
Please do not remove this page

Internet collaboration and service composition
as a loose form of teamwork
Padgham, Lin; Liu, Wei
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Internet-collaboration-and-service-composition-as/9921860765101341/filesAnd
Links?index=0

Padgham, L., & Liu, W. (2007). Internet collaboration and service composition as a loose form of
teamwork. Journal of Network and Computer Applications, 30, 1116–1135.
https://doi.org/10.1016/j.jnca.2006.04.006

Published Version: https://doi.org/10.1016/j.jnca.2006.04.006

Document Version: Accepted Manuscript

Downloaded On 2024/04/30 22:59:04 +1000
Crown Copyright © 2006 Published by Elsevier Ltd. All rights reserved.
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Internet-collaboration-and-service-composition-as/9921860765101341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Internet-collaboration-and-service-composition-as/9921860765101341
http://doi.org/doi:https://doi.org/10.1016/j.jnca.2006.04.006
https://researchrepository.rmit.edu.au


Internet collaboration and service composition as a loose form of teamwork

Lin Padghama ∗, Wei Liub

aSchool of Computer Science and Information Technology,
RMIT University, GPO Box 2476V, Melbourne 3000, VIC, Australia

bSchool of Computer Science and Software Engineering,
The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia

∗Corresponding author. Email Address: linpa@cs.rmit.edu.au

1

E72418
Typewritten Text
Citation: Padgham, L and Liu, W 2007, 'Internet collaboration and service composition as a loose form of teamwork', Journal of Network and Computer Applications, vol. 30, pp. 1116-1135. 

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text

E72418
Typewritten Text



2 Lin Padgham , Wei Liu

This paper describes Web Service composition as a form of team work, where the Web ser-
vices are team members in a loose collaboration. We argue that newer hierarchical team work
models are more appropriate for Web service composition than the traditional models involving
joint beliefs and joint intentions. We describe our system for developing and executing Web ser-

vice compositions as team plans in JACK Teams,TM
1

and discuss the relationships between this
approach and service orchestration languages such as Business Process Execution Language for
Web Services (BPEL4WS). We discuss briefly how the use of AI planning can also be incor-
porated into this model, and identify some of the research issues involved. Incorporating Web
service compositions into a mature Belief Desire Intention (BDI) agent team framework allows
for integration of Web services seamlessly into a powerful application execution paradigm that
supports sophisticated reasoning.

1. Introduction

With the rise of the world wide Web there has been a growing interest in Internet based
services which can flexibly work together to perform more complex tasks than that performed
by any single service alone. The promise of the possibilities of the semantic Web as initiated
by Berners-Lee et. al. in 2001 [1], has created a vision of an enormous resource which is able
to flexibly and robustly inter-operate to support enterprize level business collaborations.

Standards such as Web Services Description Language (WSDL) [2] and Simple Object Ac-
cess Protocol (SOAP) [3] are developed to support uniform service descriptions and structured
message exchange which are fundamental for inter-operability. However, service descriptions
and message exchange alone do not themselves enable the integrated execution of stand alone
services. We need also mechanisms for representing and developing the specification of what
parts the individual services will play in the larger whole, and mechanisms for coordinating
the execution of such a specification. Standards such as Business Process Execution Language
for Web Services (BPEL4WS) [4], Web Service Flow Language (WSFL) [5] and more recently
Web Ontology Language for Services (OWL-S) [6] start to address these issues at both syntactic
and semantic levels.

One way of viewing service composition is as a loose form of collaborative teamwork [7].
Some people might argue that this is not really teamwork, as the members have no awareness
of being part of a team or joint venture. However we would argue that by advertising services,
the agents are in essence indicating a willingness to participate in internet teams. We suggest
that a composite service can be seen as a team plan, which is executed by some collaborating
group. In this paper, we take this approach, and describe Web service composition as a form
of teamwork. We use an existing, powerful, BDI agent team development environment, JACK
TeamsTM [8] as the basis for this work.

We describe a system which allows Web services to be incorporated into a JACK Team, or
alternatively allows a composition of Web services to be the team. We execute the composition
using the existing JACK Teams execution engine. This enables Web services to be integrated
into a powerful agent reasoning system if desired. Possible failure or disappearance of a partic-
ular Web service (i.e. team member) is always an issue in open systems. We describe a failure

1JACK TeamsTM is the trade mark of an agent oriented team work model developed by Agent Oriented Software
Group. A free evaluation package for JACK Intelligent Agents, which includes JACK Teams, is available for
download from www.agent-software.com.au.



Internet collaboration and service composition as a loose form of teamwork 3

recovery algorithm that we have developed within our system to address such problems.
In our system, service compositions are developed interactively, allowing automatic code

generation with minimal developer/user effort. We also describe how team plans and the nec-
essary supporting code could be generated from BPEL4WS specifications. This would allow
incorporation of existing specifications of composite services into a more complex agent based
application.

Generation of Web service compositions using planning techniques is also an active area of
current research (e.g. [9–11]). We explore how this might be integrated into our system, and
report on some preliminary work done in this direction.

In the following sections, we first describe JACK Teams, the hierarchical teamwork frame-
work that we use. Then we discuss the mapping of JACK Teams concepts to Web service
concepts found in WSDL and BPEL4WS. Following this we describe the architecture and im-
plementation of our system, including the failure recovery algorithm that we have developed.
Section 5 describes different methods for developing the team plan or composition plan, includ-
ing pointers to future work. The paper concludes with a brief discussion of the advantages of
the team-based approach in service composition.

2. Agent Team Framework

The view of teamwork as proposed by Tambe and developed in STEAM [12], Teamcore
[13] and most recently Machinetta [14] requires that team members are all operating with the
same joint intentions. Implementations require that each team member has the same set of
team plans, as well as needing to share all relevant beliefs with respect to the plan. Such a
model of teamwork would clearly not apply to the kind of collaboration we may expect in open
systems such as the Internet. In such systems, agents may well collaborate, and can even be seen
to be operating as a team, in that their collaborative behaviors are appropriately coordinated.
However they do not have shared goals or joint intentions, and it would be overly restrictive to
expect them to share the same team goals. Rather they coordinate and collaborate for mutual
benefit, but each has its own goals.

