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We propose and design a peer-to-peer system, SeCond, addressing the distribution of large sized

content to a large number of end systems in an efficient manner. In contrast to prior work, it employs a

self-organizing epidemic dissemination scheme for state propagation of available blocks and initiation

of block transmissions. In order to exploit heterogeneity of peers, enhance the utilization of system

resources and for the ease of deployment, scalability, and adaptivity to dynamic peer arrivals/

departures, we propose mechanisms for adjusting protocol parameters dynamically according to the

bandwidth usages. We describe design and analysis details of our protocol SeCond. Comprehensive

performance evaluations and comparison with the BitTorrent system model have been accomplished for

a wide range of scenarios. Performance results include scalability analysis for different arrival/departure

patterns, flash-crowd scenario, overhead analysis, and fairness ratio. The major metrics we study

include the average file download time, load on the primary seed, uplink/downlink utilization, and

communication overhead. We show that SeCond is a scalable and adaptive protocol which takes the

heterogeneity of the peers into account. The protocol is as fair as BitTorrent although it has no explicit

strategy addressing free-riding. We also illustrate the applicability of an analytical fluid model to the

behavior of SeCond.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Peer-to-peer (P2P) cooperative systems are becoming extre-
mely popular as they find diverse applications. One major
application area is the content distribution over large-scale
networks. However, distribution of popular large content, such
as software packages and popular movie files, may be very
obstructive due to the bottleneck that may happen at the content
source. As soon as a popular file is released, a flash-crowd scenario
is expected in which many users strive to achieve a copy of the file
suddenly. It is well known that traditional client–server based
solutions are not appropriate in such a flash-crowd scenario. Even
if it is assumed that the file server can handle large number of
requests simultaneously, the time period required for a peer to
obtain a full copy of the file increases linearly with respect to the
system size. On the other hand, several P2P file sharing systems
create a platform where users find many files to transfer, but
generally they do not intend to disseminate a popular file or
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alleviate the load on the original source. Main goal of this class of
P2P applications is locating sources for the desired files, not
increasing number of the copies of the file as fast as possible.
Hence, a well designed protocol addressing content distribution
should have the following properties:
�
 Scalability: As the popularity of the released content increases,
the number of users trying to achieve the file simultaneously
also increases. Hence, a well designed content distribution
protocol should be able to handle large set of users at the same
time.

�
 Adaptive to dynamic arrivals and departures: During distribution

of the content, for most of the cases users’ arrival rate and
arrival times may not be anticipated before. Similarly, a user
may leave the system without notice. An efficient protocol
should be able to operate under dynamic conditions.

�
 Easy to deploy: Although some of the protocols seem to operate

well in theory, it is hard to deploy them in real life. That might
be due to the requirement of router support or difficulties in
the implementation of protocols.

�
 Heterogeneity: Among millions of geographically distri-

buted users, download and upload bandwidths, hardware
properties (such as CPU speed) differ from one user to
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another. Similarly, different network conditions may be
observed at different locations. In order to operate efficiently,
the platform for content distribution has to take these
differences into account.

In this study, a new cooperative protocol SeCond, a System for
Epidemic P2P Content Distribution, is proposed for P2P distributed
systems. As the novel features for content distribution, it consists
of an efficient state propagation mechanism inspired by the
epidemic methods, and an adaptive mechanism to utilize system
resources of heterogeneous peers. SeCond’s target is to distribute
a large content to many users simultaneously in an efficient and
effective way. We show that it distributes the load among all peers
in the system. Cooperation among system participants is based on
a P2P content trading paradigm (Cohen, 2003; Sherwood et al.,
2004). That is, while peers are downloading blocks of the file, they
also act as a source for the blocks they have downloaded.
However, in contrast to prior work, informing other peers about
available blocks is realized via epidemic dissemination. Moreover,
views of the peers are continuously updated in order to increase
utilization of the system resources. The epidemic approach is
beneficial when managing dynamic peer arrivals and departures,
is easy to implement, and inexpensive to run. In case of dynamic
user arrivals and departures, it does not require an extra effort
for reconfiguration. Most importantly, the approach is inhe-
rently scalable. A preliminary analysis of SeCond is given in
Alagoz et al. (2007).

