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Abstract

Tyler’s and Maronna’s M-estimators, as well as their regularized variants, are popular robust methods to estimate the
scatter or covariance matrix of a multivariate distribution. In this work, we study the non-asymptotic behavior of
these estimators, for data sampled from a distribution that satisfies one of the following properties: 1) independent
sub-Gaussian entries, up to a linear transformation; 2) log-concave distributions; 3) distributions satisfying a convex
concentration property. Our main contribution is the derivation of tight non-asymptotic concentration bounds of
these M-estimators around a suitably scaled version of the data sample covariance matrix. Prior to our work, non-
asymptotic bounds were derived only for Elliptical and Gaussian distributions. Our proof uses a variety of tools from
non asymptotic random matrix theory and high dimensional geometry. Finally, we illustrate the utility of our results
on two examples of practical interest: sparse covariance and sparse precision matrix estimation.

1. Introduction

Let x1, . . . , xn be n i.i.d. samples from a p-dimensional random variable X. The p × p covariance matrix Σ of X
is a central quantity of interest in multiple applications [5, 59]. In the classical regime with n � p, if the random
variable X is not heavily tailed and there are no outliers, the empirical covariance matrix yields a relatively accurate
estimator for Σ.

To deal with heavy tails and potential outliers, several robust estimators were proposed and studied theoretically.
Two popular procedures, applicable when p < n, include Maronna’s and Tyler’s M-estimators [51, 74]. Regularized
variants, applicable also when p > n, were also proposed and studied [1, 22, 61, 63]. These estimators have found use
in multiple applications, ranging from signal processing and radar detection to finance, see for example [24, 61, 63].
We remark that in addition to the above, many other robust covariance estimators have been proposed and analyzed,
see for example [19, 20, 28, 30, 38, 40, 52, 55, 56, 77] and references therein.

In this work we study the properties of Tyler’s and Maronna’s M-estimators under several families of multivariate
distributions. Our analysis is non-asymptotic and generalizes previous results, which were either asymptotic or limited
to elliptical distributions. Before presenting our results, we first briefly describe these estimators and related prior
work. For simplicity, we describe the estimators assuming X has zero mean, and discuss how to relax this assumption
later on.

Maronna’s M-estimator (ME). One of the first proposals for a robust covariance estimator, introduced by Maronna
[51], is defined as follows. Let u : [0,∞) → (0,∞) be a function that is strictly positive, non-increasing, continuous,
and such that the accompanying function φ(x) = xu(x) is non-decreasing and bounded. Then, for n ≥ p, Maronna’s
M-estimator (if exists) is a solution to the non-linear matrix equation

Σ̂Mar =
1
n

n∑
i=1

wMar
i xix>i , where wMar

i = u
(

1
p

x>i Σ̂−1
Marxi

)
. (1)
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Maronna [51] proved that under certain deterministic conditions on the samples xi, Eq. (1) has a unique solu-
tion. Couillet et al. [25] considered a high dimensional asymptotic framework, wherein n, p → ∞ with their ra-
tio converging to a constant. Assuming that X has i.i.d. entries with sufficiently many finite moments, and that
φ∞ := supx φ(x) > 1, they proved that Eq. (1) has a unique solution with probability tending to one.

Maronna’s regularized M-estimator (MRE). For p > n, Ollila and Tyler [61] proposed the following generalization
of Maronna’s M-estimator: For regularization parameter α > 0,

Σ̂MRE =
1

1 + α

1
n

n∑
i=1

wMRE
i xix>i +

α

1 + α
Ip×p , where wMRE

i = u
(

1
p

x>i Σ̂−1
MRExi

)
. (2)

As proven in [61, Theorem 1], for any x1, . . . , xn and α > 0, Eq. (2) has a unique solution.

Tyler’s M-estimator (TE). Introduced by Tyler in [74], TE is defined as the solution (if exists) of

Σ̂Tyl =
1
n

n∑
i=1

wTyl

i xix>i , where wTyl

i =

(
1
p

x>i Σ̂−1
Tyl xi

)−1

, and subject to Tr(Σ̂Tyl) = p . (3)

While Tyler’s estimator may seem like a special case of Maronna’s with u(x) = 1/x, this is not so since u(·) is singular
at x = 0. For n > p, Kent and Tyler [42, Theorems 1 and 2] proved existence and uniqueness of TE under the condition
that any linear subspace of Rp of dimension 1 ≤ d ≤ p − 1 contains less than nd/p samples. For i.i.d. samples from a
random vector X with a proper density in Rp, this condition is satisfied with probability one.

Tyler’s regularized M-estimator (TRE). Similarly to ME, Tyler’s M-estimator does not exist for p > n. In recent
years, several regularized variants were proposed [1, 22, 61, 63, 72]. We focus on the estimator proposed in [63].
Given a regularization parameter α > 0, it is defined by

Σ̂TRE =
1

1 + α

1
n

n∑
i=1

wTRE
i xix>i +

α

1 + α
Ip×p , and wTRE

i =

(
1
p

x>i Σ̂−1
TRExi

)−1

. (4)

By [61, Theorem 2], when α > p − 1, Eq. (4) always admits a unique solution. When α ≤ p − 1, [61, Theorem 3]
gave a deterministic sufficient and almost necessary condition for existence and uniqueness; for x1, . . . , xn in general
position, the condition holds for α > max

{
0, p

n − 1
}
. When X has a density, this condition appeared earlier in [63].

Prior work. Maronna’s and Tyler’s M-estimators and their variants, have been studied extensively, with a particular
focus under elliptical distributions; see [1, 6, 22–26, 33, 42, 58, 60–63, 70, 76, 77, 79]. The present paper extends
several works that studied these estimators in a high-dimensional regime, where the number of samples n and the
dimension p are both large and comparable. Couillet et al. [25] studied the asymptotic behavior of ME in the
joint limit p, n → ∞ with their ratio tending to a constant. Assuming that X has independent entries with zero
mean, unit variance and sufficiently many finite moments, they proved that after a suitable scaling, ME converges
asymptotically in spectral norm to the sample covariance matrix. In [26], this analysis was extended to X having
an elliptical distribution with a general scatter matrix. A similar asymptotic analysis for MRE appeared in [6]. Two
variants of TRE were studied in [24], assuming X has an elliptical distribution. A key result of their analysis is
that asymptotically, these M-estimators behave similarly to regularized sample covariance matrices with Gaussian
measurements. Zhang et al. [79], studied TE assuming X is Gaussian distributed with identity covariance. They
showed that as n, p → ∞, the limiting the spectral distribution of a properly scaled TE is a Marčenko-Pastur law.
Moreover, similar to our own results in the present paper, they proved a non-asymptotic deviation bound for the
weights (3), showing that they are concentrated around some particular value1. Relying on their results, [33] extended
the analysis to cover TRE, assuming X is elliptically distributed. We remark that the proofs in [33, 79] rely on
properties specific to the Gaussian and elliptical distributions, and do not extend easily to other distributions.

1The proof of [79, Lemma 3.3] contains an error, which we remedy in the present paper; see Lemma 14 and the ensuing discussion.
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Another recent work is [48], which derived nonasymptotic concentration results for the Stieltjes transform of the
spectral distribution of certain regularized M-estimators. In the context of this work, they derived results only for the
regularized variants of Maronna’s M-estimator. Their results apply under rather broad distributional assumptions,
requiring only a concentration of measure property; see also their related papers [47, 49]. In constrast, our analysis of
Tyler’s M-estimators and the unregularized Maronna’s M-estimator requires an additional anti-concentration property
(the small ball property) for the random vector X. It is an interesting question whether it is possible to derive similar
results without the SBP assumption.

Our contributions. As mentioned above, most of the literature on Maronna’s and Tyler’s M-estimators has focused
on asymptotic results, establishing convergence as n, p → ∞ without specifying rates. Other works, that derived
non-asymptotic finite-n bounds, mostly considered Gaussian or elliptical distributions. This paper extends and gen-
eralizes these works in several directions. We present a non-asymptotic analysis of both Tyler’s and Marrona’s M-
estimators, and their regularized variants, under three broad families of multivariate data distributions: 1) independent
sub-Gaussian entries, up to a linear transformation; 2) log-concave distributions; 3) distributions satisfying a convex
concentration property (CCP). Our main results are given in terms of non-asymptotic concentration bounds for the
weights of the M-estimators (1)-(4) around some particular deterministic value. They imply that for these three fami-
lies of distributions, Maronna’s and Tyler’s M-estimators behave similarly to a rescaled sample covariance matrix. In
Section 4 we illustrate the utility of these results for two concrete examples of practical interest: sparse covariance
and sparse precision matrix estimation.

2. Main results

Let x1, . . . , xn ∈ Rp be n samples of the form

xi = Σ1/2
p · yi , (5)

where Σp is a strictly positive p-by-p matrix, and y1, . . . , yn ∈ Rp are n i.i.d. realizations of a zero mean isotropic
random vector Y , namely

E[Y] = 0 , E[YY>] = Ip×p . (6)

We assume that Y = (Y1, . . . ,Yp)> is a continuous random vector, and satisfies one of the following distributional
assumptions, with the precise definitions deferred to Section 3:

1. [SG-IND]: The coordinates of Y are independent, sub-Gaussian (Definition 1) and have a bounded density. The
constant K > 0 denotes a uniform bound on sub-Gaussian constants, and C0 > 0 a bound on the densities.

2. [CCP-SBP]: Y satisfies the convex concentration property (CCP) with constant K > 0 and also the small-ball
property (SBP) with constant C0 > 0 (Definition 3).

3. [LC]: Y has a log-concave distribution (Definition 4).

Remark 1. While the assumption that X has zero mean may not hold in practice, it has been used extensively in
previous studies of Tyler’s and Maronna’s M-estimators, cf. [6, 25, 33, 79]. In Section 6 we discuss how this restriction
may be removed for some of our results.

Remark 2. We emphasize that the three families of distributions considered above are all distinct in the sense that
neither one is contained in another. In particular, it is known that an i.i.d. sub-Gaussian vector does not necessarily
satisfy the CCP, see for example [34, 37]. Furthermore, below (after the statement of Theorem 2) we mention examples
of two distributions that satisfy one of [CCP-SBP], [LC] but not the other.

We consider Maronna’s and Tyler’s M-estimators Σ̂Mar and Σ̂Tyl, as well as their regularized variants Σ̂MRE and Σ̂TRE,
all computed from x1, . . . , xn. The latter two estimators depend on the regularization parameter α > 0, which we
omit to simplify notation. We study the nonasymptotic properties of these estimators in the high-dimensional regime,
where the number of samples n and the dimension p are both large and comparable. Their ratio is denoted by

γ =
p
n
∈ (0,∞) . (7)

Similarly to [33, 79], while our results are nonasymptotic in n (in the form of finite-n deviation bounds), they involve
constants that may depend on γ, often in a complicated manner that we do not keep track of explicitly.
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2.1. Concentration for the weights of Maronna’s and Tyler’s Estimators
Our first two results show concentration for the weights of Maronna’s and Tyler’s M-estimators for γ = p/n < 1,

hence n − p = Ω(p). Below, Ψp denotes (up to a universal constant) the Cheeger constant of the family of p-
dimensional log-concave distributions; it is known that Ψp ≥ 1/polylog(p) and conjectured that Ψp = Θ(1); see
Section 3, Eq. (19).

We start with Maronna’s estimator. For ε > 0, let EME(ε) be the event that (1) has a unique solution whose weights
satisfy

max
1≤i≤n

∣∣∣wMar
i − 1/φ−1(1)

∣∣∣ ≤ ε . (8)

Theorem 1 (The weights of Maronna’s estimator). Assume γ < 1, and that the functions u(x), φ(x) = xu(x) of
Maronna’s M-estimator further satisfy:

(i) φ∞ := limx→∞ φ(x) > 1.

(ii) There is a unique d0 such that φ(d0) = 1, namely, φ is strictly increasing at φ−1(1). Moreover, the inverse map
φ−1 is locally Lipshitz at 1.

(iii) u(·) is locally Lipschitz at φ−1(1).

Then, there are constants c,C, ε0 > 0 that depend on the distribution of Y and on γ, such that for any ε < ε0, the
following holds.

• Assume that Y satisfies [LC]. Then Pr(EME(ε)c) ≤ Cn2e−c(Ψp
√

n)ε.

• Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then Pr(EME(ε)c) ≤ Cn2e−cnε2
.

Remark 3. When saying that a constant C depends on the distribution of Y , we mean that it may depend on the
parameters K,C0 > 0 above, whenever Y is distributed according to [SG-IND] or [CCP-SBP]. Specifically, in the
bound above in Theorem 1, the constants c,C can be taken to be monotonic in the parameters K,C0. The reason is
that as one increases K and decreases C0, the class of distributions considered ([SG-IND] or [LC]) becomes larger.
However, we do not keep track of this dependence explicitly.

It is interesting to compare Theorem 1 to the results of [25]. Assuming that the random vector Y has i.i.d. entries
with sufficiently many finite moments, they proved that asymptotically, as n, p → ∞ with their ratio tending to a
constant, almost surely max1≤i≤n

∣∣∣wMar
i − 1/φ−1(1)

∣∣∣ → 0, see [25, Eq. (6)]. Our analysis extends theirs in two aspects:
(i) It holds also for random vectors Y that do not have independent entries, but instead satisfy certain multivariate
concentration properties; (ii) Our results are non-asymptotic, in the form of concentration inequalities for the weights.

Our next theorem regards Tyler’s M-estimator. To this end, denote by τp = 1
p TrΣp the normalized trace of the

population covariance matrix. For any ε > 0, let ET E(ε) be the event that Tyler’s estimator (3) exists uniquely, with
weights that satisfy

max
1≤i≤n

∣∣∣τp · w
Tyl

i − 1
∣∣∣ ≤ ε. (9)

Theorem 2 (The weights of Tyler’s estimator). There are constants c,C, ε0 > 0, that depend on the distribution of Y
and on γ < 1, such that for any ε < ε0 the following hold.

• Assume that Y satisfies [LC]. Then Pr (ET E(ε)c) ≤ Cn2e−cΨp min{
√

nε, n1/4}.

• Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then Pr (ET E(ε)c) ≤ Cn2e−c min{nε2, n1/2}.

