(S1j , . . . , SKj | X̃n) ∝ π(S1j , . . . , SKj)
K∏
k=1

fα(Xnk | Skj), j = 2, . . . , p,

where d̂k,Skj = n−1
k XT

k,j(Ink − P̃Skj )Xk,j , P̃Skj = Xk,Skj (X
T
k,Skj

Xk,Skj )
−1XT

k,Skj
and

fα(Xnk | Skj) =

∫∫
Lα(ak,Skj , dkj , Skj)π(ak,Skj | dkj , Skj)π(dkj | Skj)dak,Skj ddkj

∝
(

1 +
α

γ

)− |Skj |
2

(d̂k,Skj )
−αnk+ν0

2 .

We denote the posterior by πα(· | X̃n) to indicate that the α-fractional likelihood is used, and call

it the α-fractional posterior. To conduct the posterior inference for (S1j , . . . , SKj), the Metropolis-

Hastings within Gibbs algorithm can be used. The details are given in Section 4.1. Once we have

posterior samples of (S1j , . . . , SKj), the posterior samples of ak,Skj and dkj can be directly drawn

from the normal and inverse-gamma distributions, respectively.

3 Main Results

3.1 Joint selection consistency

In this section, we establish the joint selection consistency of the proposed JESC prior, which guar-

antees that we can recover the true DAGs asymptotically. Let Ω0k be the true precision matrix of

the kth class, for k = 1, . . . ,K. Let Ω0k = (Ip − A0k)
TD−1

0k (Ip − A0k) be the MCD of Ω0k, where

A0k = (a0k,jl) and D0k = diag(d0k,j). We denote SA as the support of the matrix A = (ajl), i.e.,

SA = (I(ajl 6= 0)). We first introduce the following sufficient conditions for true parameters:

Condition (A1) There exists a constant 0 < ε0 < 0.5 such that ε0 ≤ min1≤k≤K λmin(Ω0k) ≤
max1≤k≤K λmax(Ω0k) ≤ ε−1

0 .

Condition (A2) max1≤k≤K max2≤j≤p
∑p

l=1 I(a0k,jl 6= 0) ≤ s0 for some 1 ≤ s0 ≤ p.
Condition (A3) For some constant Cbm > 0,

min
1≤k≤K

min
(j,l):a0k,jl 6=0

nk a
2
0k,jl ≥

16

α(1− α)ε20(1− 2ε0)2
Cbm log p.

Condition (A4) K = o(log p).

Condition (A1) implies that the eigenvalues of each precision matrix Ω0k are bounded. This

condition is used to obtain upper bounds of d0k,j , d
−1
0k,j and ‖A0k‖. Similar conditions have been

used in, for examples, Ren et al. (2015), Khare et al. (2019) and Lee et al. (2019).
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Condition (A2) controls the maximum number of nonzero entries in each row of A0k. This

condition allows the upper bound s0 to grow to infinity as n get larger. Note that the estimation of

each row of A0k can be considered as the estimation of regression coefficient vector, thus introducing

this condition seems natural.

Condition (A3) is the well known beta-min condition for the minimum nonzero entries of each

Cholesky factor, A0k. This roughly means that the lower bound for nonzero a2
0k,jl is of order

O(log p/nk). The beta-min condition is essential for consistent variable selection in high-dimensional

linear regression models (Martin et al.; 2017; Yang et al.; 2016) and Gaussian DAG models (Yu

and Bien; 2017; Cao et al.; 2019). Note that if we assume k = 1 and nk = n, then the rate of the

lower bound in condition (A3) becomes log p/n, which is the best (minimum) beta-min condition

in the literature.

Condition (A4) restricts the number of classes. Note that K can grow to infinity as n → ∞ at

a rate slower than log p. Cai et al. (2016) and Wang et al. (2020) used similar condition for joint

estimation of high-dimensional precision matrices and DAGs, respectively.

Condition (P) ν0 = o(mink nk), c1 > 2, c2j ≤ 1/(j − 1) and γ = O(1). For some small 0 < c3 <

(ε′)2ε20/{128(1+2ε0)2} and ε′ = {(1−α)/10}2, we assume that Rj = b{(log n)−1∨c3}mink nk/ log pc.

Condition (P) shows a sufficient condition for hyperparameters in the JESC prior to obtain the

desired theoretical properties, where “P” stands for “prior”. The constant c1 controls the penalty

for the sparsity of Cholesky factors, thus the condition c1 > 2 gives the minimum strength of the

penalty. The constant c2j in the MRF prior controls the penalty for similarities across the DAGs,

thus c2j ≤ 1/(j − 1) implies that the effect of the MRF prior should not be too strong. This

intuitively makes sense because if c2j is too large and dominates the other priors and likelihoods,

then the posterior will always select the full model, i.e., Skj = {1, . . . , j − 1} for all 1 ≤ k ≤ K and

2 ≤ j ≤ p. The condition Rj = b{(log n)−1 ∨ c3}mink nk/ log pc implies that the maximum number

of nonzero entries in each row of A0k should at least be of order mink nk/ log p for the consistent

selection. In finite samples, we suggest choosing Rj = bmink nk(log p log n)−1c. In Section 4.1, we

will give a practical guidance for the choice of hyperparameters.

Theorem 3.1 (Joint selection consistency) Suppose that conditions (A1)-(A4) and (P) hold

with Cbm > c1 + 2. Then, if s0 log p ≤ mink nkc3/2 and s0 ≥ Cbm − c1 − 1, we have

E0

{
πα

(
SA1 = SA01 , . . . , SAK = SA0K

| X̃n

)}
−→ 1 as min

k
nk →∞.

Theorem 3.1 presents the joint selection consistency for multiple DAGs. It is worth comparing

our result with those in Liu et al. (2019) in terms of the required conditions. To obtain consistency,

they assumed mink λmin(Σ0k,AA) ≥ C1 and maxk Σ0k,jj < C2 for any A ∈ {1, . . . , p} with |A| ≤
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q and some constants C1 and C2 > 0, which is weaker than condition (A1), where Σ0k,AA =

(Σ0k,jl)j,l∈A. It was also assumed that nk � n for all k = 1, . . . ,K. Note that this condition implies

K = O(1), thus it is stronger than our condition (A4). They further assumed p = O(exp(na)) and

q = maxj |Aj | = O(nb) for some constants a ∈ [0, 1) and b ∈ [0, (1 − a)/2), where Aj = ∪Kk=1A
(k)
j

and A
(k)
j = {l : Ω0k,jl 6= 0 and l 6= j}. By Lemma 1 in Liu et al. (2019), q = O(nb) implies

s0 ≤ | ∪Kk=1 S0k,j | = O(nb), thus it is slightly more restrictive than our conditions, (A2) and

s0 log p ≤ mink nkc3/2. They used the beta-min conditions,

min
1≤k≤K

min
(j,l):Ω0k,jl 6=0

∣∣∣Ω0k,jl

Ω0k,jj

∣∣∣ & n−d1 and n−d2 . |ρ(k)
jl|S | ≤M < 1, (5)

for some 0 < d1 < (1 − a − b)/2, 0 < d2 < {1 − (a ∨ b)}/2 and any S ∈ Π
(k)
jl , where Π