Using the discrete event simulation models, comprehensive
performance evaluations of SeCond and its comparison with the
BitTorrent system have been accomplished for a wide range of
scenarios. Performance analysis results include the scalability
analysis for different arrival/departure patterns, flash crowd
scenario, overhead analysis and fairness ratio. The major metrics
we study include the average file download time, load on the
primary seed, uplink/downlink utilization, and the fairness ratio.
SeCond peers utilize the system resources efficiently, achieve
faster download times for most of the scenarios, and the protocol
is as fair as BitTorrent although it has no explicit strategy
addressing free-riding. We show that SeCond is a scalable and
adaptive protocol which takes the heterogeneity of the peers into
account. We also illustrate the applicability of an analytical fluid
model to the behavior of the protocol.

The paper is organized as follows. Related work and compar-
ison with our study are described in Section 2. Details of the
SeCond protocol is explained Section 3. Simulation model descrip-
tion and extensive performance results are given in Sections 4 and
5, respectively. Section 6 discusses the analytical framework
applicable to the behavior of SeCond. Finally, Section 7 includes
concluding remarks and states the future work.
Infrastructure-based
Solutions 

Content Distribution 
Solutions 

Multicast-Based 
Schemes

Fig. 1. Classification of conten
2. Related work

The general problem of getting popular content from heavily
loaded servers is well studied. Some of the studies addressing
content distribution require infrastructure support, which is
usually an expensive supply. An infrastructure-based solution
(Akamai) exploits mirroring or replication of the server. Along
the same ideas, Squid stores the requested Internet objects on a
system closer to the client sites in order to reduce the load on the
server as well as the client return time. Other approaches can be
classified under the title of cooperative content distribution

solutions, which include multicast, erasure codes and mesh

cooperative architectures as depicted in Fig. 1. In cooperative
content distribution, every node in the system may be involved in
the distribution. For instance, in multicast solutions, nodes other
than the source are also involved in the relay of the content
throughout the network as well as in supporting message loss
recovery (Birman et al., 1999). On the other hand, erasure codes
have been used actively to transfer bulk data (Byers et al., 2002,
1998; Kostic et al., 2003) where collaboration and reconciliation
are required among the nodes. Mesh cooperative solutions are P2P
protocols that create a mesh and aim to replicate the content
rapidly. Fast replication leads to an increase in the number of
seeds and hence improves performance.

Our study belongs to the class of mesh cooperative solutions.
P2P systems create a platform where people find many files to
transfer, but generally they do not intend to disseminate a popular
file. Popular file sharing applications (KaZaA; Gnutella; E-donkey)
are good examples of this kind of systems where peers are
organized together so that they can exchange different files.
However, the main goal of these applications is locating sources
for the desired files. Two important examples of P2P protocols
whose main goal is organizing the peers sharing and requesting
the same file into an overlay network are BitTorrent (Cohen, 2003)
and Slurpie (Sherwood et al., 2004). They let the end systems
decide the source for the data they strive to achieve, locally. This
locality increases the utilization of the system resources and
enables parallel downloading (Rodriguez and Biersack, 2002).

BitTorrent is a popular P2P file distribution protocol deployed
on the Internet for several years. The idea behind BitTorrent is
organizing the peers in such a way that the load of the seed is
distributed to the entire system. We describe the principles of
BitTorrent model in Section 4.1. In particular, it deploys a rate
based tit-for-tat mechanism to avoid free riding (Adar and
Huberman, 2000). However, as stated in Bharambe et al. (2006),
that policy is not effective in preventing unfairness especially for
heterogeneous systems. A fundamental drawback of BitTorrent is
the waste of bandwidth and the possibility of causing network
congestion. Since the tracker returns a list of randomly selected
Cooperative 
Solutions

Mesh Cooperative 
Architectures

Erasure Codes 

t distribution solutions.



ARTICLE IN PRESS

O. Ozkasap et al. / Journal of Network and Computer Applications 32 (2009) 666–683668
peers among the currently registered ones to a new peer, it is
likely that some of these peers are physically far away from the
new peer. Thus, transmitting the same content multiple times
through wide area links would lead to redundancy in data traffic,
and as a result waste of bandwidth and possible congestion. In
this context, a recent study proposes an approach named biased
neighbor selection to enhance BitTorrent traffic locality (Bindal
et al., 2006). In addition, Guo et al. (2007) focuses on the
limitations of poor service availability, fluctuation in download
performance and unfair service to peers. Another problem with
BitTorrent-like systems is that the control messages for the
propagation of available block information among the peers may
constitute large network overhead.