We remark that Zhang et. al. [79] provided a proof of Theorem 2 in the specific case where Y ∼ N(0, Ip×p).
They stated a non-asymptotic bound for the weights2: Pr (max1≤i≤n |wi − 1| ≥ ε) ≤ Cne−cnε2

. This bound should be
compared to Theorem 2 under Assumption [SG-IND]. Importantly, their proof contains a non-trivial gap, which we
correct in the present paper (see Section 5.2).

Next, we illustrate Theorems 1 and 2 by the following numerical experiment. We generated i.i.d. samples accord-
ing to either of the following two distributions for Y:

2Note that their definition of the weights differs from ours by a constant factor, and therefore does not depend on τp.
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Fig. 1: The empirical deviation of the weights, plotted in log-log scale. Each point on the graph corresponds to the average of 50 random repetitions.

1. Laplace: All coordinates Yi are i.i.d. Laplace, with density Lap(y) = 1
√

2
exp(−

√
2|y|). Hence, Y is isotropic,

log-concave, but not sub-Gaussian.
2. Permuted smoothed: Y = 1

√
1+σ2

A + σ
√

1+σ2
Z, where A ∈ {±1}p is uniform in the set

{
a ∈ {±1}p :

∑p
i=1 ai = 0

}
,

Z ∼ N(0, Ip×p) and σ = 0.01 is the smoothing level. The entries of A are clearly dependent; nonetheless, by a
classical result of Maurey [53], it can be shown to satisfy the CCP. Consequently, Y satisfies the CCP and SBP.

We compute Tyler’s and Maronna’s M-estimators from n = 2p samples, for the latter using u(x) = 2/(1 + x).
Figure 1 shows the deviation of the corresponding weights from their limiting value w∗ = 1. We present on a log-log
scale both the `∞ deviation max1≤i≤n |ŵi−w∗|, and the root mean squared error (RMSE)

√
1
n

∑n
i=1(ŵi − w∗)2, as a function

of the dimension p. The slope of either line is approximately 1
2 , consistent with Theorems 1 and 2.

Remark 4. Observe that in Theorem 1, the weights of Maronna’s estimator do not depend on the population covari-
ance Σp. This is because the weights are preserved under an arbitrary linear full-rank transformation of the data. Let
x1, . . . , xn and consider the transformed measurements x̃i = Axi, where A ∈ Rp×p is full-rank. Denote the correspond-
ing Marrona’s estimators (1) by Σ̂ = 1

n
∑n

i=1 wixix>i and Σ̃ = 1
n
∑n

i=1 w̃ix̃ix̃>i . One may verify that Σ̃ = AΣ̂A>, hence
wi = w̃i; setting A = Σ

−1/2
p , we deduce that the weights wMar

i do not depend on the covariance matrix of X.
In contrast, consistent with Theorem 2, the weights of Tyler’s estimator do depend on Σp. The reason is that while

the linearly transformed estimator AΣ̂A> does solve the unconstrained Eq. (3), corresponding to the transformed
measurements (similarly to Maronna’s estimator), one needs to rescale the weights due to the constraint Tr(Σ̃) = p.

2.2. Regularized Estimators

We next consider the regularized variants of Maronna’s and Tyler’s M-estimators. As mentioned in Section 1,
MRE exists uniquely for all γ, α > 0, whereas for any γ > 0, TRE is only guaranteed to exist uniquely when
α = α(γ) > 0 is sufficiently large.

The regularization term α
1+α

Ip×p in Eqs. (2) and (4) shrinks the solution towards the identity matrix. As a result,
the weights of MRE and TRE, and our deviation bounds for them, depend on the underlying population matrix Σp.
Accordingly, throughout this section we operate under the following additional constraints on Σp, so to ensure that it
has the same scale as the identity matrix. Specifically, for constants smax ≥ τ > 0, we assume:

• Bounded operator norm:
‖Σp‖ ≤ smax . (10)

• Lower bound on total energy:

τp =
1
p

TrΣp ≥ τ . (11)
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Towards stating our results, given a function φ(x), we define the following two functions Q, F : R+ → R+:

Q(d) =
1
p
ETrΣp

φ(d)
n−1∑
i=1

xix>i + αdIp×p


−1

, F(d) = (1 + α)
Q(d)

1 + γφ(d)Q(d)
. (12)

As we shall see below, the functions Q and F play a decisive role in determining the weights of MRE and TRE. A key
quantity is the solution d∗ > 0 to the following “master equation”:

F(d∗) = 1 . (13)

Later, we show that if u(·) is non-increasing and φ(x) = xu(x) is non-decreasing, then (13) admits a unique solution.
The theorem below regards Maronna’s regularized M-estimator. For ε > 0, let EMRE(ε) be the event that MRE

exists uniquely with weights that satisfy
max
1≤i≤n

|wMRE
i − u(d∗)| ≤ ε . (14)

Theorem 3 (The weights of MRE.). Let α > 0 and u be a Lipschitz continuous on any compact sub-interval of [0,∞).
Then, Eq. (13) has a unique solution which satisfies d∗ ∈ [d, d], where the constants 0 < d ≤ d depend on the
distribution of Y, γ, α, smax and τ.

Furthermore, there are constants c,C, ε0 > 0, that depend on the distribution of Y, γ, α, smax and τ, such that for
all ε < ε0,

• Assume that Y satisfies [LC]. Then Pr(EMRE(ε)c) ≤ Cn2e−c(Ψp
√

n)ε.

• Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then Pr(EMRE(ε)c) ≤ Cn2e−cnε2
.

We note that the weights of MRE were previously studied in [6], assuming Y has i.i.d. entries. They proved that
asymptotically, as n, p→ ∞ at a fixed ratio p/n = γ, one has max1≤i≤n ‖wMRE

i − u(d∗)‖ → 0 w.p. 1.
Lastly, we consider Tyler’s regularized M-estimator (TRE). TRE is superficially a special case of MRE, corre-

sponding to u(x) = 1/x and φ(x) = 1; a crucial difference, however, is that u(·) is singular at x = 0. Accordingly, to
carry out our analysis, we require an additional constraint on Σp: there exists a constant τ > 0 such that

1
p

TrΣ−1
p ≤ τ . (15)

For ε > 0, let ETRE(ε) be the event that TRE exists uniquely, and that furthermore its weights satisfy

max
1≤i≤n

|wTRE
i − 1/d∗| ≤ ε . (16)

Theorem 4 (The weights of TRE.). Let u(x) = 1/x, φ(x) = 1 and α > max{0, γ − 1}. Then, Eq. (13) has a unique
solution which satisfies d∗ ∈ [d, d], where the constants 0 < d ≤ d depend on the distribution of Y, γ, α, smax, τ and τ.

Furthermore, there are constant c,C, ε0 > 0, that depend on the distribution of Y, γ, α, smax, τ and τ, such that for
all ε < ε0,

• Assume that Y satisfies [LC]. Then Pr(ETRE(ε)c) ≤ Cn2e−c(Ψp
√

n)ε.

• Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then Pr(ETRE(ε)c) ≤ Cn2e−cnε2
.

For the special case where X follows a Gaussian or an elliptical distribution, similar non-asymptotic concentration
bounds for the weights of TRE were provided in [33]. Lastly, we remark that as noted in [33], the dependence on τ
can be removed when α is sufficiently large, i.e α ≥ Csmax where C is a suitable constant (see Remark 5 in Appendix
D.3 for further details).

Paper outline. The rest of the manuscript is organized as follows. In Section 3 we provide definitions and technical
background related to the distributional assumptions from Section 2 above. In Section 4 we describe some applications
of our results to robust covariance and precision matrix estimation. Section 5 is devoted to the proofs of Theorems
1-4, with some technical details deferred to the Appendix. Finally, we offer some concluding remarks in Section 6.
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3. Preliminaries and Technical Background

We provide a brief background and definitions for the distributions considered in Section 2. Recall that Y ∈ Rp is
an isotropic random vector. Throughout this text, ‖ · ‖ denotes the Euclidean norm in the suitable dimension p.

Definition 1. Y is a sub-Gaussian vector with constant K > 0 if for any ‖u‖ = 1,

Pr
(∣∣∣u>Y − E[u>Y]

∣∣∣ ≥ t
)
≤ 2 exp

[
−(t/2K)2

]
.

Sub-Gaussianity implies that linear functions of Y concentrate. For our analysis we shall also need concentration
of some sufficiently well-behaved non-linear functions. Following [3, 54], we consider the following property:

Definition 2. Y satisfies the convex concentration property (CCP) with constant K > 0 if for every 1-Lipschitz
convex f : Rp → R, the random variable f (Y) is sub-Gaussian with constant K:

Pr (| f (Y) − E[ f (Y)]| ≥ t) ≤ 2 exp
[
−(t/2K)2

]
. (17)

The CCP was introduced by Talagrand [73], who proved that if Y has independent, uniformly bounded entries
then it satisfies the CCP. Subsequent works established weaker conditions under which the CCP holds, see [2, 35]
and references therein. Another family of distributions satisfying the CCP, which has received attention in machine
learning and statistics (e.g. [9, 13, 64]), are the distributions satisfying a Log-Sobolev Inequality.3

For parts of our analysis, we shall also need the following:

Definition 3. Y satisfies the small ball property (SBP) with constant C0 if for any ‖u‖ = 1 and a ∈ R,

Pr
(∣∣∣u>Y − a

∣∣∣ ≤ t
)
≤ C0t for all t ≥ 0 . (18)

The SBP is an anti-concentration property: it states that the law of u>Y cannot put large mass around any particular
value a ∈ R. For our purposes, the SBP will be especially important for bounding the smallest eigenvalue of the sample
covariance matrix, which is a key step in several of our proofs. Note that if the density of u>Y is bounded, then (18)
holds for some appropriate C0. The following remarkable result, due to Rudelson and Vershynin, states that if Y has
independent entries, each with bounded density, then it satisfies the SBP [68, Theorem 1.2]:

Lemma 1. Let Y = (Y1, . . . ,Yp) have independent entries, with univariate densities all uniformly bounded by C. Then
Y satisfies the SBP with constant 2

√
2C.

Log-concave distributions. We next consider the family of log-concave distributions on Rp. This rich family has
found multiple applications, for example, in statistics [7], pure mathematics [14, 71], computer science [10, 50] and
economics [4]. Particular members in this family include the Gaussian, exponential, uniform over convex bodies,
logistic, Gamma, Laplace, Weibull, Chi and Chi-Squared, Beta distributions and more.

Definition 4. Y is log-concave if it has a density pY (y) = e−V(y) for V : Rp → R ∪ {∞} convex.

It is known that log-concave random vectors are sub-exponential with a universal constant, see e.g. [14]. The
following is implied by a recent breakthrough result of Klartag and Lehec [43, Theorem 1.1]:

Lemma 2. There exists a universal c > 0 and some Ψp satisfying

(log p)−5 ≤ Ψp ≤ 1 (19)

such that for every isotropic log-concave Y ∈ Rp and 1-Lipschitz function f (·),

Pr (| f (Y) − E[ f (Y)]| ≥ t) ≤ exp
[
−cΨpt

]
. (20)

The quantity Ψp is (up to a universal constant) the Cheeger constant corresponding to the family of log-concave
distributions on Rp. It is conjectured [39] that in fact Ψp = Θ(1) (the KLS conjecture). For background on the KLS
conjecture and its consequences, see [21, 46]. Lastly, [50, Lemma 5.5] implies the following:

Lemma 3. There is a universal 0 < C0 ≤ 2 so that every isotropic log-concave Y satisfies the SBP with constant C0.

3Such distributions in fact satisfy a stronger Lipschitz concentration property: the function f (·) in Definition 2 does not need to be convex.
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4. Applications to Robust Sparse Covariance and Inverse Covariance Estimation

As mentioned in the introduction, robust estimation of the covariance and inverse covariance matrices, given pos-
sibly heavy tailed data are important tasks in statistics. In high dimensional settings, these matrices are often assumed
to be sparse, allowing their estimation from a limited number of samples. A common model for multivariate heavy
tailed data, under which various estimators were derived and analyzed is to assume that the samples are elliptically
distributed [18, 31, 32, 41]. Specifically, a random vector X̃ follows an elliptical distribution with mean µ and shape
matrix Σp ∈ S p

++ if it has the form
X̃ = µ + zΣ1/2

p Y , (21)

where Y ∼ Unif(Sp−1), and z is a strictly positive random variable which is independent of Y (but otherwise arbitrary).
To make the model (21) identifiable, the scaling p−1TrΣp = 1 is assumed.

The authors of [33] considered the problem of shape matrix estimation under a sparsity constraint. They showed
that given (possibly heavy tailed) elliptical samples, a sparse Σp may nonetheless be estimated at the same rate as if one
had sub-Gaussian samples with covariance Σp. Their estimator is remarkably simple: compute Tyler’s M-estimator
corresponding to the n samples, and then threshold its entries as proposed by [12].

In this section, building upon the theorems of Section 2, we show that the above approach yields accurate estimates
for heavy tailed distributions beyond the elliptical model (21). Specifically, the vector Y in (21) may be replaced by any
isotropic random vector satisfying the assumptions of Section 2. Furthermore, we show a similar result for estimating
the inverse shape matrix Σ−1

p assuming it is sparse. For simplicity, we assume that X̃ is zero mean with µ = 0 whereas
in Section 6 we discuss how this restriction may be overcome.

4.1. Sparse shape matrix estimation
Observe that Tyler’s M-estimator, Eq. (3), is invariant to an arbitrary scaling of the samples. Consequently,

Tyler’s estimator computed from the elliptically-distributed samples x̃i = ziΣ
1/2
p yi, call it Σ̂Tyl, is exactly the same as the

estimator computed from the rescaled samples xi = Σ
1/2
p yi. We emphasize that the rescaled vectors x1, . . . , xn are not

available to the estimator. Denote S = n−1 ∑n
i=1 xix>i , and Σ̂Tyl = n−1 ∑n

i=1 wTyl

i xix>i . For a matrix M, denote the norms,

‖M‖max = max
i, j
|Mi j|, ‖M‖1 =

∑
i, j

|Mi j| .

We start with the following important lemma, which asserts that Σ̂Tyl is close to Σp entrywise:

Lemma 4. Assume the setting of Theorem 2, recalling the normalization τp = 1. There is C > 0, that depends on the
distribution of Y and on γ, such that w.p. 1 − o(1), the following holds.

1. Assume that Y satisfies [LC]. Then ‖Σ̂Tyl − Σp‖max ≤ C‖Σp‖
log p

Ψp
√

n .

2. Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then ‖Σ̂Tyl − Σp‖max ≤ C‖Σp‖

√
log p

n .

Proof. By the triangle inequality, ‖Σ̂Tyl−Σp‖max ≤ ‖Σ̂Tyl−S ‖max +‖S −Σp‖max. We bound the second term, by Lemma 23
in the Appendix, which bounds the deviations of the entries of S about their expectation Σp. For the first term,

‖Σ̂Tyl − S ‖max ≤‖Σ̂Tyl − S ‖ =

∥∥∥∥∥∥∥1
n

n∑
i=1

(wTyl

i − 1)xix>i

∥∥∥∥∥∥∥ ≤ max
1≤i≤n

|wTyl

i − 1| · ‖S ‖ .

By Lemma 20 in the Appendix, ‖S ‖ . ‖Σp‖ w.h.p., whereas max1≤i≤n |w
Tyl

i − 1| may be bounded by Theorem 2.

Following Bickel and Levina [12], consider the class of approximately sparse covariance matrices, q ∈ [0, 1),

Up(q, sq(p)) =

Σ ∈ S
p
++ :

p∑
j=1

|Σi j|
q ≤ sq(p), 1 ≤ i ≤ p

 . (22)

Let Tt be the entry-wise hard-thresholding operator Tt(M)i j = Mi j1{|Mi j |≥t}. The authors of [12] showed that to
accurately estimate a matrix Σp ∈ Up(q, sq(p)) with respect to operator norm, it suffices to construct a matrix A which
is close to Σp entrywise, and then threshold it. We cite the following form of their result, as stated in [33, Lemma 6]:
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Lemma 5. Let Σp ∈ Up(q, sq(p)) and A such that ‖A − Σp‖max ≤ ε. There is a threshold t = c1ε so that for some
c2 = c2(q), ‖Tt(A) − Σp‖ ≤ c2sq(p)ε1−q.

Combining Lemmas 4 and 5 yields the following generalization of [33, Theorem 1], which proved a similar result
under the more restrictive assumption that Y has an elliptical distribution:

Corollary 1. There are c,C > 0, that may depend on the distribution of Y and on γ, such that the following holds.
For an appropriately chosen threshold t, if Σp ∈ Up(q, sq(p)), then w.p. 1 − o(1),

1. Assume that Y satisfies [LC]. Then ‖Σp − Tt(Σ̂Tyl)‖ ≤ Csq(p)‖Σp‖
1−q

(
(log p)2

Ψ2
pn

)(1−q)/2
.

2. Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then ‖Σp − Tt(Σ̂Tyl)‖ ≤ Csq(p)‖Σp‖
1−q

(
log p

n

)(1−q)/2
.

Under [SG-IND] and [CCP-SBP], the attained rate is minimax optimal in n, p [17].

4.2. Sparse inverse shape matrix estimation
We now consider the problem of estimating Σ−1

p , assuming that it is sparse: Σ−1
p ∈ Up(q, sq(p)). Cai et. al.

proposed the CLIME estimator [15], which solves a linear program of the form:

min
Ω
‖Ω‖1 subject to ‖Ŝ Ω − Ip×p‖max ≤ λ , (23)

where λ is a tuning parameter and Ŝ is a proxy for Σp ([15] propose to use the data sample covariance matrix). Having
solved (23), a symmetrization step is applied to get the final estimator. [15, Theorem 6] states that if Ŝ is close
entrywise to Σp, then the estimator Ω̂ = Ω̂(Ŝ ) is close in operator norm to Σ−1

p :

Lemma 6. Suppose that Σ−1
p ∈ Up(q, sq(p)) and Ŝ satisfies ‖Σp − Ŝ ‖max ≤ ε. For any λ ≥ ‖Σ−1

p ‖1ε, the estimator
obtained by solving (23) and applying symmetrization satisfies ‖Ω̂ − Σ−1

p ‖ ≤ Csq(p)‖Σ−1
p ‖

1−q
1 λ1−q.

Setting Ŝ = Σ̂Tyl in (23) and using Lemma 4, yields:

Corollary 2. There are c,C > 0, that may depend on the distribution of Y and on γ, such that the following holds.
For an appropriately chosen λ, if Σ−1

p ∈ Up(q, sq(p)), then w.p. 1 − o(1),

1. Assume that Y satisfies [LC]. Then ‖Σ−1
p − Ω̂(Σ̂Tyl)‖ ≤ Csq(p)‖Σ−1

p ‖
2−q
1 ‖Σp‖

1−q
(

(log p)2

Ψ2
pn

)(1−q)/2
.

2. Assume that Y satisfies either [SG-IND] or [CCP-SBP]. Then ‖Σ−1
p −Ω̂(Σ̂Tyl)‖ ≤ Csq(p)‖Σ−1

p ‖
2−q
1 ‖Σp‖

1−q
(

log p
n

)(1−q)/2
.

Lastly, we remark that CLIME is known to have a sub-optimal rate for i.i.d. sub-Gaussian data. In [16], the
minimax rate is computed and a rate-optimal adaptive estimator ACLIME is proposed. While beyond the scope of the
present paper, we conjecture that a similar result, as Corollary 2, may be derived for ACLIME as well.

5. Proofs

Recall that the input data consists of n samples xi = Σ
1/2
p yi with yi isotropic. Denote by S (resp. T ) the sample

covariance corresponding to the xi-s (resp. yi-s),

S =
1
n

n∑
i=1

xix>i = Σ1/2
p TΣ1/2

p , T =
1
n

n∑
i=1

yiy>i .

For 1 ≤ j ≤ n, denote by S − j (similarly T− j) the sample covariance of (n − 1) samples excluding x j,

S − j = S −
1
n

xix>i =
1
n

n∑
i=1,i, j

xix>i .

The following lemma, proven in Appendix B, is key to the analysis of Maronna’s and Tyler’s estimators.
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Lemma 7. Assume γ < 1. There are c,C, ε0 > 0, that depend on the distribution of Y and on γ, so that for all ε < ε0:

1. Assume [LC]. Then Pr(max1≤i≤n |p−1x>i S −1xi − 1| ≥ ε) ≤ Cn2e−c(Ψp
√

n)ε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(max1≤i≤n |p−1x>i S −1xi − 1| ≥ ε) ≤ Cn2e−cnε2
.

Note that x>i S −1xi = y>i Σ
1/2
p (Σ1/2

p TΣ
1/2
p )−1Σ

1/2
p yi = y>i T−1yi, so the quadratic form p−1x>i S −1xi does not depend

on Σp. Assuming that xi-s are Gaussian, a similar result was derived in [79]. Their proof relies on the orthogonal
invariance of the isotropic Gaussian distribution, and does not generalize to other distributions. Lemma 7 implies that
max1≤i≤n |x>i S −1xi −1| → 1 w.p. 1 in the asymptotic limit n, p→ ∞ with p

n → γ. Assuming Y has independent entries
with finite fourth moment, this asymptotic result was proven in [25].

5.1. Proof of Theorem 1 (Maronna’s M-Estimator)
Existence. We first prove that a solution to the fixed point equation (1) indeed exists. This proof follows that of [25].
We briefly describe it, for the sake of completeness. Denote d = (d1, . . . , dn). Consider the function h : Rn

+ → Rn
+,

h j(d) =
1
p

x>j

1
n

n∑
i=1

u(di)xix>i

−1

x j, 1 ≤ j ≤ n . (24)

Since by assumption X has a density and n > p, h is well-defined w.p. 1. Moreover, a vector d yields a Maronna’s
estimator with weights w j = u(d j) if and only if d j = h j(d) for all j. Hence, to establish the existence of Maronna’s
estimator, we need to show that h has a fixed point. To this end, as proven in [25], the function h(·) satisfies the
following three properties. 1) Positivity: h(d) > 0 for any vector d ≥ 0, namely with d j ≥ 0 for all j; 2) Monotonicity:
if d ≥ d′ ≥ 0, then h(d) ≥ h(d′); 3) Scalability: for any α > 1, αh(d) ≥ h(αd). A function h(·) satisfying these
properties is (almost) a standard interference function, in the sense of [78]. By [78, Theorem 1], if there exists some
d with d ≥ h(d), then h(·) has a fixed point. The following lemma shows that w.h.p., such a vector d exists, which in
turn implies the existence of Maronna’s estimator.

Lemma 8. There are c,C > 0, that depend on the distribution of Y and on γ, such that

1. Assume [LC]. Pr (∃d > 0 : d ≥ h(d)) ≥ 1 −Cn2e−c(Ψp
√

n).

2. Assume [SG-IND] or [CCP-SBP]. Then Pr (∃d > 0 : d ≥ h(d)) ≥ 1 −Cn2e−cn.

Proof. By assumption (i) of Theorem 1, φ∞ > 1. Hence, we may take some d0 > 0 such that φ(d0) > 1. Setting
d0 = d01 = (d0, . . . , d0) in (24) and using u(d) = φ(d)/d, one may verify that h j(d0) =

d0
φ(d0)

1
p x>j S −1x j. By Lemma 7,

w.h.p., max1≤ j≤n
1
p x>j S −1x j ≤ φ(d0), and so h(d0) ≤ d0.

Uniqueness and concentration. Let d = (d1, . . . , dn) be a vector satisfying h(d) = d, which yields a valid Maronna’s
estimator. Next, we prove that only one such d exists. To this end, denote jmin = argmin1≤ j≤n d j, jmax = argmax1≤ j≤n d j.
Since h(·) is non-decreasing, d j = h j(d) ≤ h j(d jmax 1) = (u(d jmax ))−1 p−1x>j S −1x j. Setting j = jmax and multiplying by
u(d jmax ) gives φ(d jmax ) ≤ p−1x>jmax

S −1x jmax . Similarly, h(d) ≥ h(d jmin 1), and thus φ(d jmin ) ≥ p−1x>jmin
S −1x jmin . Finally,

since φ is non-decreasing, we deduce that for all j, p−1x>jmin
S −1x jmin ≤ φ(d j) ≤ p−1x>jmax

S −1x jmax . Consequently,

max
1≤ j≤n

|φ(d j) − 1| ≤ max
1≤ j≤n

|p−1x>j S −1x j − 1| . (25)

The next lemma shows that w.h.p., h(·) cannot have any fixed points whose entries are far from the constant φ−1(1):

Lemma 9. For ε > 0, let Fbad(ε) the set of “bad” fixed points of h(·), namely, such that ‖d − φ−1(1)1‖∞ ≥ ε. There
c,C, ε0 > 0, that depend on the distribution of Y and on γ, such that for all ε < ε0,

1. Assume [LC]. Then Pr (Fbad(ε) , ∅) ≤ Cn2e−c(Ψp
√

n)ε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr (Fbad(ε) , ∅) ≤ Cn2e−cnε2
.
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Proof. Follows immediately by Lemma 7, Eq. (25) and Assumption (ii) of Theorem 1, which states that φ is invertible
in a neighborhood of φ−1(1) and that the inverse φ−1 is locally Lipshitz at 1.

Lastly, we prove that Maronna’s estimator exists uniquely w.h.p:

Lemma 10. There are c,C > 0, that depend on the distribution of Y and on γ, such that

1. Assume [LC]. Then Pr (ME exists uniquely) ≥ 1 −Cn2e−c(Ψp
√

n).

2. Assume [SG-IND] or [CCP-SBP]. Then Pr (ME exists uniquely) ≥ 1 −Cn2e−cn.

Proof. Existence, w.h.p., is guaranteed by Lemma 8. Assume by contradiction that h has two different fixed points,
d , d′. Take α = max j(d j/d′j), and let l be a coordinate where the maximum is attained. Assume w.l.o.g. that α > 1
(otherwise replace d with d′), and note that by its definition, d ≤ αd′.

Let η > 0 be so that φ(·) is strictly increasing in [φ−1(1) − η, φ−1(1) + η]. By Lemma 9, w.h.p. both d,d′ ∈
[φ−1(1) − η/2, φ−1(1) + η/2]n. In addition, since α > 1, then φ(αd′j) > φ(d′j) for all j. This, in turn, implies that

u(αd′j) =
φ(αd′j)

αd′j
>
φ(d′j)

αd′j
=

1
α

u(d′j) .

Plugging this into (24) gives h(αd′) < αh(d′). Since d ≤ αd′ and h is non-decreasing, we deduce h(d) < αh(d′). But,
since d,d′ are fixed points of h(·), this yields a contradiction: dl = hl(d) < αhl(d′) = αd′l = dl .

Proof of Theorem 1. Existence and uniqueness follow from Lemma 10. By Lemma 9, the coordinates of the fixed
point d concentrate around φ−1(1). Hence, the weights of Maronna’s estimator, wMar

i = u(di), concentrate around
u(φ−1(1)) = φ(φ−1(1))/φ−1(1) = 1/φ−1(1).

5.2. Proof of Theorem 2 (Tyler’s M-Estimator)
Our proof combines the strategy of Zhang et. al. [79] with Lemma 7. Since X has a density, by [42, Theorems 1

and 2] Tyler’s estimator exists uniquely w.p. 1. By [79, Lemma 2.1], its weights are

wTyl

i =
p · ŵi

Tr
(

1
n
∑n

i=1 ŵixix>i
) , (26)

where ŵ = (ŵ1, . . . , ŵn) is the unique minimizer of

F(w) = −

n∑
i=1

log wi +
n
p

log det

 n∑
i=1

wixix>i

 , subject to w > 0 and
n∑

i=1

wi = n . (27)

As in [79], the proof proceeds in two steps: (I) Show that ŵ1, . . . , ŵn all concentrate around 1; (II) Using (26), deduce
concentration for the weights wTyl

1 , . . . ,w
Tyl
n .

We start with the weights ŵ. The argument of [79, Section 3.2] starts with the following observation:

Lemma 11. Let β > 0 be arbitrary. Then ŵ is the unique stationary point of the following function Gβ : Rn → R:

Gβ(w) = F(w) +
β

2

 n∑
i=1

wi − n

2

= −

n∑
i=1

log wi +
n
p

log det

 n∑
i=1

wixix>i

 +
β

2

 n∑
i=1

wi − n

2

. (28)

Next, note that w = 1 = (1, . . . , 1) is “almost” a zero of gβ(·) = ∇Gβ(·) (for any β), in the sense that w.h.p. gβ(1) is
small. Indeed, a straightforward calculation, Appendix Eq. (C.1), gives

(
gβ(1)

)
`

= −1 +
1
p

x>`

1
n

n∑
i=1

xix>i

−1

x` = −1 +
1
p

x>` S −1x` for all 1 ≤ ` ≤ n . (29)

By Lemma 7, the right-hand-side of (29) concentrates tightly around 0. That is, the following deviation bound holds:
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Lemma 12. There are c,C, ε0 > 0, that depend on the distribution of Y and on γ, so that for all ε < ε0 and all β

1. Assume [LC]. Then Pr
(
‖gβ(1)‖∞ ≥ ε

)
≤ Cn2e−c(Ψp

√
n)ε.