(k)
jl =

{A(k)
jl \ D

(k)
jl : D

(k)
jl ⊆ C

(k)
jl }, A

(k)
jl is the Markov blanket of j and l after removing their common

children and descendants, and C
(k)
jl is the set of common children or descendants. Note that (5)

consists of two beta-min conditions to guarantee selection consistency in each step. Although their

beta-min conditions are not directly comparable with ours, the squares of the lower bounds in (5),

n−2d1 and n−2d2 , are much larger than log p/nk in condition (A3). Therefore, we obtain the joint

selection consistency under weaker conditions on K, s0 and minimum nonzero signals than those

in Liu et al. (2019).

Theorem 3.2 Let πI(Skj | Xnk) ∝ fα(Xnk | Skj)π(Skj) be the independence posterior for Skj.

Suppose that there exists 1 ≤ k ≤ K such that ∪k′ 6=kS0k′,j ⊆ S0k,j. Then, for any j = 2 . . . , p, we

have

πα
(
S0k,j | S01,j , . . . , S0k−1,j , S0k+1,j , . . . , S0K,j , X̃n

)
≥ πIα(S0k,j | Xnk). (6)

Theorem 3.2 shows that the joint inference increases the conditional posterior probability at the

true DAGs compared to the separate inference. Note that ∪k′ 6=kS0k′,j ⊆ S0k,j holds if and only if

f(S01,j , . . . , S0k−1,j , Skj , S0k+1,j , . . . , S0K,j) ≤ f(S01,j , . . . , S0k−1,j , S0k,j , S0k+1,j , . . . , S0K,j)(7)

for any Skj 6= S0k,j . For example, (7) trivially holds if we assume the common support, i.e., S01,j =

· · · = S0K,j .

3.2 Benefits of joint inference

In this section, the theoretical benefits of the joint inference, compared with separate inferences,

are presented. Although investigating benefits of the joint inference under heterogeneous DAGs is

important, it is very challenging to explore every possible scenario. Thus, we focus on the case

where all Cholesky factors share a common support, i.e., all DAGs share a common structure. For

example, Cai et al. (2016) and Gan et al. (2019) also used the common support assumption for
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multiple precision matrices and showed advantages of the joint estimation. In this case, we suggest

using the restricted posterior to the space of common supports,

π̃α(SA | X̃n) =
πα(SA1 = · · · = SAK = SA | X̃n)∑
SA
πα(SA1 = · · · = SAK = SA | X̃n)

.

To prove the joint selection consistency of π̃α(SA | X̃n), we introduce a weakened beta-min condi-

tion as follows:

Condition (B3) For some constant Cbm > 0,

min
(j,l):a01,jl 6=0

K∑
k=1

nk a
2
0k,jl ≥

16

α(1− α)ε20(1− 2ε0)2
CbmK log p.

Note that condition (A3) implies (B3), thus we call condition (B3) a weakened beta-min condi-

tion. If we assume that n1 = · · · = nK , then condition (B3) roughly means that the lower bound

for K−1
∑K

k=1 min(j,l):a0k,jl 6=0 a
2
0k,jl is of order O(log p/nk). Thus, we can consistently recover the

true support as long as the average of minimum signals is significant, even if minimum signals of

some classes are quite small. This can be seen as the benefit of the joint inference, and the following

theorem states the desired result.

Theorem 3.3 (Benefit of joint inference) Assume that SA01 = · · · = SA0K
≡ S0 and K log p =

o(mink nk). Then, under the same condition with Theorem 3.1, except using condition (B3) instead

of (A3), we have

E0

{
π̃α(SA = S0 | X̃n)

}
−→ 1 as min

k
nk →∞.

Note that K log p = o(mink nk) trivially holds if we assume (log p)2 = o(mink nk), by condi-

tion (A4). Cai et al. (2016) assumed K2a−1 log p (log n)2 = o(mink nk) and max(K,K4−a logK) =

o(log p) for some constant a > 0. The second condition is comparable to our condition (A4) when

a = 3, and then the first condition becomes K5 log p (log n)2 = o(mink nk). Thus, our condition

K log p = o(mink nk) is much weaker than that of Cai et al. (2016).

In fact, if we slightly modify the prior for SA, we can further weaken the beta-min condition.

Define the modified prior for (S1j , . . . , SKj) as

π̃(S1j , . . . , SKj) ∝ π(S1j , . . . , SKj)
1/K

∝ f(S1j , . . . , SKj)
1/K

K∏
k=1

π(Skj)
1/K

≡ f̃(S1j , . . . , SKj)
K∏
k=1

π̃(Skj),
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and let π̃∗α(SA | X̃n) = π̃∗α(SA1 = · · · = SAK = SA | X̃n) be the restricted posterior to the space of

common supports using the prior π̃(S1j , . . . , SKj) instead of π(S1j , . . . , SKj). Then, it suffices to as-

sume the following condition (C3) instead of condition (B3) to obtain the joint selection consistency:

Condition (C3) For some constant Cbm > 0,

min
(j,l):a01,jl 6=0

K∑
k=1

nk a
2
0k,jl ≥

16

α(1− α)ε20(1− 2ε0)2
Cbm log p.

Theorem 3.4 (Benefit of joint inference II) Assume that SA01 = · · · = SA0K
≡ S0. Then,

under the same condition with Theorem 3.1, except using condition (C3) instead of (A3), we have

E0

{
π̃∗α(SA = S0 | X̃n)

}
−→ 1 as min

k
nk →∞.

Theorem 3.4 shows the advantage of the joint inference based on the restricted posterior π̃∗α(SA |
X̃n): it only requires condition (C3), which is much weaker than condition (B3). Compared with

Theorems 3.1 and 3.3, it reveals that, under the common support assumption, we can obtain the

joint selection consistency as long as the summation of minimun signals is significant. Note that the

lower bound in condition (C3) coincides with that in (A3). Cai et al. (2016) used a similar beta-

min condition to condition (C3) for the nonzero entries of precision matrices, but using logK log p

instead of log p. Hence, our beta-min condition is weaker than their in terms of the rate. Also note

that
∏K
k=1 π̃(Skj) ∝ π(S1j)I(S1j = · · · = SKj) when S1j = · · · = SKj . Thus, this implies that it is

sufficient to use a single penalty (prior) for all K classes rather than use a penalty for each class.

4 Simulation Studies

In this section, we carry out simulation studies to illustrate the model selection performance of our

method and show its potential benefits over other contenders.