Slurpie is a P2P protocol based cooperative data transfer and
designed for flash crowd scenarios (Sherwood et al., 2004). Major
goals of the protocol are reducing the download times of large
popular files for clients and reducing the load on the servers. The
underlying idea of Slurpie is exploiting resources of clients during
dissemination of the file as it is intended in BitTorrent. However,
performance of the Slurpie in the real world is not examined.
Moreover, its algorithm is more complex than BitTorrent and
requires a successful estimation of the actual group size.

Another recent protocol for collaborative download of content
and avoiding free riding is 2Fast (Garbacki et al., 2006) which is
used within the Tribler (Pouwelse et al., 2007) social-based P2P
file-sharing system. Its novel feature is to make use of social
groups of peers that collaborate in downloading a file for the
benefit of a single group member. As opposed to content trading
model in BitTorrent-like systems, 2Fast model is based on
bandwidth trading. In content trading, contents or files are traded
between peers to impose fairness of sharing, whereas, in
bandwidth trading, bandwidth resources are traded among peers
in groups rather than content.

Julia content distribution protocol (Bickson and Malkhi, 2005)
is another study addressing distribution of large files over P2P
networks. Julia is a network aware protocol. It aims to reduce
the overall network overhead and incur a balanced load on the
network during dissemination. As the download progresses, the
nodes gather statistics about the network. This knowledge is used
to initiate transmissions from the closer nodes. Through simula-
tions, it is shown that Julia reduces the network overhead and
achieves slightly slower average finishing times relative to
BitTorrent.

An epidemic based distribution is studied in Fernandess and
Malkhi (2006). A gossip protocol that disseminates k blocks to the
entire group in y(k+ln(n)) rounds is proposed, where n is the
system size. It is assumed that k blocks of the file are distributed
among k nodes of the system and at each gossip round a node may
initiate one outgoing transmission and one incoming transmis-
sion. In order to have a uniform distribution of blocks in the group
so that peers do not encounter rare block problems, a coloring
mechanism is deployed. Another protocol using epidemics in
order to disseminate information and manage the membership is
Newscast (Jelasity and van Steen, 2002). In Newscast, caches of
peers hold neighbors’ descriptors. A descriptor for a peer consists
of peer address, creation time of that descriptor and information
of the corresponding peer. At predefined time intervals, each peer
creates its own descriptor. Since cache has a fixed size, that
descriptor is replaced with the oldest one. A peer is selected from
the cache and an exchange of states occurs with the selected peer.
Then views are merged and old entries are removed to keep cache
fresh. By this way, dynamic joins and leaves are handled easily by
the protocol. However, this protocol does not directly target
distribution of large files especially in flash crowd scenarios.

Our protocol differs from the prior work mentioned above,
and in particular from BitTorrent-like systems, in a number of
ways. Firstly, since the main goal of the protocol SeCond is to
make copies of the blocks available in the system as fast as
possible, we limit the number of parallel downloads. If the
uplink bandwidth of the source is split among too many peers,
this increases the time for the peers to download an entire
block which can then be served to others. It may also cause
the users to abort the download due to unacceptable download
rates. Thus, file dissemination to the entire system may take
longer. On the other hand, letting small number of peers to
download simultaneously may lead to the waste of uplink
capacities. To avoid this problem, although an initial value is
assigned to maximum parallel upload limit for each peer, this
value can be adjusted by each peer locally according to the
utilization of uplink capacities. Moreover, we deploy a queue not
to refuse requests and to increase utilization of the uplink
capacities. Peers put the received requests into their upload
queues if they cannot accept another parallel upload. Another
point that SeCond differs from BitTorrent-like systems is the
propagation of states during the dissemination of the file. In
contrast to BitTorrent’s way of multicasting information about the
available blocks whenever a new block is obtained, we deploy a
gossiping (epidemic) mechanism to propagate peers’ state
information. Finally, instead of forcing peers upload to peers
from where they can download, each peer utilizes its upload
bandwidth independently. This leads to an increase in utili-
zation of system sources. In return, it enhances the perfor-
mance of the system. However, peers give priorities to peers
from where they have downloaded more. The details of this
procedure are given in the description of our model in the
next section.
3. System description