An alternative model of teamwork is developed within JACK TeamsTM which instead of
requiring shared goals and intentions amongst members, reifies the team entity. It is this team
entity that holds the team goal and executes the team plans. The team entity then coordinates
the team members in doing their parts to achieve the team goal. The model is hierarchical, so
team members may themselves be teams.

Unlike the STEAM model, JACK Teams, with some modifications, is quite suitable for the
kind of collaborations that involve the use of a variety of Web services to achieve some more
complex goals than can be achieved alone. In fact, team plans within JACK Teams provide a
very powerful mechanism with reasoning capabilities for composing Web services, and then
executing the composition in a coordinated manner.

In this section we describe first the various constructs required by JACK Teams, and then
explore in detail how this maps to Web service composition in section 3.

2.1. JACK Teams Concepts
Jack Intelligent AgentsTM is an extension of the Java programming language, which provides

agent oriented programming constructs for developing agent applications. It also provides a
goal oriented execution engine which persists in trying all possible ways to achieve a goal,



4 Lin Padgham , Wei Liu

choosing the method most suitable at the current situation. It is based on the Beliefs, Desires,
and Intentions (BDI) model [15]. The BDI agent model is an event-driven execution model
providing both reactive and proactive behavior. In this model, an agent has certain beliefs
about the environment, has goals (desires) to achieve, and has plans (intentions) describing how
to achieve goals. JACK is one of a family of implemented BDI systems which include PRS
[16], JAM [17], dMars [18] and Jadex [19]. JACK Teams is an extension of JACK Intelligent
AgentsTM which provides constructs and support for Team Oriented Programming In JACK
Teams a team is a distinct entity with its own representation. It incorporates the standard BDI
reasoning mechanisms of JACK and other similar systems, with respect to behaviors such as
choice of plans and persistence of goals if a particular plan fails. The team is in fact the core
entity in JACK teams and an individual agent is simply represented as a team with no team
members. We describe here some of the key concepts in the team model implemented by JACK
Teams2.

Team
Teams are characterized at the highest level by the roles they can perform, and the roles

they require their team members to perform. They also contain a set of team plans for doing
tasks related to achieving specific goals, or reacting to specific events. A team has a set of
members which are (or can be) in a long term relationship to the team. In JACK Teams the
team members are specified as belonging to a role container. Team members may be added
and removed dynamically. These members can be assigned to (or requested to participate in)
particular tasks (via JACK’s task teams), according to the role(s) they can perform, and the roles
required by a task as defined in the team plan.

Team Members
Team members can be either teams - sometimes called sub-teams - or individuals. An indi-

vidual is represented in JACK as a team that does not contain any members and does not require
any roles. As team members can themselves be teams, a team can be a hierarchical (or more
complex) structure.

Roles
A role specifies the part that a member plays, or can play, within a team. It is defined in part

by the goals for which that role is able to be responsible (or equivalently the tasks which it can
achieve, or the events which it can respond to). In JACK Teams the beliefs or knowledge of the
agent required for the role are also specified as part of the role. JACK Teams also associates a
role with the events or goals generated by that role.

Team Plans
Team plans are a set of steps specifying how a task is to be achieved by members perform-

ing particular roles. Before a team plan can be executed3 it must be established which team
members, in which roles, will participate in this particular task. JACK Teams provides an es-

2The source of information for the following descriptions is primarily the JACK Teams manual [8], although in
some places the concepts and terminology are based on our own experience and frameworks, which we then map
to what is specified for JACK Teams.
3It is also possible to delay establishing team members until such time as they are needed. However we do not
consider that in this paper.



Internet collaboration and service composition as a loose form of teamwork 5

tablishment method which can be customized if desired. This method assigns team members
that can perform the roles required within the plan. This sub-group is called a task team within
JACK Teams.

Steps in the team plan are assigned to task team members via the roles as used within the
team plan. JACK Teams provides a construct to allow members to perform steps in parallel if
desired.

As with standard JACK plans, additional Java code can be incorporated within the team plan
if necessary. Team plans (like standard JACK plans) are associated with a single goal to be
achieved, event to be reacted to, or message to be responded to.

Goals, Events and Messages
Goals and events to some extent capture respectively the proactive and reactive character of

agents (and teams). Messages capture the communication between agents (or teams which are
not related to each other in the team hierarchy) which also requires some reaction or response.
In JACK Teams (as in JACK) these are all represented by a similar data structure (Event and its
subclasses) which contains arbitrary fields, and can thus be used for passing whatever informa-
tion is needed beyond the particular goal/event/message type.

Beliefs
Beliefs in agent systems generally refer to all information the agent has about both its envi-

ronment and its own state. Joint beliefs, as mentioned earlier are the beliefs held by all members
of a team. Joint beliefs are not particularly important or supported in JACK Teams and its un-
derlying model of teamwork, although they can be realized by belief propagation both up and
down the team hierarchy. JACK, and also JACK Teams provides a specialized data structure
called a beliefset which is represented and can be accessed in similar ways to relations in a rela-
tional database. JACK Teams allows specification of how beliefs are to be propagated between
a team and its members.

2.2. JACK Teams Plan Execution
When a team decides to execute a particular team plan, the first step is to establish which team

members will participate in the team plan. JACK Teams calls this establishing the task team.
This is done by assigning team members from the relevant role containers, to each required
role within the plan. An establishment method can be defined to choose amongst the members
within a role container. Additional members can also be added to the team dynamically, in order
to allow them to be used for the particular task.

Once the relevant team members have been identified for the particular task, the team plan can
start execution. Steps within the plan request members to achieve particular goals. Requests
are essentially messages containing the goal data structure, which has fields that can contain
information relevant to the goal. This can also be used to pass back relevant information once
the goal is achieved. Steps complete by either succeeding, in which case execution proceeds, or
failing, in which case execution terminates, and a fail plan is executed. Failure of any step in a
plan causes the plan to fail, at which point a new plan is searched for to achieve the same goal.

