
Distributed Middleware Architectures for

Scalable Media Services

V. Kalogeraki, D. Zeinalipour-Yazti ∗, D. Gunopulos
Department of Computer Science and Engineering

University of California - Riverside
Riverside, CA 92521, USA

A. Delis
Department of Informatics and Telecommunications

University of Athens
Athens, Greece

Abstract

The fusion of Multimedia and Internet technology has introduced an ever increasing
demand for large-scale reliable media services. This exposes the scalability limita-
tions of current middleware architectures, as they traditionally operate on either
very large server configurations or on tightly coupled distributed systems. On the
other hand, the wide availability of high-speed networks and the widespread de-
ployment of powerful personal computing units by end users, has emphasized the
advantages of the Peer-to-Peer (P2P) computing model. In this paper, we evaluate
a number of different middleware architectures that facilitate the timely and reli-
able delivery of media services in P2P networks. Our evaluated architectures exploit
features including availability of high-performance links, replication and caching of
popular items and finally state-of-the-art search techniques proposed in the context
of structured and unstructured P2P overlay networks. Through detailed simulation
we investigate the behavior of the suggested P2P architectures for video provision
and examine the involved trade-offs. We show that under realistic assumptions, the
evaluated architectures are resilient to multiple peer-failures, are scalable with re-
spect to dropped requests when the number of messages in the network increases
and provide good response times to the user requests.

Key words: Video Services, Peer-to-Peer, Storage and Retrieval, Multimedia
Systems.

∗ Contact author: csyiazti@cs.ucr.edu tel: 951-827-2838, fax: 951-827-4643
Email addresses: vana@cs.ucr.edu (V. Kalogeraki), csyiazti@cs.ucr.edu (D.

Zeinalipour-Yazti), dg@cs.ucr.edu (D. Gunopulos), ad@di.uoa.gr (A. Delis).

Preprint submitted to Journal of Network and Computer Applications5 September 2005

1 Introduction

The ever improving network infrastructure in combination with the emerging
peer-to-peer (P2P) framework offers new opportunities for distributed organi-
zation of computing systems. In this paper, we investigate the deployment of
the P2P framework in order to offer efficient and reliable video services over
a heterogeneous network of computing nodes. Thus far, most of the work in
the area has concentrated in the exchange/sharing of “small” objects includ-
ing MP3 music files, images, and audio. Efforts such as Seti-at-home [34] and
Napster [33] along with follow-up projects including Gnutella [32], Freenet
[14] and Oceanstore [25], have promoted distributed computing as an effort to
share not only data objects but also CPU cycles and memory. On the other
hand, prior work in furnishing video over computer networks has exclusively
focused on Video-On-Demand (VOD) systems [2,7,30,22,44,12,43]. Although
there have been a number of proposals, research prototypes, and some VOD
products, it is evident that initial investment required for commercial use is
steep. Such systems are also restricted by the number of concurrent accesses
that they allow as well as load balancing issues that ensue when the demand
for video streams is skewed [22,30,9].

In this paper, we build upon the approach of ad-hoc P2P networks of resources
and evaluate new architectures that can efficiently support video-related ser-
vices. The range of such services is wide and includes storage and management
of movies, video-clips, and documentaries. For high quality MPEG-compressed
video streams, one would approximately need 30 frames/second and therefore
around 1.5Mbit/sec network connection to the source. In terms of storage re-
quirement, for a two hour MPEG-I movie 1.35 Gigabytes are required. The
corresponding figures for network transmission for MPEG-II are 8Mb/sec net-
work bandwidth and 7.2 Gigabytes space per movie. In the context of a P2P
infrastructure realization, two issues need to be considered:

(i) One should provide fast connections to the end user. However, this is
well within reach as more individuals choose T1-level (or higher) connections
both to their businesses and homes. In addition, cable and other specialized
modems (ADSL, HDSL, etc.) do provide for asymmetric connections with im-
pressive downstream rates (around 4-10Mb/sec) while maintaining significant
upstream capabilities (close to 0.5Mb/sec).

(ii) The size of a reasonable population of movies can definitely increase the
disk space requirements into the Petabyte area. The accommodation of such
volumes calls for collaborative computing can be carried out only in a dis-
tributed setting.

Problem Statement: Movies and/or video-clips are maintained by a net-

2

work of computing sites. The latter are termed “servers” and they are the
computing nodes responsible for storage as well as retrieval of the multime-
dia elements in discussion. Via the existing networking infrastructure, servers
stream requested clips and movies to user-sites for viewing and/or processing.
We assume that all sites are connected via a multi-hop network. However, the
key provision is that (some of the) peers may be connected via a low-latency
and high-bandwidth networking option capable of effective shipment and han-
dling of high data volumes; for instance the network could function even at the
OC3 level [35]. Customers interact with the infrastructure via (thin) clients
that allow for the search and display of the clips obtained from the network.
The video-segments are of considerable volume –at least 0.5 Gigabytes– and
are organized by storage managers. The latter operate on top of multiple disks
resident within the servers’ chassis. Segments and movies are all entitled, fea-
ture a number of keywords pertinent to their content, date of creation, names
of producers, owner, distributor, and cast, as well as a summary of their con-
tents and terms and conditions for the video’s usage.

In the above operating environment and while observing quality of service
(QoS) requirements for the delivery of multi-media data, a number of issues
have to be addressed:

(i) “7x24” Operation: Services should be offered in a reliable manner even in
the presence of (multiple) node failures. Once services are set up, it is expected
that they will not be disabled in any significant manner unless segments of
the network collapse. Users should be able to locate and view the outcome of
their requests independent of the state of the participating data servers.

(ii) Transparent Evolution of the System: The evaluated solutions must deal
with the dynamic aspects of the system such as arrival/departure of a server
node, load-balancing in light of skewed accesses, publishing/withdrawal of
video-segments by users/servers and on-line recreation of indexes in a seamless
fashion.

(iii) Efficiency: The organization of video servers and distributed indexing
mechanisms must allow for efficient retrieval of multimedia objects. The rout-
ing of queries in the network should avoid “flooding” of messages and comply
with QoS requirements for the delivery of data.

Finally, we have to consider the implications of using different P2P networks.
We consider both structured and unstructured P2P networks. In situations
where the rate of arrivals and departures is low and the overlay topology
changes slowly (structured P2P networks) we can either impose a global view
or use some special structure which can guarantee object lookups in logarith-
mic time [41], thus improving the efficiency of the system. On the other hand
in less stable environments (unstructured P2P networks) such techniques are

3

difficult to use; instead we have to apply a fully distributed search technique
[3,24,27,42,49,50].

Our Contribution: Our major contributions are:

(1) We evaluate a number of distributed architectures for delivering scalable
media services. The discussed architectures, range from centralized archi-
tectures to completely decentralized architectures. Our aim is to showcase
the advantages and problems of different P2P architectures, specifically
structured and unstructured P2P network models, in order to facilitate
scalable, timely and reliable delivery of media services.

(2) We show how the deployment of object replication and load distribu-
tion mechanisms, improve the performance of P2P architectures. The
discussed mechanisms are instrumental for ensuring reliable operation
and improving the availability and performance of the services.

(3) Finally, we perform an extensive experimental study that shows the re-
liability, flexibility, scalability and performance of the P2P architectures
that we discuss. We believe that our study will enable researchers and
practitioners to answer questions regarding which replication strategy or
search algorithm is suitable for a given architecture. This will help im-
prove the design and the implementation of their architectures or tune
the deployed search algorithms for better performance.

2 Related Work

In [25], peer-to-peer wide-area storage facilities for files are presented. The pro-
posed configurations target applications that include calendar organization,
distributed documents, chat-rooms, and hot-listing. In [41], a look-up service
based on consistent hashing for P2P applications is discussed. A variant of
this technique appears in [1]. [46] discusses the JXTA method for generalized
search and outlines ways to improve accessing documents in P2P networks. In
[24,50], a method for intelligent retrieval of documents and nearest-neighbor
search are examined. The scheme identifies the most likely sites that a query
has to be. The JXTA and Hailstorm initiative intend to offer P2P architec-
tures that follow a fully distributed and server-based approach respectively
[28,16].

Khazana [8] uses shared “regions” of memory space among a number of LAN-
based sites in a seamless manner in order to assist the delivery of multimedia.
In [51], video staging is used as a tool to retrieve only parts of a video-stream
from a server located across a wide area backbone network. The design of
a tightly connected distributed system for the provision of Video-on-Demand
and its evaluation is discussed in [19]. Techniques that improve the throughput

4

of long-term storage subsystems for multimedia with the use of staggered
striping, disk scheduling, and multi-user editing servers are presented in [7,5].
In [31], the design of a fault-tolerant VOD system that is able to overcome the
failure of disk failure is described. The use of segmented multimedia objects at
proxy servers is advocated in [17] to guarantee quality of service requirement
for video distribution. [48] proposes a media data assignment protocol to create
incentives for peers to share their bandwidth and improve peer waiting times.
The use of forward error correcting codes in streaming data is used as the basis
for Digital Fountain’s solution to media delivery to multiple clients [21]. The
functionality of BeeHive, a novel resource manager that handles transactions
with quality of service requirements over the Internet, is discussed in [45].