SeCond’s P2P network consists of peers and the index server
agents. State propagation, view construction/update and upload/
download decisions are the major properties of our system. In this
section, we describe these agents, algorithms and properties of
SeCond protocol.
3.1. Model of index server agent

The index server is the entrance point to the system which
helps the peers to find each other. To initiate a file download, a
peer registers itself to the index server. After registration, the
index server returns a random subset of peers currently down-
loading the file which is called the view of the peer. Since some
peers may leave the system without notification or may not be
willing to add the new peer to their mesh, the length of the
returned list is greater than the view size of the peers. To update
the global view of the index server, active peers report their
state to the server periodically. Moreover, if a peer realizes that
one of the peers in its view is not active, it reports this situation
as well.

The index server keeps two sets of information, namely Peer-
Base and Content-Base. Peer-Base stores the data about the
registered peers. This includes unique address of the peer, type of
the peer (e.g. a seed or a leecher), registration time, and last state
update time. Content-Base contains basic information about the
shared content (e.g. size of the file, number of blocks, publisher of
the file).

There are four types of events associated with the index server.
These are Registration Request Reception, Peer Request Reception,
State Report Reception, and Dead Peer Detection Round. Algo-
rithms of these events are summarized in Fig. 2.
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Registration Request Reception: Reception of a registration request  

    -View Selection (List Size)             // Function selecting peers randomly from the Peer-Base 
    -Send selected list to requester peer 
    -Add requester to Peer-Base
Peer Request Reception: Reception of a request for addresses of new peers  

    - Get number of the requested peers 
    - View Selection (Number of requested peers) 
    - Send selected list to requester peer

State Report Reception: Reception of a message stating the sender is alive  

    - Update the Report Time of the peer    // Time of the last state report msg received from peer  
Dead Peer Detection Round: Detection of dead peers registered to system 

for all registered peers in the peer base 
    If (Current time – Report Time of the peer > State Report Interval) 
       - Remove the peer from the Peer-Base 

Fig. 2. Events and algorithms for the index server.
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3.2. Model of peer agent

A peer takes an important part in the distribution of the file. It
keeps track of the peers in its view, and acts as a source for the
blocks of the file it has downloaded. A peer may join the P2P
network anytime and leave the system without a notification.
A peer communicates with two sets of peers stored in Gossip

Receiver List and Gossip Sender List. The first one includes the peers
to which available blocks are uploaded. The latter consists of the
peers from where the blocks are downloaded. Although these lists
may include common peers, they may not be identical. The
maximum size of the gossip receiver and gossip sender lists,
maximum connection size, is a protocol parameter. Initially, the
peers in the gossip receiver list are determined with the help of
the list returned by the index server after registration.

A peer keeps the following information for each peer in its
gossip sender and gossip receiver list:

Gossip Sender List: /Agent id, Address, Peer state, TimeS
Gossip Receiver List: /Agent id, Address, Gossip order, TimeS

Agent id states the order of the peer agent in the list. Address

keeps the Internet address of the peer. For the gossip senders,
states of the peer are also held. Peer state keeps a list of block ids
downloaded by the peer. Density decisions of the blocks are given
locally with respect to state information. Time field is used to
determine the time of the last incoming block transmission from
the given peer. For the gossip receiver list, time entry states time of
the last outgoing block transmissions. Each peer stores an array
where downloaded block ids are ordered according to block
download times. Indexing the blocks in this way is used to inform
the other participants in the gossip receivers list about the state
information of the peer. Gossip Order keeps the index of the block
(download order of the block) the peer is informed most recently.

The peers are categorized as leechers and seeds in accordance
with the role they play in the dissemination. A peer with a
complete copy of the file is said to be a seed. The peers striving to
obtain a full copy of the file are called leechers. Although we call
the original publisher of the file as the primary seed, there is no
functional difference between the primary seed and any other
seed. On the other hand, different from an ordinary seed, primary
seed is expected to participate in dissemination continuously to
ensure to completeness of downloads. In fact, the presence of
seeds is a key feature, since it greatly enhances the ability to scale
to large client populations and reduces the load imposed on the
primary seed. However, a peer may leave the system at any time
without completing the download or after completion of it.
There are six types of events associated with the peer. These
are Gossip Round, Gossip Message Reception, Block Request
Reception, Gossip Sending Request, Gossip Receiving Request,
and Completion of Block Download. Descriptions and algorithms
of these events are summarized in Fig. 3. In the following sections,
details on state propagation, view construction/update and
upload/download decisions are described.