When a team member receives a request to achieve a goal it uses its own reasoning processes
to determine how to achieve that goal - including using its own team members to delegate to.
The team entity is not concerned with how the member carries out its responsibilities.

The control flow available in JACK Team plans includes the standard Java sequential, se-



6 Lin Padgham , Wei Liu

lective and repetitive constructs, plus also a parallel block. The parallel block allows various
nuances. An AND variant requires all branches to succeed, whereas an OR variant requires only
one. There are also variations regarding whether branches are terminated if a sibling branch
succeeds or fails, as well as exception handling details.

3. Mapping JACK Teams to Service Composition

In this section, we will describe how JACK Team plans can use Web services as team mem-
bers, and in fact, how team plans can provide a powerful mechanism for service composition.

In the commercial world, a composite service is either represented as Orchestration or Chore-
ography [20]. Service orchestration specifies how services can interact at the message level to
achieve some higher-level tasks. It describes the business logic and execution order of the
interactions as abstract processes controlled by a single party. The abstract process becomes
executable once bindings are made to the required individual service providers. Service chore-
ography instead is used to track the messaging between multiple parties and assumes no one
single party who “owns” the conversation.

Our interest in service composition is in how to fulfill tasks that cannot be achieved by a
single service provider. Consequently our focus is on orchestration rather than choreography.
When we refer to service composition, it is the orchestration aspect to which we refer. This
implicitly assumes a central controller who executes the composite service according to the
specification. This implicit single party (controller) has no clear identity, it can be the service
consumer or a broker who provides composite services to end users.

3.1. Conceptual Mapping
JACK Team’s explicitly defined Team entity, which owns the team plan, maps well to the

implicit controller of a composite service either as a consumer agent or a broker agent.
The team plan is then equivalent to the specifications found in service flow control languages

such as WSFL [5] and BPEL4WS [20]. A similar facility is also provided by some service
description languages (e.g. OWL-S [6]) in their provision of language constructs to specify
composite services based on atomic services and processes.

In BPEL4WS composite services are described in terms of the actions of partners who take
the delegation and carry out lower level business procedures. Service providers can also dele-
gate tasks to other providers if necessary. These partners are conceptually equivalent to team
members. The multi-level structure available via BPEL4WS (and other similar approaches),
provides for similar structures to team hierarchies in JACK Teams.

The core of a WSDL description used by BPEL4WS is the operation. It describes the input
and output messages of an abstract action. Information about which conversation protocol (e.g.
request-response or notification) to use is implied by the presence and ordering of input and
output. In JACK Teams, rather than an operation specifying the action requested of the Web
service we have the goal that is to be achieved. If we wish to use an available Web service as a
team member to achieve that goal, then we must map the goal to the appropriate WSDL opera-
tion. Goals (in JACK Teams) are represented by a data structure (JACK Event) with arbitrary
attribute fields. Information required to achieve the goal (input parameters) and information
needing to be passed back, resulting from achieving the goal, are carried in attribute fields of
the goal (JACK Event) structure. The implementation then requires mapping of the information
exchange to the expected messaging and conversation protocols in JACK statements.



Internet collaboration and service composition as a loose form of teamwork 7

3.2. Coordination and Control Flow
Typically, a flow control needs to define the message flow from the controller point of view.

This may include, at the individual interaction level, initiating a request response process, wait-
ing for certain matching message or sending a message in response to a received message.
This is largely controlled by the individual service provider’s service interface. In BPEL4WS,
elements <invoke>, <receive>, and <reply> indicate the above communicative behaviors.

At the coordination level, the flow control needs to specify the execution order of the subtasks,
be it sequential, repetitive, selective or parallel. In BPEL4WS, elements <sequence>, <while>,
<switch> and <flow> describe these flow control respectively. Furthermore, the parallel control
needs to determine the fork condition and join condition. A simple join condition in BPEL4WS
is when all branches complete.

Obviously the specific constructs provided differ somewhat, but JACK Teams provides simi-
lar functionality to BPEL4WS. JACK tends to provide somewhat richer constructs, such as the
join condition when executing branches in parallel, which has nuances surrounding the success
or failure of particular branches, and the interpretation and management of this for the parallel
block. For example it is possible to specify a parallel block which terminates with success as
soon as one branch succeeds, then terminating other attempts.

At both the coordination and individual interaction level, the ability to wait for a certain
period to allow synchronous communication is also fairly important. There should also be
timeout conditions to recover from dead branches or processes. These are all supported in
JACK Teams via constructs such as @wait_for(trigger_conditions). The trigger condition
can be used to implement a time out monitoring when a duration has expired, or some action
has been completed.

4. Architecture and Implementation of Team Based Service Composition

Figure 1 illustrates the architecture whereby JACK teams can incorporate Web services as
team members, also allowing JACK Teams to be the mechanism for describing and executing
composite services.

Team Plan

Team memeber

Proxy Agent

Proxy Agent

Proxy Agent

service

WSDL

service

WSDL

service

WSDL

Event

Converter

Team Entity

Figure 1. System Architecture



8 Lin Padgham , Wei Liu

There are two separate stages supported within this system: team plan development, and
team plan execution. During development, support is provided to generate JACK Teams code
which will be suitable for use with the required Web services. This could be done manually
by a programmer, but we have developed the support as part of an effort to make composite
Web services widely available. This support is provided by the Converter module. The con-
verter module also generates code which builds the Proxy Agents which at runtime provide the
interface between JACK Teams and the Web services. These Proxy Agents are declared as
being team members able to take on the appropriate roles (by virtue of being declared within
the relevant role container in JACK Teams). We provide below further details about these two
stages.

4.1. Development of Team Plans and Related Code
Our system does not currently have a module for locating and classifying service providers.

This must currently be done manually, using facilities such as UDDI registries [21] or other
mechanisms. The developer must choose which Web services to incorporate as (potential) team
members. Having made this decision, the Converter module then produces the necessary JACK
Teams code, which includes specification of relevant events, development of a proxy agent,
inclusion of the proxy agent into the team, and appropriate requests to the proxy agent, from the
team plan. The Convertor also produces the code which allows the proxy agent to communicate
with the relevant Web service. If there are a number of Web services which conceptually offer
the same service, then the respective Proxy Agents must be of the same type. This introduces
some additional complexities into the event, which we do not go into here.