2. Assume either [SG-IND] or [CCP-SBP]. Then Pr
(
‖gβ(1)‖∞ ≥ ε

)
≤ Cn2e−cnε2

.

Next, we carry out a perturbation argument: we show that ‖gβ(1)‖∞ being small implies that the unique root
gβ(ŵ) = 0 is close to 1. To this end, we use the following result, [79, Lemma 3.1]. Below, for a matrix M ∈ Rn×n, we
denote by ‖M‖∞,∞ = max1≤ j≤n

∑n
`=1 |M j` | its `∞-to-`∞ operator norm.

Lemma 13. Let h : Rp → Rp be differentiable, w0 ∈ Rp. Suppose that for some L,R > 0 and 0 < ε ≤ min{R, L−1}:

(I) (w0 is “almost” a zero). ‖h(w0)‖∞ ≤ 1
2ε.

(II) (Non-degeneracy at w0). ∇h(w0) = Ip×p, namely (∇h) j,` =
∂h j

∂w`
= δ j,`.

(III) (Smoothness around w0). ‖∇h(w) − ∇h(w0)‖∞,∞ ≤ L‖w − w0‖∞ for all w in ‖w − w0‖∞ ≤ R.

Then h(·) has a zero ŵ close to w0 such that ‖ŵ − w0‖∞ ≤ ε.

To prove that gβ has a zero near w0 = 1 via Lemma 13, we consider hβ(w) =
(
∇gβ(1)

)−1
gβ(w). Clearly, gβ and

hβ have the same zeros. Also, by its definition, hβ satisfies condition (II) above. We next show that w.h.p. hβ satisfies

condition (I). Since ‖hβ(1)‖∞ ≤
∥∥∥∥(∇gβ(1)

)−1∥∥∥∥
∞,∞
‖gβ(1)‖∞, it suffices to bound the matrix norm

∥∥∥∥(∇gβ(1)
)−1∥∥∥∥

∞,∞
:

Lemma 14. There are c,C, B, β0 > 0, that depend the distribution of Y and on γ, so that setting β = β0/n,

1. Assume [LC]. Then Pr
(
‖
(
∇gβ(1)

)−1
‖∞,∞ ≥ B

)
≤ Cn2e−cΨpn1/4

.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr
(
‖
(
∇gβ(1)

)−1
‖∞,∞ ≥ B

)
≤ Cn2e−cn1/2

.

We prove Lemma 14 in Appendix C.1. Our proof follows Zhang et. al. [79, Lemma 3.3]. Their argument,
however, contains a mathematical error that we correct.

Lastly, we address condition (III) of Lemma 13. We prove the following in Appendix C.2:

Lemma 15. Let Lg be the `∞ Lipschitz constant of ∇gβ on an `∞ ball of radius 1
2 around 1:

Lg = max
w : ‖w−1‖∞≤ 1

2

‖∇gβ(w) − ∇gβ(1)‖∞,∞
‖w − 1‖∞

.

There are c,C, L > 0, that depend on the distribution of Y and on γ, so that

1. Assume [LC]. Then Pr(Lg ≥ L) ≤ Cn2e−cΨp
√

n.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(Lg ≥ L) ≤ Cn2e−cn.

Equipped with the preceding lemmas, we are ready to prove our concentration result for ŵ:

Lemma 16. Let ŵ = (ŵ1, . . . , ŵn) > 0 be the unique minimizer of (27). There are c,C, ε0 > 0, that depend on the
distribution of Y and on γ, such that for all ε < ε0,

1. Assume [LC]. Then Pr
(
max1≤i≤n

∣∣∣ŵi − 1
∣∣∣ ≥ ε) ≤ Cn2e−cΨp min{

√
nε, n1/4}.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr
(
max1≤i≤n

∣∣∣ŵi − 1
∣∣∣ ≥ ε) ≤ Cn2e−c min{nε2, n1/2}.
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Proof. Choose β = β0/n per Lemma 14, such that ‖
(
∇gβ(1)

)−1
‖∞,∞ ≤ B holds w.h.p. By Lemma 15, for some

L > 0, w.h.p. ‖∇gβ(w) − ∇gβ(1)‖∞,∞ ≤ L
B‖w − 1‖∞ holds uniformly inside the `∞ ball ‖w − 1‖∞ ≤ 1

2 . By Lemma 12,

‖gβ(1)‖∞ < ε
2B holds w.h.p. Under the intersection of these events, hβ(w) =

(
∇gβ(1)

)−1
gβ(w) satisfies the conditions

of Lemma 13, with constants R = 1
2 and L. Assuming ε ≤ ε0 := min{ 12 , L

−1}, by Lemma 13 hβ(·) has a zero w∗,
equivalently a stationary point of Gβ(·), with ‖w∗ − 1‖∞ ≤ ε. By Lemma 11, w∗ = ŵ.

Of Theorem 2. Recall that the weights wTyl

i are related to ŵi via (26). Denote τp = p−1Tr(Σp). Under the high-
probability event max1≤i≤n |ŵi − 1| ≤ ε, we have

1 − ε
(1 + ε) · p−1Tr(S )/τp)

≤ τpwTyl

i =
ŵi

τ−1
p p−1Tr

(
1
n
∑n

i=1 ŵixix>i
) ≤ 1 + ε

(1 − ε) · p−1Tr(S )/τp
. (30)

We next show that the denominator of (30) concentrates tightly around 1, namely, that w.h.p. |p−1Tr(S ) − τp| ≤ ετp.
To this end, let u1, . . . , up be an orthonormal basis of eigenvectors of Σp, so that Σpui = λiui. Since S = Σ

1/2
p TΣ

1/2
p ,

|p−1Tr(S ) − τp| =

∣∣∣∣∣∣∣p−1
p∑

i=1

λi(u>i Tui − 1)

∣∣∣∣∣∣∣ ≤ τp max
1≤i≤p

|u>i Tui − 1| .

By Lemma 23 (and a union bound over 1 ≤ i ≤ p), under [LC], Pr
(∣∣∣p−1Tr(S ) − τp

∣∣∣ ≥ ε τp

)
≤ Cpe−c(Ψp

√
n)ε, whereas

under [SG-IND] or [CCP-SBP], Pr
(∣∣∣p−1Tr(S ) − τp

∣∣∣ ≥ ε τp

)
≤ Cpe−cnε2

. Combining with (30) yields that w.h.p.
max1≤i≤p |τpwTyl

i − 1| ≤ Cε, and the theorem follows.

5.3. Proof of Theorem 3 (MRE)
By [61, Theorem 1], MRE exists uniquely w.p. 1. We proceed similarly to the proof of Theorem 1. Define

h̄ : Rn
+ → Rn

+, : h̄ j(d) =
1 + α

p
x>j

1
n

n∑
i=1

u(di)xix>i + αIp×p

−1

x j , 1 ≤ j ≤ n . (31)

By the definition of MRE, Eq. (2), its weights are wMRE
i = u(d̂i) where h̄(d̂) = d̂ is a fixed point. Accordingly, we

study the fixed points of h̄. Let d̂ > 0 be a fixed point, and jmin = argmin1≤ j≤n d̂ j, jmax = argmax1≤ j≤n d̂ j. Since u(·) is
non-increasing, h̄(·) is non-decreasing, and so h̄(d̂ jmin 1) ≤ h̄(d̂) ≤ h̄(d̂ jmax 1). Considering coordinates j ∈ { jmin, jmax},
and bearing in mind that d j = h̄ j(d̂),

d̂ jmin ≥ (1 + α)p−1x>jmin
(u(d̂ jmin )S + αIp×p)−1x>jmin

, d̂ jmax ≤ (1 + α)p−1x>jmax
(u(d̂ jmax )S + αIp×p)−1x>jmax

. (32)

Define the following n functions F̂ j : R+ → R+, 1 ≤ j ≤ n, by

F̂ j(d) = (1 + α)d−1 p−1x>j (u(d)S + αIp×p)−1x j = (1 + α)p−1x>j (φ(d)S + αdIp×p)−1x j . (33)

By assumption, φ(d) = du(d) is non-decreasing hence F̂ j is decreasing. Dividing the left and right inequalities in
(32) by d̂ jmin and d̂ jmax respectively, gives F̂ jmin (d̂ jmin ) ≤ 1, F̂ jmax (d̂ jmax ) ≥ 1. Since F̂ j is decreasing, we deduce that
d̂ jmin ≥ F̂−1

jmin
(1), d̂ jmax ≤ F̂−1

jmax
(1) provided that 1 is indeed in the range of F̂ jmin (·), F̂ jmax (·). Since d̂ jmin , d̂ jmax are the

smallest and largest coordinates of d̂ respectively, we deduce that for all 1 ≤ j ≤ n,

min
1≤i≤n

F̂−1
i (1) ≤ d̂ j ≤ max

1≤i≤n
F̂−1

i (1) , (34)

provided that 1 is in the range of all F̂i-s. We shall soon see that this is indeed the case, and moreover, that the
(data-dependent) quantities F̂−1

i (1) all concentrate around a particular deterministic quantity.
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We now analyze F̂i, defined in (33). Decomposing S = S −i + n−1xix>i , by the Sherman-Morrison formula,

F̂i(d) = (1 + α)
Q̂i(d)

1 + γφ(d)Q̂i(d)
, where Q̂i(d) = p−1x>i (φ(d)S −i + αdIp×p)−1xi . (35)

Next we consider a deterministic analog of F̂i, where Q̂i is replaced by its expectation Q. Define

Q(d) = EQi(d) = p−1ETrΣp(φ(d)S −i + αdIp×p)−1 , F(d) = (1 + α)
Q(d)

1 + γφ(d)Q(d)
. (36)

Lemma 17. Let d0 > 0 be given. There are c,C, ε0 > 0, that depend on the distribution of Y, γ, smax, α and d0, such
that the following holds. For all d ≥ d0 and ε ≤ ε0,

1. Assume [LC]. Then Pr(max1≤i≤n |Q̂i(d) − Q(d)| ≥ ε) ≤ Cne−cΨp
√

nε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(max1≤i≤n |Q̂i(d) − Q(d)| ≥ ε) ≤ Cne−cnε2
.

We prove Lemma 17 in Appendix D.1. By Lemma 17, the functions F̂i concentrate pointwise around the deter-
ministic function F. To proceed, we show that 1 ∈ Range(F) and study the local behavior of F around this point.
Before stating our next result, we remark that up to this point, the analysis in this section applies both to MRE and
TRE, the latter corresponding to u(x) = x−1. The proof of the next lemma, however, relies on the boundedness of the
function u, which is always assumed for MRE, but does not hold for TRE.

Lemma 18. There is a unique root F(d∗) = 1. Moreover, there exist constants 0 < d < d, and η > 0, depending on
the distributions of Y, γ, smax, τ and α, so that: 1) d∗ ∈ (d, d); 2) For every d1, d2 ∈ (d, d), |F(d1)− F(d2)| ≥ η|d1 − d2|.

We prove Lemma 18 in Appendix D.2. We are ready to conclude the proof of Theorem 3. Fix a small enough
ε > 0 so that d1 = d∗ − ε, d2 = d∗ + ε satisfy [d1, d2] ⊆ (d, d). Let η > 0 be the constant from Lemma 18.
By Lemma 17, w.h.p. |F̂i(d`) − F(d`)| ≤ ηε/2 for all 1 ≤ i ≤ n and ` = 1, 2. Under this event, in particular,
F̂i(d2) ≤ F(d2) + ηε/2 ≤ F(d∗) − ηε + ηε/2 = 1 − ηε/2. Similarly, F̂i(d1) ≥ 1 + ηε/2. Since the functions F̂i are
decreasing and continuous, it follows that F̂−1

i (1) ∈ (d1, d2) = (d∗−ε, d∗+ε) for all i. Thus, by (34), d̂ j ∈ (d∗−ε, d∗+ε)
for all 1 ≤ j ≤ n. Finally, recalling that the weights of MRE are wMRE

j = u(d̂ j), we conclude that |wMRE − u(d∗)| ≤ Lε
where L is the Lipschitz constant of u.

5.4. Proof of Theorem 4 (TRE)

Since the samples xi are assumed to have a density, they are in general position w.p. 1. Consequently, since by
assumption α > max{0, γ − 1}, [61, Theorem 3] implies that TRE exists uniquely w.p. 1.

Recall that TRE has the same form as MRE, with a crucial difference that the function u(x) = 1/x is not bounded.
We follow the proof of Theorem 3 from Section 5.3 above. The argument carries over, verbatim, with the exception
of Lemma 18. Thus, Theorem 4 follows from Lemma 19, stated below and proven in Appendix D.3.

Lemma 19. Let F,Q be as in (36) with u(x) = 1/x, and suppose that α > max{0, p/n − 1}. There is a unique root
F(d∗) = 1. Moreover, there exist constants 0 < d < d, and η > 0, depending on the distributions of Y, γ, smax, τ, τ and
α, so that: 1) d∗ ∈ (d, d); 2) For every d1, d2 ∈ (d, d), |F(d1) − F(d2)| ≥ η|d1 − d2|.

6. Conclusion and Further Discussion

This paper presented a non-asymptotic analysis of Tyler’s and Maronna’s M-estimators, as well as their regularized
variants, under a substantially broader class of distributions than those considered in previous works. Specifically,
we assumed a data distribution of the form X = Σ

1/2
p Y , where Y is isotropic and satisfies one of several abstract

concentration properties. Some of these distributions allow for the coordinates of Y to be statistically dependent.
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Results for non-centered distributions. In our analysis, we assumed that X has zero mean. This is often not the case
in real-world applications. A more reasonable model is X = µ + Σ

1/2
p Y , where E[X] = µ is in general not zero. Note

that the standard method of coping with a non-zero mean, namely subtracting the sample mean, creates a statistical
inter-dependency between the modified samples, so that the results of Section 2 do not immediately apply.