3.3. State propagation

The state of a peer stands for the blocks that have been
downloaded recently. A peer propagates its state to the peers in
the gossip receiver list. The propagation of the state information is
performed by use of gossip messages. At each gossip round, a peer
selects f distinct peers randomly from the gossip receivers list and
propagates its state information. The number of peers f selected as
gossip targets in a gossip round is the fan-out parameter of the
protocol. The rate of gossip messages are determined by the
protocol parameter gossip interval. After selection of the gossip
destinations, a gossip message is constructed per target. A gossip
message carries the ids of the downloaded blocks that the receiver
may not be aware of. It contains the ids of the recent blocks
downloaded since the last time a gossip is sent to that particular
receiver. The aim is to reduce the size of a gossip message, hence
the protocol overhead.

The example in Fig. 4 illustrates the gossip message construc-
tion process for a destination peer 2 and update of its gossip order
information. As shown in the figure, downloaded blocks are
indexed according to their download times. During construction
of a gossip message, the block about which destination peer is
informed most recently is determined by using the gossip order
entry held in the gossip receiver list. Following this, ids of the
blocks downloaded after the determined block are included in the
gossip message. Finally, the gossip order entry for the destination
peer is updated with the most recent downloaded block index.

Upon receiving a gossip message, the receiver peer looks for
the blocks that it does not have but the sender has. If there exist
such blocks, the receiver peer requests the missing ones from the
sender. It should be noted that sometimes requesting blocks may
not initiate block downloads. Note that gossiping is not necessa-
rily reciprocal.

3.4. View construction and update

Cooperation among peers should be maximized in order to
enhance the performance of content distribution system. Some of
the peers in gossip receiver and sender lists may have left the



ARTICLE IN PRESS

-Determine uplink utilization 
-Apply smart-peer policy 
-Select fan-out different peers randomly from the gossip receivers list. 

Block Request Reception (Request Message): Reception of a block upload request  

If (Upload count < Max. parallel upload limit) 
     - Block Selection to Upload (Request Message) 
     -Send an upload acceptance message containing the id of the selected block to be uploaded 

Gossip Sending Request: Reception of request to be added to gossip senders listt 

If(Sender List Size < Max. Connection Size) 
    -Send an acceptation message and add the sender to gossip message senders 
else
    - Passive Gossip Sender Selection 

Gossip Receiving Request: Reception of request to be added to gossip receivers list 

If(Receiver List Size < Ma
    -Send an acceptance message and add the sender to gossip message receivers list  
else
    - Passive Gossip Receiver Selection 

Gossip Message Reception: Reception of a gossip message  

-Read the newly downloaded block ids from the gossip message and update state information of 
the gossip sender according to new information. 
-Update the density information of the blocks 
-If (there is any block in which the peer is interested) 
     - Block Request Construction (Gossip Sender) and transmission 
      If (Request is accepted) 
           -Initiate the block transmission from the source 

Completion of Block Download: Completion of a block transmission  

-Update state information 
If (Sender has any other block in which the peer is interested) 
     - Block Request Construction  (Gossip Sender) and transmission 

Gossip Round: Periodic gossip dissemination 

Fig. 3. Events and algorithms for the peer.

Id 1 

Id 2 

...

...

Id n 

Agent

1

3

...

...

2

Gossip Order 
Gossip
Header

Gossip Message

1 5 4 Id 1 

Id 2 

...

...

Id n 

Agent

1

6

...

...

