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Abstract

Gaussian covariance graph model is a popular model in revealing underlying

dependency structures among random variables. A Bayesian approach to the esti-

mation of covariance structures uses priors that force zeros on some off-diagonal

entries of covariance matrices and put a positive definite constraint on matrices. In

this paper, we consider a spike and slab prior on off-diagonal entries, which uses a

mixture of point-mass and normal distribution. The point-mass naturally introduces

sparsity to covariance structures so that the resulting posterior from this prior ren-

ders covariance structure learning. Under this prior, we calculate posterior model

probabilities of covariance structures using Laplace approximation. We show that

the error due to Laplace approximation becomes asymptotically marginal at some

rate depending on the posterior convergence rate of covariance matrix under the

Frobenius norm. With the approximated posterior model probabilities, we propose

a new framework for estimating a covariance structure. Since the Laplace approxi-

mation is done around the mode of conditional posterior of covariance matrix, which

cannot be obtained in the closed form, we propose a block coordinate descent al-

gorithm to find the mode and show that the covariance matrix can be estimated
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using this algorithm once the structure is chosen. Through a simulation study based

on five numerical models, we show that the proposed method outperforms graphi-

cal lasso and sample covariance matrix in terms of root mean squared error, max

norm, spectral norm, specificity, and sensitivity. Also, the advantage of the proposed

method is demonstrated in terms of accuracy compared to our competitors when

it is applied to linear discriminant analysis (LDA) classification to breast cancer

diagnostic dataset.

1 Introduction

The sparse covariance matrix estimation problem based on a high-dimensional dataset,

where the sample size n exceeds the dimension of variable p, has been grown in impor-

tance in multivariate data analysis since the problem is crucial to uncover underlying

dependency structures among p-dimensional variables. The sparse covariance matrix es-

timation plays a key role in many multivariate statistical inferences, such as principal

component analysis (PCA), linear discriminant analysis (LDA), and time series analysis.

In the estimation, Gaussian covariance graph model provides an excellent tool, assum-

ing multivariate normal distribution on data. Under the normality, the covariance matrix

induces a bi-directed graph and the absence of an edge between two variables is equiva-

lent to zero on the covariance between them. Hence, inference of covariance structure, or

equivalently graphical structure, can lead to the estimation of covariance matrix. But the

inference requires introducing sparsity to the structure, as the structure is determined by

the zeros in the covariance matrix.

In the frequentist literature, introducing sparsity to the structure has been mostly

done using regularization methods. Bien and Tibshirani (2011) and Yuan and Lin (2007)

considered ℓ1-type penalty on the negative log-likelihood. They introduced sparsity to

the structure of the model using sparse and shrinkage estimators. On the other hand,

Bickel and Levina (2008a), Rothman et al. (2009), and Cai and Liu (2011a) considered

thresholding method. However, the estimated covariance matrices from these methods
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sometimes contradicted with a positive definite constraint on covariance matrices. Other

works in the frequentist context include banding and tapering, e.g., Wu and Pourahmadi

(2003), Bickel and Levina (2008b), and Cari et al. (2012). Their estimators are often used

for Gaussian covariance graph model and are well supported by the asymptotic statistical

properties.

The Bayesian methods for introducing sparsity to the covariance matrix have been also

developed. The G-inverse Wishart prior, considered by Silva and Ghahramani (2009), was

often used in the Bayesian framework. However, the method had a limitation in applica-

tions as the dimension gets higher because of posterior intractability. Khare and Rajaratnam

(2011) extended G-inverse Wishart prior to a broader class and proposed a blocked Gibbs

sampler to sample covariance matrices from the resulting posterior, but Khare and Rajaratnam

(2011) considered only decomposable graphs. Wang (2015) also considered covariance

graph model for the inference of covariance matrices and also provided a blocked Gibbs

sampler that is applicable to all graphs but under the continuous spike and slab prior,

which uses the mixture of two Gaussian distributions on off-diagonal entries, one with suf-

ficiently small variance and the other with variance substantially far from 0, and the expo-

nential prior on diagonal entries. But the method proposed by Wang (2015) had inherent

difficulty in introducing sparsity to the structure of the model due to the absolute continu-

ity of prior. Furthermore, none of Silva and Ghahramani (2009), Khare and Rajaratnam

(2011), and Wang (2015) did not attain any asymptotic statistical properties. Lee et al.

(2021) were able to introduce sparsity to the covariance structure using beta-mixture

shrinkage prior and attained the posterior convergence rate of covariance matrix under

the Frobenius norm. However, compared to frequentist literature, Bayesian literature still

lacks in the methods for inference of sparse covariance matrices, and most of the pro-

posed methods are not theoretically well supported. Furthermore, they have a limit in

introducing sparsity to the covariance structures due to the absolute continuity of prior.

To fill the gap in the literature of Bayesian inference, we propose a method for estimat-

ing covariance structures under spike and slab prior which uses a mixture of point-mass

and normal distribution and exponential prior on off-diagonal entries and diagonal en-
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tries of covariance matrices, respectively, which is a modified version of the prior in Wang

(2015). To overcome the limitations of the current Bayesian inference on sparse covari-

ance matrices we have described, we propose a method that uses Laplace approximation

to compute posterior probabilities of covariance structures, generates MCMC samples

of graphs using Metropolis-Hastings algorithm proposed by Liu and Martin (2019) and

chooses the model either by median probability model (MPM) or maximum a posteriori

(MAP). We estimate covariance matrix by the model of conditional posterior of covariance

matrix given the structure.

Because of the enforced zero due to point-mass prior, a blocked Gibbs sampler for

sampling covariance matrix from the resulting posterior or reversible jump MCMC (RJM-

CMC) for computing posterior model probabilities of covariance structures is not suitable

in this case. To be specific, the enforced zero due to point-mass makes it difficult to derive

conditional posteriors induced from the proposed prior if one considers the blocked Gibbs

sampler proposed by Wang (2015), hence bthe locked Gibbs sampler is not applicable to

this case. Furthermore, if point-mass is introduced, there are 2(
p
2) models that RJMCMC

has to visit over, which makes practical implementation extremely difficult as p grows and

the estimated posterior model probability of the covariance structure unreliable. We show

that the error by Laplace approximation becomes asymptotically marginal at some rate

depending on the posterior convergence rate of covariance matrix under the Frobenius

norm.

One of the advantages of using the suggested prior in this paper is that the pos-

terior is always twice continuously differentiable. In the estimation of sparse precision

matrices, Banerjee and Ghosal (2015) proposed the Bayesian version of graphical lasso,

which uses Laplace approximation to compute posterior model probabilities of graphical

structures and chooses the final model by MPM. Banerjee and Ghosal (2015) consid-

ered Laplace prior on off-diagonal entries. Since Laplace prior is not differentiable at the

median, Laplace approximation was applicable to only regular models. The term regular-

ity may follow the terminology used by Yuan and Lin (2005) and Banerjee and Ghosal

(2015). Yuan and Lin (2005) and Banerjee and Ghosal (2015) put ℓ1-type penalty on the
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entries of the concentration matrix, which is the graphical lasso. When an off-diagonal en-

try is set as zero due to graphical lasso, the integrand in Laplace approximation becomes

non-differentiable. If the model includes such an off-diagonal entry as a free variable,

Yuan and Lin (2005) and Banerjee and Ghosal (2015) referred to such model as a non-

regular model, and a regular model otherwise. Banerjee and Ghosal (2015) showed that

the posterior probability of regular models is not smaller than that of their non-regular

counterparts so that one can consider only regular models if one is to choose a model

by MPM. However, one had to determine the regularity of each model and it turned out

that the ratio of regular models among all possible models is extremely low. Moreover,

the constraint regularity led the estimated matrix to be extremely sparse. On the con-

trary, since the posterior induced from the prior in this paper is always twice continuously

differentiable, we do not have to consider the regularity. Thus, we do not have to suffer

from the drawback of Banerjee and Ghosal (2015) we just mentioned. Also, even though

Banerjee and Ghosal (2015) put a limit on the number of edges of a graph by Frequentist

graphical lasso, there were still too many models to search over and one had to judge

the regularity of each model which yields inefficiency in choosing the model. However, by

using the algorithm in Liu and Martin (2019), we do not have to search over all models.

Furthermore, since we force zeros on off-diagonal entries, sparsity can be naturally in-

troduced to the structure of covariance matrix compared to those with continuous spike

and slab prior in Wang (2015) and Lee et al. (2021). Hence, our prior is more useful in

introducing sparsity to the covariance structure.

The paper is organized as follows. In section 2, we introduce notations and preliminaries

necessary for this paper and the prior considered in this paper. Then, in section 3, we

describe Laplace approximation to calculate posterior model probabilities of covariance

structures and Metropolis-Hastings algorithm to generate MCMC samples of graphs from

the resulting approximated posterior. We choose the final model from the MCMC samples

either by MPM and MAP. Also, we show that the error by Laplace approximation becomes

asymptotically negligible at some rate depending on the posterior convergence rate of

covariance matrix and propose a block descent algorithm to find the mode of conditional
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posterior of covariance matrix as the Laplace approximation is done around it, which

cannot be obtained in the closed form. We describe how to estimate the covariance matrix

when the covariance structure is given using this algorithm. Finally, in section 4, we

provide the simulation results for five numerical models and breast cancer diagnostic

dataset. The conclusion will be discussed in 5.

2 Prior and Posterior Convergence Rate

2.1 Notations and Preliminaries

Consider the graph G = V × V where V is the set of p nodes and E ⊆ V × V is the set

of edges. Let Z = (zij) be a p(p− 1)/2 edge inclusion vector, or equivalently a covairance

(graphical) structure indicator, i.e., zij = 1 if (i, j) or (j, i) ∈ E and zij = 0 otherwise,

for i < j. Note that in this paper we consider bi-directed graphs, especially Gaussian

covariance graph model, and thus zij = 1 if and only if zij for all i, j ∈ V with i < j.

Denote the sum of entries in Z by #Z, the number of edges in G. Suppose two positive

numerical sequences an and bn are given. If an/bn is bounded as n → ∞, we denote this

by an . bn (bn & an), or equivalently bn = O(an). If an . bn and bn . an both hold, we

write an ≍ bn.

Let M be the set of all p× p real symmetric matrices. We denote the set of all p× p

positive definite matrices by M+ ⊂ M. Suppose A = (aij) and B = (bij) ∈ M. Denote

the Hadamard product of A and B by A ◦B and the Kronecker product by A⊗B. Let

λmin (A) and λmax (A) denote the smallest and the largest eigenvalues of A, respectively.

Also, let ||A||∞ = maxi,j |aij|, ||A||F =
√∑p

i,j=1 a
2
ij , and denote the spectral norm by

|| · ||2. Note the following facts hold:

||A||∞ ≤ ||A||2 ≤ ||A||F ≤ p||A||∞, (1)

||AB||F ≤ ||A||2||B||F. (2)

We write B ≺ A (A ≻ B) if A−B ∈ M+.
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2.2 Prior Setting

Suppose we observe n independent random samples X1, . . . , Xn|Σ from Np(0,Σ), where

Σ = (σij) ∈ M+ and Σ is sparse, i.e., many of σij are zeros. For Bayesian inference on

the sparsity of Σ in this paper, we consider a spike and slab prior on off-diagonal entries,

which uses a mixture of point-mass and Gaussian distribution, and exponential prior on

diagonal entries as follows:

πu (σij) = (1− q)δ0 + qN(σij |0, v2), 1 ≤ i < j ≤ p, (3)

πu (σii) = Exp (σii|λ/2) , 1 ≤ i ≤ p, (4)

where v is some positive constant substantially far from 0, λ > 0, q ∈ (0, 1), and δ0 is

point-mass. Here we consider λ/2 to be the rate parameter of the exponential distribution.