Content Distribution Networks (CDNs) such as Akamai [4] have been success-
fully deployed on the Internet. These provide a better service for a given con-
tent delivery cost at the expense of deploying and managing an extensive in-
frastructure. On a different approach, the Narada [13] and Nice [6] application-
level multicast protocols have been proposed. These can scale up to a large
number of participants, but have the overhead of building and maintaining
the multicast tree without taking into consideration the distinct capabilities
of the peers that comprise the tree. Additionally, there is some unfairness, as
nodes located higher in the multicast tree inherit all the burden of content de-
livery while leaf nodes don’t contribute any resources. SplitStream [10] enables
efficient distribution of content among nodes with heterogeneous capabilities.
The distribution of load is kept fair, by splitting the multicast content into k

stripes. In such a scheme a node is an interior node in the distribution of a
single stripe and a leaf in the rest k-1 stripes.

In [26], the design of system modules for multi-resolution media delivery to
clients with a variety of network connections is outlined. Possibly the work
more closely related to ours is [49]; however, the latter mostly deals with file
sharing options in the design of P2P applications. In contrast, our work is the
first effort to the best of our knowledge that designates architectural choices
for the development of P2P video-services with guarantees for reliability and
outlines the dynamic behavior and reconfiguration of the peers as needed.

3 Architectures for Reliable Video-Services on P2P Infrastructure

In this section we describe a number of architectures that can render effi-
cient video-services in P2P networks. 1 These architectures, which range from
completely centralized to fully decentralized, reflect a wide range of options
currently available for providing Media Services in a networked environment.

1 An earlier version of these architectures was presented in [23].

5

RTP

 Video
Decoder Decoder

 AudioMedia
Sync

���
���
���
���

IP

RTCPRTSP

Control Plane

Plane

Data

IP

RTCP RTPRTSP

Control Plane

Plane

Data

Client
Site

UDP UDP

 Media
 Server Storage Unit

 Video Audio
Compressed Compressed

Continuous Media Distribution Network

Fig. 1. Configuration for Continuous
Media Distribution

Disk Units for Video Objects

Server for Video Objects (SVS)

Manager

Multimedia

Indexing

Storage

Manager

User Interface

Requesting Site

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Network
Broadband

Query Manager

 Controland

Admission

r Memory for

Video−Objects

QoS Manager

Request

Fig. 2. The SVS Baseline Architecture

The described architectures serve as a basis for the queuing models presented
in Section 4 and the experimental evaluation of Section 5.

We assume that the role of a server is essentially that of a “storage and
streaming” point in the various network configurations discussed. As soon
as a server is ready to furnish a video clip/movie that a client machine has
requested, we assume that the appropriate communication protocol, such as
RTP, is in place to facilitate timely delivery of continuous data. We build upon
a significant amount of work in this area [15,39,40,47,51,26].

Fig. 1 outlines a possible layout for the delivery of multimedia objects from
a server “near” a requesting client site. The Internet Protocol (IP) facilitates
video streaming at the network-layer. The UDP transport protocol offers the
network transport functions [15] and as long as it functions in dedicated net-
works, data loss remains negligible [29]. The RTP (real-time transport) and
RTCP (real-time control) protocols support real-time delivery and control
functionalities for QoS (Quality of Service) respectively. More specifically, RTP
offers source identification, time-stamping, sequence numbering, and payload
identification for streaming data [39]. RTCP is the control protocol that func-
tions in parallel with RTP to provide feedback on the quality of data received
and membership information for data. RTCP offers QoS sender/receiver re-
ports on the quality of data transported, participant identification, scaling
packets, and inter-media synchronization [39]. A session control protocol such
as the RTSP [40] defines the messages and the functions that control the de-
livery of continuous data in the context of an established session. RTSP assist
in the streaming of continuous data in a number of distinct ways: a) estab-
lishes control streams for video and audio data between the server nodes and
client sites b) allows choosing the delivery channel including unicast UDP and
multicast UDP, and c) supports fundamental VCR-like operations including
pause, fast-forward, fast-backward, stop, play, and resume.

The architectures we present next are designed to take advantage of the specific
characteristics of different P2P network models. Two main approaches have

6

emerged for constructing P2P networks: structured and unstructured networks.
Structured P2P are networks organized in such a way that the data objects
are located at specific nodes in the network, and nodes maintain some state
information to enable efficient retrieval of the objects. In this case a global
distributed index of all the objects in the network can be created. Structured
P2P networks are better suited for environments where the rate of peer depar-
tures, arrivals and failures (churn) is low. Unstructured P2P networks on the
other hand can consist of any number of peers. These make no assumptions
about the location of the objects or the availability of the peers. More advan-
tages of unstructured P2P networks include their ability for self-organization,
for adaptation to different loads and for resiliency to node failures. Due to the
possibly high rate of peer departures, arrivals and failures, these cannot be
used to create any kind of global organization.

3.1 Sole Video Server (SVS)

In this architecture, a single video server maintains all movies and/or clips
existing in the network. In addition, the server maintains the necessary meta-
data for the objects in discussion as well as the necessary indexing mechanisms
for easier retrieval of data. Upon check-in, users interact with the system via
a thin-client interface that essentially provides the IP address of the server.
By contacting the server, users are able to browse and/or search for clips
and/or movies of interest. This functionality is achieved with the following
three commands/messages:

• query: this is the primary mechanism for searching the server’s content.
Should a number of matches are found, the server will notify the query-
originating site accordingly. Otherwise, a message indicating an empty result
will be dispatched by the server.

• query reply: provides an enumeration of matching multimedia objects that
comply with the constraints imposed by a query. In the case where no such
outcome exists, the query reply consists of an empty message.

• download: initiates the transfer of an object from the server to the requesting
site.

Users are able to request video-objects by sending the name of the object, or
terms of the object’s name (via the query message) for look-up to the server.
We assume throughout the paper that the name of each multimedia object is
unique, and is used as a key. The server can use traditional database indexing
structures such as B-Trees (for indexing the file date and size), or inverted files
(for indexing filename terms) to efficiently index the objects. The dynamics
of the server’s object population can be handled easily as inclusion of new
multimedia items occurs in a single location. Updates imposed on the indexes

7

can be carried out in a straightforward manner at the server.

Fig. 2 depicts two sites -a server and a requesting peer- in the SVS architec-
ture. The communication substrate that connects the various sites is assumed
to have the capability of delivering video streams. As discussed earlier, a com-
bination of appropriate protocols (such as the RTSP-RTCP-RTP/UDP/IP)
helps in transporting the required data payloads in a timely fashion to re-
questing sites. As the number of concurrent queries increase, the server will
ultimately suffer from problems such as missing QoS guarantees, experiencing
delays at disk units, service disruptions in light of bursty workloads, etc. In
order to avoid such situations, the peer with the video storage features an
Admission Control and Query Manager. The latter in collaboration with the
Quality of Service module overlooks the rate by which frames arrive in main-
memory and are getting ready for shipment over the network. Peer requests
for downloads of streams are only accepted if the QoS parameters of these
streams can be guaranteed [2,36]. The query and query reply messages are
handled by the Admission Control and Query Manager in cooperation with
the Storage and Multimedia Indexing modules. The ultimate delay observed
by a user depends on the number of movies concurrently requested by different
sites as well as the utilization of resources at the server peer and the network.

There are obviously no reliability guarantees in the SVS architecture. Once the
server, the source of all video-objects, fails there is no alternative for fetching
data. It is worth pointing out the high level of required initial investment
in order to realize such a configuration. Clearly, this architecture cannot be
classified in our P2P context, but it serves as baseline for our discussion and
experimental work.

3.2 Single/Multiple Index site(s)–Multiple Servers (SIMS/MIMS)

In this architecture, a number of independent data-servers constitute the basis
for managing the storage and retrieval of video objects. Each data-server can
only hold up to a number of video objects and for each such object, the server
counts the number of accesses and the time of last request for that object.
Initially, the number of the participating data servers in the network can be
considered fixed. However, this restriction can be easily relaxed as soon as the
data-server connection protocol is introduced by nodes in the system. This
model is essentially the Napster [33] model.

Data-Server Connection Protocol: Upon initialization, the data-servers
upload the meta-data for each of their video objects to some indexing server
(see Fig. 3). As mentioned earlier, such meta-data includes titles of segments,
producers, ownership, cast, release dates, etc. The uploaded meta-data uses

8

a soft state protocol in which objects are removed from the indexing server
unless their data-server owner sends periodically a refresh message indicating
in that way that it is still alive and willing to serve the object. The indexing

server can be either a single node (SIMS) or multiple nodes (MIMS). In
SIMS, all data-servers select the same index server while in MIMS, nodes
select several different indexing servers.

Ultimately, the indexing servers maintain distributed “hooks” regarding the
movies and clips stored in the server peers. One could envisage such hooks as
triplets including an object-ID (associated with search terms in the Multimedia
Indexing module), an IP address (in which the object is resident) and a port
number (through which the object is fetched). The final service provided by
the “indexing” node is the brokering of connections between site of users and
data-servers. These approaches provide the SIMS/MIMS architecture with an
advantage over the SVS architecture in which all video objects have to be
stored in the same server. Although the main advantage of MIMS is that it
avoids overloading a single indexing node in the system, it also significantly
increases the number of messages required to maintain the index entries.