2

Gossip OrderDownloaded blocks 

2 8 1 56 4

1 5 4

Fig. 4. Gossip message construction example for the peer with id 2: (a) index (3) of the block that the peer with id 2 has been informed most recently is determined, (b)

blocks downloaded after block 6 (with index 3) are selected to be added to gossip message, (c) gossip message is formed by adding header to gossip data and (d) gossip

order, index of the block (index 6) the destination peer is informed most recently, is updated.
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system, or almost all the block transmissions among the peers
might have been completed which could leave the link capacities
of the peers idle. In such a case, a peer is forced to download
blocks from the primary seed or stays idle. To avoid this situation,
the peers update their views during dissemination.
Following the registration process, index server returns a list,
to the newly joined peer, which consists of active peers (both
seeds and leechers) randomly selected among the registered ones.
The newly joined peer sends a request message to the peers in the
returned list indicating that it wants to add the counterpart to the
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active uploads
< parallel upload

limit 

requests in upload
queue < max queue

size 
no

yes

no
no

yes yes

utilization threshold
> uplink bandwidth

utilization

block request arrival 

increment number of 
downloaders by one 
and initiate block 
transmission 

enqueue the request to
upload queue and
deque the first request
from the queue

reject request 

Fig. 5. Illustration of upload decision process.
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gossip receiver list. If there is free space in the gossip sender list of
the receiver, the new peer is directly added to the gossip sender
list of the receiver. However, if the capacity of the list is full, then
the receiver looks for a passive peer. A peer in the gossip sender
list from which no block transmission has been initiated in a given
time interval, called passive peer interval, is said to be a passive

peer. If there is a passive peer, it is replaced with the new one, and
the gossip sender list is updated. Otherwise, a rejection message is
sent to the new peer.

If the number of peers in gossip sender or receiver lists falls
below a lower bound, minimum connection size, during the
dissemination, index server is asked to return addresses of new
peers. Both the passive peer interval and minimum connection
size are protocol parameters.
3.5. Download/upload decisions

In the beginning, the primary seed is the only peer that has all
blocks of the file. The number of peers owning blocks of the file
increases as the dissemination progresses. The objective is to
consistently equalize the density of each block in the system since
the main goal of our protocol is to make copies of the blocks
available in the system as fast as possible. This makes it unlikely
that the system will get bogged down because of rare blocks that
are difficult to find. When a peer receives a gossip message from
another peer, in addition to updating the state information of the
gossip sender as described in Section 3.3, the receiver checks
whether there is any block that it does not have but the sender
has. If there are such missing blocks, it sends a request message
containing missing block ids which are the least duplicated
blocks, hence have the lowest density in the system. Peers hold
the state information of the peers in the gossip sender list. The
decision for the density of the blocks is given locally by the help of
this information. The sender prefers to forward the least uploaded
block among the requested ones.

Requesting some blocks from a source does not guarantee the
initiation of a block download. Since the concurrent upload
capacity of the peers is limited, the request may be refused. It is
bounded by a protocol parameter, parallel upload limit. However, if
the parallel uploading limit is reached and another upload request
is received, the source checks the utilization of its uplink capacity.
If this utilization is greater than utilization threshold parameter of
the protocol, incoming request is rejected. Otherwise, it lets the
requester to download without taking the parallel upload limit
into consideration. In a heterogeneous network, the peers have
different uplink and downlink capacities. Adjusting the number of
parallel uploads dynamically according to utilization helps
exploiting the uplink bandwidth of all sources and in particular
of those with larger capacities. Moreover, we deploy a queue not
to refuse requests and to increase utilization of the uplink
capacities. The peers put the received requests into their upload
queues if they cannot accept another parallel upload. Though,
originally we operate the first in first out queue (FIFO) scheme on
request queues, different schemes may be implemented, that is,
the priorities may be given to peers that upload more to the
owner of the queue. The flowchart for this decision process is
given in Fig. 5.

The smart peer policy enables adjustment of the fan-out
parameter f dynamically based on the current uplink utilization.
When the uplink utilization of a peer is low, it will be likely to
increment its fan-out value in the next gossip round. In general,
the peers increase their fan-out parameter by 1 with a proba-
bility P(1-Uplink Utilization) at each gossip round. Otherwise, the
fan-out is decreased by 1.
4. Simulation model

We have developed discrete event simulation models for
SeCond and BitTorrent protocols using Java JDK as the imple-
mentation platform. In order to verify the correctness of the
simulation code, unit tests have been performed using the JUnit
testing framework. Our simulations are based on application-layer
models to be able to analyze protocol characteristics in particular
for large peer populations. We consider access link bandwidths
and model the block transfers as flows. As discussed in Eger et al.
(2007), packet-level simulations are seldom used for P2P net-
works due to their high complexity. Differences between packet-
level and flow-level (application-layer) simulation models for
BitTorrent-like P2P systems are discussed and comparison is
performed with the analytical models in Eger et al. (2007). The
findings show that the results for the flow-level simulations of
BitTorrent are near to the optimal values meaning that the flow-
level protocol model works efficiently.