By (3) and (4), the prior on the entries of Σ is defined as

πu (Σ) =
∏

i<j

((1− q)δ0 + qN(σij |0, v2))
p
∏

i=1

Exp (σii|λ/2) . (5)

The prior (5) can be equivalently defined through a hierarchical model with an edge

inclusion vector Z = (zij),

πu(Σ|Z) =
∏

zij=1

N(σij |0, v2)
p
∏

i=1

Exp(σii|λ/2),

πu(Z) =
∏

i<j

πzij(1− π)1−zij .

Thus, one can interpret prior (3) as σij = 0 if zij = 0 with probability 1 − q and

σij ∼ N(·|0, v2) if zij = 1 with probability q for i < j. Hence, Z can be seen as a

covariance structure indicator, or equivalently a graphical structure indicator, following

the terminology used by Banerjee and Ghosal (2015). Note q is the edge acceptance prob-

ability; and the larger q is, the less model becomes sparse. We may choose not too small q

and v to avoid the extreme sparsity of the model. Compared to the prior in Wang (2015),

our prior naturally introduces sparsity to the structure of model with the point-mass at

zero. Define the set

U(τ) = {C ∈ M+ : 1/τ ≤ λmin (C) ≤ λmax (C) ≤ τ}, (6)
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where τ > 1. We restrict Σ on (6) and so consequently we have the following prior

π(Σ) ∝ πu (Σ)1(Σ ∈ U(τ)). (7)

Note that this restriction was frequently used in many statistical inferences on sparse

covariance matrices. The restriction U(τ) is useful in deriving asymptotic statistical prop-

erties for our proposed method under regular conditions, though we consider τ as ∞ in a

practical implementation.

Compared to prior in Wang (2012) or Banerjee and Ghosal (2015), which considered

Laplace prior that is not differentiable at its median on off-diagonal entries, prior in (7) is

always twice continuously differentiable. Thus, if we are to compute the posterior model

probabilities of Z using Laplace approximation, prior on off-diagonal entries in (7) takes

the advantage over Laplace prior because it is twice continuously differentiable and we do

not need to check the regularity of the model.

3 Posterior Computation

3.1 Posterior

Suppose Xn = (X1, . . . , Xn)
t follows Np(0,Σ) and Σ follows prior (7). The likelihood of

Xn is given Σ as follows.

π(Xn|Σ) =

n∏

i=1

1

|2πΣ|1/2 exp
(

−1

2
X t

iΣ
−1Xi

)

∝
n∏

i=1

|Σ|−1/2 exp

(

−1

2
tr
(
X t

iΣ
−1Xi

)
)

=
n∏

i=1

exp

(

−1

2
log |Σ| − 1

2
tr
(
XiX

t
iΣ

−1
)
)

= exp

(

−n
2
log |Σ| − 1

2
tr

(
n∑

i=1

XiX
t
iΣ

−1

))

= exp
(

−n
2
log |Σ| − n

2
tr
(
SΣ−1

))

,

(8)
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where S = 1
n
Xt

nXn = (sij), which is the sample covariance matrix. Note

π (Σ|Z)πu (Z) ∝ (1− q)p(p−1)/2−#Z
∏

zij=1

qN(σij |0, v2)
p
∏

i=1

Exp(σii|
λ

2
)1 (Σ ∈ UZ(τ))

∝
(

q

1− q

1√
2πv

)#Z

exp



− 1

2v2

∑

zij=1

σ2
ij −

λ

2

p
∑

i=1

σii



1 (Σ ∈ UZ(τ))

=

(
q

1− q

1√
2πv

)#Z

exp
(

−n
2
p(Σ,Z)

)

1 (Σ ∈ UZ(τ)) , (9)

where p(Σ,Z) = 1/nv2
∑

zij=1 σ
2
ij + λ/n

∑p
i=1 σii and

UZ(τ) = {Σ = (σij) ∈ U(τ) : σij = 0 if zij = 0}.

Now, we obtain the marginal posterior of Z under prior (7). By Bayes’ rule, together

with (8) and (9), we have the following conditional joint probability density function of

Z,Σ|Xn.

π (Z,Σ|Xn) ∝ π (Xn|Σ,Z)π (Σ|Z)πu (Z)

∝
(

q

1− q

1√
2πv

)#Z

exp
(

−n
2
log |Σ| − n

2
tr
(
SΣ−1

)
− n

2
p(Σ,Z)

)

1 (Σ ∈ UZ(τ))

=

(
q

1− q

1√
2πv

)#Z

exp
(

−n
2
rZ(Σ,Xn)

)

1 (Σ ∈ UZ(τ)) , (10)

where rZ(Σ,Xn) = log |Σ|+tr (SΣ−1)+p(Σ,Z). Let ĒZ = {(i, j) : 1 ≤ i = j ≤ p or zij =

1}. For the notational simplicity, denote
∏

(i,j)∈ĒZ
dσij by dΣZ . By (10), we have

π(Z|Xn) ∝
∫

ΣZ∈UZ(τ)

π (Z,ΣZ |Xn) dΣZ

∝
(

q

1− q

1√
2πv

)#Z ∫

ΣZ∈UZ(τ)

exp
(

−n
2
rZ (ΣZ ,Xn)

)

dΣZ .

(11)

Note that the posterior of Z is very intractable. But as rZ(Σ,Xn) is twice continuously

differentiable and has a minimizer on the domain UZ(τ), if we choose τ so that UZ(τ) is

broad enough to contain the minimizer, we approximate π(Z|Xn) using Laplace approx-

imation in Section 3.2.
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3.2 Laplace Approximation

In this section, we approximate π(Z|Xn) in (11) using Laplace approximation. Suppose

Σ∗
Z = (σ∗

Z,ij) ∈ UZ(τ) is the minimizer of rZ(ΣZ ,Xn) on UZ(τ), where ΣZ = (σZ,ij) ∈
UZ(τ) and Xn is given. Then, the Laplace approximation is done around Σ∗

Z . So we have

to find Σ∗
Z first. Observe that Σ∗

Z is the solution of optimization problem (12).

Minimize
ΣZ=(σZ,ij )∈UZ(τ)

log |ΣZ |+ tr
(
SΣ−1

Z

)
+

1

nv2

∑

zij=1

σ2
Z,ij +

λ

n

p
∑

i=1

σZ,ii (12)

Objective function rZ(ΣZ ,Xn) in (12) can be seen as a regularized negative log likelihood

by putting ℓ2-type penalty on off-diagonal entries and ℓ1-type penalty on diagonal entries.

Note that rZ(·,Xn) is not convex on UZ(τ) and Σ∗
Z cannot be obtained in the closed form.

Hence, the optimization problem (12) can be reduced to convex optimization problem if

we consider the set QZ(τ) instead of UZ(τ) in the optimization problem (12).

Observe that rZ(·,Xn) is convex on the set QZ(τ) = {W ∈ UZ(τ) : W ≺ 2S}. Provided
that Σ∗

Z belongs to the set QZ(τ), solving the reduced optimization problem is more

desired, since the convexity makes it easier to deriving algorithm for finding the solution

Σ∗
Z of the optimization problem (12). We have to resort to some numerical algorithm, as

Σ∗
Z cannot be obtained in the closed form. If such algorithm converges to the stationary

point of the reduced optimization problem, we obtain a local minimum of rZ(·,Xn) but

the local minimum can be global minimum due to the convexity.

But if p depends on n, Σ∗
Z ≺ 2S does not necessarily hold. Note that we assume the

dependency between p and n to derive asymptotic statistical properties for our proposed

method in this paper, which are to be discussed in Section 3.3. Thus, we pose assumptions

on parameters so that Σ∗
Z ≺ 2S. Consider the following assumptions :

(A1) p ≍ nβ for some constant 0 < β < 1.

(A2) 0 < v is some constant, 1 < τ , τ = O(1), and λ = O(1).

Assuming (A1) and (A2), we show that Σ∗
Z ≺ 2S with probability tending to one.

For simplicity, we may consider when Z = 1p(p−1)/2 , since the similar argument can be
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applied to general Z, where 1p(p−1)/2 is a p(p−1)/2−vector with all entries being 1. Then,

Σ∗
Z must satisfy the normal equation

−Σ−1
Z +Σ−1

Z SΣ−1
Z +Λ ◦ΣZ +

λ

n
Ip = 0p×p,

or equivalently,

−ΣZ +ΣZSΣZ +ΣZ (Λ ◦ΣZ)ΣZ +
λ

n
Σ2

Z = 0p×p, (13)

where Λ ∈ M is the matrix with 0 on diagonal entries and 1/nv2 on off-diagonal entries

and Ip and 0p×p ∈ M is identity matrix and zero matrix, respectively. Since λ = O(1)

and τ = O(1),

||λ
n
Σ2

Z ||2 ≤
λ

n
||ΣZ ||22

≤ λ

n
τ 2 → 0,

(14)

as n→ ∞. Also,

||ΣZ (Λ ◦ΣZ)ΣZ ||2 ≤ ||ΣZ ||22||Λ ◦ΣZ ||2

≤ pτ 2||Λ ◦ΣZ ||∞

≤ pτ 2 max
zij=1

{1/nv2 · |σZ,ij |}

≤ τ 3
p

nv2
→ 0,

(15)

as n → ∞. Here we used (1) in the second inequality and note that the last inequality

holds by (A1) and τ = O(1). Since the equation (13) is equivalent to equation (16)

2S−ΣZ = S− [ΣZ (Λ ◦ΣZ)ΣZ +
λ

n
Σ2

Z ], (16)

(14) and (15) imply that Σ∗
Z belongs to QZ(τ) for all sufficiently large n.

Thus, assuming (A1) and (A2), the optimization problem (12) can be reduced to the

following optimization problem (17)

Minimize
ΣZ=(σZ,ij)∈QZ (τ)

log |ΣZ |+ tr
(
SΣ−1

Z

)
+

1

nv2

∑

zij=1

σ2
Z,ij +

λ

n

p
∑

i=1

σZ,ii, (17)
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where QZ(τ) = {G ∈ UZ(τ) : G ≺ 2S}, which is a convex optimization problem. We

consider the optimization problem (17) instead of (12).

Now it remains to solve (17). To solve (17) as to obtain Σ∗
Z , we resort to a numerical

algorithm that solves (17) as Σ∗
Z cannot be obtained in the closed form. We provide a

block coordinate descent algorithm for solving (17) in Section 3.4.

Provided that Σ∗
Z is in the hand, we apply Laplace approximation to (11). Let ΣZ =

Σ∗
Z +∆Z , where ∆Z = (∆Z,ij). Then we have

rZ(ΣZ ,Xn) = rZ(Σ
∗
Z ,Xn) + kZ (∆Z ,Xn)− log |Σ∗

Z | − tr (SΩ∗
Z) , (18)

where kZ (∆Z ,Xn) = log |Σ∗
Z +∆Z |+tr

(
S (Σ∗

Z +∆Z)
−1)+ 1

nv2

∑

zij=1(2σ
∗
ij∆Z,ij+∆2

Z,ij)+

λ
n

∑p
i=1∆Z,ii and Ω∗

Z = (Σ∗
Z)

−1 = (ω∗
Z,ij). Substituting (18) into (11),

π (Z|Xn) ∝
(

π

(1− π)v

1√
2π

)#Z

exp
(

−n
2
rZ (Σ∗

Z ,Xn)
)

|Σ∗
Z |

n
2 exp

(n

2
tr (SΩ∗

Z)
)

∫

Σ∗

Z
+∆Z∈UZ (τ)

exp
(

−n
2
kZ (∆Z ,Xn)

)

d∆Z , (19)

where d∆Z =
∏

(i,j)∈ĒZ
d∆Z,ij. Note that kZ is uniquely minimized at ∆Z = 0p×p. Hence

we have (p + #Z) × (p + #Z) Hessian matrix HΣ∗

Z
= (h{(i,j),(l,m)}) of kZ at ∆Z = 0,

where (i, j), (l, m) ∈ ĒZ , and apply Laplace approximation to the integral in (19). Let

UZ = Ω∗
ZSΩ

∗
Z = (uZ,ij). Suppressing dependency on Z, write uZ,ij as uij and ω

∗
Z,ij as ωij

for simplicity. By the supplementary material, we see that

h{(i,j),(l,m)} =







2(−ω∗
iiω

∗
jj − (ω∗

ij)
2 + 2ujiω

∗
ji + ujjω

∗
ii + uiiω

∗
jj +

1
nv2

) , i < j, l < m, (i, j) = (l, m)

2(−ω∗
ilω

∗
jm − ω∗

imω
∗
jl + ujlω

∗
mi + ujmω

∗
li + uliω

∗
jm + umiω

∗
jl) , i < j, l < m, (i, j) 6= (l, m)

2(−ω∗
ilω

∗
jl + ujlω

∗
li + uliω

∗
jl) , i < j, l = m

−(ω∗
il)

2 + 2uilω
∗
li , i = j, l = m

.