Once a service is selected from the service repository, by parsing the WSDL file, several
programming entities are generated, including:

• a Proxy Agent as a representative for each Web service

• a Plan (or Plans) for the Proxy Agent, that can handle the relevant events, and communi-
cate appropriately with the Web service

• the Role type that the Proxy Agent can play

• an Event that holds the input and output data for the service invocation, which is passed
between the containing Team, and the Proxy Agent as a team member.

In JACK Teams a Role type specifies what Events a role performer can handle. It aggregates
related Events into a Role specification class. An Event is responsible for passing information
and triggering handling plans to process the information. So to a large extent, Events are similar
to WSDL operations. The converter parses WSDL files and creates the Event specification
necessary to carry all the information later needed by the Proxy Agent to request the particular
Web service operation that is desired. From the JACK Team point of view, these Events are the
subgoals it will be asking its team members to achieve.

WSDL’s Port Type, as an aggregation of related operations, is comparable to a Role type. Port
type in WSDL is uniquely identified by its name attribute. So in order to automatically generate
the Role type class from WSDL, we use the Port type name as the class name for a Role type.
The operations the Port type describes are then converted to different kinds of Events. The
operation names are used as Event names. In the case of method overloading, where more than



Internet collaboration and service composition as a loose form of teamwork 9

one operation shares the same name, the JACK Teams notion of multiple posting methods is
used in the Event file to allow constructing the same type of Event using different data types.
The input and output messages in an operation specification become the data members carried
by the Event. An automatically generated Event file, can be seen in figure 2.

public event QueryProducts extends BDIGoalEvent{
String port;
Input in;
Output out;
#posted as postingMethod(String port, Input in, Output out){

this.port = port;
this.in = in;
this.out = out;

}
}

Figure 2. From WSDL Operation to JACK Event

Input and Output are classes that are generated according to the <message> element and
the associated <type> element for each input and output element inside an operation. The
<binding> information is also included in the corresponding classes.

A proxy agent is declared for each Web service, and it is declared to be able to fill the Role
type related to that Web service. As a Web service client for the service provider, the proxy
agent should be able to interact with the Web service using supported messaging protocols,
typically including SOAP, HTTP GET, HTTP POST and MIME. In describing generation of
the JACK Teams plan code we use SOAP as the example transport protocol.

The convertor generates plans for the Proxy Agent to handle each event type, which we recall
are mapped to WSDL operations. In the plan body, the event (such as the QueryProducts

event shown above) instance can be accessed to obtain the Input data structure and the port
address, so a SOAP message can be automatically generated and sent to the service provider.
For request/reply operations, a simple @wait_for() JACK construct is used to specify the wait
condition and the time out alarm. When the SOAP message arrives back, it is parsed to create
an Output object which is then stored in the Event, and the plan concludes. At this point the
containing team is able to access the Event, and the newly obtained Output information, which
can then be used, if desired, as Input for the subsequent service invocations.

4.2. Executing Team Plan with Web Services as Role Fillers
Once a Team Plan and supporting code has been built it must be compiled using JACK Teams.

The program may consist of a single Team Plan representing simply a composition of Web ser-
vices, or it may be a more complex application in which Web services are at times used as team
members. The ability to integrate Web services into a larger BDI agent based application pro-
vides a powerful and flexible reasoning mechanism. However we concentrate in this description
on the case of a single team plan representing a composition of Web services.



10 Lin Padgham , Wei Liu

At run-time, once the decision is made to execute the specific team plan, the first decision is
which team members to use for execution. In the simplest case, this is just a matter of choosing
a set of proxy agents, representing particular Web services, which are able to fill the required
roles. (Recall that JACK Teams provides an establishment method whereby code can be written
to guide the choice of which members to fill roles if desired).

Once team members are assigned to roles, JACK Teams begins to execute the plan steps,
which involve requesting proxy agents to achieve particular goals. The goal may include (in
the event data) specific information related to this goal instance. For example, the goal may
be to book a hotel, but the goal instance needs to include at least the information regarding
dates and location. This goal request is passed to the proxy agent, and triggers the relevant
plan for handling the particular goal (type). This plan then generates the specific Web service
request, using the information contained within the event data. If a reply is expected the plan
will wait for the reply, and then store the response into the output data of the event. Once the
plan completes, control returns to the team plan of the containing team, and the output data is
accessed.

In some cases the Web service may be offline, or may not respond as desired, or may not
respond at all. In these cases the proxy agent will not be able to achieve the desired outcome
requested of it as a team member. In this case it ends the execution with a fail. This returns
control to the team plan. The default behavior in this case is that the team plan also fails.
However, we have implemented some failure recovery methods to improve robustness, based
on the assumption that in an open environment, there will often be alternative providers of
services which can be used if needed, to prevent failure of the overall goal.

4.3. Failure Recovery from Within a Team Plan
We do not want the whole team plan to fail, simply because one member was unable to

fulfill their assigned task(s), if there are other agents/services available to take over the failed
agent’s role. A major focus in Tambe’s general model of teamwork [22] is improving the overall
robustness of executing joint plans and a large portion of his teamwork model is concerned
with the behaviors of failed team members. He has also done additional work in exploring the
possibilities of monitoring the progress of team members in order to detect failure [23].

BDI systems provide powerful failure recovery mechanisms for individual agents, but these
are not always the most appropriate for teams. When there are multiple team members available
for filling a role in a given plan, then it is likely that one would want to try replacing a failed team
member, before trying a whole new plan which would potentially waste a good deal of what
had already been accomplished, and possibly assign a completely new task team. However,
replacing a team member at the point of failure is not trivial, as it is necessary to take account
of possible dependencies in earlier steps of the team plan. This may require some tasks to be
redone in collaboration with the replacing member.