Client Connection Protocol: The clients of the system connect upon
initialization to any of the available data-servers in the network. The initial
connection can occur in a number of ways: 1) by a simple selection by the
user’s client program (e.g. connect to a server that a client was connected in
the past), 2) by proximity of geographic location (e.g. by using the binning
scheme proposed in [37]), or 3) by exploitation of simple yet effective load-
balancing heuristics that could take into consideration number of concurrent
outgoing streams in a specific server, number of connections, availability of
main-memory, and utilization of resources. The above process is facilitated by
two protocol messages:

• ping: discover server peers in the network.
• pong: any server site that obtains a ping is expected to reply with pong

messages. Information about the load, number of concurrent operations per
server, geographic location, as well as number of open connections could be
piggybacked to the requesting peer.

Search Protocol: We assume that once a connection is established, it re-
mains open throughout the entire time of the interaction regarding a video
object and that a user can search for available movies/clips that are located
on that server. If a video object is located at the data-server then the video
is directly streamed back to the user. On the other hand, if the video object
the user is looking for is not located on the data-server, the server consults its
associated indexing server using the following search mechanism:

• query index: questions the Indexing Node for the existence of multimedia

9

objects.
• query index reply: sends back either distributed hooks for sought video

objects or a null message indicating no result.

Upon receiving the query index reply, a data-server can follow one of the
following strategies:

(i) First Cache–Then Deliver: The item is first cached to the data-server and
then distributed back to the client that initiated the request. The condition
that enables such a copy is that an object has become popular. The latter
is quantified by constraints that indicate that an object has received δ% of
the most recent ∆ requests. The Indexing Node has to also be alerted to this
effect. Therefore the client will perform the object download from its data-
server rather than the original holder of the object. Transparent replication of
popular objects is also performed in the Freenet system [14], with the difference
that popular objects get replicated on all intermediate nodes from the owner
to the requester.

(ii) Forward Object: The data server managing the item streams the object
via the network directly to the requesting site. In this case, users download
copies from the original holder of the object and the data-server of a client is
skipped.

If more than two servers can furnish the sought data objects, simple heuris-
tic policies can be applied depending on the least loaded peer, proximity of
the user to peer (as this is manifested by the number of hops needed in the
network), as well as on-going traffic at the segments of the network. This
information could be easily provided to the Indexing site with piggybacked
messages from the respective data-servers. To efficiently index the objects,
the indexing node can use the same techniques with the SVS architecture (B-
trees and inverted files). The indexing structures associate with the name of
each object the nodes that have this object. Since the index is centralized,
updates can also be handled efficiently by the indexing node.

Replication and Caching Protocol: To ensure reliable operation of the
network in light of node failure and/or time outs, we propose a simple yet
effective replication policy that calls for the mirroring of an object in the
network to at least another additional node. The selection of the new node
can be done randomly or based on load-balancing heuristics. In conjunction
with the possible caching and subsequently floating copies (due to First Cache–
Then Deliver operation above), the system will be able to recover from more
than two site failure. As peers reach their capacity, there is obviously need
for house-keeping by doing garbage collection. Objects can be eliminated in a
least recently requested object fashion and provided that at least two copies
exist in the network. The latter can be determined by issuing a query index to

10

Disk Units for Video Objects

Admission
 Control

Request
Manager

Storage

Manager

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

User Interface

Requesting Site

Indexing Node

Query
Manager

Server for Video−Objects

r Memory for

QoS Manager

Video−Objects

Network

Multimedia

Broadband

Indexing

Fig. 3. SIMS/MIMS Architecture.

Disk Units for Video Objects

Storage

Manager

Multimedia

Indexing

QoS Manager
Query

Manager

Admission
 Control

Request
Manager

User Interface

Requesting Site

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�Broadband

Network

Server for

Multiple Independent
Nodes (MIIS)

Chord Distributed

Object Index

r Memory for

Video−Objects

Fig. 4. Multiple Independent Indexing
Servers (MIIS).

the indexing node and receiving more than two object hooks. The additional
messages needed by the SIMS model are:

• download(siteIP): this message either downloads directly an object or
transparently generates a copy from the peer bearing the object and then
continues with the downloading.

• updateIndex(indexIP): sent by a peer that has updated its database.

New videos/clips can join the network by having a site publish available data
objects and following an admittance policy. In this paper, we are not concerned
with the latter as this policy is the mechanism that gauges the service content
of a particular P2P network. Assignment policies of the video/clip to a peer
server may range from completely random assignment to heuristics based on
the intention to keep utilization as minimal as it is possible. As soon as a home
server is determined and the appropriate storage takes place, the indexing

node has to be provided with the meta-data of the newly arrived segment.
Subsequently, the access structures have to be refreshed in order to allow for
accurate retrieval.

3.3 Multiple Independent Indexed Servers (MIIS)

In this architecture, clients maintain their own multimedia objects which
makes them in that way also data-servers. Because of this symmetric role,
we will refer to these nodes as peers.

The MIIS architecture is similar to the SIMS/MIMS architecture, the main
difference being that in MIIS each peer features distributed access structures
that give them the opportunity to efficiently retrieve objects of interest located
at other peers. As a result, in the description of the MIIS architecture we focus
on the areas that it differs from SIMS/MIMS.

11

Disk Units for Video Objects

Storage

Manager

Multimedia

Indexing

Request
Manager

Dispatching
Request

Receiving

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Download

Manager

FAMS Server

Network

Fig. 5. Fragmented And Multiple
Servers (FAMS).

q

QUERY

QUERYHIT

profile

Fig. 6. Searching in FAMS using the In-
telligent Search Mechanism (ISM).

Specifically, the MIIS architecture utilizes a scalable and distributed index
to provide means for efficient indexing of object names and object lookup in
logarithmic time. There are many techniques for building a distributed index,
such as Chord [41], CAN [38] and Tapestry [52]. In the description we focus on
the Chord Algorithm. This architecture is designated for environments where
either the rate of peer arrivals and departures is moderate (structured P2P
networks), or for environments where the available communication bandwidth
is sufficient for keeping the distributed access structures in a consistent and
updated state.

Peer Connection Protocol: Chord provides a mechanism for mapping a
key to a node; in MIIS, the key is the name of the object, and the mapping
is used to identify one node that is responsible for keeping the locations of all
copies of the object in the network. Chord uses consistent hashing in which
peers and objects are hashed upon initialization into an m-bit key and then
each object key k is assigned to the first node n that is equal to or follows
k (n is called the successor of k). Object keys are organized in key circle of
numbers in the range [0..2m

− 1] and the first node clockwise from a node
k is called the successor of k. One advantage of using consistent hashing is
that with high probability all nodes receive approximately the same number
of keys. Furthermore, Chord minimizes the number of key redistributions in
the network when the network dynamically expands or contracts by using
O(log2N) messages.

Fig. 4 depicts this architecture term Multiple Independent Indexing Servers
(MIIS). The storage peers feature modules pertinent to quality of service de-
livery of data including Admission Control, QoS Manager and Memory and
Download Manager, query and storage managers as well as the Chord Dis-
tributed Video Object Index. Peers, as in the SIMS/MIMS configurations,
maintain open connections with all their peers as the assumption is that their
networking substrate displays low-latency and high bandwidth characteristics.

Search Protocol: To efficiently retrieve the multimedia objects based on

12

the name of the object, each node first hashes the name of the object. It then
utilizes Chord to locate the node that contains the key of the object it is
looking for. A node maintains a finger table which contains pointers to several
nodes. More specifically the ith entry in the finger table contains the identity
of the first node s that succeeds n by at least 2i−1 on the keys circle and object
lookups can efficiently be resolved with only O(logN) messages.

Although Chord was initially proposed for lookup operations based on the
object identifier of an object (e.g. filename) recent work in [18] shows that
content-based query resolution is also feasible. More specifically the framework
proposes the registration of the content (i.e. attribute-value pairs that describe
the content) at Rendezvous Points RPs. Queries might then be routed, using
Chord, to a predefined set of RPs which consequently resolve the query.

Replication and Caching Protocol: The MIIS architecture features, sim-
ilarly to the SIMS/MIMS architecture, a transparent replication protocol of
popular objects. It is invoked when an object o receives δ% of the most recent
∆ requests. A peer then downloads and caches o locally and further updates
the Chord entry which is located at some node in the network (i.e. the suc-
cessor of o). Using this mechanism we can guarantee that the network always
contains k copies of object o, since each node can check (through the successor
of o) the number of copies before removing the o from its local storage.

3.4 Fragmented And Multiple Servers (FAMS)

This scheme follows the fundamental design choices of the Gnutella [32] model,
in which a large number of low-bandwidth nodes (i.e. dial-up users) form an
adhoc overlay network structure which serves as the communication medium
among them. In this type of architecture, there are no global indexing sites
for the multimedia objects and no peer has a global view of the system at
any particular moment [20]. Each node is essentially a video-service provider,
which maintains a local set of video clip files along with their meta-data,
and a client which actively seeks for new video objects. This architecture
places the smallest possible requirements to each peer. Since no centralized or
distributed index is maintained by the system, peers are free to join and leave
the network independently, thereby creating an unstructured P2P network.
There is also no upper limit on the number of participating peers and that
the peers are not fully connected. In addition, there is no explicit quality of
service modules on the peers and timely delivery of multimedia objects relies
solely on restricting the number of respective connections per peer. Such an
architecture has no scalability limitations, like the centralized SVS architecture
and the SIMS/MIMS, because there is no global index to be maintained. Fig. 5
depicts the organization of a peer.