4.1 Posterior inference

The use of the JESC prior not only guarantees the asymptotic properties but also allows us to

easily conduct the posterior inference. Recall that for j = 2, . . . , p,

πα(S1j , . . . , SKj | X̃n)

∝
K∏
k=1

(
1 +

α

γ

)− |Skj |
2 (

d̂k,Skj
)−αnk+ν0

2

(
j − 1

|Skj |

)−1

p−c1|Skj |I
(
0 ≤ |Skj | ≤ Rj

)
× exp

{
c2

j−1∑
l=1

S̃Tjl(1K1TK − IK)S̃jl

}
,
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where S̃jl = (S1,jl, . . . , SK,jl)
T . Hence, we can run the Metropolis-Hastings within Gibbs sampling

algorithm for each j = 2, . . . , p in parallel. Here, we briefly summarize the algorithm used for the

inference:

Run the following steps for j = 2, . . . , p.

1. Set the initial values S
(1)
1j , . . . , S

(1)
Kj .

2. For each t = 2, . . . , T , run the following steps for k = 1, . . . ,K.

(a) sample Snewkj ∼ q
(
· | S(t)

kj

)
;

(b) set S
(t)
kj = Snewkj with the probability

min

{
1,
πα(Snewkj | S

(t)
1j , . . . , S

(t)
k−1,j , S

(t−1)
k+1,j , . . . , S

(t−1)
Kj , X̃n)q(S

(j−1)
kj | Snewkj )

πα(S
(t−1)
kj | S(t)

1j , . . . , S
(t)
k−1,j , S

(t−1)
k+1,j , . . . , S

(t−1)
Kj , X̃n)q(Snewkj | S

(t−1)
kj )

}

= min

{
1,

πα(Snewkj | Xnk)f(S
(t)
1j , . . . , S

(t)
k−1,j , S

new
kj , S

(t−1)
k+1,j , . . . , S

(t−1)
Kj )q(S

(j−1)
kj | Snewkj )

πα(S
(t−1)
kj | Xnk)f(S

(t)
1j , . . . , S

(t)
k−1,j , S

(t−1)
kj , S

(t−1)
k+1,j , . . . , S

(t−1)
Kj )q(Snewkj | S

(t−1)
kj )

}
,

otherwise set S
(t)
kj = S

(t−1)
kj .

The kernel q(Snew | S) is chosen to form a new set Snew by changing a randomly selected nonzero

component to 0 with probability 0.5 or by changing a randomly selected zero component to 1 with

probability 0.5. Steps 1 and 2 in the above algorithm, can be parallelized for each column. For more

details, we refer the interested readers to Cao et al. (2019) and Lee et al. (2019).

The tuning parameters are chosen as suggested in Martin et al. (2017) and Lee et al. (2019).

Specifically, we set α = 0.999 to mimic the Bayesian model with the original likelihood. In practice,

as long as 1 − α is close to zero, the performance was not sensitive to the choice of α. The other

hyperparameters were chosen as γ = 0.1, ν0 = 0, c1 = 2 and c2j = {p(K − 1)}−1 for j = 2, . . . , p

to satisfy the theoretical conditions. The above algorithm is coded in R and publicly available at

https://github.com/xuan-cao/Multiple-DAG-Selection.

4.2 Simulation setting

In this section, we demonstrate the performance of the proposed method in various settings similar

to those used in Liu et al. (2019); Peterson et al. (2015, 2020). We construct three Cholesky factors

A1, A2, and A3 corresponding to DAGs D1, D2 and D3 with different degrees of shared structure.

We include p = 150 nodes, and consider the first scenario as follows. For the first p × p lower

triangular matrix A1, we randomly chose 2% of the lower triangular entries of A1 and sampled

their values from a uniform distribution on [−0.7,−0.3] ∪ [0.3, 0.7]. The remaining entries were set

to zero. D1 can be acquired by mapping the nonzero entries in A1 to a DAG with p nodes. To
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obtain D2, five edges are removed from D1 and five new edges added at random. To obtain D3,

five edges are removed from the graph for group 2, and five edges added at random. All the lower

triangular entries in A2 and A3 are generated in a similar manner as in A1. We call this simulation

setting Scenario 1 (high overlapping), where each pair of DAGs have 218 of 223 edges (97.76%) in

common.

Next, we investigate a different simulation scenario, say Scenario 2 (medium overlapping), where

A1,D1, A2,D2 are formed as in Scenario 1, but we change the design of A3 and D3 as follows. To

obtain D3, 20 edges are removed from the graph for group 2, and 20 edges added at random. All the

entries in three Cholesky factors A1, A2, and A3 are generated as in Scenario 1. Under this setting,

D1 and D2 share 218 of 223 edges (97.76%), D2 and D3 share 203 edges (91.03%), and D1 and D3

share around 219 edges (89.24%). For our final simulation setting, Scenario 3 (low overlapping),

we first create A1 and D1 as previously mentioned, and obtain D2 by randomly removing 20

edges and adding 20 edges from D1. D3 is again acquired by randomly removing 20 edges and

adding 20 edges from D2. These steps result in DAGs D1 and D2 that share 203 of 223 edges

(91.03%), D2 and D3 that share 203 edges (91.03%), and D1 and D3 that have 185 common edges

(82.96%). All the nonzero entries in A1, A2, and A3 are then sampled from a uniform distribution

as elaborated in Scenario 1. For all settings, we simulate the diagonal entries of D1, D2, D3 from

a uniform distribution on [2, 5]. Given the precision matrices Ωk = (Ip − Ak)TD−1
k (Ip − Ak) for

k = 1, 2, 3, the data sets were generated from the multivariate normal distribution Np(0,Ω
−1
k ) with

(nk, p) = (100, 150) for k = 1, 2, 3.

4.3 Performance comparison

We compare the following methods: the proposed JESC prior, Bayesian inference based on ESC

applied separately for each group (SESC) (Lee et al.; 2019), multiple PenPC (MPenPC) (Liu et al.;

2019), joint graphical lasso (JGL) (Danaher et al.; 2014), and seperate DAG lasso (DAGL) for

each group (Shojaie and Michailidis; 2010). The tuning parameters in JGL were selected using a

grid search to identify the combination that minimizes the AIC as suggested in Danaher et al.