For example, imagine a situation where a user wishes to purchase a Hi-Fi unit for his office,
and a CD, but also wants to check that the Hi-Fi unit chosen is one for which there is a suitable
power supply amongst those available at the workplace. Assume there are agents selling Hi-Fi
units, an information agent providing information about available power supply units and agents
that sell CDs. It is necessary to select a Hi-Fi unit in order to check availability of the power
supply, as this is different for different units. However the user does not want to commit to
purchase until it is confirmed that an appropriate power supply is available. Figure 3 illustrates



Internet collaboration and service composition as a loose form of teamwork 11

Step Role Goal Input Output

1 HiFi Seller: Provide quote specification HiFi model, price,
quote num.

2 CD Seller: Obtain CD title, credit card num. CD tracking num.
3 Power Supply: Book power supply HiFi model booking num.
4 HiFi Seller: Order HiFi HiFi model, quote num., HiFi tracking num.

credit card

Figure 3. Hi-Fi Ordering Example

the interaction.
Assume that the first three steps execute successfully, but the fourth step fails as the agent

has now sold out the Hi-Fi. We cannot simply replace the failed agent at this point in the plan.
Rather we must go back to redo the first step. The third step will also need to be re-done, as it
is dependent on the output of the first step. The second step on the other hand is independent
and does not need to be repeated. Our system takes care of these dependencies, backtracking to
redo only necessary steps.

The steps within the failure recovery algorithm are as follows:

1. Identify the failed step in the team plan,

2. Find an alternative team member (i.e. another proxy agent representing an alternative
Web service),

3. Mark all the interfaces associated with the failed team member as not executed,

4. Identify any other steps which depend on the output of failed steps and mark as not exe-
cuted (perform this recursively),

5. Re-execute the plan, skipping steps that are marked as executed.

To implement the failure recovery strategy, we implemented an additional data structure
which keeps track of the current execution state of a team plan. The data structure holds
information required to perform the failure recovery, which includes information such as an
execution-state flag (true if it was successfully executed), dependency with other steps in the
plan, and assignment of a team member to a role. Dependencies between the steps of the team
plan are analyzed at compile time.

This approach is particularly suitable for open environments where it is quite likely that on
occasions a service previously used or identified may be unavailable. Alternative services are
typically independent of each other since they are deployed by different organizations, and
consequently failure of one is likely to be independent from the failure of others. Although
the approach was designed with open environments in mind, it can also be applied to any team
environment. It ensures that once a team plan is chosen for execution, it will not be given up
until all replacement options for failed agents have been tried. This provides an additional level



12 Lin Padgham , Wei Liu

of commitment and robustness, beyond the BDI agent commitment to trying different plans to
achieve a goal.

5. Developing the Team Plan(s)

One way to develop a JACK Teams plan representing a service composition, is by program-
ming it directly in JACK. However this also requires quite a bit of additional programming
to develop the proxy agents. The approach we have taken is to develop an interactive inter-
face which assists the user in developing the team plan using appropriate Web services. Other
methods of producing the team plan and associated code include translation from alternative
composition representations, or a planner which builds the composition by translating WSDL
or OWL descriptions into planning operators and then converting the planner output to JACK
Teams structures. We describe first the interactive approach we have implemented, and then
describe how the other approaches would work, including some preliminary work that we have
done there.

5.1. Development Using an Interactive Tool
In order for the Semantic Web to enjoy a similar level of acceptance as the current WWW, it

seems that it will be necessary to assist users to access and compose Web services, in the same
way as Web browsers and Web page development tools currently assist users in accessing and
developing Web pages. We developed a prototype system known as Agent Service Komposition
Interface Tool (ASKIT) 4, to explore this vision [7].

Our prototype system was originally built for, and deployed in, the Agentcities network5.
Agentcities is an international initiative, which aims at facilitating the exploration of a world-
wide open network of platforms hosting a variety of inter-operable agent services The com-
munication mechanisms were slightly different and the Agent Communication Language was
significantly more sophisticated than SOAP, but the system is readily modifiable to use with
Web Services described by WSDL descriptions.

ASKIT forms the basis of the architecture of our system as described in section 4. It consists
of four main components:

• Web interface is responsible for collecting data from end users.

• Service discovery and registry module keeps service provider details, service types and
service APIs. It is also responsible for populating the Web interface and displays available
service APIs in an intuitive manner to the end user.

• Team plan generation module is responsible for generating abstract composite service
specifications from the Web interface data, generating abstract team plans, backtracking
upon plan failures, and generating proxy agents for interacting with service providers.

• Team plan execution module is responsible for executing the team plan, interacting with
the required Web services. The team plan execution module is essentially the system
which has been described in section 4.

4The prototype of ASKIT is available at http://agentcities.cs.rmit.edu.au:7198/agentcities/login.jsp.
5Agentcities (http://www.agentcities.org) grew out of the work of the Foundation for Intelligent Physical Agents
(FIPA - http://www.fipa.org), which is a standards body focussing on standards and infrastructure for rational
interaction and cooperation among heterogenous agents.



Internet collaboration and service composition as a loose form of teamwork 13

All the Web services are organized and displayed to the user in terms of service types, with
associated interfaces. Each interface has a list of expected input parameters and a list of ex-
pected output value types. For example, a bank service type has interfaces to open an account,
it takes your name, address and passport number as input values, and it returns your account
number as an output value of the interface

Multiple instances of the same type of service can be available on the network simultaneously,
but the user need only specify the abstract service desired. This allows the system to bind at
runtime to an appropriate service, depending on the configuration of the environment. This is
important given the dynamic and evolving nature of the Web environment, where one cannot
rely on particular services being available at any given time.

The interface also allows a user to specify the control sequence of a composite service by
combining the existing services sequentially, or in parallel, or a combination of both, using
simple menu selections. The team plan generation module uses the information generated at
the user interface to build JACK team plans, which at the request of the user can be compiled
and run, or saved for later use.

The service discovery and registry module is an area where significant work still remains
to be done. Currently, the system only interacts with a known set of registries, i.e. directory
facilitators for service discovery. Ideally this module would have sophisticated abilities to lo-
cate Web services, using UDDI directories and other repositories, and by trawling the WWW,
locating and categorizing services found. Nevertheless, the limited nature of this module still
allows the demonstration of interactive service composition.