13

Peer Connection Protocol: A node becomes a member of the network by
establishing a connection with at least one peer in the network (often no more
than 3-5). This number is typically limited by the peer’s resources and the
type of network links that exist between the peer and the rest of the network.
The connectivity information (i.e. IP and port) of the initial neighbors is either
retrieved from a hostcache, which maintains a partial list of active nodes, or
from a local list of nodes to which the peer was connected in the past. The
next step is to actively discover other nodes in the network as current nodes
might leave at any point of time. This is achieved by using at regular intervals
the following messages:

• ping: sent to all neighbors requesting to discover other nodes/peers in the
network.

• pong: furnishes information about the nodes which are willing to accept
new incoming connections. Such information includes, the IP-address, ports
available, types of links, and some aggregate type of meta-data that outline
the data stored locally.

Basic Search Protocol: To search the network for an object, a node can
send a query message to all of its peers including a “constraint” that essentially
articulates the search operation. Typically this constraint is a set of keywords
(meta-data) attempting to outline what is being sought. A peer receiving
a query message evaluates the constraint locally against the meta-data in
its own local storage manager. If the evaluation is successful, the peer will
generate a reply message back to the originating node which includes the
object(s) corresponding to the constraint. Otherwise, a new query is initiated
from the peer in discussion to the nodes in its own Peer List. If the segment is
available in the network, this recursive operation guarantees ultimate retrieval.
However, in practice we limit the depth of the recursion by using some Time-
to-Live (ttl) parameter, which determines the maximum number of hops that
the given lookup should be forwarded. The ttl parameter, which is used in
many networked applications, starts out from a pre-defined value and decreases
each time the lookup message is forwarded until ttl becomes zero. The ttl

parameter avoids flooding the network with messages.

The described protocol can be summarized with the following messages:

• query: this message designates in terms of a string specific information
about a sought movie and/or video clip. In addition, it can specify require-
ments for the nodes to be searched for the information.

• query reply: an enumeration of video/clip objects that comply with a
query.

Once the object is located, a user initiates either a download request from
the respective peer. If the original holder of the file is behind some firewall

14

(and hence not accessible from outside users), the requester issues an upload

request, which includes the IP and port on which the requester can accept
the requested object. This procedure can be summarized with the following
messages:

• download: this initiates the transfer of an object from the requesting site to
the peer-server.

• upload: this initiates the transfer of an object from a peer-server to the
requesting site.

Improving Search Performance: In order to minimize the overwhelming
amount of messages that are generated by querying all neighbors (also known
as message flooding or Breadth-First-Search (BFS)), a node can utilize a num-
ber of improved search techniques that are based on local knowledge and that
were recently proposed. It is important to mention that distributed lookup
indexes, such as Chord, are not appropriate in the context of the FAMS ar-
chitecture as transient user populations will impose a large number of repair
operations (i.e. key redistributions) which are extremely expensive for low-
bandwidth nodes [11].

Examples of alternative approaches include Random BFS [24,50], in which
a node probabilistically queries a random subset of neighbors. If a node can
keep information on the result of past queries, the FAMS architecture can also
employ other search techniques, including >RES [49] in which a node queries
the neighbors that returned the most results in the recent past, the Random
Walkers [27] approach, in which the query is forwarded to one random neighbor
at each hop, or the APS [42] approach, in which a node utilizes feedback
from previous searches to probabilistically guide future walkers (rather than
forwarding the walker at random). A node can also employ the ISM [24,50]
mechanism in which a node intelligently queries a subset of neighbors that
returned the most similar answers in the past. The ISM mechanism (see fig. 6)
is an efficient, scalable yet simple search technique designated for unstructured
P2P networks. It consists of four components: A Profiling Structure which
logs queryhit messages coming from neighbors, a Query Similarity function
which calculates the similarity, RelevanceRank which is an online neighbor
ranking function and a Search Mechanism which forwards queries to selected
neighbors. Using ISM, a node continuously monitors queryhit messages coming
from neighbors and builds using this information some local knowledge about
its neighbors. If the query locality is high (i.e. similar queries are repetitively
posted) then the ISM mechanism performs extremely well.

Recent studies in [50] show that by using ISM and some of the other presented
search techniques in random graphs, a node can significantly reduce the num-
ber of messages and time used by the brute-force technique while retaining
high degrees of recall (i.e. finding the expected objects).

15

Assumptions in a Realistic Environment: The fact that the topology
of the network is not known and can change dynamically over time creates
both problems and opportunities. Every node only knows about its first-line
peers, but in light of site failures, the overall system can still function (almost
certainly with longer response times). In order to make our FAMS model
more pragmatic, while providing video services, we impose the following two
assumptions:

(i) We disallow downloading of multimedia objects through low bandwidth
connections that may appear in Peer-Lists if a faster connection is available.
Although a connection to a peer may exist, it might be not viable in order to
sustain the presumed quality of service requirements.

(ii) We assume that any video segment is available from at least two peers in
line with the reliability rule suggested in the SIMS/MIIS architectures. This
policy permits “new releases” to have at least one replica randomly created
in some node in the P2P network. The downloading option allows for further
caching of objects and propagation of their corresponding meta-data.

4 Experimental Methodology

In this section, we discuss our experimental methodology of the presented
peer-to-peer architectures for video-service provision. By employing a number
of different workloads, we have estimated performance indicators and carried
out sensitivity analyses. In this context, our main goals were to:

• investigate the “average” behavior of the suggested configurations in the
presence of uniform and skewed requests.

• examine the reliability features of each architecture and the effect of the
proposed replication/caching policy as well as to experimentally gauge the
levels for continuous operation despite failure of multiple nodes.

• carry a competitive scalability analysis and quantify the number of requests
unable to be serviced by every architecture.

• estimate the resource requirements and evaluate the timeliness guarantees
of each architecture.

In order to carry out our experimental objectives, we developed detailed queu-
ing network models for all architectures (discussed in the following subsection)
and based on those models we created four extensive simulation packages.
The software was developed in C++ and the size of the packages ranges from
2k-2.5k lines of source code; the packages run on the Linux RedHat 7.1 distri-
bution. The key parameters used across all simulation packages are outlined
in Table 1 and their definition is self-explanatory.

16

Table 1
Key Simulation Parameters

Parameter Definition

NumPeers Number of Servers (Storage-capable Peers)

NumObjects Population of Multimedia Objects in P2P Network

ConsPServer Number of Connections allowed Per Server

F racObjects Fraction of Objects Allocated to a Server

RepliDegree Degree of replication of an Object

NumIndxSites Number of indexing sites

V icinityObjs Number of Objects in the Vicinity of a Server (partial indexes)

NetworkType Type of network (random, fully connected)

RandNetDgr Degree of Random Network

ServOpConn Maximum Number of Concurrent Connections allowed per Server

RespTime Response Time for downloading an Object

In the SVS architecture, we used a single server that operates both as indexing
and source of all the video objects in the network. Fig. 7 depicts the queuing
model for SVS. The streaming server runs on a powerful machine and has the
capability of storing all movies and clips whose number is set to 1,000. Users
request objects by dispatching query messages to the server. The Admission
Control and Query Manager determines whether a new user request can be
accepted based on the site’s communication capacity (maximum number of
downloads it can support) and the number of movies that are currently being
streamed. User requests are routed to the network via the Request Queue and
arrive at the Admission Queue of the server. If the request gets accepted by the
Admission Control and Query Manager, the request is queued at the Query
queue of the Request Manager. The Admission Control and Query Manager
works in collaboration with the QoS Manager to ensure QoS guarantees for
the accepted requests. Subsequently, the request is queued at the Multimedia
Indexing component that is responsible for finding the movie at the movie
server. If the movie is found locally, the Admission Control and Query Man-
ager creates a Query Reply message that describes the matching results and
is queued at its Reply queue. If there are no matching results, the query re-
ply message consists of an empty message. The message travels through the
network and reaches the Reply queue at the client side. For simplicity, all the
queues in the model use the FIFO discipline.

To initiate the transfer of the movie/clip object, the client creates a download
message which passes through the Admission Queue and the Query Queue
and finally arrives at the Download Queue. For each user request, the server
dynamically creates a new thread that starts the user session. The movie is
finally displayed at the user interface.

Fig.8 shows the queuing network for the SIMS/MIMS architecture. Users ob-
tain the movie directly from the local server, if it is available. Otherwise, a
query index message/request is routed to the network via the Request Queue.
At the Indexing node’s site the request is placed on a Query queue while await-
ing processing. The Indexing node identifies which streaming peer maintains a

17

QoS Mgr

Memory for
Video−Objects

Admission
Control and
Query Mgr

Storage
Mgr

Request
Mgr

Multimedia
Indexing

Admission
queue

Query
queue

Reply
queue

Download
queue

Client Server

B
ro

a
d

b
a

n
d

 N
e

tw
o

rk

Request
queue

queue
Reply queue

Request

Fig. 7. Queuing Model for SVS Archi-
tecture.