(20)
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By (20), we approximate π (Z|Xn) by π
∗ (Z|Xn) as follows.

π∗ (Z|Xn) ∝
(

π

(1− π)v

1√
2π

)#Z

exp
(

−n
2
rZ(Σ

∗
Z ,Xn)

)

|Σ∗
Z |

n
2 exp

(n

2
tr (SΩ∗

Z)
)

exp
(

−n
2
kZ(0p×p,Xn)

)(4π

n

)(p+#Z)/2
∣
∣HΣ∗

Z

∣
∣−

1
2

=

(
π

(1− π)v

1√
2π

)#Z

exp
(

−n
2
rZ(Σ

∗
Z ,Xn)

)(4π

n

)(p+#Z)/2 ∣
∣HΣ∗

Z

∣
∣−

1
2 .

(21)

Using this approximated posterior model probability of Z, which is a graphical struc-

ture indicator, we use Metropolis-Hastings algorithm proposed by Liu and Martin (2019)

to generate MCMC samples of Z. Liu and Martin (2019) considered a symmetric proposal

distribution u, which samples Z ′ uniformly from Z that differs from Z in only one entry.

The specific description of u can be found in Section 5.1 of Liu and Martin (2019). This

gives the following Metropolis-Hastings algorithm to generate MCMC samples of Z.

Algorithm 1 Metropolis-Hastings algorithm for generating MCMC samples of Z
1: Initial model structure indicator : Z(0), Given data : Xn

2: for i = 0, 1, . . . , k − 1 do

3: Zcand ∼ u(Z|Z(i))

4: αi = min{1, π∗(Zcand|Xn)

π∗(Z(i)|Xn)
}

5: Ui ∼ U(0, 1)

6: If Ui ≤ αi, Z(i+1) = Zcand. Else, Z(i+1) = Z(i).

7: end for

Here π∗(Z|Xn) is defined in (21). We choose the final model by either MPM or MAP.

Suppose Z̃ is chosen as the final model. With Z̃ and Xn given, by Bayes’ rule, the

conditional posterior of Σ is given as following:

π
(

Σ|Xn, Z̃
)

∝ π
(

Xn|Σ, Z̃
)

π
(

Σ|Z̃
)

πu
(

Z̃
)

∝ exp
(

−n
2
log |Σ| − n

2
tr
(
SΣ−1

)
− n

2
p(Σ, Z̃)

)

1 (Σ ∈ UZ̃(τ))

= exp
(

−n
2
rZ̃(Σ,Xn)

)

1 (Σ ∈ UZ̃(τ)) .

13



Here p(·, ·) and rZ(·, ·) are defined in (9) and (10). In this paper, we estimate Σ by the

mode of π
(

Σ|Xn, Z̃
)

. Note that the mode of π
(

Σ|Xn, Z̃
)

is equivalent to the solution

of the optimization problem (17) with Z = Z̃. Thus, the mode of π
(

Σ|Xn, Z̃
)

can be

found using block coordinate descent algorithm provided in Section 3.4.

3.3 Error by Laplace Approximation

In this section, we show that the error by Laplace approximation becomes asymptotically

marginal as in (21) under regular conditions. Note that this can established if we show

that

π(Z|Xn)/π
∗(Z|Xn) → 1 (22)

with probability tending to one in P0−probability.

Denote the true covariance matrix by Σ0. Suppose that the number of nonzero off-

diagonal entries in Σ0 is controlled by a positive integer s0, where 0 < s0 <
(
p
2

)
/2. For a

covariance matrix Σ = (σij) ∈ M+, let s(Σ) be the number of edges in the covariance

graph induced by Σ. Define the set

U(s0, τ0) = {Σ ∈ M+ : s(Σ) ≤ s0, 1/τ0 ≤ λmin (Σ) ≤ λmax (Σ) ≤ τ0},

where τ0 > 1 is some constant. With these notations, in addition to the assumptions (A1)

and (A2), we pose additional assumptions on parameters and Σ0 :

(A3) Σ0 ∈ U(s0, τ0).

(A4) 0 < τ0 is some constant, τ0 < τ , q ∈ (0, 1), and q ≍ log p
p2

.

To explain (A3), the assumption (A3) was first considered in Bickel and Levina (2008a)

and often used in statistical inference of sparse covariances for either Frequentist literature

or Bayesian literature. The positive integer s0 controls the sparsity of true covariance

matrix Σ0 and the upper bound on eigenvalue of Σ0, τ0, together with τ , is often used in

converting ||Σ−1
0 − Σ−1||F to ||Σ0 − Σ||F. (A4) is another assumption on parameters to

14



attain posterior convergence rate of covariance matrix under the Frobenius norm, which

turns out to be ǫn =
√

(p+ s0) log p/n.

Note that the result of posterior convergence rate is necessary to establish ||Σ∗
Z −

ΣZ ||F = Op(ηn), which is crucial to prove (22), where ηn =
√
pǫn. This implies that

the posterior and true covariance matrix Σ0 are concentrated around the projection of

true covariance matrix Σ0 onto the model Z at rate ηn similar to remark of (3.15) in

Banerjee and Ghosal (2015). A similar argument was also made in Banerjee and Ghosal

(2015). Using auxiliary results in the supplementary material, the error due to Laplace

approximation tends to zero with probability tending to one if (p+#Z)2ηn = o(1) under

regular conditions. This gives Theorem 3.1.

Theorem 3.1. Assume that 0 < β < 1/2 in (A1), (A2)-(A4). Also, suppose that τ 4 ≤ p,

max{1/τ, 1/p} < λ < log p/τ0, τ > 3, τ 2τ 20 ≤ s0 log p, and n ≥ s0 log p/[(1 − τ0/τ)
2τ 4].

Further suppose that (p +#Z)2ηn = o(1), where ηn =
√
pǫn and ǫn =

√

(p+ s0) log p/n.

Then, under prior (7),

π(Z|Xn)/π
∗(Z|Xn) → 1

in P0− probability, which implies that the error by Laplace approximation in (21) tends

to zero in P0−probability.

The proof is provided in Appendix A. The proof uses the techniques considered by

Rothman et al. (2008) and Banerjee and Ghosal (2015). Since the proof uses the result of

posterior convergence rate, it remains to show that ǫn =
√

(p+ s0) log p/n is the posterior

convergence rate of the covariance matrix under the Frobenius norm. Under prior (7), this

follows from Theorem 3.2.

Theorem 3.2. Let Xn = (X1, . . . , Xn)
t be the random sample from Np(0,Σ) and consider

the prior (7). Assume (A1)-(A4) and suppose that τ 4 ≤ p, max{1/τ, 1/p} < λ < log p/τ0,

τ > 3, τ 2τ 20 ≤ s0 log p, and n ≥ s0 log p/[(1− τ0/τ)
2τ 4]. If ǫn = o(1),

π(||Σ−Σ0||F ≥Mǫn|Xn) → 0,

for some constant M > 0 in P0-probability.
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3.4 Block Coordinate Descent Algorithm

In this section, we propose a block coordinate descent algorithm that solves (17). For

convenience, write ΣZ as Σ suppressing dependency on Z. Partition Σ and S as follows.

Σ =




Σ11 σ12

σt
12 σ22



 , S =




S11 s12

st12 s22



 , (23)

where Σ11 (S11) is a (p − 1) × (p − 1) matrix and σ22 (s22) is scalar. Let β = σ12 and

γ = σ22 − σt
12Σ

−1
11 σ12. Note that by the constraint QZ(τ), some entries of β are fixed

as 0. For simplicity, write β = (βt
1,β

t
0)

t, where β1 (β0) is vector with entries being σij

corresponding to zij = 1 (zij = 0), by rearranging rows/columns of Σ and S in (23). Since

β0 should be fixed due to Z, we update only β1 in β. With fixed Σ11, neglecting terms

that do not depend on β1 or γ in (17), we have

Minimize
(β1,γ)

log γ +
βt
1[Σ

−1
11 S11Σ

−1
11 ]

1β1 − 2βt
1[Σ

−1
11 s12]

1 + s22
γ

+ βt
1Θβ1 +

λ

n
(γ + βt

1[Σ
−1
11 ]

1β1),

(24)

where [Σ−1
11 S11Σ

−1
11 ]

1 and [Σ−1
11 ]

1 denote some principal minor matrix of Σ−1
11 S11Σ

−1
11 and

Σ−1
11 ], respectively, [Σ

−1
11 s12]

1 is subvector of Σ−1
11 s12, and Θ = diag( 1

nv2
). Let f(β1,γ) be

the objective function in (24). One can see that f(β1,γ) is quite similar to (4) in Wang

(2014), except for the term βt
1Θβ1. Neglecting terms that do not depend on γ in (24),

(24) is reduced to

Minimize
γ

log γ +
u

γ
+
λ

n
γ, (25)

where u = βt
1[Σ

−1
11 S11Σ

−1
11 ]

1β1 − 2βt
1[Σ

−1
11 s12]

1 + s22. Note that u > 0 with probability

tending to one, which can be shown in Proposition 3.1.

Proposition 3.1. Let u = βt
1[Σ

−1
11 S11Σ

−1
11 ]

1β1−2βt
1[Σ

−1
11 s12]

1+s22 as in (24). Then u > 0

with probability tending to one.

Substituting ρ = λ/n and a = u in (5) of Wang (2014), one can see that the solution

of (25), denoted by γ̂, is

γ̂ =
−1 +

√
1 + 4uρ

2ρ
. (26)
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Note that the positivity of u ensures the existence of (26). Now let l(ξ) = f(ξ, γ̂). Note γ̂

depends on β1 and ξ is a coordinate independent of β!. Neglecting terms that do depend

on ξ in l, we have

l(ξ) = ξt

(

Θ +
λ

n
[Σ−1

11 ]
1 + [Σ−1

11 S11Σ
−1
11 ]

1/γ̂

)

ξ − 2ξt[Σ−1s12]
1/γ̂.

Since l is convex, the minimizer ξ̂ can be found by solving ∂h
∂ξ

= 0. So,

∂l

∂ξ
= 2

(

Θ+
λ

n
[Σ−1

11 ]
1 + [Σ−1

11 S11Σ
−1
11 ]

1/γ̂

)

ξ − 2[Σ−1
11 s12]

1/γ̂ = 0

⇒ ξ̂ =

(

Θ+
λ

n
[Σ−1

11 ]
1 + [Σ−1

11 S11Σ
−1
11 ]

1/γ̂

)−1

[Σ−1
11 s12]

1/γ̂. (27)

Write σ12 = ((σ12)
t
1, (σ12)

t
0)

t as for β. From (26) and (27), σ12 and σ22 can be updated

by σ̂12 and σ̂22 respectively as follows:

(σ̂12)1 =

(

Θ+
λ

n
[Σ−1

11 ]
1 + [Σ−1

11 S11Σ
−1
11 ]

1/γ̂

)−1

[Σ−1
11 s12]

1/γ̂, (28)

(σ̂12)0 = 0, (29)

σ̂22 = γ̂ + σ̂t
12Σ

−1
11 σ̂12. (30)

By (28)-(30), we propose a block coordinate descent algorithm for solving (17) as in

Algorithm 2.