(2014). Since for our simulation studies, JGL could not produce exact zeros in the Cholesky factors

of the estimated precision matrices, we further adopt the hard thresholding of these Cholesky

factors. The penalty parameters in MPenPC were tuned using the extended BIC (EBIC) (Chen

and Chen; 2008) as suggested in Liu et al. (2019). The penalty parameters in DAGL were set as

λi(α) = 2n−1/2Z∗0.1/{2p(i−1)} (separate for each variable i), where Z∗q denotes the (1− q)th quantile

of the standard normal distribution. This choice is justified in Shojaie and Michailidis (2010) based

on asymptotic considerations. For Bayesian methods, we ran the Metropolis-Hastings algorithm

specified in Section 4.1 for each data set to conduct posterior inferences. Every MCMC chain

started from an empty initial state and ran for 5,000 iterations with a burn-in period of 1,000, since
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Table 1: Performance summary for Scenario 1 (high overlapping). Comparison of true positive rate

(TPR), false positive rate (FPR), Matthews correlation coefficient (MCC) and area under the ROC

curve (AUC). The models compared are the Bayesian joint ESC method proposed in this paper

(JESC) (Lee et al.; 2019), separate ESC method applied for individual group (SESC), multiple

PenPC (MPenPC) (Liu et al.; 2019), and joint graphical lasso (JGL) (Danaher et al.; 2014).

Measure JESC SESC MPenPC JGL DAGL

Group 1 TPR 0.8879 0.8610 0.8924 0.9148 0.3785

FPR 0.0045 0.0048 0.0232 0.0365 0

MCC 0.8403 0.8193 0.6163 0.5432 0.6113

AUC 0.9761 0.9684 · · ·
Group 2 TPR 0.9148 0.9072 0.9462 0.9372 0.3668

FPR 0.0039 0.0044 0.0211 0.0326 0

MCC 0.8664 0.8369 0.6638 0.5769 0.6009

AUC 0.9962 0.9780 · · ·
Group 3 TPR 0.8969 0.8654 0.8879 0.8789 0.3552

FPR 0.0038 0.0041 0.0230 0.0369 0

MCC 0.8580 0.8361 0.6152 0.5224 0.5901

AUC 0.9835 0.9805 · · ·
All edges TPR 0.8999 0.8775 0.9088 0.9103 0.3669

FPR 0.0040 0.0044 0.0224 0.0353 0

MCC 0.8549 0.8308 0.6317 0.5471 0.6010

AUC 0.9479 0.9289 · · ·
Differential edges TPR 1 0.9050 1 1 0.4600

FPR 0 0 0 0 0

MCC 1 0.9098 1 1 0.5463

AUC 1 0.9525 · · ·

we observed that on average the posterior samples converged rapidly and stabilized after 1,000

iterations. The hyperparameter c2 was set to 0 when implementing SESC. We constructed the final

model by collecting indices with inclusion probabilities exceeding 0.5.

To evaluate the performance of joint DAG selection, the true positive rate (TPR), false positive

rate (FPR), Matthews correlation coefficient (MCC), and area under the curve (AUC) are reported

at Tables 1, 2 and 3 averaged over 20 repetitions. The criteria are defined as

TPR =
TP

TP + FN
,

FPR =
FP

TN + FP
,

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TP, TN, FP and FN are true positive, true negative, false positive and false negative,

respectively. The AUC is calculated based on the TPR and the FPR for Bayesian methods with

varying thresholds. The AUCs for the regularization methods are omitted.

Based on the simulation results (Tables 1 to 3), we can tell that the proposed method is more
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Table 2: Performance summary for Scenario 2 (medium overlapping).

Measure JESC SESC MPenPC JGL DAGL

Group 1 TPR 0.8704 0.8475 0.9058 0.9193 0.3565

FPR 0.0051 0.0049 0.0227 0.0363 0

MCC 0.8195 0.8096 0.6275 0.5465 0.5908

AUC 0.9810 0.9836 · · ·
Group 2 TPR 0.9238 0.8654 0.9238 0.9372 0.3632

FPR 0.0030 0.0043 0.0216 0.0330 0

MCC 0.8901 0.8307 0.6466 0.5748 0.5963

AUC 0.9896 0.9885 · · ·
Group 3 TPR 0.8610 0.8834 0.8924 0.8879 0.3529

FPR 0.0040 0.0046 0.0232 0.0368 0

MCC 0.8335 0.8359 0.6163 0.5276 0.5897

AUC 0.9859 0.9853 · · ·
All edges TPR 0.8849 0.8654 0.9073 0.9148 0.3584

FPR 0.0041 0.0046 0.0225 0.0354 0

MCC 0.8475 0.8254 0.6301 0.5484 0.5930

AUC 0.9405 0.9304 · · ·
Differential edges TPR 0.8920 0.8482 0.9241 0.9190 0.3800

FPR 0 0 0.0381 0.0814 0

MCC 0.8978 0.8584 0.8867 0.8423 0.4835

AUC 0.9461 0.9235 · · ·

Table 3: Performance summary for Scenario 3 (low overlapping).

Measure JESC SESC MPenPC JGL DAGL

Group 1 TPR 0.8879 0.8520 0.8924 0.9193 0.3796

FPR 0.0042 0.0048 0.0226 0.0360 0

MCC 0.8456 0.8140 0.6207 0.5484 0.6067

AUC 0.9866 0.9786 · · ·
Group 2 TPR 0.8969 0.8565 0.9148 0.9193 0.3330

FPR 0.0041 0.0040 0.0236 0.0372 0

MCC 0.8526 0.8327 0.6254 0.5422 0.5705

AUC 0.9829 0.9785 · · ·
Group 3 TPR 0.8879 0.9103 0.9148 0.9148 0.3643

FPR 0.0044 0.0047 0.0255 0.0365 0

MCC 0.8403 0.8497 0.6116 0.5432 0.5967

AUC 0.9869 0.985 · · ·
All edges TPR 0.8909 0.8729 0.9073 0.9178 0.3576

FPR 0.0042 0.0045 0.0239 0.0366 0

MCC 0.8462 0.8321 0.6191 0.5446 0.5916

AUC 0.9433 0.9342 · · ·
Differential edges TPR 0.8530 0.8105 0.9255 0.8940 0.3375

FPR 0 0 0.0518 0.0905 0

MCC 0.8617 0.8256 0.8753 0.8392 0.4459

AUC 0.9251 0.9022 · · ·

conservative in the identification of differential edges compared with frenquentist approaches, as

indicated by its lower sensitivity and FPR. The high FPR of the penalized likelihood based methods
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Figure 1: The log of unnormalized posterior scores during the first 500 iterations under different

scenarios.

in selecting differential edges is partly due to the fact that they select a larger number of false

positive edges overall and may be because the regularization methods based on cross-validation

tend to include many redundant variables resulting in a relatively larger number of errors compared

with those for the Bayesian methods (Peterson et al.; 2020).

The proposed method achieves the highest MCC in identifying all edges across methods com-

pared and yields a higher AUC compared with the separate inference, especially in the high and

medium overlapping scenarios. As indicated in our theoretical results, the estimation performance

based on the joint inference benefits the most when all graphs share the common support. Figure

1 shows the unnormalized posterior scores in log scale. Based on Figure 1, it seems that, in the

high and medium overlapping settings, not only does JESC outperform SESC but also the poste-

rior probabilities based on JESC increase faster than SESC during the beginning of the MCMC

procedure.