To overcome this difficulty, [29] suggested the following “symmetrization” procedure. Given a data set of 2n
samples x1, . . . , x2n, construct a symmetrized set of n samples:

xsym
i = 2−1/2(xi − xi+n) = 2−1/2Σ1/2

p (yi − yi+n), 1 ≤ i ≤ n.

Clearly, E[xsym
i ] = 0 and Cov(xsym

i ) = Σp. To apply our main results, the isotropic random vector Ysym = 2−1/2(Y−Y ′),
where Y ′ is an independent copy of Y , has to satisfy the same properties as Y . Indeed:

1. under [SG-IND], Ysym has independent entries, with sub-Gaussian constants . K. In addition, by Lemma 1,
the density of each entry is bounded by . C0;

2. under [LC], Ysym is a log-concave random vector, since the log-concave family is closed under convolution of
the densities (e.g. [69]);

3. under [CCP-SBP]: By separately conditioning on Y,Y ′, one may verify that Ysym satisfies both the CCP and
and the SBP, possibly with a larger constant.

In Appendix E.3 we discuss some further details regarding the symmetrization procedure under the model (21).

Projection Pursuit in high dimension. Both [11] and recently [57] (who extended the results of [11]) studied some
fundamental limitations on the ability to detect structure by projection pursuit in the high-dimensional setting, assum-
ing multivariate Gaussian observations. Specifically, asymptotically as p/n → γ ∈ (1,∞), they proved that with high
probability, for any i.i.d. observations X1, . . . , Xn ∼ N(0, Ip×p) and a given distribution G with mean zero and variance
bounded by γ − 1, one can find a sequence of (data-dependent) projections up,G ∈ Sp−1 such that the sequence of em-
pirical distributions Fn,u :=

∑n
i=1 1X>i ·up,G (t) converges to G in Kolmogorov-Smirnov distance: limn→∞ ‖Fn,u−G‖∞ = 0.

Informally speaking, this result implies that in the high dimensional regime, one can find structure in the data that
does not exist in its underlying distribution, as all its marginals are N(0, 1). This is in contrast to the results of [27],
whereby in the classical regime where p/n→ 0, all the empirical marginals converge to their population counterparts
N(0, 1), namely limn,p→∞ supu∈Sp−1 ‖Fn,u − N(0, 1)‖∞ = 0.

The mathematical analysis in the present paper can be used to generalize the results of [11]. Specifically, most
of its results on projection pursuit continue to hold for any X = (X1, . . . , Xp) where each entry is a zero mean and
variance one independent sub-Gaussian with a uniform constant K (these entries need not be identically distributed).
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Appendix A. Auxiliary Technical Lemmas

Let y1, . . . , yn be i.i.d. realizations of an isotropic random vector Y ∈ Rp, with sample covariance T = 1
n
∑n

i=1 yiy>i .
Recall that γ =

p
n .

Appendix A.1. Eigenvalue bounds for sample covariance matrices

The next two lemmas present well-known bounds on the largest and smallest eigenvalues of T :

Lemma 20. There are c1, c2 > 0, that depend on the distribution of Y and on γ, such that:

1. Assume [LC]. Then Pr (‖T‖ ≥ c1) ≤ e−c2
√

n.
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2. Assume [SG-IND] or [CCP-SBP]4. Then Pr (‖T‖ ≥ c1) ≤ e−c2n.

Under [SG-IND] and [CCP-SBP], Lemma 20 follows from [75, Theorem 5.39]. Under [LC], it follows from [3,
Theorem 1].

Lemma 21. Suppose that γ < 1. There are c1, c2 > 0, that depend on the distribution of Y and on γ, such that:

1. Assume [LC]. Then Pr (λmin(T ) ≤ c1) ≤ e−c2
√

n.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr (λmin(T ) ≤ c1) ≤ e−c2n.

For Y with i.i.d. sub-Gaussian entries, Lemma 21 follows from the work of Rudelson and Vershynin [66], see also
[75, Theorem 5.38]. Their non-asymptotic bound remarkably captures the exact “true” location of λmin(T ); to wit, c1
may be taken up to the Marčenko-Pastur lower edge (1 −

√
γ)2. To our knowledge, for Y ∈ Rp with dependent (but

uncorrelated) entries, similarly strong results are not currently available. Moreover, existing results which bound the
two-sided deviation ‖T − Ip×p‖ typically fail (barring the i.i.d. case) to produce a positive bound on λmin(T ) in the
entire range γ ∈ (0, 1). As observed by [44], if Y satisfies the SBP then this difficulty can be overcome, albeit with
non-sharp c1; this will suffice for our purposes. For completeness, we give a proof of Lemma 21 in Appendix E.1.

Appendix A.2. Concentration of quadratic forms

Note that for any fixed matrix A ∈ Rp×p, E[Y>AY] = Tr(A). We cite a tail bound for the deviation |Y>AY −Tr(A)|:

Lemma 22. There is c > 0 that depends on the distribution of Y, and universal C > 0, such that for any fixed matrix
A ∈ Rp×p and ε ∈ (0, 1):

1. Assume [SG-IND] or [CCP-SBP]. Then Pr
(∣∣∣p−1Y>AY − p−1Tr(A)

∣∣∣ ≥ ε‖A‖) ≤ Ce−cpε2
.

2. Assume [LC]. Then Pr
(∣∣∣p−1Y>AY − p−1Tr(A)

∣∣∣ ≥ ε‖A‖) ≤ Ce−c(Ψp
√

p)ε.

Under [SG-IND], Lemma 22 follows from [67]. Under [CCP-SBP], it follows from [2]. Both of these are
extensions of the Hanson-Wright bound [36]. A proof under [LC], appears in Appendix E.2. We remark that for
large ε, a tighter tail bound can be derived in the log-concave case (without Ψp), see for example [45]. However, to
the best of our knowledge, for small ε no sharper bound is currently known.

Appendix A.3. Entrywise concentration for the sample covariance

Lemma 23. There are C, c > 0, that depend on the distribution of Y, such that for all unit vectors u, v and ε ∈ (0, 1),

1. Assume [SG-IND] or [CCP-SBP]. Then Pr
(∣∣∣u>Tv − u>v

∣∣∣ ≥ ε) ≤ Ce−cnε2
.

2. Assume [LC]. Then Pr
(∣∣∣u>Tv − u>v

∣∣∣ ≥ ε) ≤ Ce−c(Ψn
√

n)ε.

Proof. Since u>Tv = 1
4 [(u + v)>T (u + v) − (u − v)>T (u − v)], it suffices to prove the lemma for u = v. Consider the

random vector W ∈ Rn with entries Wi = y>i u. Observe that W is centered, isotropic, and: 1) under [SG-IND] or
[CCP-SBP], W has i.i.d. sub-Gaussian entries; 2) under [LC], W is log-concave. Since u>Tu = 1

n W>W, the result
follows from Lemma 22 with A = I.

4In fact, this bound does not require the small-ball property.
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Appendix A.4. Additional lemmas

The following is well-known, see for example [25, Lemma 4]:

Lemma 24. Let A, B,C � 0 be non-negative matrices and z > 0 a positive number. Then∣∣∣TrC (zI + A)−1 − TrC (zI + B)−1
∣∣∣ ≤ rank(A − B)

||C||
z
. (A.1)

The following is a standard concentration inequality for “resolvent-like” expressions:

Lemma 25. Let C � 0 and A � 0 be fixed matrices, and let X1, . . . , Xn be independent, non-negative random matrices,
such that for all i, rank(Xi) = 1 with probability 1. Denote S n =

∑n
i=1 Xi and Rn = TrC (A + S n)−1. There is universal

c > 0 such that for all t ≥ 0,

Pr (|Rn − E(Rn)| > t) ≤ 2 exp

−c
t2

n
∣∣∣∣∣∣CA−1

∣∣∣∣∣∣2
 . (A.2)

Proof. Consider the filtration Fk = σ(X1, . . . , Xk) and the martingale Mk = E[Rn|Fk]. We have Mn = Rn, M0 = ERn,
and by Lemma 24, |Mk+1−Mk | ≤ 2‖CA−1‖. The lemma follows from the Azuma-Hoeffding inequality for martingales
with bounded increments.

Appendix B. Proof of Lemma 7

Proving Lemma 7 by a direct analysis of the quadratic form x>i S −1xi is difficult, since the sample covariance S
depends on xi. To disentangle this dependency, as in [25], we apply the Sherman-Morrison formula,

S −1 =

1
n

n∑
j,i

x jx>j +
1
n

xix>i

−1

= S −1
−i −

1
n S −1
−i xix>i S −1

−i

1 + 1
n x>i S −1

−i xi
.

Importantly, xi and S −i are statistically independent. Furthermore,

1
p

x>i S −1xi =
1
p

x>i

S −1
−i −

1
n S −1
−i xix>i S −1

−i

1 + 1
n x>i S −1

−i xi

 xi =

1
p x>i S −1

−i xi

1 + γ · 1
p x>i S −1

−i xi
, (B.1)

and so,

∣∣∣∣∣ 1px>i S −1xi − 1
∣∣∣∣∣ =

∣∣∣∣(1 − γ) · 1
p x>i S −1

−i xi − 1
∣∣∣∣

1 + γ · 1
p x>i S −1

−i xi
≤ (1 − γ)

∣∣∣∣∣ 1px>i S −1
−i xi −

1
1 − γ

∣∣∣∣∣ . (B.2)

The following lemma, proven below, shows that the r.h.s. of (B.2) is small w.h.p.

Lemma 26. Assume γ < 1. There are c,C, ε0 > 0, that depend on the distribution of Y and on γ, so that for all ε < ε0:

1. Assume [LC]. Then Pr(max1≤i≤n |p−1x>i S −1
−i xi −

1
1−γ | ≥ ε) ≤ Cn2e−c(Ψp

√
n)ε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(max1≤i≤n |p−1x>i S −1
−i xi −

1
1−γ | ≥ ε) ≤ Cn2e−cnε2

.

Proof of Lemma 7. Immediate from Lemma 26 combined with Eq. (B.2).
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Appendix B.1. Proof of Lemma 26
As previously mentioned, x>i S −1

−i xi = y>i T−1
−i yi does not depend on the population covariance Σp. Hence we bound

the deviations of y>i T−1
−i yi from 1/(1 − γ). Lemma 26 then follows by a union bound over 1 ≤ i ≤ n. The analysis

proceeds as follows. First, we show that p−1y>i T−1
−i yi concentrates around E[p−1y>i T−1

−i yi|T−i] = p−1Tr(T−1
−i ). Next, we

prove that p−1Tr(T−1
−i ) concentrates around 1/(1 − γ). Proving this directly is difficult, since the smallest eigenvalue

of T−i can take very small value, though with overwhelming small probability. To circumvent this, we consider a
regularized variant m̂(ε) = p−1Tr(T−i + εIp×p)−1. We then show that |m̂(ε) − p−1Tr(T−1

−i )| . ε, and finally that m̂(ε)
concentrates around 1/(1 − γ).

Note that m̂(ε) is the Stieltjes transform of the empirical spectral distribution (ESD) of T−i, evaluated at −ε. Since
T−i is a sample covariance matrix of i.i.d. isotropic samples, its ESD converges to a Marčenko-Pastur law with shape
parameter γ. This reveals the reason for the value (1 − γ)−1: it is the value of the Stieltjes transform of the Marčenko-
Pastur law, evaluated at 0, cf. [8, 25].

In light of the above roadmap, write p−1yiT−1
−i yi − (1 − γ)−1 = ∆1 + ∆2 + ∆3, where

∆1 = p−1y>i T−iyi − p−1Tr(T−1
−i ), ∆2 = p−1Tr(T−1

−i ) − m̂(ε), ∆3 = m̂(ε) − (1 − γ)−1,

m̂(ε) = p−1Tr(T−i + εIp×p)−1 .
(B.3)

It suffices to show that w.h.p., |∆` | . ε for ` = 1, 2, 3. We start with a high-probability bound on ∆1,∆2:

Lemma 27. Assume the conditions of Lemma 26. There are c1, c2,C1, ε0 > 0, that may depend on the distribution of
Y and on γ, such that for all ε ∈ (0, ε0),

1. Assume [LC]. Then Pr(|∆1| ≥ ε) ≤ c1e−c2(Ψp
√

p)ε and Pr(|∆2| ≥ C1ε) ≤ c1e−c2(Ψp
√

p)ε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(|∆1| ≥ ε) ≤ c1e−c2 pε2
and Pr(|∆2| ≥ C1ε) ≤ c1e−c2 pε2

.

Proof. Let C > 0 be such that the event E = {λmin(T−i) ≥ C} holds w.h.p., per Lemma 21. Of course, Pr(|∆` | ≥ ε) ≤
Pr(|∆` | ≥ ε | E) + Pr(Ec). Starting with ` = 1, since yi and T−1

−i are independent, Pr(|∆1| ≥ ε | E) may be bounded
using Lemma 22, a concentration inequality for the quadratic form yi 7→ p−1yiT−1

−i yi, applied conditionally on T−1
−i .

Importantly, note that under E, we have ‖T−1
−i ‖ = 1/λmin(T−i) ≤ 1/C. As for ` = 2, under E,

|∆2| = p−1Tr
[
T−1
−i − (T−i + εIp×p)−1

]
= ε · p−1Tr

[
(T−i + εIp×p)−1T−1

−i

]
≤

ε

(λmin(T−i))2 ≤ C−2ε ,

and so the claimed result follows.

Finally, Lemma 28, proven in Appendix B.2, provides a high-probability bound for |∆3|:

Lemma 28. Assume the conditions of Lemma 26. There are c1, c2,C1, ε0 > 0, that may depend on the distribution of
Y and on γ, such that for all ε ∈ (0, ε0),

1. Assume [LC]. Then Pr(|∆3| ≥ C1ε) ≤ c1ne−c2(Ψp
√

p)ε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(|∆3| ≥ C1ε) ≤ c1ne−c2 pε2
.

Proof. (Of Lemma 26). Recall that |p−1yiT−1
−i yi − (1 − γ)−1| ≤ |∆1| + |∆2| + |∆3|, and so the result follows from

Lemma 27, Lemma 28, and a union bound over 1 ≤ i ≤ n.