Since we’re estimating covariance matrices, the estimated matrix resulted from the

given block coordinate descent algorithm should be positive definite. Also, we may wish the

given algorithm converges to a stationary point of (17). This is because by the discussion

in Section 3.2, if the objective function in (17) attains the stationary point, then the

function is convex at such stationary point and so the stationary point becomes a local

minimum point of the function. It is possible that a local minimum point becomes a global

minimum point for sufficiently large n by (13)-(16) and (A1)-(A2). We verify this desired

property in Proposition 3.2.

Proposition 3.2. Updating a single row/column by the rule described in Algorithm 2

results in a positive definite matrix. Furthermore, the proposed algorithm converges to a

stationary point of the objective function in (17).
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Algorithm 2 Block Coordinate Descent algorithm for solving (17)

1: Fix ǫ > 0 and initialize Σ(0) = diag(S) + λ
n
Ip

2: for i = 1, . . . , k do

3: Σ(i) = Σ(i−1)

4: for j = 1, 2, . . . , p do

5: Σ
(i)
j : Rearrange rows/columns in Σ(i) so that jth diagonal entry of Σ(i) is

placed on the last diagonal entry.

6: Partition Σ
(i)
j and S as in (23).

7: Calculate γ̂ as in (26).

8: Update σ12 and σt
12 as in (28)-(29).

9: Update σ22 as in (30).

10: Rearrange Σ
(i)
j so that the last diagonal entry is on jth diagonal entry and set

Σ(i)=Σ
(i)
j .

11: end for

12: if ||Σ(i) −Σ(i−1)||F < ǫ then

13: return Σ(i).

14: end if

15: end for

4 Simulation

4.1 Numerical Study

To evaluate the performance of the proposed estimator in this paper, we perform a simula-

tion study. We consider following five covariance models with covariance matrix Σ = (σij)

or its inverse Ω = (ωij).

• Model 1. Random Structure I: σij = σji is non-zero with probability 0.02 for i < j

independently of other off-diagonal entries. For a nonzero σij = σji, assign 1 or −1
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randomly. Diagonal entries are chosen as a constant so that the condition number of Σ

under || · ||2 is approximately p.

• Model 2. Random Structure II: Σ = (B + δIp)/(1 + δ), where B = (bij) ∈ M with

bii = 1 for i = 1, 2, . . . , p and bij = 0.5 × Ber(0.2) for 1 ≤ i < j ≤ p , and Ip is a p× p

identity matrix. δ = max{−λmin(B), 0} + 0.05 so that B + δIp ∈ M+ and each entry

of B+ δIp is divided by 1 + δ to normalize diagonal entries.

• Model 3. First-order Moving Average Model: For 1 ≤ i < j ≤ p, σij = σji = 0.4

if j = i + 1 and 0 otherwise. Diagonal entries are chosen as a constant so that the

condition number of Σ by || · ||2 is approximately p.

• Model 4. Second-order Moving Average Model: σii = 1. For 1 ≤ i < j ≤ p, σij = σji =

0.5 if j = i+ 1, σij = σji = 0.25 if j = i+ 2, and σij = σji = 0 otherwise.

• Model 5. Inverse of Toeplitz matrix: ωij = 0.75|i−j|.

Model 1 and Model 3 were considered by Bien and Tibshirani (2011). Choice of diag-

onal entries ensures the positive definiteness of sample covariance matrix when n > p as

in Bien and Tibshirani (2011) and Rothman et al. (2008). Model 2 is similar to models

considered by Fang et al. (2015), Cai and Liu (2011b), and Rothman et al. (2008). Note

that each covariance matrix is sparse.

For each model, we consider p = 50 (n = 100) and p = 100 (n = 200). We generate

random sample sizes of n from p-dimensional Gaussian distribution with mean 0p and

covariance in each model and run 100 replications for each model. We measure the perfor-

mance of the estimator by specificity (sp), sensitivity (se), root mean square error (rmse),

||Σ̂−Σ||F/p, max norm (mnorm), ||Σ̂−Σ||∞, and spectral norm (2norm), ||Σ̂−Σ||2. Speci-
ficity and sensitivity denote the ratio of correctly estimated non-zero off-diagonal entries

over total non-zero off-diagonal entries in the estimated covariance matrix and the ratio of

correctly estimated zero off-diagonal entries over total zero off-diagonal entries in the es-

timated covariance matrix, respectively. We claim that the estimated off-diagonal entry is
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0 if its absolute value does not exceed 0.001 following Fan et al. (2009) and Wang (2012).

For each measure, we provide the mean and the standard deviation over 100 replications.

Competing methods in the simulation study are covariance graphical lasso (GL) pro-

posed by Bien and Tibshirani (2011) and sample covariance matrix (Samp). For our pro-

posed method, we obtain MCMC samples of Z from the posterior using Algorithm 1

described in Section 3.2 and choose the final model either by MPM or MAP. We generate

12000 posterior samples after 3000 burn-in for our proposed method. Given the chosen

model, we estimate Σ by solving (17) using Algorithm 2 by the argument in Section 3.2.

The simulation results are provided in Table 1 and Table 2. Note that for each measure,

the boldfaced value denotes the best performance compared to other competing methods

in each dimension (sample size) and model.

We discuss the results in Table 1 first. Our proposed method tends to perform better

than GL and Samp in terms of sp for all models regardless of model choice MPM or MAP

for the proposed method. This demonstrates that the prior we considered in this paper

is indeed effective in introducing sparsity to the covariance structures. Note that Samp

performs poorly in terms of both se and sp in most cases, especially sp. Samp showed

extremely small sp. Though better than Samp, GL also showed poor sp. Note that all the

methods we have considered in the simulation study showed good performance in terms of

se for Model 1, Model 3, and Model 5 with p = 50 (n = 100). But in general, GL and

Samp outperformed our proposed method in terms of se. However, since both GL and

Samp are extremely ineffective in introducing sparsity to the model, which can be seen

from the results for sp in each model, if se for the proposed method is not significantly

lower than that for other methods, our proposed method may be more useful than other

methods in the inference of sparse covariance structures.

Now we discuss the results in Table 2. In terms of rmse and 2norm, our proposed method

outperforms other methods in most of the models except for Model 5 with p = 100

(n = 200). Also, in terms of mnorm, Samp tends to perform better than our proposed

method and graphical lasso.
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Table 1: sp and se under the covariance structures in Model 1, 2, 3, 4, and 5.

Measure
p=50 (n=100) p=100 (n=200)

Proposed (MPM) Proposed (MAP) GL Samp Proposed (MPM) Proposed (MAP) GL Samp

Model 1
sp 0.998 (0.014) 0.981 (0.017) 0.583 (0.027) 0.003 (0.002) 0.999 (0.010) 0.999 (0.009) 0.900 (0.008) 0.004 (0.009)

se 1.000 (0.005) 0.982 (0.005) 1.000 (0.004) 1.000 (0.000) 0.989 (0.011) 1.000 (0.002) 1.000 (0.002) 1.000 (0.000)

Model 2
sp 0.986 (0.004) 0.984 (0.005) 0.268 (0.009) 0.003 (0.001) 0.994 (0.004) 0.994 (0.004) 0.339 (0.009) 0.011 (0.002)

se 0.818 (0.004) 0.879 (0.003) 0.791 (0.008) 1.000 (0.000) 0.782 (0.002) 0.779 (0.003) 0.944 (0.007) 0.998 (0.001)

Model 3
sp 1.000 (0.002) 0.991 (0.004) 0.235 (0.014) 0.010 (0.003) 0.998 (0.001) 1.000 (0.003) 0.658 (0.007) 0.004 (0.001)

se 1.000 (0.001) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 0.999 (0.001) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

Model 4
sp 0.987 (0.007) 0.998 (0.005) 0.248 (0.012) 0.009 (0.003) 0.994 (0.002) 0.993 (0.002) 0.326 (0.008) 0.011 (0.001)

se 0.693 (0.106) 0.691 (0.103) 0.995 (0.008) 1.000 (0.001) 0.810 (0.003) 0.807 (0.004) 1.000 (0.001) 1.000 (0.000)

Model 5
sp 0.997 (0.006) 0.986 (0.007) 0.589 (0.017) 0.002 (0.001) 0.981 (0.005) 0.980 (0.004) 0.725 (0.009) 0.003 (0.001)

se 1.000 (0.001) 1.000 (0.001) 1.000 (0.000) 1.000 (0.000) 0.851 (0.002) 0.849 (0.002) 1.000 (0.000) 1.000 (0.000)
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Table 2: rmse, mnorm, and 2norm under the covariance structures in Model 1, 2, 3, 4, and 5.

Measure
p=50 (n=100) p=100 (n=200)

Proposed (MPM) Proposed (MAP) GL Samp Proposed (MPM) Proposed (MAP) GL Samp

Model 1

rmse 0.081 (0.005) 0.094 (0.006) 0.139 (0.007) 0.256 (0.008) 0.074 (0.004) 0.072 (0.004) 0.084 (0.003) 0.222 (0.004)

mnorm 1.000 (0.104) 1.000 (0.104) 1.172 (0.094) 0.979 (0.145) 1.607 (0.093) 1.607 (0.093) 1.169 (0.086) 0.916 (0.001)

2norm 1.365 (0.187) 1.698 (0.192) 2.434 (0.170) 4.724 (0.456) 1.917 (0.172) 1.801 (0.175) 2.249 (0.147) 6.129 (0.379)

Model 2

rmse 0.141 (0.002) 0.129 (0.003) 0.106 (0.002) 0.253 (0.004) 0.057 (0.002) 0.057 (0.001) 0.051 (0.001) 0.071 (0.001)

mnorm 1.714 (0.042) 1.714 (0.042) 0.057 (0.019) 1.046 (0.092) 0.319 (0.038) 0.323 (0.037) 0.422 (0.025) 0.297 (0.036)

2norm 3.825 (0.105) 3.397 (0.117) 4.577 (0.069) 7.555 (0.490) 2.556 (0.134) 2.520 (0.134) 1.975 (0.078) 2.079 (0.159)

Model 3

rmse 0.020 (0.002) 0.021 (0.001) 0.054 (0.002) 0.084 (0.003) 0.012 (0.001) 0.012 (0.001) 0.034 (0.001) 0.058 (0.001)

mnorm 0.228 (0.038) 0.213 (0.036) 0.351 (0.034) 0.314 (0.043) 0.329 (0.025) 0.329 (0.025) 0.319 (0.024) 0.237 (0.032)

2norm 0.380 (0.023) 0.365 (0.023) 0.966 (0.055) 1.677 (0.179) 0.467 (0.017) 0.467 (0.017) 0.900 (0.035) 1.735 (0.100)

Model 4

rmse 0.057 (0.002) 0.057 (0.002) 0.073 (0.003) 0.102 (0.005) 0.036 (0.004) 0.036 (0.004) 0.050 (0.001) 0.071 (0.001)

mnorm 0.500 (0.001) 0.500 (0.001) 0.447 (0.037) 0.391 (0.061) 0.500 (0.002) 0.500 (0.001) 0.424 (0.022) 0.291 (0.031)

2norm 1.067 (0.057) 1.066 (0.055) 1.353 (0.079) 2.145 (0.237) 1.088 (0.030) 1.085 (0.032) 1.309 (0.048) 2.098 (0.135)

Model 5

rmse 0.136 (0.005) 0.139 (0.006) 0.211 (0.009) 0.355 (0.013) 0.152 (0.004) 0.142 (0.005) 0.129 (0.004) 0.252 (0.005)

mnorm 1.210 (0.100) 1.310 (0.105) 1.699 (0.115) 1.366 (0.207) 1.114 (0.084) 1.114 (0.085) 1.498 (0.092) 1.061 (0.129)

2norm 2.347 (0.095) 2.436 (0.102) 3.340 (0.217) 7.155 (0.818) 3.544 (0.094) 3.602 (0.103) 2.828 (0.126) 7.463 (0.444)
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4.2 Real dataset

In this section, we assess the performance of the proposed estimator for linear discrim-

inant analysis (LDA). We consider the breast cancer diagnostic dataset introduced by

Wolberg et al. (1995). The dataset is available from http://archive.ics.uci.edu/ml. The

dataset consists of 30 numeric features extracted from a digitized image of a fine needle

aspirate (FPA) of a breast mass on 212 malignant individuals and 357 benign ones. We

randomly split the data 10 times into training set and test set, where training set con-

sists of 72 malignant cases and 119 benign cases and test set consists of the remaining

cases. Consider malignant case as class 1 and benign case as class 0. The LDA rule for

observation Xi (i = 1, 2, . . . , 378) in test set is given by

δ(Xi) = argmax
j=0,1

{

X t
i Σ̂

−1µ̂j −
1

2
µ̂t
jΣ̂

−1µ̂j + log π̂j

}

,

where Σ̂ is the estimated covariance matrix based on train set, µ̂j is the sample mean of

class j among train set, and π̂j is the proportion of class j among train set.