The team at FOKUS6 in the SATINE project7 have also recently developed an interactive tool
for specifying Web services using BPEL4WS and OWL-S [24].

5.2. Translation from Special Purpose Web Service Languages
A number of languages are developed for describing Web service composition, including

Microsoft’s XLANG, IBM’s WSFL, or the later BPEL4WS, from IBM, Microsoft and BEA
[4,20]. OWL-S process descriptions [6] are also in this category.

We will take one of these, BPEL4WS, and indicate how it can be transformed into a JACK
Team plan and the necessary supporting code. In section 3.1, we looked briefly at the language
constructs for BPEL4WS at the conceptual level. In this section, we will discuss in more detail
the translation from a BPEL4WS process specification to a JACK plan.

If we say a WSDL file describes what services and possible collaborations between the ser-
vices are available, a BPEL4WS file describes how the services and partnerships defined in one
or more WSDL files can be scheduled and organized into some executable process that provides
an integrated service. BPEL4WS assumes the service description files in WSDL define some
<partnerLinkType>, which indicates peer interactions between partners or business collabo-
rators. A partner link type defines one or more types of roles, and each role corresponds exactly
to one port type in WSDL. For example see figure 4.

A partnerLinkType in WSDL specifies the kind of collaborations that are possible, and can
be used in the BPEL4WS file for partnership verification. A composite service as a BPEL4WS
business process first describes the instance partner links from the central controller’s perspec-
tive. It specifies the capabilities of each partner and also the controller as partnerRole and

6The Fraunhoffer Institute for Open Communication Systems
7http://www.srdc.metu.edu.tr/Webpage/projects/satine/



14 Lin Padgham , Wei Liu

<partnerLinkType name="BuyerSellerLink"
xmlns="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

<role name="Buyer">
<portType name="buy:BuyerPortType"/>

</role>
<role name="Seller">

<portType name="sell:SellerPortType"/>
</role>

</partnerLinkType>

Figure 4. Example of a partnerLinkType declaration in WSDL

myRole respectively. It then specifies how the collaboration process can be carried out step by
step.

Using the XML Schema for BPEL4WS, we can generate a document handler interface to
define the skeleton of a handling method for each element in BPEL4WS. The implementation of
this interface can be used in a BPEL4WS document parser (which can also be generated based
on the Schema), to define the exact behavior when an element is encountered when parsing a
BPEL4WS process description.

A JACK Team Entity, a BDIGoalEvent and a team plan skeleton can be automatically gen-
erated. The team, team goal and team plan can all take on the business process name as their
corresponding file name with appropriate extensions.

The data items carried through a BPEL4WS process are declared according to their WSDL
message types. Once a <variables> tag is encountered, the
handleVariablesmethod in the document handler can parse the enclosed tags and the message
tags in WSDL to create a class for each type of message. An instance variable of each message
type can then be created in the team goal event file so that the event holds a list of data members
of the specified message types.

A second block of parsing would be needed for the <partnerlink> tag. The
handlePartnerlink method in the handler can look for the partner role and generate JACK
team members. The role definition in the WSDL file contains port type then operations. As
discussed previously (section 3.1), WSDL operations map to JACK events, and the plans that
handle those events. Consequently a JACK Team member must be created with declarations re-
garding handling of the roles associated with the events corresponding to the operations. All the
JACK Role types generated from the partnerRole specification must be declared in the Team
entity using role requirement declarations(#requires role). BPEL4WS myRole is performed
by the Team entity itself and instead of a role declaration requires a declaration that it handles
the relevant event (#handles>.

Once this second block of parsing activity is completed, all necessary structures have been
declared and mapped as shown in figure 5. What remains is to map the process steps.

The process steps in BPEL4WS consist of three basic communicative acts
<receive>, <reply> and <invoke>. The control flow organizes the interaction into sequen-



Internet collaboration and service composition as a loose form of teamwork 15

Partner Links
Partner Link

Message Event

BPEL

myRole

Team Entity

BPEL partnerRole

Team Member

BPEL

Port Type

Required Roles

BPEL Port Type

Performed Roles

BPEL

Operation

Event & Plans

BPEL Operation

Event & Plans

BPEL

…Operation

Event & Plans

BPEL

BEPL4WS
Document

Parser

Document 
Handler
JACK

Implementation

Document
Handler
Interface

Variables

Process Steps

Variable

Message Event

BPEL

Communitive Acts

@team_achieve, @subtask

BPEL

Control flow

@parallel, @wait_for

BPEL

WSDL
Document

partner and operation type verification
r
o
l
e

c
h
e
c
k
i
n
g

Figure 5. Creating JACK Teams using BPEL4WS

tial, parallel, repetitive, selection and triggered selection using <sequence>, <flow>, <while>,
<switch> and <pick>. The data flow is simply indicated by <assign> element for copying
data from one variable to another. The document handler can translate each of these elements
into JACK Teams syntax to build the team plan body.

<receive partnerLink="purchasing"
portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="PO">

</receive>

Figure 6. Example showing possible attributes of a receive communication in BPEL4WS

The three communicative acts use attribute/value pairs to indicate which partner performs
which action using what variables as shown in figure 6. In JACK Teams, each of the three
communicative acts is implemented either as a subtask of the team entity or a subtask delegated
to a team member. As the role performer in the communication act specification is not explicit,
some extra calculation is necessary. The portType specification can be used to find the role

that encapsulates it in the WSDL file. In the BPEL4WS file, the partnerLink name and the
role should uniquely identify who is performing the role, myRole or a partnerRole. @subtask



16 Lin Padgham , Wei Liu

is used for the task to be performed by myRole, while @team_achieve() is used for the task for
partnerRole.

Sequencing, looping and selection in JACK teams use standard Java. Parallelism in JACK
team plans is implemented using @parallel() which allows specification of a block of state-
ments to be done in parallel. The <pick> construct in BPEL4WS allows you to block and wait
for a suitable message to arrive or for a time-out alarm to go off. When one of these triggers
occurs, the associated activity is performed and the pick completes. JACK’s @wait_for() can
be used together with it’s time cursors and action cursors to implement this.