5 Inferring Brain Functional Networks

In this section, we continue the illustration of JESC by applying the proposed method to an fMRI

data set for simultaneously inferring multiple brain functional networks. Parkinson’s disease (PD) is

a major neurodegenerative disease influenced by both genetic and environmental factors (Halliday

et al.; 2014). As the second most common neurodegenerative disorder, PD is characterized by the

degeneration of dopamine-producing cells in the brain resulting in motor symptoms and nonmotor

features (Mhyre et al.; 2012). Depression is the most common psychiatric symptom in patients

with PD, and one of the earliest prodromal comorbidities that can have a significant impact on

the quality of life (Chagas et al.; 2013). Nonmotor features including depression can appear in

the earliest phase of the disease even before clinical motor impairment (Lix et al.; 2010; Shearer

15



et al.; 2012; Tibar et al.; 2018), but the efficacy of medications and psychotherapies for treating

depression in PD (DPD) patients remains limited (Abós et al.; 2017). Hence, advances in timely

detection and concerted management of DPD becomes urgent.

Up until now, the neural and pathophysiologic mechanisms of DPD remain unclear and are key

research priorities for neurologists. A variety of neuroimaging technologies including fMRI, structure

MRI, positron emission tomography and electroencephalography have been adopted to study PD.

Among these, neuroimaging indicators have achieved considerable progress, and have provided

new insights into PD. Resting-state fMRI exploits blood oxygen level-dependent signal to assess

the correlation of the networks in different brain areas. An intra- and inter-network functional

connectivity study in DPD demonstrated abnormal functional connection in left frontoparietal

network, basal ganglia network, salience network and default-mode network (Wei et al.; 2017).

To understand the underlying functional network changes for both DPD and non-depressed PD

(NDPD) patients so that physicians could get an early-diagnosis in time for available treatment,

we apply the proposed method to an fMRI data set (Wei et al.; 2017) for identifying regions of

interest that are associated with the aberrant functional network and relevant to the onset of DPD

and NDPD.

Twenty-one DPD patients, 49 NDPD patients and 50 matched healthy controls (HC) were

recruited. Image data were acquired using a Siemens 3.0-Tesla signal scanner and functional imag-

ing data were collected transversely by using a gradient-recalled echo-planar imaging (GRE-EPI)

pulse sequence. We further perform image preprocessing procedure using Data Processing Assis-

tant for Resting-State fMRI (http://rfmri.org/DPARSF) based on Statistical Parametric Mapping

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/) operated on the Matlab platform. Zang et al.

(2004) proposed the method of Regional Homogeneity (ReHo) to analyze characteristics of regional

brain activity and to reflect the temporal homogeneity of neural activity. In particular, we focus on

the mReHo maps obtained by dividing the mean ReHo of the whole brain within each voxel in the

ReHo map. We further segment the mReHo maps based on the Harvard-Oxford atlas (HOA) and

extract all the mReHo signals corresponding to 15 subcortical regions of interest (ROI) (HOA num-

ber: 97-112) using the Resting-State fMRI Data Analysis Toolkit. Hence, adapted to our setting,

n1 = 21, n2 = 49, n3 = 50, p = 15, and the ordering is taken according to the HOA number.

We apply JESC along with other contenders to the resulting mReHo data set consisting of three

groups for jointly estimating the functional connectivity networks. The parameter configuration are

identical to those in the simulation study. Table 4 lists the number of edges selected by JESC and

its competitors. The separate estimation methods (SESC and DAGL) resulted in graphs that share

fewer edges in the Cholesky factors for the precision matrices of three groups. JGL resulted in most

shared edges, followed by MPenPC and our method (JESC). Overall, JGL and MPenPC selected

a lot more linked genes than other methods. JESC and SESC selected less unique edges among the

ROIs for DPD than those for NDPD and HC. This might suggest that the patients with DPD lack
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some important links among the subcortical regions. By visualizing the brain connectome as nodes

and edges, Figure 2 shows the DAGs for three groups and all the shared edges estimated by JESC.

Table 5 lists six edges that are unique to the group of DPD identified by JESC. In particu-

lar, we discover discriminative connectivity changes between hippocampus and amygdala areas.

These findings suggest disease-related alterations of functional connectivity as the basis for faulty

information processing in DPD. Our findings are in good agreement with the aberrant functional

features in subcortical regions that are related to the onset of DPD as shown in previous studies

(Dan et al.; 2017; Lin et al.; 2020; Cao et al.; 2020).

(a) Shared edges (b) HC (c) DPD (d) NDPD

Figure 2: Estimated brain function activity networks for HC, DPD, NDPD and the shared connec-

tions among three groups.

Table 4: Number of edges selected by the proposed method and its competitors. “DPD unique”

counts the number of edges that only appear in the DPD group; “NDPD unique” counts the number

of edges that only appear in the NDPD group; “HC unique” counts the number of edges that only

appear in the HC group; and “Shared” counts the number of edges shared by all three groups.

Method DPD unique NDPD unique HC unique Shared

JESC 6 8 12 14

SESC 8 9 11 10

MPenPC 10 5 8 19

JGL 9 3 9 27

DAGL 5 3 5 5

6 Discussion

In this paper, we proposed the JESC prior for Bayesian joint inference of multiple DAGs. In

high-dimensional settings, the induced posterior attains the joint selection consistency under mild

conditions. We also showed the advantage of the joint inference over separate inferences, in terms of
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Table 5: Estimated edges that are unique to the group of DPD and the related brain regions indexed

in the HOA template.

ID HOA number Brain region A HOA number Brain region B

1 105 Left Pallidum 99 Left Thalamus

2 105 Left Pallidum 102 Right Caudate

3 107 Left Hippocampus 100 Right Thalamus

4 107 Left Hippocampus 101 Left Caudate

5 108 Right Hippocampus 106 Right Pallidum

6 109 Left Amygdala 108 Right Hippocampus

requiring weaker beta-min conditions, when the DAGs share the common structure. The proposed

joint inference outperforms other state-of-the-art methods in numerical studies based on simulated

data sets. We also applied our method to an fMRI data set, where our results are consistent with

previous neurological findings.

Throughout the paper, we focus on the MRF prior to encourage similar structures across all

DAGs. The other choice of prior can be imposed that depends on the relationship between graphs.