The Table 3 shows the mean of classification error rate over 10 replications and the

value in parentheses denotes the standard deviation.

Proposed (MPM) Proposed (MAP) GL Samp

0.066

(0.016)

0.066

(0.016)

0.072

(0.017)

0.077

(0.019)

Table 3: Classification error rate for breast cancer dataset

The result implies that the proposed estimator outperforms covariance graphical lasso

and sample covariance matrix when it is applied to LDA classification.

5 Discussion

In this paper, we propose a theoretically well supported method for estimating sparse co-

variances. We propose the method that uses Laplace approximation to calculate posterior

23



model probabilities of covariance structures, or equivalently graphical structures, induced

from spike and slab prior, generates MCMC samples for graphs using Metropolis-Hasting

algorithm and approximated posterior model probabilities, and chooses the final model

by MPM or MAP. We estimate the covariance matrix by the mode of conditional poste-

rior of covariance matrix given the chosen model. We show that the error due to Laplace

approximation becomes asymptotically marginal at some rate depending on posterior

convergence rate under regular conditions on parameters. We propose a block coordinate

descent algorithm to estimate covariance matrix when the covariance structure is given,

and discuss its convergence. By simulation study based on five numerical models, we show

that the proposed estimator performs better than graphical lasso and sample covariance

matrix and is effective in introducing sparsity to the covariance structures. Also, the breast

cancer dataset shows that the proposed estimator outperforms graphical lasso and sample

covariance matrix when it is applied to LDA classification.
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Appendix A. Proof of Theorem 3.1

Lemma A.1. Assume 0 < β < 1/2 in (A1) and (A2). Suppose that ηn = o(1). Then,

under prior (7),

||Σ∗
Z −Σ0||F = Op (ηn) .

Proof.. Without loss of generality, we prove when Z = 1p(p−1)/2, where 1p(p−1)/2 is p(p−
1)/2−vector with all entries being 1, since the proof is essentially the same for general Z.
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The difference is only fixed zero entries ofΣZ . In the proof, we writeΣZ asΣ for simplicity

suppressing dependency on Z. We prove Lemma A.1 using the techniques considered in

the proof of Theorem 1 in Rothman et al. (2008).

For E = (eij) ∈ M, let E+ denote p × p diagonal matrix with diagonal entries being

those in E and E− = E−E+. Note that E− is p×pmatrix with diagonal entries being 0 and

off-diagonal entries being those in E. Also, let ||E||1 =
∑

i,j |eij|. For fixed Z = 1p(p−1)/2

and Xn, let

Q (Ψ) = rZ (Σ0 +Ψ,Xn)− rZ (Σ0,Xn)

= (log |Σ0 +Ψ| − log |Σ0|) +
(
tr
(
S[Σ0 +Ψ]−1

)
− tr

(
SΣ−1

0

))

+ 1/nv2(|| (Σ0 +Ψ)− ||2F − ||Σ−
0 ||2F) + λ/n tr

(
Ψ+
)
,

where rZ(·, ·) is defined in (10). Define the set

ζ = {F ∈ M : ||F||F ≤ Mηn},

,where M > 0 is constant to be determined. Put ζ̊ = intζ and ∂ζ = ζ \ ζ̊. Observe that Q

is convex on the set ζ with probability tending to one. To verify this, note that Hessian

matrix of Q is

(
2[Σ0 +Ψ]−1S[Σ0 +Ψ]−1 − [Σ0 +Ψ]−1

)
⊗ [Σ0 +Ψ]−1 +Υ,

where Ω0 = Σ−1
0 and Υ is p(p + 1)/2 × p(p + 1)/2 diagonal matrix with diagonal en-

tries being 0 or 1/nv2. Observe that 2[Σ0 + Ψ]−1S[Σ0 + Ψ]−1 − [Σ0 + Ψ]−1 = [Σ0 +

Ψ]−1(2S − (Σ0 + Ψ))[Σ0 + Ψ]−1. S converges to Σ0 ∈ U(s0, τ0) under the Frobenius

norm in P0−probability, because ||S−Σ0||F = Op(p/
√
n) and p/

√
n tends to 0 as p ≍ nβ

for some constant 0 < β < 1/2 by the assumption that 0 < β < 1/2 in (A1). Also,

since ηn = o(1), if Ψ ∈ ζ, this implies that 2S − (Σ0 + Ψ) converges to Σ0 ∈ U(s0, τ0).
Furthermore, Σ0 + Ψ converges to Σ0 as n → ∞, if Ψ ∈ ζ, which holds by ηn = o(1).

Thus, if Ψ ∈ ζ, 2[Σ0+Ψ]−1S[Σ0+Ψ]−1− [Σ0+Ψ]−1 ∈ M+ with probability tending to

one. Therefore, we see (2[Σ0 +Ψ]−1S[Σ0 +Ψ]−1 − [Σ0 +Ψ]−1)⊗ [Σ0 +Ψ]−1 is positive

definite with probability tending to one and so Hessian matrix of Q on the set ζ is positive

definite with probability tending to one because Υ is semi-positive definite.
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Suppose that infΨ∈∂ζ Q(ζ) > 0. Then, since Q is uniquely minimized at Ψ̂ = Σ∗ −
Σ0 and so Q(Ψ̂) ≤ Q(0), we see that Ψ̂ ∈ ζ, which ends the proof. Thus, we show

that infΨ∈∂ζ Q(ζ) > 0. By Taylor’s expansion of a(t) = log |Σ0 + tΨ| and b(t) =

tr (S[Σ0 + tΨ]−1) around 0,

log |Σ0 +Ψ| − log |Σ0| = tr(ΨΩ0)− Ψ̃t

∫ 1

0

(1− u)(Σ0 + uΨ)−1 ⊗ (Σ0 + uΨ)−1duΨ̃,

tr
(
S(Σ0 +Ψ)−1

)
− tr

(
SΣ−1

0

)
= − tr (SΩ0ΨΩ0)

+ Ψ̃t

∫ 1

0

(1− u)[2(Σ0 + uΨ)−1S(Σ0 + uΨ)−1]⊗ (Σ0 + uΨ)−1duΨ̃

(A.1)

where Ω0 = Σ−1
0 and Ψ̃ = vec(Ψ). Also,

| ||(Σ0 +Ψ)−||2F − ||Σ−
0 ||2F| = | ||Σ−

0 +Ψ−||2F − ||Σ−
0 ||2F|

= | ||Σ−
0 ||2F + 2

∑

i 6=j

σ0
ijψij + ||Ψ−||2F − ||Σ−

0 ||2F|

= | 2
∑

i 6=j

σ0
ijψij + ||Ψ−||2F|

≤ 2τ
∑

i 6=j

|ψij|+ ||Ψ−||2F

≤ 2τ
√

p2 − p

√
∑

i 6=j

ψ2
ij + ||Ψ−||2F

≤ 2τp||Ψ−||F + ||Ψ−||2F,

(A.2)

where Ψ = (ψij), the first inequality holds by triangle inequality, Σ0 ∈ U(s0, τ0), and
τ0 < τ , and the second inequality holds by Cauchy-Schwartz inequality and

| tr(Ψ+)| ≤ ||Ψ+||1 ≤
√
p||Ψ+||F ≤ √

p+ s0||Ψ+||F. (A.3)

Note that the second inequality in (A.3) holds by Cauchy-Schwartz inequality. By (A.1)-

(A.3), we have

Q(Ψ) ≥ tr(Ω0[Σ0 − S]Ω0Ψ) + P (Ψ)− 1

nv2
(2τp||Ψ−||F + ||Ψ−||2F)−

λ

n

√
p+ s0||Ψ+||F,

(A.4)
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where P (Ψ) = Ψ̃t
∫ 1

0
(1−u)[2(Σ0+uΨ)−1S(Σ0+uΨ)−1−(Σ0+uΨ)−1]⊗(Σ0+uΨ)−1duΨ̃.

Also,

| tr(Ω0[Σ0 − S]Ω0Ψ)| ≤ ||Ω0[Σ0 − S]Ω0||F||Ψ||F

≤ ||Ω0||22||Σ0 − S||F||Ψ||F

≤ Dτ 2
p√
n
||Ψ||F

≤ Dτ 2
p√
n
(||Ψ+||F + ||Ψ−||F),

(A.5)

for some constant D > 0 and all sufficiently large n. The second inequality holds by (2)

and the third inequality holds because ||S−Σ0||F = Op(p/
√
n). Finally, the last inequality

holds by triangle inequality.Recall that λmin(A) = inf ||x||2=1 x
tAx for A ∈ M+. Also, if

Ψ ∈ ζ,

λmin(

∫ 1

0

(1− u)[2(Σ0 + uΨ)−1S(Σ0 + uΨ)−1 − (Σ0 + uΨ)−1]⊗ (Σ0 + uΨ)−1du)

≥
∫ 1

0

(1− u)λmin(2(Σ0 + uΨ)−1S(Σ0 + uΨ)−1 − (Σ0 + uΨ)−1)λmin((Σ0 + uΨ)−1)du

≥ 1

2
inf
Ψ∈ζ

λmin(2S− (Σ0 +Ψ))λmin((Σ0 +Ψ)−1)3

≥ 1

2
inf
Ψ∈ζ

λmin(2S− (Σ0 +Ψ)) inf
Ψ∈ζ

λmin((Σ0 +Ψ)−1)3

(A.6)

for all suffciently large n, where the first inequality holds by that fact that all eigenvalues

of Kronecker product of A,B ∈ M are in the form of product of an eigenvalue of A and

that of B and the second inequality holds because 2S−Σ0 ∈ M+ under the assumption

that p ≍ nβ for some constant 0 < β < 1/2 as we have discussed.

Since ηn = o(1) and Ψ ∈ ζ,

λmin((Σ0 +Ψ)−1)3 = [λmax(Σ0 +Ψ)]−3

≥ 1

(||Σ0||2 + ||Ψ||2)3

≥ 1

2
τ−3

(A.7)

for all sufficiently large n, where the first inequality holds by triangle inequality and

λmin(2S− (Σ0 +Ψ)) ≥ δ (A.8)
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for fixed sufficiently small constant δ > 0 with probability tending to one, as 2S−(Σ0+Ψ)

converges to Σ0 ∈ U(s0, τ0) and 1/τ0 ≤ λmin(Σ0) by the definition of U(s0, τ0). Thus. by
(A.6)-(A.8), we have

P (Ψ) ≥ 1

4
τ−3δ||Ψ̃||22

=
1

4
τ−3δ||Ψ||2F

=
1

4
τ−3δ(||Ψ+||2F + ||Ψ−||2F).