Request

queue
Reply

Request
queue

Reply
queue

Client

Request
Mgr

QoS Mgr

Memory for
Video−Objects

Admission
Control and
Query Mgr

Storage
Mgr

Query
queue

Server

Download
queue

queue
Admission

Query
Mgr

Multimedia
Indexing

B
ro

ad
ba

nd
 N

et
w

or
k

Query
queue

Indexing Node
queue

Fig. 8. Queuing Model for SIMS/MIMS
Architecture.

Request

queue
Memory for
Video−Objects

Storage
Mgr

Query Mgr

Multimedia
Indexing

Reply
Queue

Request
Mgr

Reply
queue

Client

queue
Request

Server
Admission
queue

Query
Queue

Download
Queue

Control
Admission

B
ro

a
d

b
a

n
d

 N
e

tw
o

rk

Chord Distributed
Object Index

QoS Mgr

Fig. 9. Queuing Model for MIIS Archi-
tecture.

queue

Request

Queue

Reply
Queue

Request

Client

Request
Mgr

Request
Dispatching
Receiving

Download
Mgr

Multimedia
Indexing

Storage
Mgr

N
e

tw
o

rk

Admission Query
Queue

Download

Forward

Queue

Queue

Queue

Server

Fig. 10. Queuing Model for FAMS Ar-
chitecture.

copy of movie object in question and notifies the client with a recommendation
of such a server through the Reply queue. This recommendation is based on
load balancing policies obtained through piggybacked messages that maximize
the probability that the user request will be met. Subsequently, the user issues
a download message which travels through the network and reaches the Ad-
mission Queue of the appropriate streaming peer. As soon as the Admission
Control Manager accepts the query, it forwards it via the Request Manager
and Storage Manager to the Download queue for streaming.

In our baseline experiments with the SIMS/MIMS architecture, we used 10
dedicated streaming servers connected to one indexing server. We assumed
that one indexing server was sufficient to support all incoming requests. To
guarantee reliable operation in the network despite failures of the indexing

site, we assume that there is a second indexing site functioning as a backup
unit. Since the users are serviced by the dedicated servers even if the pri-
mary indexing site fails, object streaming is not interrupted (as opposed to
SVS). If query index reply acknowledgments have not been received af-
ter the elapse of a predetermined time-out period, users have to re-issue
query index messages. The availability of additional indexing servers will
benefit the SIMS/MIMS architecture as it can contribute to a noteworthy
reduction in their response time. In our experiments, 1,000 multimedia ob-
jects were randomly distributed among the servers. Each object was replicated

18

twice, so each server maintained in total 200 movies/clips. 10,000 requests for
movies/clips were made to the servers. All the servers have equal capacity in
terms of CPU, networking and storage. The servers are connected only to the
indexing server, and are independent of each other. The Admission Control
manager determines the number of concurrent object streams the server can
support. We assume that all streaming peers are identical and therefore can
accept the same number of connections.

Fig.9 depicts the queuing network for the MIIS architecture. A user’s request,
through the client’s Request queue, is forwarded to the network and finally
arrives at the Admission queue at the client’s local server. If the Admission
Control component accepts the user request, the request is queued at the Query
queue of the Request Manager. The functionality of the Request Manager is
modified so that it also searches the network using Chord, as described in
section 3.3, for objects not locally available. Therefore, the Query request first
goes through the Query Manager component and if a match is not found there,
the Request Manager searches the network using Chord. If a match is found,
there are two options: the server can either cache the movie locally before
it starts downloading to the client or can forward the Query request to its
server peer. In the first case a node is also required to update the Chord index
that contains the keys for the cached movies. Then, the movie starts getting
transmitted at the client machine.

While experimenting with the MIIS architecture, we assume 10 servers, fully
connected to each other. There is no centralized indexing node; each peer
maintains its own local index along with its multimedia objects. In our exper-
iments, each server maintains 200 multimedia objects. During the operation
of the system, popular movies are cached to more servers for future requests,
so the replication degree for some of the objects increases. All the streaming
servers have similar resource features. The server’s Admission Control module
controls the number of concurrent data streams allowed.

Fig. 10 shows the queuing network for the FAMS architecture. When the user
submits a Query Request through her/his interface, the request is forwarded
to user’s closest streaming peer. Streaming peers are essentially user machines
and they can be highly diversified. Therefore, there is no admission control
module in the FAMS queuing network. Requests received by servers are placed
at Query Queue of the Request Manager for evaluation. If the retrieval is
successful and the request can be satisfied locally, the server peer creates a
Query Reply message which via the Reply Queue is sent to the querying node.
In addition, the server dispatches the request through the Forward Queue to
its own peers in the network.

The FAMS model reflects a fully distributed architecture; there is no single
indexing or dedicated storage server. Essentially, each server in this architec-

19

ture represents an end-user machine. In our main body of experiments, we
assume 100 such peers; the formed network among the peers constitutes a
random graph with average degree varied from five to twenty (for brevity, we
report results only for graphs average degree ten). We randomly distributed
1,000 multimedia objects among the sites with the only condition being that
objects are replicated twice during their onset in the P2P network. In total,
1,000 users make requests for objects. FAMS servers are the least powerful in
comparison with all other architectures.

We ran experiments with 10,000 requests for continuous objects. We have used
as the main threshold value of user requests to be 10,000 because for this value
and for values above the average remains very similar. In all configurations,
the requests “arrive” sequentially. Each time interval, a random user selects a
movie and submits the request. We used two distributions to model the movie
selection. In the first case, the distribution of the requests is uniform. In the
second, one tenth of the multimedia objects are popular movies and represent
half of the requests. The other half of the requests is uniformly distributed to
the rest of the objects. The popular objects are randomly distributed to the
servers. Also, we assumed that all the multimedia objects have the same size,
and take the same time to download. We varied this download duration of
the multimedia objects between 100 and 1,000 time units in different exper-
iments. Each movie/clip download, keeps one server connection busy. In all
architectures, we assume that there is an upper limit in the number of users
that can be simultaneously served by single site. This number is largest in the
SVS architecture (typically 50 to 200), smaller in the SIMS/MIMS and MIIS
architectures (10 to 20) and smallest in the FAMS architecture (2 to 10).

5 Experimental Evaluation

Search Performance: In the first set of experiments, we evaluated the effi-
ciency of each of the architectures. This was done by measuring the average
number of messages that have to be exchanged between users and servers
for each request before downloading commences. Here, we do not consider
the time it takes for a server to search its index. For datasets in the range of
104

−106 movies/clips, we expect the logarithmic search time to be reasonably
short compared to the communication time among servers.

It is evident that the SVS architecture calls for the smallest number of mes-
sages (two messages) to start downloading: the user sends a query message
to the server, the server searches through its index and if any matches are
found sends a query reply message that includes the corresponding results.
The user initiates the transfer of the movie by issuing a download message.

20

In the SIMS/MIMS architecture, the number of messages also remains limited.
Upon login, a user sends a ping message to connect to one of the well-known
servers in the network. The payload of the message contains the user’s IP
address. The server’s Admission Control manager uses the location of the
user, along with the current number of downloads in the system, to determine
whether it can accept the request in question. The server replies with a pong

message only if the Admission Control manager on that node is willing to
accept the connection. If the movie/clip is available, the download process
can begin. Otherwise, the user queries the indexing node for movies/clips in
the network. Therefore, for each user request, only two or four messages are
needed to find a movie. If the user request is denied by the Admission Control
manager and the user re-issues his request, the latter is viewed as an entirely
new request.

Fig. 11 shows that the average number of messages per user request in the
MIIS architecture. 2 To search for a movie, the user sends a query request
to its local server. If the peer has the movie, or has its location in the local
index, then it replies with a query reply message that contains the location of
the movie for download. On the other hand, if the server has no information
about the location of the movie, it has to initiate a search in the network.
The figure also shows that the average number of messages decreases with the
number of user requests over time. As more users request movies from the
server, the server get populated with more copies of replicated objects, which
therefore results in fewer peer lookup messages. The replication algorithm will
be described in further detail in the next subsection.

The average number of messages per user request is much higher in the FAMS
architecture (Fig. 12) compared to the other architectures. The reason is
that in this architecture there are no dedicated servers where the users find
movies/clips. Also, since there is a larger number of servers in the network,
each peer has only a partial index of the movies of its “vicinity”. When the
server has zero-knowledge of the location of a multimedia object, it initiates
a Breadth-First-Search in the network. As a result, the number of messages
propagated in the network is large. Similar to the MIIS architecture, the per-
formance of the FAMS architecture improves as the server “learns” about
the location of the movies in the network by using the ISM search mecha-
nism [24,50]. However, the improvement is small because the server learns
about only a small proportion of the movies that are available in its peers
(compared to the MIIS architecture, and for the same replication degree of
the movies).

2 In the experiments with the MIIS architecture we did not implement Chord or a
similar distributed index since the number of nodes was small. Instead each node
sends query messages to all its peers.

21

0

2

4

6

8

10

0 20 40 60 80 100 120

A
ve

ra
ge

 N
um

 o
f M

es
sa

ge
s

Number of Requests (x 80)

Average Number of Messages

Fig. 11. MIIS Architecture: Average
number of messages per request to
find an object. (10 servers, 1,000
movies/clips, degree of replication 2.)