For example, if there is a natural ordering between K classes so that it is expected that the DAGs

were generated based on a Markov chain, one can use a prior,

f(S1j , . . . , SKj) = f(S1j)

K∏
k=2

π(Skj | Sk−1,j)

∝
K∏
k=2

exp
{

2c2

j−1∑
l=1

I(Sk,jl = Sk−1,jl = 1)
}
, j = 2, . . . , p

for some constant c2 > 0, which encourages similar patterns of sparsity for two consecutive graphs

Skj and Sk−1,j . Theoretical properties of the joint inference based on various types of joint priors

for (S1j , . . . , SKj), including the above Markov-type prior, may worth investigating as future work.
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7 Proofs

Proof of Theorem 3.1 Let Sj = (S1j , . . . , SKj) and S0j = (S01,j , . . . , S0K,j). It suffices to show

that

E0

{
πα

(
Sj 6= S0j | X̃n

)}
= o(p−1)

for any j = 2, . . . , p, because

1− E0

{
πα

(
SA1 = SA01 , . . . , SAK = SA0K

| X̃n

)}
≤

p∑
j=2

E0

{
πα

(
Sj 6= S0j | X̃n

)}
.

Note that {Sj 6= S0j} is equivalent to {Skj 6= S0k,j for at least one k = 1, . . . ,K}. For given

1 ≤ l ≤ K and 1 ≤ k1 < . . . < kl ≤ K, define

Nk1,...,kl :=
{
Sj : Skj 6= S0k,j if and only if k ∈ {k1, . . . , kl}

}
.

Then, we have

πα
(
Sj 6= S0j | X̃n

)
=

K∑
k=1

∑
Sj∈Nk

πα
(
Sj | X̃n

)
+
∑
k1<k2

∑
Sj∈Nk1,k2

πα
(
Sj | X̃n

)
+

∑
k1<k2<k3

∑
Sj∈Nk1,k2,k3

πα
(
Sj | X̃n

)
+ · · · +

∑
Sj∈N1,...,K

πα
(
Sj | X̃n

)
. (8)

The first term in (8) can be divided into two parts:

K∑
k=1

E0

{
πα(Sj ∈ Nk | X̃n)

}
=

K∑
k=1

[
E0

{
πα(Sj ∈ Nk, Skj ) S0k,j | X̃n)

}
+ E0

{
πα(Sj ∈ Nk, Skj + S0k,j | X̃n)

}]
.

Let πI(Skj | Xnk) ∝ fα(Xnk | Skj)π(Skj) be the posterior for Skj based on the separate inference

for each DAG. Note that if Sj ∈ Nk, then we have

πα
(
Sj | X̃n

)
πα
(
S0j | X̃n

) =
πIα(Skj | Xnk)

πIα(S0k,j | Xnk)

f(S1j , . . . , SKj)

f(S01,j , . . . , S0K,j)

and

f(S1j , . . . , SKj)

f(S01,j , . . . , S0K,j)
= exp

[
c2j

∑
k′ 6=k

{
|Skj ∩ S0k′,j | − |S0k,j ∩ S0k′,j |

}]
≤ exp

[
c2j

∑
k′ 6=k

{
|Skj ∩ S0k′,j |

}]
≤ exp

{
c2j(K − 1)(j − 1)

}
≤ exp

{
c2j(j − 1)K

}
.
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Then, we have

K∑
k=1

[
E0

{
πα(Sj ∈ Nk, Skj ) S0k,j | X̃n)

}
≤

K∑
k=1

∑
Sj∈Nk,Skj)S0k,j

E0

{ πα(Sj | X̃n)

πα(S0j | X̃n)

}

=
K∑
k=1

∑
Sj∈Nk,Skj)S0k,j

E0

{ K∏
k′=1

πIα(Sk′j | Xnk′ )

πIα(S0k′,j | Xnk′ )

}f(S01,j , . . . , S0k−1,j , Skj , S0k+1,j , . . . , S0K,j)

f(S01,j , . . . , S0K,j)

≤
K∑
k=1

∑
Skj)S0k,j

E0

{ πIα(Skj | Xnk)

πIα(S0k,j | Xnk)

}
exp

{
c2j(j − 1)K

}
. Kp−c1Rj exp

{
c2j(j − 1)K

}
≤ Kp−(c1−1) exp

{
c2j(j − 1)K

}
≤ Kp−{(Cbm−c1−1)∧(c1−1)} exp

{
c2j(j − 1)K

}
where the last inequality follows from the proof of Lemma 6.1 in Lee et al. (2019). Let NSkj ,α,χ2 be

the set defined in the proof of Theorem 3.1 in Lee et al. (2019). Then,

K∑
k=1

E0

{
πα(Sj ∈ Nk, Skj + S0k,j | X̃n)

}]
≤

K∑
k=1

∑
Skj+S0k,j

P0

(
Xnk ∈ NSkj ,α,χ2

)
+

K∑
k=1

∑
Skj+S0k,j

E0

{ πIα(Skj | Xnk)

πIα(S0k,j | Xnk)
I(Xnk ∈ N

c
Skj ,α,χ2)

}
exp

{
c2j(j − 1)K

}
.

K∑
k=1

∑
Skj+S0k,j

exp
{
− (ε′)2ε20

64(1 + 2ε0)2
nk

}

+
K∑
k=1

∑
Skj+S0k,j

E0

{ πIα(Skj | Xnk)

πIα(S0k,j | Xnk)
I(Xnk ∈ N

c
Skj ,α,χ2)

}
exp

{
c2j(j − 1)K

}
. K exp

{
− (ε′)2ε20

128(1 + 2ε0)2
min
k
nk

}
+K

(
p−Cbm+1Rj + p−Cbm+c1+1

)
exp

{
c2j(j − 1)K

}
. Kp−(Cbm−c1−1) exp

{
c2j(j − 1)K

}
≤ Kp−{(Cbm−c1−1)∧(c1−1)} exp

{
c2j(j − 1)K

}
where the second and third inequalities follow from Lemma 6.2 and the proof of Theorem 3.1 in

Lee et al. (2019). The last inequality holds by Condition (P) because we assume s0 ≥ Cbm− c1− 1.

Now consider the second term in (8). Note that if Sj ∈ Nk1,k2 , then we have

πα
(
Sj | X̃n

)
πα
(
S0j | X̃n

) =
πIα(Sk1j | Xnk1

)

πIα(S0k1,j | Xnk1
)

πIα(Sk2j | Xnk2
)

πIα(S0k2,j | Xnk2
)

f(S1j , . . . , SKj)

f(S01,j , . . . , S0K,j)
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and

f(S1j , . . . , SKj)

f(S01,j , . . . , S0K,j)
≤ exp

[
c2j

{
|Sk1j ∩ Sk2j |+

∑
k′ /∈{k1,k2}

|Sklj ∩ S0k′,j |
}]

≤ exp
[
c2j

{
j − 1 + 2(K − 2)(j − 1)

}]
≤ exp

{
c2j(j − 1)2K

}
.