(A.9)

By (A.4), (A.5) and (A.9), if Ψ ∈ ∂ζ,

Q(Ψ) ≥ 1

4
τ−3δ(||Ψ+||2F + ||Ψ−||2F)−Dτ 2

p√
n
(||Ψ+||F + ||Ψ−||F)

− 1

nv2
(2τp||Ψ−||F + ||Ψ−||2F)−

λ

n

√
p+ s0||Ψ+||F

= ||Ψ+||2F
(
1

4
τ−3δ −

(

Dτ 2
p√
n
+
λ

n

√
p+ s0

)
1

||Ψ+||F

)

+ ||Ψ−||2F
((

1

4
τ−3δ − 1

nv2

)

−
(

Dτ 2
p√
n
+

2τp

nv2

)
1

||Ψ−||F

)

≥ ||Ψ+||2F
(
1

4
τ−3δ − 1

M

(

Dτ 2
√

p

(p+ s0) log p
+ λ

√
1

np log p

))

+ ||Ψ−||2F
((

1

4
τ−3δ − 1

nv2

)

− 1

M

(

Dτ 2
√

p

(p+ s0) log p
+

2τ

v2

√
p

n(p+ s0) log p

))

.

(A.10)

Since 1 < τ , τ = O(1), λ = O(1), and v is positive constant, if we choose constant

M > 0 to be sufficiently large, infΨ∈∂ζ Q(Ψ) > 0 by (A.10) for all sufficiently large n.

Consequently, this gives Lemma A.1.

Corollary A.1. Assume that 0 < β < 1/2 in (A1), (A2)-(A4) and τ 4 ≤ p, max{1/τ, 1/p} <
λ < log p/τ0, τ > 3, τ 2τ 20 ≤ s0 log p, and n ≥ s0 log p/[(1 − τ0/τ)

2τ 4]. Suppose that

ηn = o(1). Then, under prior (7),

||Σ∗
Z −ΣZ ||F = Op(ηn) (A.11)

for all Z, where ΣZ ∈ UZ(τ).
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Proof. Note that the assumptions that 0 < β < 1/2 in (A1), (A2)-(A4), τ 4 ≤ p,

max{1/τ, 1/p} < λ < log p/τ0, τ > 3, τ 2τ 20 ≤ s0 log p, and n ≥ s0 log p/[(1 − τ0/τ)
2τ 4]

imply Theorem 3.2 so that ||ΣZ−Σ0||F = Op(ǫn). Since ǫn ≤ ηn for all n ≥ 1, this implies

that ||ΣZ − Σ0||F = Op(ηn). Because ηn = o(1), we have ||Σ∗
Z − Σ0||F = Op(ηn) as a

consequence of Lemma A.1. Therefore, by triangle inequality,

||Σ∗
Z −ΣZ ||F ≤ ||ΣZ −Σ0||F + ||Σ∗

Z −Σ0||F = Op(ηn).

Remark A.1. Note that (A.11) and (19) imply that
∫

||∆Z ||F≤ηn
exp

(
−n

2
kZ (∆Z ,Xn)

)
d∆Z

∫

Σ∗

Z
+∆Z∈UZ (τ)

exp
(
−n

2
kZ (∆Z ,Xn)

)
d∆Z

→ 1 (A.12)

as n→ ∞, which plays a key role in the proof of Theorem 3.1.

Lemma A.2. Assume that 0 < β < 1/2 in (A1), (A2), and ηn = o(1). Then, under prior

(7),

|Rn| ≤ (p+#Z)

4∑

l=1

θl||∆Z ||l+2
F (A.13)

for some constants θl > 0 with probability tending to one, where ∆Z = ΣZ −Σ∗
Z and

Rn = kZ(∆Z ,Xn)− kZ(0p×p,Xn)−
1

2
∆̃t

Z HΣ∗

Z
∆̃Z

for ∆̃Z = vec(∆Z) and 0p×p is a p× p matrix with all entries being zero.

Proof.. Note that

∂kZ(∆Z ,Xn)

∂∆̃Z

∣
∣
∣
∣
∆z=0p×p

= 0p,

where 0p is p−vector with all entries being 0. Hence, Rn can be seen as the remainder

term in second order Taylor’s expansion of kZ(∆Z ,Xn) around ∆Z = 0p×p, viewing

kZ(∆Z ,Xn) as a function of ∆̃Z with Xn given. Then, following the argument in (A.14)-

(A.16) of Banerjee and Ghosal (2015), we have

|Rn| ≤
1

2
||∆Z ||2F(p+#Z) max

0≤u≤1
||HΣ∗+u∆Z

−HΣ∗

Z
||∞. (A.14)
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Write uZ,ij as uij and ω
∗
Z,ij as ωij for simplicity suppressing dependency on Z. Let (Σ∗

Z +

u∆Z)
−1 = (aij) and (Σ∗

Z+u∆Z)
−1S(Σ∗

Z+u∆Z)
−1 = (bij) suppressing dependency on Z.

By (20), the entry of HΣ∗+u∆Z
−HΣ∗

Z
is in form of (

∑
ailajm −∑ω∗

ilω
∗
jm) + (

∑
bilajm −

∑
uilω

∗
jm). Consider ailajm − ω∗

ilω
∗
jm and ailbjm − uilω

∗
jm for example. Since

|ailajm − ω∗
ilω

∗
jm| = |(ail − ω∗

il)(ajm − ω∗
jm) + (ail − ω∗

il)ω
∗
jm + (ajm − ω∗

jm)ω
∗
il|

≤ |ail − ω∗
il||ajm − ω∗

jm|+ |ail − ω∗
il||ω∗

jm|+ |ajm − ω∗
jm||ω∗

il|

and

|bilajm − uilω
∗
jm| = |(bil − uil)(ajm − ω∗

jm) + (bil − uil)ω
∗
jm + (ajm − ω∗

jm)uil|

≤ |bil − uil||ajm − ω∗
jm|+ |bil − uil||ω∗

jm|+ |ajm − ω∗
jm||uil|,

if we can bound ||(Σ∗
Z + u∆Z)

−1 −Ω∗
Z ||∞ and ||(Σ∗

Z + u∆Z)
−1S(Σ∗

Z + u∆Z)
−1 −UZ ||∞

by some polynomial with respect to ||∆Z ||F with probability tending to one as in the

proof of Lemma 4.3 in Banerjee and Ghosal (2015), we can establish Lemma A.2. Using

the similar argument in (A.17)-(A.18) of Banerjee and Ghosal (2015), it can be shown

that

||(Σ∗
Z + u∆Z)

−1 −Σ∗
Z ||∞ ≤ K||∆Z ||F (A.15)

for some constants K > 0 with probability tending to one. So it suffices to bound ||(Σ∗
Z +

u∆Z)
−1S(Σ∗

Z + u∆Z)
−1 −UZ ||∞. By Woodbury’s forumla,

(Σ∗
Z + u∆Z)

−1S(Σ∗
Z + u∆Z)

−1 −UZ = −uΩ∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

ZSΩ
∗
Z

− uΩ∗
ZSΩ

∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

Z

+ u2Ω∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

ZSΩ
∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

Z .
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Hence,

||(Σ∗
Z + u∆Z)

−1S(Σ∗
Z + u∆Z)

−1 −UZ ||∞ ≤ ||(Σ∗
Z + u∆Z)

−1S(Σ∗
Z + u∆Z)

−1 −UZ ||2

≤ u||Ω∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

ZSΩ
∗
Z ||2

+ u||Ω∗
ZSΩ

∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

Z ||2

+ u2||Ω∗
Z∆Z(I+ uΩ∗

Z∆Z)
−1Ω∗

ZSΩ
∗
Z∆Z

(I+ uΩ∗
Z∆Z)

−1Ω∗
Z ||2

≤ 2u||Ω∗
Z ||32||∆Z ||2||S||2||(I+ uΩ∗

Z∆Z)
−1||2

+ u2||Ω∗
Z ||42||∆Z ||22||S||2||(I+ uΩ∗

Z∆Z)
−1||2

≤ (2τ 4||∆Z ||F + τ 5||∆Z ||2F)||(I+ uΩ∗
Z∆Z)

−1||2,

(A.16)

where the first inequality and the last inequality holds by (2) and u ≤ 1, the second

inequality holds by triangle inequality, and the third inequality holds by the submulti-

plicativity of || · ||2. Also,

||(I+ uΩ∗
Z∆Z)

−1||2 = ||((1− u)ΣZ + uΣZΩ
∗
ZΣZ)

−1ΣZ ||2

≤ ||((1− u)ΣZ + uΣZΩ
∗
ZΣZ)

−1||2||ΣZ ||2

=
||ΣZ ||2

||(1− u)ΣZ + uΣZΩ
∗
ZΣZ ||2

≤ τ

||(1− u)ΣZ + uΣZΩ
∗
ZΣZ ||2

,

(A.17)

where the first inequality holds by the submultiplicativity of || · ||2 and the last equality

holds because (1− u)ΣZ + uΣZΩ
∗
ZΣZ ∈ M+ for all 0 ≤ u ≤ 1. Since

||(1− u)ΣZ + uΣZΩ
∗
ZΣZ ||2 ≥ λmin((1− u)ΣZ + uΣZΩ

∗
ZΣZ)

≥ (1− u)λmin(ΣZ) + uλmin(ΣZΩ
∗
ZΣZ)

≥ (1− u)λmin(ΣZ) + uλ2min(ΣZ)λmin(Ω
∗
Z)

≥ 1− u

τ 3
+

u

τ 3
=

1

τ 3
.

(A.18)
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By (A.17) and (A.18), it holds that ||(I+ uΩ∗
Z∆Z)

−1||2 ≤ τ 4 and so (A.16) implies

||(Σ∗
Z + u∆Z)

−1S(Σ∗
Z + u∆Z)

−1 −UZ ||∞ ≤ 2τ 8||∆Z ||F + τ 9||∆Z ||2F
≤ B(||∆Z ||F + ||∆Z ||2F),

(A.19)

for some constant B > 0 with probability tending to one as τ = O(1). Because ||UZ ||∞ ≤
||UZ ||2 ≤ ||Ω∗

Z ||22||S||2 ≤ τ 3 and τ = O(1), by (A.15) and (A.19),

|(
∑

ailajm −
∑

ω∗
ilω

∗
jm) + (

∑

bilajm −
∑

uilω
∗
jm)| ≤

4∑

l=1

θl||∆Z ||lF. (A.20)

Thus, by (A.14) and (A.20), (A.13) holds with probability tending to one.

Lemma A.3. Assume 0 < β < 1/2 in (A1) and (A2). Then the smallest eigenvalue of

Hessian matrix HΣ∗

Z
of kZ in (19) is bounded away from 0 with probability tending to one.

Proof.. Observe that HΣ∗

Z
can be expressed asVt {(2UZ −Ω∗

Z)⊗Ω∗
Z}V+Φ, whereV is

p2×(p+#Z) matrix with full-rank whose entries are 0 or 1 and Φ is a (p+#Z)×(p+#Z)

diagonal matrix with diagonal entries being 0 or 1/nv2. Since Φ is semi-positive definite,

it suffices to show that the smallest eigenvalue of Vt {(2UZ −Ω∗
Z)⊗Ω∗

Z}V is bounded

away from 0. Because V is slim matrix with full-rank, this can be established if the

smallest eigenvalue of (2UZ −Ω∗
Z)⊗Ω∗

Z is bounded away from 0. As

λmin((2UZ −Ω∗
Z)⊗Ω∗

Z)) = λmin([Ω
∗
Z(2S−Σ∗

Z)Ω
∗
Z ]⊗Ω∗

Z)

= λmin(Ω
∗
Z(2S−Σ∗

Z)Ω
∗
Z)λmin(Ω

∗
Z)

≥ λmin(Ω
∗
Z)

3λmin(2S−Σ∗
Z)

≥ δ

τ 3
> 0

for all sufficiently large n, Lemma A.3 is established. Note that the last inequality holds

because τ > 1 and τ = O(1).