0

10

20

30

40

50

60

70

0 50 100 150 200

A
ve

ra
ge

 N
um

 o
f M

es
sa

ge
s

Number of Requests (x 40)

Average Number of Messages

Fig. 12. FAMS Architecture: Average
number of messages per user request
to find an object. (100 servers, average
connectivity 10, 1,000 movies/clips, de-
gree of replication 2.)

0

2

4

6

8

10

0 5 10 15 20 25

M
ov

ie
 R

ep
lic

at
io

n
D

eg
re

e

Number of Requests (x 400)

Replication Degree for Popular Movies

Fig. 13. MIIS Architecture: Average
Replication Degree for Popular Movies.
(10 servers, 1000 movies/clips, 100 pop-
ular movies/clips, initial replication de-
gree 2.)

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

M
ov

ie
 R

ep
lic

at
io

n
D

eg
re

e

Number of Requests (x 1000)

Replication Degree for Non-Popular Movies

Fig. 14. MIIS Architecture: Average
Replication Degree for Non-Popular
Movies. (10 servers, 1000 movies, 900
non-popular movies, initial replication
degree 2.)

Clearly the SVS and SIMS/MIMS architectures have the best search perfor-
mance. However our experiments show that the performance of the MIIS ar-
chitecture approaches that of SIMS/MIMS as the local indexes index a larger
number of movie locations. On the other hand, the performance of the FAMS
architecture is quite lower than the other three.

Replication Algorithm: In the second set of experiments, we evaluated the
performance of our replication algorithm. We ran experiments in the context
of the MIIS architecture. Our goal was to investigate the replication degree of
the popular and the non-popular movies as the number of requests increases.

Fig. 13 depicts the average Replication Degree of the popular movies in the
MIIS architecture as a function of the user requests. At first, the replication
degree for all movies is 2. If a server peer receives more than three requests for
a movie not locally available, it caches the multimedia object. The latter is an

22

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

M
ov

ie
 R

ep
lic

at
io

n
D

eg
re

e

Number of Requests (x 500)

Replication Degree for Popular Movies

Fig. 15. MIIS Architecture: Aver-
age Replication Degree for Popular
Movies. (100 servers, 10,000 peers,
10,000 movies/clips, 1,000 popular
movies/clips, initial replication degree
5.)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45

M
ov

ie
 R

ep
lic

at
io

n
D

eg
re

e

Number of Requests (x 500)

Replication Degree for Non-Popular Movies

Fig. 16. MIIS Architecture: Average
Replication Degree for Non-Popular
Movies. (100 servers, 10,000 peers,
10,000 movies, 9,000 non-popular
movies, initial replication degree 5.)

indicator that the clip/movie in discussion is a popular one. As Fig. 13 shows,
the replication degree of the popular movies increases quickly. Eventually, most
of the Servers cache a copy of the popular movies. As a result, the number of
messages needed to find a movie decreases continuously.

Fig. 14 shows the average Replication Degree for the non-popular movies.
Our experimental results indicate that only a few peers cache locally a copy
of the non-popular movies. The reason is that these movies are requested less
frequently and a maximum of four replicas seems to be sufficient to satisfy the
user requests.

We verified the above results by running experiments in a larger network with
100 dedicated movie servers, 10,000 movies/clips and 10,000 peers. Figures
15 and 16 show the average replication degree for the popular and the non-
popular movies respectively. Fig. 15 indicates that although we start with a
small number of popular movies in the network, the replication degree of the
popular movies increases quickly and eventually most of the servers obtain a
copy of these movies. For the non-popular movies we notice (Fig. 16) that the
original replication degree does not change with the user requests. Therefore,
five replicas for the non-popular movies seem more than enough to satisfy the
user requests. Both of these results validate our earlier results (Figures 13 and
14) where we used a smaller network.

In this set of experiments, we did not run the corresponding experiments for
either SIMS/MIMS or FAMS. In the first, the algorithm cannot be directly
applied as we assume that servers are not directly connected with each other.
So the servers cannot cache additional copies of objects. In the second, we note
that the connections from a graph with relatively low degree, and servers are
not connected to most of the other servers directly. On the other hand, to do

23

0

20

40

60

80

100

120

0 10 20 30 40 50

C
ac

he
 H

it
R

at
io

Number of Requests (x 200)

Cache Hit Ratio Popular Movies (ReplDegree = 2)
Cache Hit Ratio Popular Movies (ReplDegree = 3)
Cache Hit Ratio Popular Movies (ReplDegree = 4)

Fig. 17. MIIS Architecture: Cache Hit
Ratio for Popular Movies. (10 servers,
1000 movies/clips, 100 popular movies,
initial replication degree 2.)

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45

C
ac

he
 H

it
R

at
io

Number of Requests (x 200)

Cache Hit Ratio Non-Popular Movies (ReplDegree = 2)
Cache Hit Ratio Non-Popular Movies (ReplDegree = 3)
Cache Hit Ratio Non-Popular Movies (ReplDegree = 4)

Fig. 18. MIIS Architecture: Cache Hit
Ratio for Non-Popular Movies. (10
servers, 1000 movies/clips, 100 popular
movies, initial replication degree 2.)

the replication efficiently, we would have to open direct connections between
servers, and change the topology of the network dynamically.

We also measured the Cache Hit Ratio for the popular and non-popular movies
over different replication degrees. Fig. 17 shows that the Cache Hit Ratio for
the popular movies increases with the replication degree of the movies and
the number of user requests. For example, at user request 4000 and at movie
replication degree four, the Cache Hit Ratio is 60%. The Cache Hit Ratio
for the popular movies increases as more servers cache copies of the popular
movies. This reduces the number of messages in the network and the response
time to the user requests.

Fig. 18 shows that the improvement of the Cache Hit Ratio for the non-popular
movies is smaller and remains stable as the number of user requests increases.
The reason is that these movies are less frequently requested by the users,
so there is small benefit in caching them in many nodes. The experimental
results suggest that a replication degree of at most four is sufficient to meet
all user demands.

Reliability: To evaluate the reliability of the different architectures, we mea-
sured the number of movies that are no longer available in the system as
servers fail. Clearly, the SVS architecture provides no reliability guarantees;
if the server fails, then the system stops operating. In the remaining architec-
tures, when only one server fails no objects are lost. The reason is that each
movie is replicated twice or more, so there is at least one more server that has
a copy of the movie. Naturally, if we expand the initial degree of replication,
we can guarantee tolerance to multiple failures (at least proportional to the
degree of replication allowed).

Fig. 19 shows the number of movies lost in the SIMS/MIMS architecture when
20% servers (2 out of 10) fail over various replication degrees for the movies.

24

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

N
um

be
r

of
 M

ov
ie

s
L

os
t

Number of Requests (x 100)

Number of Movies Lost (ReplDegree = 2, Fail = 2)
Number of Movies Lost (ReplDegree = 3, Fail = 2)
Number of Movies Lost (ReplDegree = 4, Fail = 2)

Fig. 19. SIMS/MIMS Architecture:
Number of movies lost when 20% of the
Servers fail at movie replication degrees
2, 3 and 4. (10 servers, 1000 movies.)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

N
um

be
r

of
 M

ov
ie

s
L

os
t

Number of Requests (x 100)

Number of Movies Lost (ReplDegree = 2, Fail = 2)
Number of Movies Lost (ReplDegree = 3, Fail = 2)
Number of Movies Lost (ReplDegree = 4, Fail = 2)

Fig. 20. MIIS Architecture: Number of
movies lost when 20% of the Servers fail
at initial movie replication degrees 2, 3
and 4. (10 servers, 1000 movies.)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

N
um

be
r

of
 R

eq
ue

st
s

R
ej

ec
te

d

Number of Requests (x 100)

50 Connections per Peer
100 Connections per Peer
200 Connections per Peer

Fig. 21. SVS Architecture: Number of
Requests Rejected for Maximum Num-
ber of Open Connections 50, 100 and
200.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

N
um

be
r

of
 R

eq
ue

st
s

R
ej

ec
te

d

Number of Requests (x 100)

10 Connections per Peer
12 Connections per Peer
20 Connections per Peer

Fig. 22. SIMS/MIMS Architecture:
Number of Requests Rejected for Maxi-
mum Number of Open Connections 10,
12 and 20. (10 servers, 1000 movies,
replication degree 2.)

For example, at replication degree = 2, less than 5% of the movies are lost. The
reason that we loose movies in this case is because both the servers that have
a copy of the same movie may fail. As the replication degree for the movies
increases, no movies are lost. In the MIIS architecture, the number of movies
lost is initially the same compared to SIMS/MIMS for the same replication
degree and same number of faulty servers, as shown in figure 20.

Scalability: In the fourth set of experiments, we evaluated the scalability of
the architectures by measuring the number of user requests that each archi-
tecture rejects. The Admission Control manager of the Server node rejects a
request when the maximum number of connections allowed in the mode is ex-
ceeded. The Admission Control manager decides whether a new user request
is accepted based on the communication capacity of the server (maximum
number of downloads it can support) and the number of multimedia transfers
that currently take place.

25

In all the figures in this section we report the number of dropped requests
cumulatively, so at the ith request we show the total number of requests that
were dropped from the 1st request to the ith request (including the ith request
if indeed it was dropped).