One of the main motivations for translating BPEL4WS (or similar composition descriptions)
specifications into JACK Teams would be in order to integrate the composite service into a
larger application supporting agent reasoning.

5.3. Service Composition Using a Planner
One automated way to generate collaborative team plans, is by using AI planning techniques.

Examples of such systems are SWORD [25] which takes a rule-base approach, McIlraith et.
al. [9] which uses Situation Calculus for planning (Golog) and Wu et. al. [11] which uses the
hierarchical task-reduction planner SHOP2 as their service composition generator. Some recent
work has even used Linear Logic [26] for this purpose.

We have begun to do some work using a combination of WSDL descriptions and the SHOP2
Hierarchical Task Network (HTN) planner. HTN planning is a planning technique relying upon
a predefined set of task reduction schemata to reduce high-level abstract tasks into a suitable
ordering of primitive subtasks. Figure 7 shows an example task reduction schemata for HTN
planning.

Plan Holiday

Precons:

have(budget)

have(date)

have(destination)

Effects:

have(accomdation)

have(attractions)

have(events)

have(directionmap)

Find Accom

Get Attractions

Get Events

Get Direction 
Map

Precons:

have(date)

have(destination)

Effects:

have(location)

have(accomodation)

Precons:

have(budget)

Effects:

have(directionmap)

Precons:

have(location)

Effects:

have(attractions)

Precons:

have(location)

Effects:

have(events)

Figure 7. An Example Task Reduction Schemata



Internet collaboration and service composition as a loose form of teamwork 17

Like other traditional planning techniques, HTN planning implemented in SHOP2 considers
actions as a state altering operators. Each operator is a four tuple, including a head defining
the signature of the operator, the preconditions, the add list and the delete list in terms of world
state. The description of a planning domain in SHOP2 therefore includes a set of operators,
a set of literals that denote the state of the world, and also the task reduction schemata (i.e.
methods) indicating how complex tasks can be reduced into primitive operators that can be
directly executed.

Currently we have implemented a system which transforms WSDL descriptions into SHOP2
operators which can then be used to find a plan (to achieve some end state) which uses a number
of services. Once the plan is found it is executed by invoking the relevant Web services. The
translation from WSDL to SHOP2 is currently done manually.

The atomic processes in WSDL are described as <operations>, with input and output. When
parsing a WSDL description for conversion to SHOP2, each operation is created as an operator
in SHOP2, with WSDL operation input as parameters or preconditions and the output as a
collection of effects. Because there is no process description in WSDL, there will be no SHOP
methods generated. Therefore the planning is done at the primitive operator level. A set of
WSDL files can be processed into a list of operators which preserve the port reference of WSDL
operations by naming the operators as a concatenation of the port address and the operation
name. The operator name can then be used later to identify the service provider and to resolve
the issue of multiple service providers using the same operation name for different actions.

We do not currently map the generated plan into JACK Teams, but in principle, it can be
used with the WSDL files to produce the necessary code, with each plan step mapping to a
@team_achieve() statement.

Sirin et. al [10] have published work providing algorithms for converting OWL-S process
descriptions into SHOP2 operators and methods. An atomic process in OWL-S is modeled as a
SHOP2 operator, whereas simple processes and complex processes are translated into a SHOP2
method or collection of methods. This allows for better use of task reduction abilities within
SHOP2 than the mapping directly from WSDL which we have been doing.

One difficulty in mapping between service descriptions and planner operations, is the fact
that pre-conditions and post-conditions so crucial to planning do not really have a straightfor-
ward mapping in Web services. Also, the information typically provided as the output of the
Web service does not have an explicit match in planning, although we can treat the output as
knowledge effects. Sirin et. al [10] actually suggest that because information services do not
alter the world state, they should not appear as a step in the final plan. However, a large amount
of currently available services on the Web are information services, and we consider that a
planning approach to service composition must take account of these, and of the information
collection tasks necessary for successful overall task completion. Also, AI planning does not
concern itself with the identity of those executing operations.

Although there are a number of problems to be resolved in order to successfully use planning
as a mechanism for generating service compositions, it is an interesting area and one in which
significant work is being done.



18 Lin Padgham , Wei Liu

6. Discussion and Conclusion

In this paper we have presented a view of service composition as a loose form of teamwork.
In particular we have shown how the JACK Teams development platform can incorporate Web
services as team members. We have also shown how JACK Teams can be used as an infras-
tructure for supporting service composition. We have described the support we can provide to
the developer for incorporating Web services into JACK Teams. We have also described the
architecture of the system that, together with JACK Teams, provides the execution engine for
the composite services developed. Finally we have described the failure recovery mechanism
which we have developed which enables failing team members to be replaced, within a team
plan, while ensuring that dependency constraints between members are maintained.

One advantage of our approach is that JACK Teams offers the full power of a programming
language (Java plus JACK team constructs) for constructing service compositions. This means
that additional computation, specific to a certain composition plan can easily be incorporated.
Our system enables execution of service compositions in a Web services environment as JACK
Team plans.

A major advantage of this approach is that a composite Web service is owned by a reasoning
entity (the agent owning the team plan) and it is therefore possible to include a range of options
beyond simply coordinating requests from a number of services. The fact that JACK Teams is a
BDI system, means that service compositions can be integrated into a structure of multiple al-
ternative plans for achieving a goal. If one method fails, the execution engine will automatically
pursue alternatives.

A further advantage of using JACK Teams is that it has built in the notion of a team that
endures beyond the lifetime of a particular collaborative task. This team can change dynami-
cally during execution. Consequently it can readily be used for supporting a form of coalition
formation or alliance building based on interaction experiences. Rather than initially having
all available Web services be team members, a preferred set can be declared as team members,
while others can be declared as available for incorporation if needed. If a particular Web ser-
vice was successfully used (by incorporating it into the team) it would then remain a member
of the team, and thus be more likely to be used in future. Similarly non-performing Web ser-
vices could be dynamically discarded from the team. This provides a mechanism for evolving
business coalitions or other sets of preferred providers.