Proof of Theorem 3.1.. Note that under the assumptions of Theorem 3.1, (A.12) and

Lemma A.2 hold. Thus, as an analogy to the proof of Theorem 4.4 in Banerjee and Ghosal

(2015), it suffices to show that
∫

||∆Z ||F≤ηn
exp

(

−n
2

(
1
2
∆̃t

Z HΣ∗

Z
∆̃Z +Rn

))

d∆Z

∫

||∆Z ||F≤ηn
exp

(

−n
4
∆̃t

Z HΣ∗

Z
∆̃Z

)

d∆Z

→ 1 (A.21)
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as n→ ∞. Using the consequence of Lemma A.2 and following the argument in the proof

of Theorem 4.4 in Banerjee and Ghosal (2015), the ratio in (A.21) must lie between

[1∓ λmin(HΣ∗

Z
)−1(p+#Z)ηn]

−(p+#Z)/2

for all sufficiently large n as (p+Z)2ηn = o(1). Also, λmin(HΣ∗

Z
) is bounded away from 0

with probability tending to one by Lemma A.3. Therefore,

[1 + λmin(HΣ∗

Z
)−1(p+#Z)ηn]

−(p+#Z)/2 ≥ [exp
(
λmin(HΣ∗

Z
)−1(p+#Z)ηn

)
]−(p+#Z)/2

≥ exp
(
−λmin(HΣ∗

Z
)−1(p+#Z)2ηn/2

)
→ 1

and

[1− λmin(HΣ∗

Z
)−1(p+#Z)ηn]

−(p+#Z)/2 ≤ [exp
(
−2λmin(HΣ∗

Z
)−1(p+#Z)ηn

)
]−(p+#Z)/2

≤ exp
(
λmin(HΣ∗

Z
)−1(p+#Z)2ηn

)
→ 1

as n → ∞ because (p + #Z)2ηn = o(1). Hence, we conclude that the error by Laplace

approximation becomes negligible with probability tending to one under regular condi-

tions.

Appendix B. Proof of Theorem 3.2

In this section, we establish posterior convergence rate ǫn under prior (7) as in Theorem

3.2. Define the set

Bǫn = {pΣ : K(pΣ0 , pΣ) ≤ ǫ2n, V (pΣ0, pΣ) ≤ ǫ2n},

where pΣ is a probability density function of Np(0,Σ) and

K(pΣ0 , pΣ) =

∫

pΣ0 log
pΣ0

pΣ
, V (pΣ0 , pΣ) =

∫

pΣ0 log
2 pΣ0

pΣ
.

Let P = {pΣ : Σ ∈ M+} be the space of all densities pΣ and consider a sieve Pn =

{pΣ : Σ ∈ M+, s(Σ, δn) ≤ sn, 1/τ ≤ λmin(Σ) ≤ λmax(Σ) ≤ τ, ||Σ||∞ ≤ Ln} ⊂ P, where

δn, sn, and Ln are to be determined in Theorem B.1. Denote the ǫ− packing number for

subset A of metric space (S, d) by D(ǫ,A, d) , i.e., D(ǫ,A, d) is the minimum number of
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d-balls of size ǫ in S needed to cover A under metric d. Now, under regular conditions, we

prove Theorem 3.2 by verifying conditions (10)-(12) of Lemma 5.1 in Lee et al. (2021),

which is a version of Theorem 2.1 in Ghosal et al. (2000). Define a function s(·, ·) on

M+ × R
+ by s(K, δ) =

∑

i<j 1(|kij| ≥ δ), where K = (kij). Note that s is equivalent to

the number of edges in the graph induced by K with a threshold δ. Define the set

U(δn, sn, Ln, τ) = {Σ ∈ M+ : s(Σ, δn) ≤ sn, 1/τ ≤ λmin(Σ) ≤ λmax(Σ) ≤ τ, ||Σ||∞ ≤ Ln}.

Note that this set was also considered in Lee et al. (2021). We consider this set to obtain

the upper bound of logD(ǫn,Pn, d), since we are to use the argument in the proof of

Theorem 5.2 in Lee et al. (2021).

Theorem B.1. Assume (A1) and τ 4 ≤ p. Let sn = c1nǫ
2
n/ log p, Ln = c2nǫ

2
n, and δn =

ǫn/τ
3 for some constants c1 > 6 and c2 > 0. Suppose metric d is Hellinger metric. Then,

we have

logD(ǫn,Pn, d) . nǫ2n.

Lemma B.1. Assume (A1), (A2), (A4), and τ > 3, 1/τ < λ < log p/τ0. Then

πu(Σ ∈ U(τ)) ≥ exp(−2nǫ2n)

for all sufficiently large n.

Theorem B.2. Assume (A1), (A2), (A4), and τ > 3, λ < log p/τ0. Let δn, Ln, and sn

be those in Theorem B.1. Then,

π(Pc
n) ≤ exp(−(c1/3− 2)nǫ2n)

for all sufficiently large n.

Theorem B.3. Assume (A1)-(A4) and τ 4 ≤ p, τ 2τ 20 ≤ s0 log p, n ≥ s0 log p/[(1 −
τ0/τ)

2τ 4], 1/p < λ < log p/τ0. Then, for all sufficiently large n,

π(Bǫn) ≥ exp

(

−
(

8 +
1

β

)

nǫ2n

)

.
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Proof of Theorem 3.2.. Under the assumptions (A1)-(A4) and some regular conditions

on parameters, we see that Theorem B.1, B.2, and B.3 satisfy (10)-(12) of Lemma 5.1 in

Lee et al. (2021), respectively. Thus, we see that

π(d(pΣ0, pΣ) ≥Mǫn|Xn) → 0

for some constant M > 0 under Hellinger metric d as n → ∞ in P0−probability. Note

that the conditions on parameters can be held because we assume τ = O(1), λ = O(1)

and v is some positive constant. Recall that we assumed ǫn = o(1). Thus, by Lemma A.1

(ii) in Banerjee and Ghosal (2015),

||Σ0 −Σ||F ≤ ||Σ0||2||Σ||2||Ω0 −Ω||F

≤ τ 2||Ω0 −Ω||F

≤ Bτ 3d(pΣ0 , pΣ)

for some constant B > 0 and all sufficiently large n, where Ω = Σ−1 and the first

inequality holds by (2). So,

1

Bτ 3
||Σ0 −Σ||F ≤ d(pΣ0, pΣ). (B.1)

for all sufficiently large n. Since 1 < τ and τ = O(1), (B.1) implies

π(||Σ0 −Σ||F ≥M ′ǫn|Xn) → 0,

for some constant M ′ > 0, which establishes Theorem 3.2.
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Appendix C. Proof of auxiliary results

Proof of Theorem B.1.. Following the argument in the proof of Theorem 5.2 in Lee et al.

(2021), since d(pΣ1, pΣ2) ≤ Cτ 3||Σ1 −Σ2||F for some constant C > 0,

logD(ǫn,Pn, d) ≤ log D(ǫn/(Cτ
3),U(δn, sn, Ln, τ), || · ||F)

≤ log[

(
CLnτ

3

ǫn

)p sn∑

j=1

(
2CLnτ

3

ǫn

)j ((p
2

)

j

)

]

≤ p log

(
CLnτ

3

ǫn

)

+ log[
sn∑

j=1

(
2CLnτ

3

ǫn

)sn (p+
(
p
2

)

sn

)

]

= p log

(
CLnτ

3

ǫn

)

+ log sn + sn log 2CLnτ
3 + sn log ǫ

−1
n + log

(
p+

(
p
2

)

sn

)

. p log

(
CLnτ

3

ǫn

)

+ log sn + sn log 2CLnτ
3 + sn log ǫ

−1
n + sn log p,

for all sufficiently large n, Note that the third inequality holds because sn ≤
(
p
2

)
/2 for all

sufficiently large n so that sn = O(p3/2). With simple calculations,

log sn + sn log 2CLnτ
3 + sn log ǫ

−1
n + sn log p

nǫ2n
=

log c1(p+ s0) + c1(p+ s0) log
2pCc2(p+s0) log pτ3

n−
1
2 (p+s0)

1
2 log p

1
2

(p+ s0) log p

=
log c1(p+ s0)

(p+ s0) log p
+

1

2

c1(p+ s0) logn

(p+ s0) log p

+ c1
log 2Cc2p

log p
+ c1

log(p+ s0)
1
2 (log p)

1
2 τ 3

log p

≍ log c1(p+ s0)

(p+ s0) log p
+

1

2

c1(p+ s0) log p
1
β

(p+ s0) log p
+ c1

log 2Cc2p

log p

+ c1
log(p + s0)

1
2 (log p)

1
2

log p

→ c1
2β

+ c1 +
c1
2

=

(
3

2
+

1

2β

)

c1 (C.1)

as n→ ∞. Here we used the assumption that τ 40 τ
2 ≤ s0 log p, which implies τ 2 ≤ s0 log p,

and p ≍ nβ for the last inequality. Consequently,

log sn + sn log 2CLnτ
3 + sn log ǫ

−1
n + sn log p . nǫ2n

.
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Also, by the assumption that τ 2 ≤ τ 40 τ
2 ≤ s0 log p and p ≍ nβ,

p log(CLnτ3

ǫ
)

nǫ2n
=
p logCc2

√

n(p + s0) log pτ 3

(p+ s0) log p

≍
p
2β

log p

(p+ s0) log p
+

p logCc2
(p+ s0) log p

+
p log

√

(p+ s0) log p

(p+ s0) log p
→ 1

2β
.

Thus we obtain that p log
(

CLnτ3

ǫn

)

. nǫ2n. This, together with (C.1), gives

logD(ǫn,Pn, d) . nǫ2n.

Proof of Lemma B.1.. Following the argument in the proof of Lemma 5.3 in Lee et al.

(2021) which uses Gershgorin circle theorem as in Brualdi and Mellendorf (1994), we see

that

πu(Σ ∈ U(τ)) ≥ πu(τ−1 ≤ min
i
(σii − τ−1) ≤ 2max

i
σii ≤ τ)πu(max

i<j
|σij | < (τp)−1).

Since we assume τ > 3 so that τ/4 ≥ 2τ−1 as in the Lemma 5.3 of Lee et al. (2021),

πu(τ−1 ≤ min
i
(σii − τ−1) ≤ 2max

i
σii ≤ τ) ≥

[
λτ

8
exp

(

−λτ
4

)]p

= exp

(

−p
(
λτ

4
− log

(
λτ

8

)))

.

Also, 1 ≤ λτ ≤ log p and so λτ
4
− log

(
λτ
8

)
≤ λτ ≤ log p. Thus,

πu(τ−1 ≤ min
i
(σii − τ−1) ≤ 2max

i
σii ≤ τ) ≥ exp(−p log p)

≥ exp(−nǫ2n).
(C.2)

for all sufficiently large n. Furthermore, one can see that

πu(|σij | ≥ (τp)−1) = πu(|σij| ≥ (τp)−1|zij = 0)πu(zij = 0) + πu(|σij| ≥ (τp)−1|zij = 1)πu(zij = 1)

= 0 · (1− q) + πu(|σij| ≥ (τp)−1|zij = 1)q

= πu(|σij| ≥ (τp)−1|zij = 1)q

≤ q

(C.3)
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for any i 6= j. Therefore,

πu(max
i<j

|σij | < (τp)−1) =
∏

i<j

(1− πu(|σij | ≥ (τp)−1))

≥ (1− q)p
2

≥ exp (−2 log p)

≥ exp(−nǫ2n)

(C.4)

for all sufficiently large n. By (C.2) and (C.4),

πu(Σ ∈ U(τ)) ≥ exp(−nǫ2n) exp(−nǫ2n) = exp(−2nǫ2n)

for all sufficiently large n.