Appendix B.2. Proof of Lemma 28
To simplify notation, assume w.l.o.g. that i = n. Set n̄ = n − 1, and let K ∈ Rn̄×p be the matrix whose rows are

w>1 , . . . ,w
>
n̄ , with w j = n−1/2y j. Note that T−n = K>K and so m̂(ε) = p−1Tr(K>K + εIp×p)−1. For 1 ≤ j ≤ n̄, let

K j ∈ R(n̄−1)×p be obtained by removing the j-th row from K.
The proof relies on several algebraic “tricks” which are classical in random matrix theory, see [8]. Recall that for

any matrix A ∈ Rd1×d2 , the spectra of AA> and A>A are identical up to |d1 − d2| zeros. Thus,

m̂(ε) = p−1Tr(K>K + εIp×p)−1 = p−1Tr(KK> + εIn̄×n̄)−1 + ε−1(1 − p−1n̄) . (B.4)

18



Note that KK> is the Gram matrix of the vectors wi. We write the j-th diagonal entry of (KK> + εIn̄×n̄)−1 as:

(KK> + εIn̄×n̄)−1
j j

(i)
=

(
ε + ‖w j‖

2 − w>j K>j
(
K jK>j + εI(n̄−1)×(n̄−1)

)−1
K jw j

)−1

(ii)
=

(
ε + w>j

[
Ip×p −

(
K>j K j + εIp×p

)−1
K>j K j

]
w j

)−1

(iii)
=

(
ε + εw>j

(
K>j K j + εIp×p

)−1
w j

)−1
, (B.5)

where: (i) follows from the block matrix inversion formula; (ii) follows since for any f (·) and matrix A, A f (A>A)A> =

f (AA>)AA>, where for a symmetric matrix P, f (P) is the matrix obtained by applying f (·) on the eigenvalues of P
(the spectral calculus for symmetric matrices); this may be verified readily by considering the SVD of A; and (iii)
Follows by straightforward algebraic manipulation.

Consider the quadratic form w>j (K>j K j + εIp×p)−1w j = γp−1y>j (K>j K j + εIp×p)−1y j. We claim that p−1y>j (K>j K j +

εIp×p)−1y j is very close (w.h.p.) to m̂(ε), the quantity of interest. To wit, define the residual

η j = p−1y>j (K>j K j + εIp×p)−1y j − m̂(ε) , (B.6)

so that (B.5) reads
(KK> + εIn̄×n̄)−1

j j = ε−1
(
1 + γm̂(ε) + γη j

)−1
. (B.7)

Lemma 29. Assume the conditions of Lemma 26. There are c1, c2,C1, ε0 > 0, that may depend on the distribution of
Y and on γ, such that for all ε ∈ (0, ε0),

1. Assume [LC]. Then Pr(max1≤ j≤n̄ |η j| ≥ C1ε + (pε)−1) ≤ c1ne−c2(Ψp
√

p)ε.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(max1≤ j≤n̄ |η j| ≥ C1ε + (pε)−1) ≤ c1ne−c2 pε2
.

Proof. Decompose η j = η j,1 + η j,2 where

η j,1 = p−1y>j (K>j K j + εIp×p)−1y j − p−1Tr(K>j K j + εIp×p)−1, η j,2 = p−1Tr(K>j K j + εIp×p)−1 − p−1Tr(K>K + εIp×p)−1 .

Since K j and y j are independent, we can bound |η j,1| similarly to Lemma 27; we omit the details. As for η j,2, note that
K>K −K>j K j = w jw>j is rank 1. Thus, by Lemma 24, |η j,2| ≤ (pε)−1 w.p. 1.

Now, considering (B.7),
∣∣∣∣(1 + γm̂(ε) + γη j

)−1
−

(
1 + γm̂(ε)

)−1
∣∣∣∣ ≤ 2γ|η j| holds whenever γ|η j| ≤

1
2 . Accordingly,∣∣∣∣ 1

n̄
∑n̄

j=1

(
1 + γm̂(ε) + γη j

)−1
−

(
1 + γm̂(ε)

)−1
∣∣∣∣ ≤ max1≤ j≤n̄ 2γ|η j| holds whenever max1≤ j≤n̄ γ|η j| ≤

1
2 . Using Eqs. (B.4),

(B.7), also p−1n̄ = p−1n − p−1 = γ−1 − p−1, write

m̂(ε) = p−1
n̄∑

j=1

ε−1
(
1 + γm̂(ε) + γη j

)−1
+ ε−1(1 − p−1n̄) = ε−1(p−1n̄)

1
n̄

n̄∑
j=1

(
1 + γm̂(ε) + γη j

)−1
+ ε−1(1 − p−1n̄)

= ε−1
[
γ−1 (

1 + γm̂(ε)
)−1

+ 1 − γ−1 + ξ
]
,

where |ξ| ≤ 2p−1 + max1≤ j≤n̄ 2γ|η j| whenever max1≤ j≤n̄ γ|η j| ≤ 1/2. Rearranging terms, we deduce that m̂(ε) satisfies
the quadratic equation

γεm̂(ε) + (ε + 1 − γ − γξ)m̂(ε) − (1 + ξ) = 0 . (B.8)

Now, assume w.l.o.g. that ε ≥ p−1/2; we can do this since the bound of Lemma 28 is vacuous for ε < p−1/2, provided
that c1, c2 are chosen appropriately. Under the high-probability event of Lemma 29, |ξ| ≤ C1ε. Thus, under this
event, m̂(ε) satisfies a quadratic equation, whose coefficients are O(ε)-close to the coefficients of the linear equation
(1 − γ)m − 1 = 0; note that the unique root of the linear equation is m = (1 + γ)−1. Let m1 ≤ m2 be the two roots of
(B.8). One may readily verify the following: there are C2, ε0 > 0, that depend on C1, such that for all ε ≤ ε0, and ξ
satisfying |ξ| ≤ C1ε, we have |m1− (1−γ)−1| ≤ C2ε whereas m2 > 1/(C2ε). It remains to argue that, w.h.p., necessarily
m̂(ε) = m1. Indeed, recall that m̂(ε) ≤ 1/λmin(T−i). By Lemma 21, we can find some C3 > 0 such that m̂(ε) ≤ C3
holds w.h.p. Consequently, for all ε < min{ε0, 1/(C2C3)}, the high-probability event {|ξ| ≤ C1ε} ∩ {m̂(ε) ≤ C3} implies
that necessarily m̂(ε) = m1, and so |m̂(ε) − (1 − γ)−1| ≤ C2ε. Thus, the proof of Lemma 28 is concluded.
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Appendix C. Proof of Lemmas for Theorem 2 (TE)

Appendix C.1. Proof of Lemma 14
Starting from the definition of Gβ, Eq. (28), one may readily calculate,

(gβ(w))` =
(
∇Gβ(w)

)
`

= ∇F(w)` + β

 n∑
i=1

wi − n

 = −
1

w`
+

n
p

x>`

 n∑
i=1

wixix>i

−1

x` + β

 n∑
i=1

wi − n

 . (C.1)

Taking the second derivative,

(
∇gβ(w)

)
j,`

=
1

w2
`

1{ j=`} − γ

 1
p

x>j

1
n

n∑
i=1

wixix>i

−1

x`


2

+ β . (C.2)

In particular, setting w = 1,

∇gβ(1) = Ip×p − (A − β11>), where A j,` = γ
(
p−1y>j T−1y`

)2
. (C.3)

Following [79, Lemma 3.3],
(
∇gβ(1)

)−1
=

(
Ip×p − (A − β11>)

)−1
=

∑∞
k=0

(
A − β11>

)k provided that the sum con-

verges. Since ‖
(
A − β11>

)k
‖∞,∞ ≤ ‖A − β11>‖k∞,∞, the sum clearly converges when ‖A − β11>‖∞,∞ < 1, and then∥∥∥∥(∇gβ(1)

)−1∥∥∥∥
∞,∞
≤

∞∑
k=0

‖A − β11>‖k∞,∞ ≤
1

1 − ‖A − β11>‖∞,∞
.

Thus, to prove Lemma 14, it suffices to show that w.h.p., ‖A − β11>‖∞,∞ ≤ 1 − c for some constant c > 0.
By definition,

‖A − β11>‖∞,∞ = max
1≤ j≤n

n∑
`=1

|A j,` − β| . (C.4)

It is instructive to consider (C.4) with β = 0. Observe that
∑n
`=1 |A j,` | = 1

np
∑n
`=1 y>j T−1y`y>` T−1y j = 1

p y>j T−1y j,
and recall that by Lemma 7, this quantity concentrates tightly around 1. Accordingly, when β = 0, the norm (C.4)
concentrates around 1. Our goal, then, is to find some β so to consistently bias (C.4) away from 1. To this end, we
proceed along the argument of Zhang et. al. [79, Lemma 3.3]. Parameterize β = β0/n, for constant β0, so that β
has the same scale as the off-diagonal entries A j,` in (C.3). Let N j[β0] be the number of entries A j,`, in the j-th row
(1 ≤ ` ≤ n), such that A j,` ≥ β0/n. For A j,` ≥ β0/n we have |A j,` − β0/n| = A j,` − β0/n whereas if A j,` < β0/n, we may
bound |A j,` − β0/n| ≤ A j,` + β0/n. Hence,

‖A − β11>‖∞,∞ ≤ max
1≤ j≤n

 n∑
`=1

A j,` −
β0

n
N j[β0] + (n − N j[β0])

β0

n

 ≤ max
1≤ j≤n

p−1y>j T−1y j − 2β0 min
1≤ j≤n

(
N j[β0]

n
−

1
2

)
.

(C.5)

Thus, to conclude the proof of the lemma, we need to find some constant β0 so that w.h.p., min1≤ j≤n N j[β0]/n ≥ 1
2 + c

(say, c = 0.1); that is, such that at least ( 1
2 +c)n of the entries of A in every row are consistently larger than β0. Observe

that for any row 1 ≤ j ≤ n, the off-diagonal entries A j,`, ` , j, are identically distributed. A source of difficulty is that
they are not independent, and this dependence is manifested in two ways: 1) They all depend on y j; 2) The sample
covariance T depends on all y`-s. The first dependence is easy to overcome (by conditioning on y j), but the second
one is more involved. To deal with the latter, we shall lower bound A j,` by a different set of random variables, which
are easier to analyze.

The mathematical error in [79]. In their attempt to lower bound A j,`, in the proof of their Lemma 3.4, [79] used the
following inequality (top of page 122 in their paper),

A j,` =
1

np
(y>j T−1y`)2 ≥

1
np
·

(y>j y`)2

λmax(T )2 . (C.6)

They next analyzed the simpler expressions for the numerator and denominator above. Unfortunately, (C.6) is false,
as |u>B−1v| ≥ |u>v|/λmax(B) is not generally true for positive matrices B.
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A corrected argument.. Let k = o(n) be an integer, to be chosen later. Partition [n] = {1, . . . , n} into M = dn/ke
subsets I1, . . . ,IM of size k/2 ≤ |Ii| ≤ k each. The idea is to approximate {y>j T−1y`}`, j by a different set of random
variables, so that variables within the same class ` ∈ Ii are independent of one another (conditioned on y j). For an
index `, denote by I(`) the unique class such that ` ∈ I(`).

For a set I ⊆ [n], denote by YI ∈ R|I|×p the matrix whose rows are {y` : ` ∈ I}. Given indices j , `, we
decompose T = T−` + n−1y`y>` = T−`,− j + n−1y`y>` + n−1y jy>j . By the Sherman-Morrison formula,

1
p

y>j T−1y` =

1
p y>j T−1

−` y`
1 + γ · 1

p y>
`

T−1
−`

y`
=

1
p y>j T−1

−`,− jy`(
1 + γ · 1

p y>
`

T−1
−`

y`
) (

1 + γ · 1
p y>j T−1

−`,− jy j

) . (C.7)

We next simplify T−1
−`,− j. Decompose T−`,− j = T− j,−I(`) + n−1Y>

I(`)\{ j,`}YI(`)\{ j,`}. Recall that by the Woodbury formula,

for invertible matrices A,C, one has (A + UCV)−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1. Applying this with A =

T−1
−`,− j, C = I, U = V> = n−1/2Y>

I(`)\{ j,`}, gives

T−1
−`,− j = T−1

− j,−I(`) − n−1T−1
− j,−I(`)Y

>
I(`)\{ j,`}

(
I + n−1YI(`)\{ j,`}T−1

− j,−I(`)Y
>
I(`)\{ j,`}

)−1
YI(`)\{ j,`}T−1

− j,−I(`) . (C.8)

Let Ω be the following upper bound on the denominator of (C.7):

Ω = max
{(

1 + γ ·
1
p

y>` T−1
−` y`

) (
1 + γ ·

1
p

y>j T−1
−`,− jy j

)
: j ∈ [n], ` ∈ [n] \ { j}

}
. (C.9)

Similarly, define

Ω = max
{
(np)−1

∥∥∥∥YI(`)\{ j,`}T−1
− j,−I(`)y`

∥∥∥∥ ∥∥∥∥YI(`)\{ j,`}T−1
− j,−I(`)y j

∥∥∥∥ : j ∈ [n], ` ∈ [n] \ { j}
}
. (C.10)

Observe that per (C.8), | 1p y>j T−1
−`,− jy` | ≥ |

1
p y>j T−1

− j,−I(`)y` | −Ω. Finally, denote

ξ j,` = p−1/2
〈 T−1

− j,−I(`)y j∥∥∥∥T−1
− j,−I(`)y j

∥∥∥∥ , y`
〉
, and ν = min

j,`

∥∥∥∥T−1
− j,−I(`)y j

∥∥∥∥ . (C.11)

Importantly, observe that the random variables ξ j,` within the same class ` ∈ Ii are statistically independent of one
another, conditioned on y j. Combining (C.7)-(C.12) yields the following lower bound,∣∣∣∣∣ 1py>j T−1y`

∣∣∣∣∣ ≥ p−1/2|ξ j,` |
ν

Ω
−

Ω

Ω
. (C.12)

Next we derive high-probability bounds on Ω,Ω, ν.

Lemma 30. For a number C1, let ELem.30 be the event that: 1) Ω ≤ C1; 2) ν ≥ 1/C1; 3) Ω ≤ C1
k
n .

Assume k ≤ 1−γ
1+γ

n − 1. There are c,C,C1 > 0, that depend on the distribution of Y and on γ, so that

1. Assume [LC]. Then Pr(Ec
Lem.30) ≤ Cn2e−cΨp

√
k.