In the SVS architecture, we varied the maximum number of (open) connec-
tions that the SVS can support from 50 to 200. These connections correspond
to the number of movies that are concurrently being downloaded from the
server. Fig. 21 shows the number of rejected requests for the SVS architec-
ture. When the maximum number of connections that the server supports is
200, then a large number of user requests are rejected (50% of the requests)
from the server. The first requests are always accepted by the server, but as
more requests are made, the Admission Control manager denies more requests.
The results can improve if the Server becomes more powerful to accept more
user requests. But still, this illustrates the scalability limitations of the SVS
architecture.

Fig. 22 shows the number of rejected requests for the SIMS/MIMS architec-
ture. To simulate the fact that peers are less powerful (than the SVS), the
server can facilitate 10 to 20 concurrent open connections. Our results in-
dicate that the architecture can service 87% of the requests (approximately
1,300 rejections) when the maximum number of connections per server is 10.
Also, the results show that as the maximum number of connections for the
server increases to 15 and more, almost no requests are rejected.

In Fig. 23 we show the number of failed requests for the MIIS architecture over
different number of open connections. The duration of each movie was set to
100 time steps (i.e., when a server accepts a request for a movie download, has
to keep this connection on for 100 time steps). The architecture can service
88% of the requests (1,200 rejections) when the maximum number of open
connections per server is 10, but 95% when this number raises to 12 and
almost 100% for 20. We observe that the SVS architecture would have to be
able to keep at least 95 connections open at the same time in order to be able
to service 95% of the requests.

In Fig. 24, we show the number of failed requests in FAMS. Since the servers in
this architecture are likely to be less powerful, we assume 5, 7 or 10 maximum
number of simultaneously open connections per server. Allowing only 2 con-
nections per server results to 2,000 dropped requests. However, increasing the
limit (connections) quickly reduces the number of dropped requests, and in
fact even allowing 5 connections per server results in 0.25% requests rejected.

Response Time: In the last set of experiments, we evaluate the timeliness
guarantees of the proposed architectures by measuring the average response
time per user query request. The response time depends on the following

26

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

N
um

be
r

of
 R

eq
ue

st
s

R
ej

ec
te

d

Number of Requests (x 100)

10 Connections per Peer
12 Connections per Peer
20 Connections per Peer

Fig. 23. MIIS Architecture: Number of
Requests Rejected for Maximum Num-
ber of Open Connections 10, 12 and 20.
(10 servers, 1000 movies, initial replica-
tion degree 2.)

0

5

10

15

20

25

0 20 40 60 80 100

N
um

be
r

of
 R

eq
ue

st
s

R
ej

ec
te

d

Number of Requests (x 100)

5 Connections per Peer
7 Connections per Peer

10 Connections per Peer

Fig. 24. FAMS Architecture: Number of
Requests Rejected for Maximum Num-
ber of Open Connections 5, 7, and 10.
(100 servers, avg. connectivity 10, 1000
movies, replication degree 2.)

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Requests (x 100)

Average Response Time

Fig. 25. SVS Architecture: Average re-
sponse time per request (in millisec-
onds) to start downloading an object,
10000 peers, maximum 200 connections
per server, 100,000 movies/clips.

0

10

20

30

40

50

60

70

0 20 40 60 80 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Requests (x 100)

Average Response Time

Fig. 26. SIMS/MIMS Architecture: Av-
erage response time per request (in mil-
liseconds) to start downloading an ob-
ject, 10 servers, maximum 100 connec-
tions per server, 10,000 peers, 100,000
movies/clips, degree of replication 3.

factors: (1) the time for the user to send the query message to the indexing
server, (2) the time for the server to evaluate the query locally against the
movies in its database, (3) the time for the server to initiate a search request,
if the movie is not locally available (in the MIIS and FAMS architectures),
and (4) the time for the transfer of the movie clip to begin.

Fig. 25 shows the average response time for our baseline architecture, the
SVS architecture. The figure indicates that the response time is very small,
in the range of 30 milliseconds. The SVS architecture has minimal end-to-end
delay because it drops a large number of user requests (as shown in Section
4.4). But if a request is accepted by the Admission Control Manager, the SVS
architecture guarantees very small end-to-end delay.

Fig. 26 depicts that the response time per user request for the MIIS architec-

27

0

500

1000

1500

2000

0 20 40 60 80 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Requests (x 100)

Average Response Time

Fig. 27. MIIS Architecture: Average re-
sponse time per request (in millisec-
onds) to start downloading an ob-
ject, 10 servers, 1000 peers, maxi-
mum 10 connections per server, 1,000
movies/clips, degree of replication 3.

0

50000

100000

150000

200000

250000

300000

350000

0 20 40 60 80 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Requests (x 100)

Average Response Time

Fig. 28. FAMS Architecture: Average
response time per request (in millisec-
onds) to start downloading an object,
100 peers, 1000 movies/clips, maximum
10 connections per peer, degree of repli-
cation 10.

ture. The overall rates are higher compared to the SVS architecture although
they remain relatively short in the order of 52 milliseconds. This value repre-
sents the average response time only for the requests that are accepted by the
Admission Control Manager. In general one can argue that compared with its
SVS counterpart, the SIMS/MIMS architecture offers a better performance as
it can service a larger number of user requests with minimal extra delay.

Fig. 27 shows the average response time for the MIIS architecture. The figure
indicates that the average response time is consistently higher compared to
the rates of SVS and SIMS/MIMS. The reason is that if the server cannot find
the movie locally available, it will send search requests to its server peers and
wait until it receives a hit. It is noteworthy that not only the reliability but
also the performance of the MIIS architecture improves with the number of
user requests over time. As the users request more movies, the server caches
copies of the popular movies (as shown in Section 4.2) instead of searching in
the network and therefore the average response time decreases. To estimate
an upper bound for the average response time of the MIIS architecture, we
also run experiments with a larger network (100 servers, 10,000 peers, 100,000
movies, 50,000 use requests). Our experiments indicated that the response
time does not increase above 2,500 milliseconds.

Fig. 28 depicts the average response times attained in the FAMS architecture.
Clearly, this constitutes the worst performance. There are two reasons: (1)
these servers are actually diverse type machines (which can be less powerful
than the dedicated movie servers and with lower bandwidth connections), and
(2) each server has to initiate either an ISM search each time it needs to
find a movie from its server peers. Consequently, FAMS is unable to offer any
timeliness guarantees.

28

6 Conclusions and Future Work

The timely and reliable streaming of video-on-demand, clips, and audio files
to end-users may yield gains for a wide range of fields including telemedicine,
news delivery, digital libraries, enhanced security of public and private venues,
and distance learning. The emerging peer-to-peer (P2P) distributed comput-
ing protocols in conjunction with ever increasing network capabilities offer
new and exciting opportunities for the aforementioned application areas. In
this paper, we have sought to take advantage of these developments and have
evaluated a number of distributed software architectures whose objective is to
offer the required support for the provision of video service on P2P networks.

The experimental evaluation shows that FAMS has a number of unique ad-
vantages. It is likely to be the most inexpensive option as no particular com-
putational features are required of the participating sites. It also provides a
fault-tolerant environment that is not likely to be affected by the failure of
a peer. Obviously, SVS is on the other side of the spectrum. It is our be-
lief however that schemes similar to MIIS will benefit the area of multimedia
delivery the most as the close collaboration of some dedicated storage peers
helps in the timely and efficient delivery of multimedia objects. It is worth
mentioning that MIIS requires more powerful peers than FAMS, and better
reliability guarantees, in order for the distributed index to work. On the other
hand the advantages, which include a much faster response time, and a bet-
ter utilization of the peers’ resources, are worth having. In our experiments,
all the distributed architectures (SIMS/MIMS, MIIS, and FAMS) have shown
impressive reliability and scalability furnished by only a small degree of repli-
cation.

In the future, we plan to extend our work by pursuing a number of issues.
They include, use of just-in-time pre-staging of multimedia objects for im-
proved adherence to quality of services requirements in P2P architectures;
investigation of virtual peer clustering for the facilitation and better support
of specialized interest requests/groups; examination of low-entropy protocols
for updating meta-data structures/lists; and finally, suggesting load sharing
and replica snooping techniques using more effectively the notion of vicinity
in P2P architectures in order to further maximize overall throughput of object
requests.

References

[1] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving
Data Access in P2P Systems. IEEE Internet Computing, 6(1):58-67,
January/February 2002.

29

[2] S. Adali, K.S. Candan, S.-S. Chen, K. Erol, and V.S. Subrahmanian. Advanced
Video Information Systems. ACM Multimedia Systems Journal, 4(4):172-186,
1996.

[3] L.A. Adamic, R.K. Lukose, A.R. Puniyani, and B.A. Huberman. Search
in Power-Law Networks. Technical report, Xerox Parc Research Center,
http://www.parc.xerox.com/istl/groups/iea, Palo Alto, CA, 2000.

[4] Akamai Home Page. Akamai.Com. http://www.akamai.com.

[5] W.G. Aref, I. Kamel, and S. Ghandeharizadeh. Disk Scheduling in Video
Editing Systems. IEEE Transactions on Knowledge and Data Engineering,
13(6):933-950, 2001.