If Sj ∈ Nk1,k2 , then one of the followings holds: (1) Sk1j ) S0k1,j and Sk2j ) S0k2,j , (2) Sk1j ) S0k1,j

and Sk2j + S0k2,j , (3) Sk1j + S0k1,j and Sk2j ) S0k2,j or (4) Sk1j + S0k1,j and Sk2j + S0k2,j . For

example, by the similar arguments used in the previous paragraph,∑
k1<k2

∑
Sj∈Nk1,k2 ,

Sk1j
)S0k1,j ,Sk2j+S0k2,j

E0

{
πα(Sj | X̃n)

}

.
∑
k1<k2

∑
Sk2j+S0k2,j

P0

(
Xnk2

∈ NSk2j ,α,χ
2

)
+

∑
k1<k2

∑
Sk1j)S0k1,j

E0

{ πIα(Sk1j | Xnk1
)

πIα(S0k1,j | Xnk1
)

} ∑
Sk2j+S0k2,j

E0

{ πIα(Sk2j | Xnk2
)

πIα(S0k2,j | Xnk2
)
I(Xnk2

∈ N c
Sk2j ,α,χ

2)
}

× exp
{
c2j(j − 1)2K

}
.

∑
k1<k2

p−2{(Cbm−c1−1)∧(c1−1)} exp
{
c2j(j − 1)2K

}
≤ K2p−2{(Cbm−c1−1)∧(c1−1)} exp

{
c2j(j − 1)2K

}
.

Thus, by applying the similar arguments to the above four cases, the expectation of the second

term in (8) is∑
k1<k2

∑
Sj∈Nk1,k2

E0

{
πα
(
Sj | X̃n

)}
≤

∑
k1<k2

∑
Sj∈Nk1,k2

E0

{ πIα(Sj | Xn)

πIα(S0,j | Xn)

} f(Sj)

f(S0j)

≤
∑
k1<k2

∑
Sk1j 6=S0k1,j

∑
Sk2j 6=S0k2,j

E0

{ πIα(Sk1j | Xnk1
)

πIα(S0k1,j | Xnk1
)

πIα(Sk2j | Xnk2
)

πIα(S0k2,j | Xnk2
)

}
exp

{
c2j(j − 1)2K

}
. K2p−2{(Cbm−c1−1)∧(c1−1)} exp

{
c2j(j − 1)2K

}
.

Note that if Sj ∈ Nk1,...,kl , then we have

f(S1j , . . . , SKj)

f(S01,j , . . . , S0K,j)
≤ exp

[
c2j

{ l(l − 1)

2
(j − 1) + l(K − l)(j − 1)

}]
≤ exp

{
c2j(j − 1) l K

}
.
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Therefore, by repeatedly applying the similar arguments, we have

E0

{
πα

(
Sj 6= S0j | X̃n

)}
.

K∑
k=1

[K exp
{
c2j(j − 1)K

}
p{(Cbm−c1−1)∧(c1−1)}

]k
≤

K∑
k=1

[ KeK

p{(Cbm−c1−1)∧(c1−1)}

]k
.

KeK

p{(Cbm−c1−1)∧(c1−1)} = o(p−1),

because we assume Cbm > c1 + 2, c1 > 2, c2j ≤ 1/(j − 1) and K = o(log p).

Proof of Theorem 3.2 We will only show that (6) holds for k = 1 when ∪Kk′=2S0k′,j ⊆ S01,j ,

but one can easily check the other cases using similar arguments. Let Sj = (S1j , . . . , SKj) and

S0j = (S01,j , . . . , S0K,j). Note that

πα(Sj | X̃n)

πα(S0j | X̃n)
=

πIα(Sj | X̃n)

πIα(S0j | X̃n)

f(Sj)

f(S0j)
.

Because we assume ∪Kk′=2S0k′,j ⊆ S01,j , it holds that f(S1,j , S02,j , . . . , S0K,j) ≤ f(S01,j , S02,j , . . . , S0K,j)

for any S1j 6= S01,j . Thus,

πα(S1j , S02,j , . . . , S0K,j | X̃n)

πα(S01,j , S02,j , . . . , S0K,j | X̃n)
=

πIα(S1j | X̃n)

πIα(S01,j | X̃n)

f(S1j , S02,j , . . . , S0K,j)

f(S01,j , S02,j , . . . , S0K,j)

≤ πIα(S1j | X̃n)

πIα(S01,j | X̃n)

for any S1j 6= S01,j . Then, we have

1− πα(S01,j | S02,j , . . . , S0K,j , X̃n)

πα(S01,j | S02,j , . . . , S0K,jX̃n)
=

∑
S1j 6=S01,j

πα(S1j | S02,j , . . . , S0K,j , X̃n)

πα(S01,j | S02,j , . . . , S0K,jX̃n)

=
∑

S1j 6=S01,j

πα(S1j , S02,j , . . . , S0K,j | X̃n)

πα(S01,j , S02,j , . . . , S0K,j | X̃n)

≤
∑

S1j 6=S01,j

πIα(S1j | X̃n)

πIα(S01,j | X̃n)
=

1− πIα(S01,j | X̃n)

πIα(S01,j | X̃n)
,

which implies

πα
(
S01,j | S01,j , . . . , S02,j , . . . , S0K,j , X̃n

)
≥ πIα(S01,j | Xnk).

Proof of Theorem 3.3 In this proof, let Sj = (S1j , . . . , Sj−1j) and S0j = (S0,1j , . . . , S0,j−1j) be

the (common) support of the jth row of the lower triangular part of SA and S0, respectively. Let

π̃α(SA | X̃n) ∝ πα(SA1 = · · · = SAK = SA | X̃n)
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be the joint posterior for (SA1 , . . . , SAK ) restricted to common supports. Then,

π̃α(SA 6= S0 | X̃n) ≤
p∑
j=2

π̃α(Sj 6= S0j | X̃n)

=

p∑
j=2

π̃α(Sj ) S0j | X̃n) +

p∑
j=2

π̃α(Sj + S0j | X̃n). (9)

The expectation of the first part of (9) is bounded above by

p∑
j=2

E0

{
π̃α(Sj ) S0j | X̃n)

}
≤

p∑
j=2

∑
Sj)S0j

E0

{ π̃α(Sj | X̃n)

π̃α(S0j | X̃n)

}

=

p∑
j=2

∑
Sj)S0j

E0

{ K∏
k=1

π̃Iα(Skj = Sj | Xnk)

π̃Iα(Skj = S0j | Xnk)

} f(Sj , . . . , Sj)

f(S0j , . . . , S0j)

.
p∑
j=2

∑
Sj)S0j

{ π(Sj)

π(S0j)

}K
c
K(|Sj |−|S0j |)
α,γ exp

{
c2jK(K − 1)(|Sj | − |S0j |)

}
.

p∑
j=2

cKα,γp
−c1KRj exp

{
c2jK(K − 1)(j − 1)

}
. exp

{
− c1K log p+ log p+K log cα,γ +K(K − 1)

}
= o(1),

where cα,γ = (1 + α/γ)−1/2{2/(1− α)}1/2, by the proof of Lemma 6.1 in Lee et al. (2019), c1 > 1,

c2j ≤ 1/(j − 1) and K = o(log p).