2. Assume [SG-IND] or [CCP-SBP]. Then Pr(Ec
Lem.30) ≤ Cn2e−ck.

Proof. We start by bounding Ω and ν. Considering their definitions, in (C.9) and (C.11), it suffices to show that the fol-
lowing are all high-probability events (for some constant C > 0): (I) max j,` λmax(T− j,I(`)) ≤ C; (II) min j,` λmax(T− j,I(`)) ≥
1/C; (III) max` |p−1‖y`‖2 − 1| ≤ 1

2 . Observe that T− j,I(`) is, up to the normalization, the sample covariance of at least
n− k−1 ≥ 2γ

1+γ
n = 1

1/2+γ/2 p i.i.d. measurements. Thus, conditions (I) and (II) can be verified using Lemmas 20 and 21
respectively. Condition (III) can be verified using Lemma 22. We omit the details.
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We next consider Ω, defined in (C.10). Let us bound, ω j,` := (np)−1
∥∥∥∥YI(`)\{ j,`}T−1

− j,−I(`)y`
∥∥∥∥2

, so that a high-

probability bound on Ω may be attained by union bound over `, j. Denote u j,` = T−1
− j,−I(`)y`, û j,` = u j,`/‖u j,`‖ so

ω j,` = k
n · p

−1‖u j,`‖
2 · û>j,`

(
1
k Y>
I(`)\{ j,`}YI(`)\{ j,`}

)
û j,`. The terms p−1‖u j,`‖

2 may be treated upper-bounded similarly to the

previous paragraph. As for the term û>j,`
(

1
k Y>
I(`)\{ j,`}YI(`)\{ j,`}

)
û j,`, observe that 1

k Y>
I(`)\{ j,`}YI(`)\{ j,`} is a sample covari-

ance matrix consisting of (at most) k samples, and û j,` is a unit vector which is statistically independent of YI(`)\{ j,`}.
By Lemma 23, this quadratic form is bounded by a constant w.h.p.

Next, we show that w.h.p., there are many large |ξ j,` |-s. For a number α, let Ñ j[α] be the number of variables ξ j,`

(1 ≤ ` ≤ n) in row j, such that |ξ j,` | ≥ α.

Lemma 31. There are c,C, α∗ > 0, that depend on the distribution of Y, so that Pr(min1≤ j≤n Ñ j[α∗] ≤ 0.6n) ≤ Cn2e−ck.

Proof. For 1 ≤ i ≤ M, let Ñ i
j[α] =

∑
`∈Ii

1{|ξ j,` |≥α}, so that Ñ j[α] =
∑M

i=1 Ñ i
j[α]. Let F j,i be the σ-algebra generated

by {y j} ∪ {y`}`<Ii . Conditioned on F j,i, {ξ j,`}`∈Ii\{ j} are i.i.d. Since Y satisfies the SBP, Definition 3, there is some α∗
such that Pr(|ξ j,` | ≥ α∗|F j,i) ≥ 0.8. By Hoeffding’s inequality, Pr(Ñ i

j[α∗] ≤ 0.7|Ii \ { j}| |F j,i) ≤ 2e−c1 |Ii\{ j}| ≤ 2e−c2k.
Taking a union bound over i ∈ [M], w.p. ≥ 1 − 2ne−c2k it holds that Ñ i

j[α∗] ≥ 0.7|Ii \ { j}| simultaneously for all i, and
in particular

∑M
i=1 Ñ i

j[α∗] ≥ 0.7(n − 1). To finish the proof of the Lemma, take a union bound over all 1 ≤ j ≤ n.

We are ready to conclude the proof of Lemma 14. Set k = cKn1/2, for a small constant cK > 0, to be chosen
momentarily. By Lemma 30 and Eq. (C.12), there are C1,C2, α∗ such that w.h.p.,

p−1|y jT−1y` | ≥ n−1/2(C1|ξ j,` | −C2cK) for all j, l ∈ [n], ` , j

and
Ñ j[α∗] ≥ 0.6n for all j ∈ [n] .

Accordingly, choose cK so that C2cK ≤ 0.5C1α∗. Recall, by Eq. (C.3), that A j,` = γ
(
p−1|y jT−1y` |

)2
. Taking β0 =

γ(0.5C1α∗)2, observe that the high-probability event above implies that min1≤ j≤n N j[β0] ≥ 0.6n, that is, each row j
of A contains at least 0.6n entries A j,` satisfying A j,` ≥ β0/n. As explained in the beginning of this section, this
establishes the proof of the Lemma.

Appendix C.2. Proof of Lemma 15

Denote S (w) = 1
n
∑n

i=1 wixixi, T (w) = 1
n
∑n

i=1 wiyiy>i , so that x>j S −1(w)x` = y>j T−1(w)y`. By (C.2),

∣∣∣∣(∇gβ(w) − ∇gβ(1)
)

j,`

∣∣∣∣ =

∣∣∣∣∣∣ 1
w2
`

− 1

∣∣∣∣∣∣1{ j=`} + 1
np

∣∣∣(y>j T−1(1)x`)2 − (y>j T−1(w)y`)2
∣∣∣ .

If ‖w − 1‖∞ ≤ 1/2 then
∣∣∣∣ 1

w2
`

− 1
∣∣∣∣ =

∣∣∣∣ 1
w2
`

+ 1
w`

∣∣∣∣ |1 − w` | ≤ 6‖w − 1‖∞. And so, for all 1 ≤ j ≤ n,

n∑
`=1

∣∣∣∣(∇gβ(w) − ∇gβ(1)
)

j,`

∣∣∣∣ ≤ 6‖w − 1‖∞ +
1

np

n∑
`=1

∣∣∣(y>j T−1(1)y`)2 − (y>j T−1(w)y`)2
∣∣∣ .

Write

(y>j T−1(1)y`)2 − (y>j T−1(w)y`)2 =
(
(y>j T−1(1)y`) + (y>j T−1(w)y`)

) (
(y>j T−1(1)y`) − (y>j T−1(w)y`)

)
= y>j

(
T−1 + T−1(w)

)
yl · y>j

(
T−1 − T−1(w)

)
yl .
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By Cauchy-Schwartz, 1
np

∑n
`=1

∣∣∣∣(y>j T−1(1)y`)2 − (y>j T−1(w)y`)2
∣∣∣∣ ≤ (I1I2)1/2, where

I1 =
1

np

n∑
`=1

(
y>j

(
T−1 + T−1(w)

)
yl

)2
= p−1y>j

(
(T−1 + T−1(w))T (T−1 + T−1(w))

)
y j ,

I2 =
1

np

n∑
`=1

(
y>j

(
T−1 − T−1(w)

)
yl

)2
= p−1y>j

(
(T−1 − T−1(w))T (T−1 − T−1(w))

)
y j .

‖w−1‖∞ ≤ 1/2 implies ‖T−1+T−1(w)‖ ≤ 3‖T−1‖, and ‖T−1−T−1(w)‖ = ‖T−1(T (w)−T )(T−1(w))‖ ≤ (3/2)‖T−1‖2‖T‖‖w−
1‖∞. Thus, for numerical c > 0, (I1I2)1/2 ≤ cp−1‖y j‖

2‖T−1‖3‖T‖2‖w − 1‖∞. We get

‖∇gβ(w) − ∇gβ(1)‖∞,∞ = max
1≤ j≤n

n∑
`=1

∣∣∣∣(∇gβ(w) − ∇gβ(1)
)

j,`

∣∣∣∣ ≤ (
3 + c‖T−1‖3‖T‖2 max

1≤ j≤n
p−1‖y j‖

2
)
‖w − 1‖∞ .

For conclude the proof, recall that w.h.p.: 1) ‖T‖ ≤ C1 (by Lemma 20); 2) ‖T−1‖ ≤ C2 (by Lemma 21); and 3)
max1≤ j≤p p−1‖y j‖

2 ≤ C3 (by Lemma 22 and a union bound over 1 ≤ j ≤ n).

Appendix D. Proof of Lemmas for Theorems 3 (MRE) and 4 (TRE)

Appendix D.1. Proof of Lemma 17
Write Q̂i(d) − Q(d) = ∆1 + ∆2 where

∆1 = p−1x>i (φ(d)S −i + αdIp×p)−1xi − p−1TrΣp(φ(d)S −i + αdIp×p)−1 ,

∆2 = p−1TrΣp(φ(d)S −i + αdIp×p)−1 − p−1ETrΣp(φ(d)S −i + αdIp×p)−1 .

To bound |∆1|, use Lemma 22, applied to the quadratic form p−1y>i Byi, where B = Σ
1/2
p (φ(d)S −i + αdIp×p)−1Σ

1/2
p .

Since ‖Σp‖ ≤ smax and d ≥ d0 then ‖B‖ ≤ smax(αd0)−1. To bound |∆2|, use Lemma 25 with S n = S −i, C = Σp,
A = αdIp×p.

Appendix D.2. Proof of Lemma 18
We first show that d∗ indeed exists. By (36), the functions Q, F are continuous and strictly decreasing. Since

φ(d) = du(d) and u is bounded, then limd→0 φ(d) = 0. This, in turn, implies limd→0 Q(d) = ∞ and limd→0 F(d) = ∞.
Moreover, limd→∞ Q(d) = 0, and so limd→∞ F(d) = 0. Consequently, d∗ = F−1(1) exists uniquely.

Next, we bound d∗. To this end, we first upper bound F. By Eq. (36), Q(d) ≤ p−1ETrΣp(αdIp×p)−1 = τp/(αd),
where τp = p−1TrΣp ≤ smax. Since Q(d) ≥ 0, clearly F(d) ≤ (1 + α)Q(d) ≤ (smax

1+α
α

)d−1. Setting d = d∗, F(d∗) = 1,
we conclude d∗ ≤ d = 1+α

α
smax.

To lower bound d∗, we need a lower bound on Q. Clearly, S −i � ‖S −i‖Ip×p, so

Q(d) ≥ p−1TrΣpE
(
φ(d)‖S −i‖Ip×p + αdIp×p

)−1
≥ τ · E

1
φ(d)‖S −i‖ + αd

. (D.1)

By Lemma 20, there is some C0 > 0 such that ‖S −i‖ ≤ smaxC0 holds w.p. ≥ 1
2 . Moreover, φ(d) = u(d)d ≤ u(0)d,

since u is decreasing. Combining this with (D.1) yields Q(d) ≥ 1
2

τ
u(d)dC0 smax+αd = C1/d. Plugging this bound and the

previously derived upper bound Q(d) ≤ C2/d into (36) yields F(d) ≥ (1 + α) C1/d
1+γφ(d)(C2/d) ≥ (1 + α) C1/d

1+γu(0)C2
, from

which a lower bound on d∗ follows.
Finally, it remains to show that for some η, |F(d1)−F(d2)| ≥ η|d1−d2| inside the interval [d, d]. Let d1 ≤ d2. Then,

(1 + α)−1(F(d1) − F(d2)) =
Q(d1)

1 + γφ(d1)Q(d1)
−

Q(d2)
1 + γφ(d2)Q(d2)

=
Q(d1) − Q(d2) + γ(φ(d2) − φ(d1))Q(d1)Q(d2)

(1 + γφ(d1)Q(d1))(1 + γφ(d2)Q(d2))
(?)
≥

Q(d1) − Q(d2)
(1 + γφ(d1)Q(d1))(1 + γφ(d2)Q(d2))

,
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where in (?) we used φ(d2) − φ(d1) ≥ 0, since φ is non-decreasing. The denominator is upper bounded by a constant
inside the interval, and the numerator is non-negative. Thus, it suffices to show that Q(d1) − Q(d2) ≥ η0(d1 − d2) for
some η0 > 0. Since φ is non-decreasing, Q(d1) = p−1ETrΣp(φ(d1)S −i+αd1Ip×p)−1 ≥ p−1ETrΣp(φ(d2)S −i+αd1Ip×p)−1,
and so

Q(d1) − Q(d2) ≥ p−1ETrΣp(φ(d2)S −i + αd2Ip×p)−1)((d1 − d2)Ip×p)(φ(d2)S −i + αd1Ip×p)−1 .

Consider the matrix A = (φ(d2)S −i +αd2Ip×p)−1)(φ(d2)S −i +αd1Ip×p)−1. It is positive, being the product of commuting
positive matrices. Consequently, Q(d1) − Q(d2) ≥ (d1 − d2)p−1ETrΣpA ≥ (d1 − d2)τpEλmin(A). Lastly, Eλmin(A) ≥ η0
for some η0 since, by Lemma 20, for some C, ‖S −i‖ ≤ Csmax holds w.h.p.

Appendix D.3. Proof of Lemma 19
We focus on Item 1), namely showing the existence and boundedness of d∗. The proof of Item 2) is identical to

the corresponding part in Lemma 18 (MRE). Using φ(d) = 1 in (36), F(d∗) = 1 is equivalent to

Q(d∗) =
1

1 + α − γ
, where Q(d) = p−1ETrΣp(S −i + αdIp×p)−1 . (D.2)

Since α > max{0, γ − 1} then 1
1+α−γ

> 0. The function Q is positive, continuous and strictly decreasing, with
limd→∞ Q(d) = 0. We have Q(d) ≤ smax/(αd), and therefor if a solution Q(d∗) = (1 + α − γ)−1 exists, then necessarily
d∗ ≤ d ≤ smax

α
(1+α−γ). As for establishing existence, by continuity it suffices to show that limd→0 Q(d) > (1+α−γ)−1;

in other words, we need to study the behavior of Q(d) near d = 0. To this end, we consider separately the regimes
γ < 1 and γ ≥ 1, noting that S −i is only invertible (w.p. 1) in the regime p/n = γ < 1.

The case γ < 1. Note that (1+ x)−1 ≥ 1− x for all x ≥ 0. Thus, for any non-negative matrix P, (I + P)−1 � I−P. Write
Σ

1/2
p (S −i +αdIp×p)−1Σ

1/2
p = (T−i +αdΣ−1

p )−1 = T−1/2
−i (Ip×p +αdT−1/2

−i Σ−1
p T−1/2

−i )T−1/2
−i , and so Σ

1/2
p (S −i +αdIp×p)−1Σ

1/2
p �

T−1
−i − αdT−1

−i Σ−1
p T−1

−i � T−1
−i − αdΣ−1

p /λmin(T−i)2. For an event E, denote for brevity EE[·] = E[·1{E}]. By Lemmas 26
and 21, assuming large enough n, there is C∗ = C∗(γ,Y, α) such that for the event E = {λmin(T−i) ≥ C∗}, we have
EE[p−1TrT−1

−i ] ≥ 1
2 ( 1

1−γ + 1
1−γ+α

). Thus,

Q(d) ≥ p−1EETrΣ1/2
p (S −i+αdIp×p)−1Σ1/2

p ≥ p−1EET−1
−i −αdp−1EETrΣ−1

p /λmin(T−i)2 ≥
1
2

(
1

1 − γ
+

1
1 − γ + α

)
−
α

C2
∗

τ·d .