[6] S. Banerjee, B. Bhattacharjee and C. Kommareddy. Scalable Application
Layer Multicast. Proceedings of ACM SIGCOMM’02, Pittsburgh, PA, August
2002.

[7] S. Berson, S. Ghandeharizadeh, R. R. Muntz, and X. Ju. Staggered Striping in
Multimedia Information Systems. In Proceedings of the 1994 ACM SIGMOD,
Minneapolis, MN, May 24-27, 1994, pages 79-90.

[8] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An Infrastructure for
Building Distributed Services. In Proceedings of the 18th IEEE Int. Conf. on
Distributed Computing Systems, Amsterdam, The Netherlands, May 1998.

[9] S.R. Carter, J.F. Paris, S. Mohan, and D.D.E. Long. A Dynamic Heuristic
Broadcasting Protocol for Video-On-Demand. In Proceedings of the 21st IEEE
Int. Conf. on Distributed Computing Systems, Phoenix, CA, May 2001.

[10] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A.
Singh, SplitStream: High-bandwidth content distribution in a cooperative
environment, IPTPS’03, Berkeley, CA, February, 2003.

[11] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker Making
gnutella-like P2P systems scalable. In Proceedings of ACM SIGCOMM 2003,
ACM Press, 2003, pp. 407 - 418.

[12] M.S. Chen, D.D. Kandlur, and P.S. Yu. Storage and Retrieval Methods to
Support Fully Interactive Playout in a Disk-Array-Based Video Server. ACM
Multimedia Systems Journal, 3(3):126-135, July 1995.

[13] Y. Chu, S. Rao, S. Seshan and H. Zhang. A Case for End System Multicast.
IEEE Journal on Selected Areas in Communications (JSAC), 20(8), 2002.

[14] I. Clarke, O. Sandberg, B. Wiley, T.W. Hong. Freenet: a distributed
anonymous information storage and retrieval system Proceedings of the ICSI
Workshop on Design Issues in Anonymity and Unobservability, 2001, pp. 46-
66.

[15] D. Comer and D. Stevens. Internetworking with TCP/IP:Volume III Client-
Server Programming and Applications. Prentice-Hall, Englewood Cliffs, New
Jersey, BSD Socket Version edition, 1993.

[16] Microsoft Corporation. Hailstorm Software Architecture.
http://www.microsoft.com/net/hailstorm.asp.

30

[17] H. Fahmi, M. Latif, S. Sedigh-Ali, A. Gafoor, P. Liu, and L.H. Hsu. Proxy
Servers for Scalable Interactive Video Support. IEEE Computer, 34(9):54-60,
September 2001.

[18] J. Gao and P. Steenkiste. ”Design and Evaluation of a Distributed Scalable
Content Discovery System.” IEEE J. on Selected Areas in Communications,
Special Issue on Recent Advances in Service Overlay Networks, 22(1):54-66,
2004.

[19] L. Golubchik, R.R. Muntz, C.-F. Chou, and S. Berson. Design of Fault-
Tolerant Large-Scale VOD Servers With Emphasis on High-Performance and
Low-Cost. IEEE Transactions on Parallel and Distributed Systems, 12(4):363-
386, 2001.

[20] Z.J. Haas and S. Tabrizi. On Some Challenges and Design Choices in Ad-Hoc
Communications. In Proceedings of IEEE MILCOM, Bedford, MA, October
1998.

[21] G.B. Horn, P. Knudsgaard, S.B. Lassen, M. Luby, and J.E. Rasmussen. A
Scalable and Reliable Paradigm for Media on Demand. IEEE Computer,
34(9):40-45, September 2001.

[22] J. Hsieh, M. Lin, J.C.L. Liu, D.H-C. Du, and T. Ruwart. Performance of
a Mass Storage System for Video-On-Demand. In Proceedings of the IEEE
INFOCOM Conference, Boston, MA, 1995.

[23] V. Kalogeraki, A. Delis, and D. Gunopulos Peer-to-Peer Architectures for
Scalable, Efficient and Reliable Media Services, In Proceedings of IEEE IPDPS
2003, IEEE Computer, 2003, p. 29b.

[24] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A Local Search
Mechanism for Peer-to-Peer Networks, In Proceedings of ACM CIKM 2002,
ACM Press, 2002, pp. 300 - 307.

[25] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. OceanStore: An Architecture for Global-Scale Persistent Storage.
In Proceedings of ASPLOS, Cambridge, MA, 2000.

[26] R. Lienhart, M. Holliman, Y-K. Chen, I. Kozintsev, and M. Yeung. Improving
Media Services on P2P Networks. IEEE Internet Computing, 6(1):73-77,
January/February 2002.

[27] Q. Lv et al., Search and Replication in Unstructured Peer-to-Peer Networks,
In Proc. of ICS 2002, ACM Press, 2002.

[28] Sun Microsystems. Jxta. http://www.jxta.org.

[29] S. Milliner and A. Delis. Networking Abstractions and Protocols Under
Variable Length Messages. In Proceedings of the 1995 IEEE International
Conference on Network Protocols (ICNP-95), Tokyo, Japan, November 1995.

[30] B. Özden, A. Biliris, R. Rastogi, and A. Silberschatz. A Disk-Based Storage
Architecture for Movie On Demand Servers. Information Systems, 20(6):465-
482, 1995.

31

[31] B. Özden, R. Rastogi, P.J. Shenoy, and A. Silberschatz. Fault-tolerant
Architectures for Continuous Media Servers. In Proceedings of the 1996 ACM
SIGMOD, pages 79-90.

[32] Gnutella Home Page. Gnutella.Com. http://www.gnutella.com.

[33] Napster Home Page. Naspter.Com. http://www.napster.com.

[34] SETI Project Home Page. SETI@home. http://sethiathome.ssl.berkeley.edu.

[35] C. Partridge. Gigabit Networking. Addison-Wesley, 1993.

[36] P.V. Rangan, H.M. Vin, and S. Ramanathan. Designing an On-Demand
Multimedia Service. IEEE Communications Magazine, 1(1):56-64, 1992.

[37] S. Ratnasamy, M. Handley, R. Karp, S. Shenker. Topologically-Aware Overlay
Construction and Server Selection In Proceedings of IEEE INFOCOM 2002,
New York, USA, 2002.

[38] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, S. Shenker A Scalable
Content-Addressable Network In Proceedings of the ACM SIGCOMM 2001
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, 2001, San Diego, CA, USA. Pages 161-172, ACM,
2001

[39] H. Schulzrinne, S. Carter, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. Technical report, Internet Engineering
Task Force, RFC 1889, January 1996.

[40] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol
(RTSP). Technical report, Internet Engineering Task Force, RFC 2326, April
1998.

[41] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In
Proceedings of ACM SIGCOMM Conference, San Diego, CA, August 2001.

[42] D. Tsoumakos and N. Roussopoulos, Adaptive Probabilistic Search for Peer-
to-Peer Networks, In Proceedings of P2P 2003, IEEE Computer Society, Pages
102-110, 2003

[43] C. Vassilakis, M. Paterakis, and P. Triantafillou Video Placement and
Configuration of Distributed Video Systems Based on Cable TV Networks,
ACM/Verlag Multimedia Systems Journal, vol. 8, no. 3, pp. 92-104, March
2000.

[44] M. Vernick, C. Venkatramani, and T. Chiueh. Adventures in Building the
Stony Brook Video Server. In Proceedings of the Forth ACM International
Conference on Multimedia, Boston, MA, November 1996.

[45] A. Victor, J. Stankovic, and S. H. Son. QoS Support for Real-Time Databases.
In IEEE Workshop on QoS Support for Real-Time Internet Applications,
Vancouver, BC, June 1999.

[46] S. Waterhouse, D.M. Doolin, G. Kan, and Y. Faybishenko. Distributed Search
in P2P Networks. IEEE Internet Computing, 6(1):68-72, January/February
2002.

32

[47] D. Wu, Y.T. Hou, W. Zhu, H.-J. Lee, T. Chiang, and Y.-Q. Zhang. On End-
To-End Architecture for Transporting MPEG-4 Video Over Internet. IEEE
Transactions on Cirtcuits and Systems for Video Technology, 10(6):923-941,
September 2000.

[48] D. Xu, M. Hefeeda, S. Hambrush and B. Bhargava. On Peer-to-Peer Media
Streaming. Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS’02), pp. 363-371, Vienna, Austria, July 2002.

[49] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems. In
Proceedings of the 27th International Conference on Very Large Data Bases,
Rome, Italy, Pages 561-570, 2001.

[50] D. Zeinalipour-Yazti, V. Kalogeraki and D. Gunopulos. Exploiting Locality for
Scalable Information Retrieval in Peer-to-Peer Systems Information Systems
Journal, Elsevier Publications, Volume 30, Issue 4, Pages 277-298, 2005.

[51] Z.L. Zhang, Y. Wang, D.H.C. Du, and D. Shu. Video Staging: a Proxy-server-
based Approach to End-to-End Video Delivery over Wide-area Networks.
IEEE/ACM Transactions on Networking, 8(4):419-442, August, 2000.

[52] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz. Tapestry: A Resilient Global-Scale Overlay for Service
Deployment, In IEEE Journal on Selected Areas in Communications, Vol
22, No. 1, January 2004.

33