On the other hand, the expectation of the second part of (9) is

p∑
j=2

E0

{
π̃α(Sj + S0j | X̃n)

}

≤
p∑
j=2

∑
Sj+S0j

K∑
k=1

P0

(
Xnk ∈ NSj ,α,χ2

)
+

p∑
j=2

∑
Sj+S0j

E0

{
π̃α(Sj + S0j | X̃n)I(Xnk ∈ N

c
Sj ,α,χ2 ,∀k)

}
. pK exp

{
− (ε′)2ε20

128(1 + 2ε0)2
min
k
nk

}
(10)

+

p∑
j=2

∑
Sj+S0j

E0

{ K∏
k=1

π̃Iα(Skj = Sj | Xnk)

π̃Iα(Skj = S0j | Xnk)
I(Xnk ∈ N

c
Sj ,α,χ2)

} f(Sj , . . . , Sj)

f(S0j , . . . , S0j)
. (11)

Note that (10) is of order o(1) and

f(Sj , . . . , Sj)

f(S0j , . . . , S0j)
≤ exp

{
c2jK(K − 1)

∣∣|Sj | − |S0j |
∣∣} ≤ exp

{
K(K − 1)

}
.
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By the proof of Theorem 3.1 in Lee et al. (2019),

E0

{ K∏
k=1

π̃Iα(Skj = Sj | Xnk)

π̃Iα(Skj = S0j | Xnk)
I(Xnk ∈ N

c
Sj ,α,χ2)

}
≤

K∏
k=1

π(Sj)

π(S0j)
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2 exp

{
− α(1− α)

4

ε20(1− 2ε0)2

4
nk‖a0k,S0j∩Scj ‖

2
2

}
+
{ π(Sj)

π(S0j)
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K K∑
k=1

P0(Xnk ∈ Nj,Skj )

≤
{ π(Sj)

π(S0j)
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K
exp

{
− (|S0j | − |Sj ∩ S0j |)CbmK log p

}
+
{ π(Sj)

π(S0j)
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K K∑
k=1

4 exp
(
− nkε20/2

)
.

{ π(Sj)

π(S0j)

}K{
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K
exp

{
− (|S0j | − |Sj ∩ S0j |)CbmK log p

}
where Nj,Skj is the set defined in the proof of Theorem 3.1 in Lee et al. (2019), ν1 = (1 + α/γ)1/2

and ν2 = {1− (α+ν0/n)/(1−4
√
ε′−5ε′)}−1/2. Note that the last inequality holds due to K log p =

o(mink nk) and

exp
{
− α(1− α)

4

ε20(1− 2ε0)2

4

K∑
k=1

nk‖a0k,S0j∩Scj ‖
2
2

}
≤ exp

{
− α(1− α)

4

ε20(1− 2ε0)2

4
(|S0j | − |Sj ∩ S0j |) min

(j,l):a01,jl 6=0

K∑
k=1

nka
2
0k,jl

}
≤ exp

{
− (|S0j | − |Sj ∩ S0j |)CbmK log p

}
for some constant C > 0 by condition (B3). Thus, (11) is bounded above by

p∑
j=2

∑
Sj+S0j

{ π(Sj)

π(S0j)

}K{
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K
× exp

{
− (|S0j | − |Sj ∩ S0j |)CbmK log p+K(K − 1)

}
. exp

{
− (Cbm − c1 − 2)K log p+K(K − 1)

}
= o(1),

because Cbm > c1 + 2 and K = o(log p). This completes the proof.
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Proof of Theorem 3.4 Similarly to the proof of Theorem 3.3, we have

p∑
j=2

E0

{
π̃∗α(Sj ) S0j | X̃n)

}
≤

p∑
j=2

∑
Sj)S0j

E0

{ K∏
k=1

π̃I,∗α (Skj = Sj | Xnk)

π̃I,∗α (Skj = S0j | Xnk)

} f̃(Sj , . . . , Sj)

f̃(S0j , . . . , S0j)

.
p∑
j=2

∑
Sj)S0j

{ π̃(Sj)

π̃(S0j)

}K
c
K(|Sj |−|S0j |)
α,γ exp(K − 1)

=

p∑
j=2

∑
Sj)S0j

{ π(Sj)

π(S0j)

}
c
K(|Sj |−|S0j |)
α,γ exp(K − 1)

.
p∑
j=2

cKα,γp
−c1Rj exp(K − 1)

. exp
{
− (c1 − 1) log p+K log cα,γ +K

}
= o(1),

where cα,γ = (1 + α/γ)−1/2{2/(1 − α)}1/2 and πI,∗α (Skj | Xnk) ∝ f(Xnk | Skj)π̃(Skj), because

c1 > 1, c2j ≤ 1/(j − 1) and K = o(log p). The second and third inequalities hold by the proof of

Lemma 6.1 in Lee et al. (2019) and

f̃(Sj , . . . , Sj)

f̃(S0j , . . . , S0j)
≤ exp

{
c2j(K − 1)

∣∣|Sj | − |S0j |
∣∣} ≤ exp(K − 1).

Furthermore,

p∑
j=2

E0

{
π̃∗α(Sj + S0j | X̃n)

}
. pK exp

{
− (ε′)2ε20

128(1 + 2ε0)2
min
k
nk

}
+

p∑
j=2

∑
Sj+S0j

E0

{ K∏
k=1

π̃I,∗α (Skj = Sj | Xnk)

π̃I,∗α (Skj = S0j | Xnk)
I(Xnk ∈ N

c
Sj ,α,χ2)

} f̃(Sj , . . . , Sj)

f̃(S0j , . . . , S0j)
, (12)

where

E0

{ K∏
k=1

π̃I,∗α (Skj = Sj | Xnk)

π̃I,∗α (Skj = S0j | Xnk)
I(Xnk ∈ N

c
Sj ,α,χ2)

}
.

π(Sj)

π(S0j)

{
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K
exp

{
− (|S0j | − |Sj ∩ S0j |)Cbm log p

}
,

by the similar arguments used in the proof of Theorem 3.3 and condition (C3). Note that the last

inequality holds due to log p = o(mink nk).
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Therefore, (12) is bounded above by

p∑
j=2

∑
Sj+S0j

π(Sj)

π(S0j)

{
ν
|S0j |−|Sj |
1 ν

|Sj |−|S0j∩Sj |
2

}K
× exp

{
− (|S0j | − |Sj ∩ S0j |)Cbm log p+ (K − 1)

}
. exp

{
− (Cbm − c1 − 2) log p+ 2K

}
= o(1),

because Cbm > c1 + 2 and K = o(log p). This completes the proof.
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