This implies that limd→0 Q(d) > (1 − γ + α)−1; moreover, setting d = d∗, yields an explicit lower bound on d∗.

Remark 5. When α is sufficiently large, we can obtain a lower bound d which does not depend on p−1TrΣ−1
p , similarly

to the analysis of [33]. They use (D.1), recalling that by Lemma 20, there is C = C(γ,Y) such that Pr(‖S −i‖ ≤ Csmax) =

1−o(1). Thus, Q(d) ≥ (1−o(1))τp(Csmax +αd)−1, which yields a positive lower bound on d∗ whenever 1
1+α−γ

< τ

Csmax
,

that is, α > γ − 1 + Csmax/τ. The resulting lower bound may be arbitrarily better (larger) than the previously derived
lower bound (which depends on τ), since p−1TrΣ−1

p may be very large when Σp has only one eigenvalue close to 0.

The case γ ≥ 1. We analyze this case essentially by reduction to the case γ < 1. Making explicit the dependence of
Q on n, denote Qn(d) = p−1ETrΣp(S (n)

−i + αdIp×p)−1, where S (n) = n−1 ∑n
j=1 x jx>j is the sample covariance of n i.i.d.

measurements. For an integer m ≥ 0, let xn+1, . . . , xn+m be m new i.i.d. samples from X. W.p. 1,

TrΣp(S (n)
−i + αdIp×p)−1 ≥ p−1TrΣp

1
n

n+m−1∑
j=1

x jx>j + αdIp×p


−1

=
n

n + m
p−1TrΣp

(
S (n+m)
−i + α

n
n + m

dIp×p

)−1
.

Consequently, Qn(d) ≥ n
n+m Qn+m

(
n

n+m d
)
. For n + m − p = Ω(p), Lemma 26 implies, assuming n is large, that

Qn+m(0) ≥ 0.99 1
1− p

n+m
, hence n

n+m Qn+m(0) ≥ 0.99 n
n+m−p = 0.99 1

1+m/n−γ . Clearly, we may set m = c0n for some

c0 = c0(γ, α) such that 0.99 1
1+c0−γ

is larger than 1
1−γ+α

by a constant. We can then lower bound Qn+m(d) following the
same argument as in the case γ < 1, noting that S (n+m) is invertible w.p. 1; we omit the details.
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Appendix E. Proof of Additional Technical Lemmas and Symmetrization Properties

Appendix E.1. Proof of Lemma 21

Recall that under either assumption on Y , [SG-IND], [CCP-SBP] or [LC], it satisfies the SBP with some constant
C0 (for [SG-IND] and [LC], see Lemmas 1 and 3 respectively). Let Y ∈ Rn×p be the matrix whowse rows are
y>1 , . . . , y

>
n . Since T = n−1Y>Y, our goal is to show that w.h.p., σmin(Y) = minv∈Sp−1 ‖Yv‖ = Ω(

√
n).

The following proof is based on [65, Corollary 4.6]. We first show that for any fixed v ∈ Sp−1, ‖Yv‖ is large
w.h.p.; the desired result will then follow by a standard net argument. Let t > 0 and s ∈ (0, 1); observe that whenever
‖Yv‖2 ≤ tn, then there are at most sn entries of Yv for which |(Yv)i|

2 > t/s; equivalently, there are (at least) (1 − s)n
entries for which |(Yv)i|

2 ≤ t/s. Note that all n rows of Yv are i.i.d., with the same law as v>Y . Taking a union bound
over all possible subsets S of [n] with size (1 − s)n, corresponding to “small” coordinates in Yv,

Pr
(
‖Yv‖2 ≤ tn

)
≤

(
n

(1 − s)n

) (
Pr(|v>Y |2 ≤ t/s)

)(1−s)n
≤

C0

√
t
s

e
(1 − s)

(1−s)n

. (E.1)

Above, we used
(

n
k

)
≤ (en/k)k and the small-ball property for Y , Definition 3.

Let ε0 ∈ (0, 1), to be chosen later, and letN be an ε0-net of Sp−1 of minimal size. By a standard packing argument
[75, Lemma 5.2], |N| ≤ (1 + 2

ε0
)p ≤ (3/ε0)p = (3/ε0)γn. Now,

σmin(Y) = min
v∈Sp−1

‖Yv‖ ≥ min
v∈Sp−1

min
v∗∈N
{‖Yv∗‖ − ‖Y(v − v∗)‖} ≥ min

v∗∈N
‖Yv∗‖ − σmax(Y)ε0 . (E.2)

By Lemma 20, there is C1 such that w.p. ≥ 1 − e−c
√

n, σmax(Y) ≤ C1
√

n. Thus, it suffices to show that for some fixed
ε0, w.h.p., minv∗∈N ‖Yv∗‖ > 2C1ε0

√
n. Using (E.1) with t = (2C1ε0)2,

Pr
(
min
v∗∈N
‖Yv∗‖ ≤ 2C1ε0

√
n
)
≤ |N|

(
2eC0C1
√

s(1 − s)
ε0

)(1−s)n

≤
(
C3(
√

s(1 − s))s−1ε
1−s−γ
0

)n
. (E.3)

Recall that γ < 1, and fix any s ∈ (0, 1 − γ). As ε0 → 0, the RHS of (E.3) tends to zero. Thus, for all small enough
(but constant) ε0, the RHS of (E.3) is ≤ e−C4n. As discussed above, this concludes the proof of the Lemma.

Appendix E.2. Proof of Lemma 22

We prove Lemma 22 assuming Y is an isotropic log-concave random vector. Denote the ballB =
{
y ∈ Rp : ‖y‖ ≤ 2

√
p
}
,

and let YB be a random vector distributed according to the law of Y , conditioned on Y ∈ B. Clearly,

Pr
(∣∣∣p−1Y>AY − p−1Tr(A)

∣∣∣ ≥ ε‖A‖) ≤ Pr(Y < B) + Pr
(∣∣∣p−1Y>BAYB − p−1Tr(A)

∣∣∣ ≥ ε‖A‖)
≤ Pr(Y < B) + Pr

(∣∣∣∣p−1Y>BAYB − E
[
p−1Y>BAYB

]∣∣∣∣ ≥ (ε − ε0)‖A‖
)
,

where ε0 = ‖A‖−1 p−1
∣∣∣EY>

B
AYB − EY>AY

∣∣∣. Since E‖Y‖ ≤ √p, Lemma 2 implies that Pr(Y < B) ≤ e−c1Ψp
√

p. Observe
that YB is a log-concave random vector, being the restriction of Y onto a convex set. Moreover, for any u ∈ Sp−1,

Var(u>YB) ≤ E(u>YB)2 ≤
E(u>Y)2

Pr(Y ∈ B)
= 1 + O(e−cΨp

√
p) = O(1) ,

hence ‖Cov(YB)‖ = O(1). Since the function y 7→ p−1y>Ay is L = O(‖A‖p−1/2)-Lipschitz on B, Lemma 2 implies

Pr
(∣∣∣∣p−1Y>BAYB − E

[
p−1Y>BAYB

]∣∣∣∣ ≥ (ε − ε0)‖A‖
)
≤ e−cΨp

(ε−ε0)‖A‖
L ≤ e−c2Ψp

√
p(ε−ε0) ,

so that
Pr

(∣∣∣p−1Y>AY − p−1Tr(A)
∣∣∣ ≥ ε‖A‖) ≤ e−c1Ψp

√
p + e−c2Ψp

√
p(ε−ε0) ≤ C3e−c3Ψp

√
p(ε−ε0) .
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It remains to show that ε0 = O((Ψp
√

p)−1). Decompose E
[
Y>AY

]
= E

[
Y>
B

AYB
]

Pr(Y ∈ B) + E
[
Y>AY · 1{Y<B}

]
, so

ε0 ≤ ‖A‖−1 p−1
∣∣∣∣E [

Y>BAYB
]∣∣∣∣ Pr(Y < B) + ‖A‖−1 p−1

∣∣∣∣E [
Y>AY1{Y<B}

]∣∣∣∣ ≤ O(e−c1Ψp
√

p) + p−1E
[
‖Y‖21{‖Y‖2>4p}

]
.

It remains to bound the second term above. Use

E
[
‖Y‖21{‖Y‖2>4p}

]
=

∫ ∞

0
Pr

(
‖Y‖21{‖Y‖2>4p} ≥ t

)
dt

= 4p Pr(‖Y‖2 ≥ 4p) +

∫ ∞

4p
Pr(‖Y‖2 ≥ t)dt = O(pe−c1Ψp

√
p) +

∫ ∞

4p
Pr(‖Y‖ ≥

√
t)dt .

By Lemma 2, Pr(‖Y‖ ≥
√

t) ≤ e−c4Ψp(
√

t−
√

p). Moreover, when
√

t ≥ 2
√

p, we have
√

t −
√

p ≥ 1
2

√
t. Thus,∫ ∞

4p
Pr(‖Y‖ ≥

√
t)dt ≤

∫ ∞

4p
e−(c4/2)Ψp

√
tdt ≤ e−(c4/4)Ψp

√
4p

∫ ∞

4p
e−(c4/4)Ψp

√
tdt = O(e−c5Ψp

√
p) ,

and we are done.

Appendix E.3. Relaxing the zero mean assumption

As described in Section 6, we considered the symmetrization procedure of [29] to relax the zero mean assumption.
We note that under the elliptical model, with Y uniform on the sphere, this procedure is especially appealing, as the
scaled difference (zY − z′Y ′)/R with R =

√
z2 + z′2 is also uniformly distributed on the sphere.

Here we show that our main results continue to hold under a data distribution of the form X = Σ
1/2
p Y◦, where

Y◦ = ζY + ζ′Y ′ and ζ = z/R, ζ′ = −z′/R. By construction, the random vector Y◦ is isotropic; however, since z, z′

are arbitrary, Y◦ in general does not inherit the favorable distributional properties of Y . Fortunately, our analysis does
not require these properties in their full detail. In fact, to carry out the proofs, it suffices to verify that Y◦ satisfies the
following:

• Small-ball property: Y◦ satisfies the SBP. To see this, observe that w.p. 1, either |ζ | ≥ 1/
√

2 or |ζ′| ≥ 1/
√

2
(because ζ2 + ζ′2 = 1). Condition on ζ, ζ′ and assume w.l.o.g. that |ζ | ≥ 1/

√
2. Then |Y◦ − a| ≤ t implies that

|Y−(a−ζ′Y ′)/ζ | ≤ t/|ζ | ≤
√

2t. Since (a−ζ′Y ′)/ζ is independent of Y , Pr(|Y◦−a| ≤ t|ζ, ζ′) ≤ Pr(|Y−(ζ′Y ′+a)/ζ | ≤√
2t|ζ, ζ′) ≤

√
2C0t, where C0 is the small-ball constant of Y .

• Eigenvalue bounds for the sample covariance: Let S ◦ = n−1 ∑n
i=1 y◦i y◦i

> be the sample covariance matrix of n
Y◦-distributed measurements. Also denote S = n−1 ∑n

i=1 yiy>i , S ′ = n−1 ∑n
i=1 y′iy

′>
i .

First, we need a high-probability bound on λmax(S ◦). Observe that for any u, by Cauchy-Schwartz, (u>Y◦)2 =

(ζu>Y+ζ′u>Y)2 ≤ (ζ2+ζ′2)((u>Y)2+(u>Y ′)2) = (u>Y)2+(u>Y ′)2. Consequently, λmax(S ◦) ≤ λmax(S )+λmax(S ′),
which may be bounded w.h.p. using Lemma 20. Next, when γ < 1 we need a high-probability lower bound on
λmin(S ◦). To this end, one can follow the proof of Lemma 21. To carry it out, we needed two components: the
SBP, and a high-probability upper bound on λmax(S ◦); as explained, both hold.

• Concentration for quadratic forms: While complicated functions of Y◦ should not be expected to concentrate,
since ζ, ζ′ are arbitrary, concentration of quadratic forms is maintained due to their bilinear nature. We need
to prove an analog of Lemma 22. Note that for fixed ζ, ζ′, the random vector ζY + ζ′Y inherits the favorable
concentration properties of Y . Since the conditional expectation of a quadratic form does not depend on ζ, ζ′,
E[Y◦>AY◦|ζ, ζ′] = Tr(A), we may simply apply Lemma 22 pointwise conditioned on ζ, ζ′.

• Entrywise concentration for the sample covariance: We need an analog of Lemma 23. We may carry out the
proof of Lemma 23, essentially verbatim, conditioned on {ζi, ζ

′
i }1≤i≤n and noting that E[u>S ◦v|{ζi, ζ

′
i }1≤i≤n] =

u>v does not depend on {ζi, ζ
′
i }1≤i≤n.
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[35] R. van Handel, Probability in high dimension, http://www.princeton.edu/~rvan/APC550.pdf, Technical Report, PRINCETON UNIV

NJ, 2014.
[36] D. L. Hanson, F. T. Wright, A bound on tail probabilities for quadratic forms in independent random variables, The Annals of Mathematical

Statistics 42 (1971) 1079–1083.
[37] H. Huang, K. Tikhomirov, On dimension-dependent concentration for convex lipschitz functions in product spaces, arXiv preprint

arXiv:2106.06121 (2021).

27

http://www.princeton.edu/~rvan/APC550.pdf


[38] M. Hubert, P. J. Rousseeuw, S. Van Aelst, High-breakdown robust multivariate methods, Statistical science 23 (2008) 92–119.
[39] R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete & Computational

Geometry 13 (1995) 541–559.
[40] Y. Ke, S. Minsker, Z. Ren, Q. Sun, W.-X. Zhou, User-friendly covariance estimation for heavy-tailed distributions, Statistical Science 34

(2019) 454–471.
[41] D. Kelker, Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhyā: The Indian Journal of
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