Proof of Theorem B.2.. We use the techniques in the proof of Theorem 5.4 in Lee et al.

(2021) to prove Theorem B.2. Observe that

π(Pc
n) ≤ π(s(Σ, δn) > sn) + π(||Σ||∞ > Ln).

Since ||Σ||∞ ≤ ||Σ||2τ = O(1) and Ln tends to ∞ as n → ∞, we see that π(||Σ||∞ >

Ln) = 0 for all sufficiently large n. So it suffices to bound π(s(Σ, δn) > sn). Following the

argument in (C.3),

ρn ≡ πu(|σij | > δn) ≤ q ≍ log p

p2

for any i < j and sufficiently large n. Hence,
(
p

2

)

ρn .
p− 1

2p
log p < c1(p+ s0) = sn (C.5)

for all sufficiently large n. Since (C.5) holds for all sufficiently large n, by Lemma A.3 in

Song and Liang (2018) and the argument in the proof of Theorem 5.4 in Lee et al. (2021),

π(s(Σ, δn) > sn) ≤
exp(−

(
p
2

)
H(ρn||sn/

(
p
2

)
))

√
2π
√

2
(
p
2

)
H(ρn||sn/

(
p
2

)
)
,

where

H(a||p) = a log
a

p
+ (1− a) log

1− a

1 − p
.
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Note that
(
p

2

)

H(ρn||sn/
(
p

2

)

) = sn log(
sn
(
p
2

)
ρn

) + {
(
p

2

)

− sn} log(
(
p
2

)
− sn

(
p
2

)
−
(
p
2

)
ρn

). (C.6)

Since ρn . log p/p2, we obtain lower estimate of the first term in (C.6) as following :

sn log(
sn
(
p
2

)
ρn

) ≥ sn log(
2c1p(p+ s0)

(p− 1) log p
)

≥ sn log
√
p

= c1/2nǫ
2
n

for all sufficiently large n. Observe that

sn −
(
p
2

)
ρn

(
p
2

)
(1− ρn)

.
1

1− ρn

log p

p
→ 0

as n → ∞ and note that log(1 − x) ≥ −2x for all sufficiently small x > 0. Thus, using

the similar argument as in the proof of Theorem 5.4 in Lee et al. (2021), we obtain lower

estimate of the second term in (C.6) as following :

(

(
p

2

)

− sn) log(

(
p
2

)
− sn

(
p
2

)
−
(
p
2

)
ρn

) & −c1nǫ
2
n

log p

for all sufficiently large n. Then clearly,
(
p

2

)

H(ρn||sn/
(
p

2

)

) ≥ c1/2nǫ
2
n −

c1nǫ
2
n

log p
= c1(

1

2
− 1

log p
)nǫ2n → ∞

as n→ ∞. Consequently,

πu(s(Σ, δn) > sn) ≤ exp

(

−c1
(
1

2
− 1

log p

)

nǫ2n

)

≤ exp(−c1nǫ2n/3)

and by Lemma B.1,

π(s(Σ, δn) > sn) ≤ πu(s(Σ, δn) > sn)/π
u(Σ ∈ U(τ))

≤ exp(−c1nǫ2n/3) exp(2nǫ2n)

= exp(−(c1/3− 2)nǫ2n)

for all sufficiently large n. Note that c1/3 − 2 > 0, since we chose c1 to be larger than

6.
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Proof of Theorem B.3.. By Lemma 5.5 in Lee et al. (2021), it suffices to show that

π(||Σ−Σ0||F ≤
√

2

3τ 4τ 20
ǫn) ≥ exp(−nǫ2n).

Following the argument in the proof of Theorem 5.7 in Lee et al. (2021), this can be

established if we show that

π(DΣ0) ≥ exp

(

−
(

8 +
1

β

)

nǫ2n

)

,

where

DΣ0 = {max
i<j

|σij − σ0
ij | ≤

√

2s0 log p

3np(p− 1)τ 4τ 20
,max

i
|σii − σ0

ii| ≤
√

2 log p

3nτ 4τ 20
}.

Since we assume Σ0 ∈ U(τ0, s0), τ0 < τ and τ 4(1 − τ0/τ)
2n ≥ s0 log p as in Lee et al.

(2021), one can see that if Σ ∈ DΣ0, Σ ∈ U(τ). Hence, as we are to obtain lower estimate

of π(DΣ0), we assume independence on entries of Σ, as the constraint U(τ) on Σ will only

increase the prior concentration of DΣ0 . Thus, it suffices to show that

πu(DΣ0) ≥ exp

(

−
(

8 +
1

β

)

nǫ2n

)

.

Observe that

πu(DΣ0) = πu(max
i<j

|σij − σ0
ij | ≤

√

2s0 log p

3np(p− 1)τ 4τ 20
)πu(max

i
|σii − σ0

ii| ≤
√

2 log p

3nτ 4τ 20
)

=
∏

i

πu(σ0
ii −

√

2 log p

3nτ 4τ 20
≤ σii ≤ σ0

ii +

√

2 log p

3nτ 4τ 20
)

︸ ︷︷ ︸
I

∏

i<j

πu(σ0
ij −

√

2s0 log p

3np(p− 1)τ 4τ 20
≤ σij ≤ σ0

ij +

√

2s0 log p

3np(p− 1)τ 4τ 20
)

︸ ︷︷ ︸

II

. (C.7)

Since we assume log p/(τ 4τ 20 ) ≤ n, τ 4 ≤ p and p−1 < λ < log p/τ0 as in Lee et al. (2021),

one can see that

I ≥ exp

(

−
(

3 +
1

2β

)

p log p

)

≥ exp

(

−
(

3 +
1

2β

)

nǫ2n

) (C.8)
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for all sufficiently large n. Also,

II =
∏

σ0
ij=0

πu(−
√

2s0 log p

3np(p− 1)τ 4τ 20
≤ σij ≤

√

2s0 log p

3np(p− 1)τ 4τ 20
)

∏

σ0
ij 6=0

πu(σ0
ij −

√

2s0 log p

3np(p− 1)τ 4τ 20
≤ σij ≤ σ0

ij +

√

2s0 log p

3np(p− 1)τ 4τ 20
)

=
∏

σ0
ij=0

πu(|σij | ≤
√

2s0 log p

3np(p− 1)τ 4τ 20
)

︸ ︷︷ ︸
III

∏

σ0
ij 6=0

πu(|σij − σ0
ij | ≤

√

2s0 log p

3np(p− 1)τ 4τ 20
)

︸ ︷︷ ︸
IV

.

Following the argument in (C.3),

πu(|σij| >
√

2s0 log p

3np(p− 1)τ 4τ 20
) ≤ q ≍ log p

p2
.

Therefore,

III =
∏

σ0
ij=0

(

1− πu(|σij | >
√

2s0 log p

3np(p− 1)τ 4τ 20
)

)

&

(

1− log p

p2

)p2

≥ exp(−nǫ2n).

(C.9)

Now we obtain lower estimate of IV. Following the argument in (C.3), observe that

πu(|σij − σ0
ij | ≤

√

2s0 log p

3np(p− 1)τ 4τ 20
) = πu(|σij − σ0

ij | ≤
√

2s0 log p

3np(p− 1)τ 4τ 20
|zij = 1)q

for any i < j such that σ0
ij 6= 0 and sufficiently large n, where the second inequality holds

because 0 < |σ0
ij | ≤ τ = O(1) for all sufficiently large n. Thus for all sufficiently large n,
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IV =
∏

σ0
ij 6=0

q

∫ σ0
ij+

√

2s0 log p

3np(p−1)τ4τ2
0

σ0
ij−

√

2s0 log p

3np(p−1)τ4τ2
0

N(σij |0, v2)dσij

≥
∏

σ0
ij 6=0

exp



− log





√
2πv

2q

√

3np(p− 1)τ 4τ 20
2s0 log p



− 2τ 20
v2





= exp



−s0 log





√
2πv

2q

√

3np(p− 1)τ 4τ 20
2s0 log p



− s0
2τ 20
v2





≥ exp

(

−s0 log
√

np6 − s0
2τ 20
v2

)

= exp

(

−
(

3 +
1

2β

)

s0 log p− s0
2τ 20
v2

)

≥ exp

(

−
(

3 +
1

2β

)

(p + s0) log p− (p+ s0) log p

)

= exp

(

−
(

4 +
1

2β

)

nǫ2n

)

(C.10)

for all sufficiently large n, because q ≍ log p/p2, |σij | ≤ τ , and 2s0 log p/(3np(p− 1)τ 4τ 20 )

tends to 0 as n→ ∞. By (C.9) and (C.10),

II = III · IV ≥ exp(−nǫ2n) exp
(

−
(

4 +
1

2β

)

nǫ2n

)

= exp

(

−
(

5 +
1

2β

)

nǫ2n

)

(C.11)

for all sufficiently large n. Consequently, by (C.7), (C.8), and (C.11),

πu(DΣ0) = I · II ≥ exp

(

−
(

3 +
1

2β

)

nǫ2n

)

exp

(

−
(

5 +
1

2β

)

nǫ2n

)

= exp

(

−
(

8 +
1

β

)

nǫ2n

)

,

which concludes the proof.

Appendix D. Proofs of propositions from Section 3.4

Proof of Proposition 3.1.. Define a function m(·) on R
p by

m(x) = xtΣ−1
11 S11Σ

−1
11 x− 2xtΣ−1

11 s12 + s22.

Note that Σ−1
11 S11Σ

−1
11 is positive definite with probability tending to one and so m(·) is

convex. Thus, solving the equation dm
dx

= 0, one can see that the global minimizer of m(·)
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is x = Σ11S
−1
11 s12 and m(x̂) = s22 − st12S

−1
11 s12, which is Schur complement of S11. Since S

is positive definite if and only if S11 and s22 − st12S
−1
11 s12 are positive definite by Corollary

14.2.14 of Harville (2008), m(x̂) is positive with probability tending to one. Therefore,

with probability tending to one, 0 < m(x̂) ≤ m(β) = u.

Proof of Proposition 3.2.. Clearly, the initial covariance matrix is positive definite.

Denote the matrix resulted from updating a single row/column of a previous matrix Σ by

Σ̂. Partition Σ and Σ̂ as in (23). Provided that a previous matrix is positive definite, Σ̂11

and its Shur complement Σ̂11·2 = Σ̂22 − Σ̂⊤
12Σ̂

−1
11 Σ̂12 are positive definite by Proposition

3.1 and the fact that Σ̂11 is the same as Σ11, which is positive definite. Consequently, by

Corollary 14.2.14 of Harville (2008), Σ̂ is positive definite. Thus, the estimated covariance

matrix by Algorithm 2 is positive definite by an induction.

The convergence of Algorithm 2 to the stationary point of the objective function in

(17) can be established using the arguments considered by Wang (2014) and Breheny and

Huang Breheny and Huang (2011). Both Wang Wang (2014) and Breheny and Huang

Breheny and Huang (2011) used the results of Lemma 3.1 and part (c) of Theorem 4.1

in Tseng (2001). Although Tseng (2001) considered non-convex and non-differentiable

objective function, the sufficient conditions for Lemma 3.1 and part (c) of Theorem 4.1

in Tseng (2001) can be extended to convex and continuously differentiable function.
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