There are some aspects of the JACK Teams platform which cannot be made available to Web
services. For example, the belief propagation which allows efficient management of sharing
beliefs between team members and the team to which they belong, cannot be used with members
which are Web services. Nevertheless, JACK Teams offers a sophisticated level of support for
the service composition task.

Currently we do not produce WSDL descriptions of composite services to allow them to also
be advertised in their own right as Web services. This is clearly something that can be done,
but is not something we have developed any automated support for at this stage. The area of
service discovery, and incorporation of this into the system, both at design time and runtime is
also an area needing further work. Our conclusions so far are that this is a promising approach
to developing robust and flexible composite services. The concept of teamwork can include the
kind of collaboration found between Web services, as long as the teamwork model used is not
reliant on concepts such as joint beliefs, shared goals and joint intentions.



Internet collaboration and service composition as a loose form of teamwork 19

Acknowledgements

We would like to acknowledge the support of the Australian Research Council through grant
#LP0218928, the Australian Department of Education, Science and Technology, through IAP
grant #CG040014 which supports us to collaborate with EU project SATINE, and the Uni-
versity of Western Australia which provided a university research grant to the second author.
We also acknowledge the ongoing support and collaboration with the Agent Oriented Software
Group. Kenichi Yoshimura contributed significantly to aspects of this work, especially in devel-
opment of the software infrastructure. We also thank many colleagues and students who have
contributed to discussions on this work, and to testing the system.

REFERENCES

1. T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American.
2. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web services description lan-

guage (wsdl) 1.1 language specification, World Wide Web Consortium (W3C) Note (March
2001).

3. M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, Simple object access
protocol (soap) version 1.2 specification, W3C Recommendation (June 2003).

4. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana, Business process execution language for
web services - language specification, IBM Developerwork Language Specification (May
2003).

5. F. Leymann, Web services flow language (wsfl) specification version 1.0, IBM Software
Group (May 2001).

6. A. Barstow, J. Hendler, M. Skall, J. Pollock, D. Martin, V. Marcatte, D. L. McGuinness,
H. Yoshida, D. D. Roure, Owl web ontology language for services (owl-s), W3C Submis-
sions (November 2004).

7. K. Yoshimura, L. Padgham, W. Liu, An infrastructure for agent collaboration in open en-
vironments, in: T. Gedeon, L. Fung (Eds.), AI 2003: Advances in Artificial Intelligence,
Springer Verlag LNAI 2903, Perth, Australia, 2003, pp. 612–623.

8. Agent-Oriented Software Group, JACK Intelligent Agent Teams Manual, release 4.1 Edi-
tion, address: P.O. Box 639, Carlton South, Victoria, 3053, AUSTRALIA (May 2004).

9. S. McIlraith, T. C. Son, Adapting golog for composition of semantic web services, in:
The Processings of the Eight International Conference on Knowledge Representation and
Reasoning (KR2002), Toulouse, France, 2002, pp. 482–496.

10. E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, Htn planning for web service composition
using shop2, Journal of Web Semantics 1 (4).

11. D. Wu, E. Sirin, J. Hendler, D. Nau, B. Parsia, Automatic web services composition using
shop2, in: Workshop on Planning for Web Services, Trento, Italy, 2003.

12. D. V. Pynadath, M. Tambe, Automated teamwork among heterogeneous software agents
and humans, Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 7 (2003)
71–100.

13. D. V. Pynadath, M. Tambe, The communicative multiagent team decision problem: Ana-
lyzing teamwork theories and models, Journal of Artificial Intelligence Research 16 (2002)
389–423.



20 Lin Padgham , Wei Liu

14. P. Scerri, D. V. Pynadath, N. Schurr, A. Farinelli, S. Gandhe, M. Tambe, Team oriented
programming and proxy agents: The next generation, in: Proceedings of 1st international
workshop on Programming Multiagent Systems, Springer LNAI 3067, 2004.

15. M. E. Bratman, Intentions, Plans, and Practical Reason, Harvard University Press, Cam-
bridge, MA, 1987.

16. M. P. Georgeff, A. L. Lansky, Procedural knowledge, Proceedings of the IEEE Special Issue
on Knowledge Representation 74 (1986) 1383–1398.

17. M. J. Huber, JAM: a BDI-theoretic mobile agent architecture, in: Proceedings of the Third
International Conference on Autonomous Agents (Agents’99), Seattle, USA, 1999, pp.
236–243.

18. M. d’Inverno, D. Kinny, M. Luck, M. Wooldridge, A formal specification of dMARS, in:
M. P. Singh, A. S. Rao, M. Wooldridge (Eds.), Intelligent Agents IV: Proceedings of the
Fourth International Workshop on Agent Theories, Architectures, and Languages, Springer-
Verlag LNAI 1365, 1998, pp. 155–176.

19. L. Braubach, A. Pokahr, W. Lamersdorf, Jadex: A short overview, in: Proceedings of
Net.ObjectDays: AgentExpo, 2004, pp. 195–207.

20. C. Peltz, Web services orchestration - a review of emerging technologies, tools and stan-
dards, Tech. rep., Hewlett Packard, Co (Janurary 2003).

21. O. for the Advancement of Structured Information Standards, The uddi white paper - intro-
duction to uddi: Important features and functional concepts.

22. M. Tambe, W. Zhang, Towards flexible teamwork in persistent teams: extended report, Jour-
nal of Autonomous Agents and Multi-agent Systems, special issue on “Best of (ICMAS)
98”.

23. G. A. Kaminka, M. Tambe, Robust agent teams via socially attentive monitoring, Journal
of Artificial Intelligence Research (JAIR).

24. M. Flugge, D. Tourtchaninova, Ontology-derived activity components for composing travel
web services, in: The International Workshop on Semantic Web Technologies in Electronic
Business (SWEB2004), 2004.

25. S. R. Ponnekanti, A. Fox, Sword: A developer toolkit for web service composition, in:
Eleventh World Wide Web Conference, Honolulu, HI, USA, 2002.

26. J. Rao, P. Kungas, M. Matskin, Application of linear logic to web service composition, in:
First International Conference on Web Services, Las Vegas, USA, 2003, pp. 3–10.