Our simulation model uses the uplink and downlink band-
width of peers to calculate the delays associated with the
transmission of data blocks. The delays are calculated by
considering the number of flows using the uplink of the sender
or downlink of the receiver. For scalability analysis, we have
performed simulations for various population sizes up to 8000
peers. One reason that we need to limit the population size with
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8000 peers is the cost of the delay computations for each data
block. We performed our simulations on a Pentium-4 2.4 GHz,
1 GB RAM system. Each individual simulation is repeated five
times and averages of the runs are reported in the performance
results.

We have also made some simplifications regarding the under-
lying network model. These are needed to tackle the computa-
tional complexity of the simulation model in particular for
large-scale scenarios. Similar simplifications were also introduced
in Bharambe et al. (2006). Firstly, our model differentiates
between control and data messages and assumes that the
propagation delay is not applicable to the control messages. The
control messages are small in size and exchanged among
neighbors for requesting blocks. Therefore, the control messages
are transmitted directly to the receivers. The incentive is that the
file download time is mainly determined by the data block
transmission delays. Thus, this simplification would not have a
considerable effect on our results. Another assumption is that the
bottleneck during block transmission arises either on uploader
(uplink of the sender) or on downloader (downlink of the receiver)
side. To be precise, the block download time is determined by the
upload capacity of the sender and the download capacity of the
receiver. This is a reasonable and common assumption as
discussed in Eger et al. (2007) considering the fact that majority
of the peers are home users connected to the Internet with DSL or
cable modems. We also consider a fluid model for connections
which assumes that the flows through a link share the link
bandwidth equally.

Next, we describe our simulation model for the BitTorrent
protocol and default values for protocol parameters. Then, block
dissemination in SeCond is illustrated with an example and
default values for protocol parameters are described. After that,
we provide our simulation settings.
Table 1
BitTorrent parameter settings

Parameter Description Default

List size List size returned by tracker after

registration

50

Maximum connection

size

Maximum number of neighbors 55

Choking interval Time interval at which choking policy is

employed

10 sec

Optimistic choking

interval

Time interval at which optimistic peer is

selected

30 sec

Parallel upload limit Maximum number of parallel uploads 5
4.1. Bittorrent model

In order to reflect BitTorrent’s behavior accurately in the
simulation environment, we have integrated the protocol proper-
ties specified and the default values used in the BitTorrent official
deployment (BitTorrent) into our simulation model. Tracker
algorithm, choking/unchoking policy, optimistic unchoking and
block selection policy stated below are implemented.

Tracker algorithm: Tracker is the server responsible for keeping
track of the registered peers. It returns a list of randomly selected
peers among the currently registered ones. The size of the
returned list (list size parameter) is set to 50 peers (BitTorrent).
However, peers attempt to establish connections to about 40 of
them. Peers whose active neighbor number falls below the lower
bound 20, specified by the BitTorrent protocol, revisit the tracker
to obtain additional peers. We set a revisiting time interval for
missing neighbors. Although the maximum number of neighbors
(max connection size parameter) is not directly stated in the official
BitTorrent specification, we limit this number to 55 which is used
in the real protocol implementations we investigated.

Choking/unchoking policy: BitTorrent employs a tit-for-tat policy
to avoid free riding. Performance of BitTorrent-like systems are
directly influenced by the level of cooperation among peers, and
tit-for-tat strategy encourages peers to upload. In particular, a
peer uploads to the peers providing the best download rates.
Selection process of the peers to upload is called as choking/

unchoking. This policy is employed (via choking interval para-
meter) once every 10 seconds. At every choking/unchoking round,
a peer determines four interested peers which it has the best
download rates from. These are called as unchoked neighbors.
Other neighbors are temporally refused to download from the
peer, namely they are choked. If a peer that has a better upload
rate becomes interested, the unchoked peer having the worst
upload rate gets choked. A peer with a complete copy of the file, a
seed, uses its upload rate rather than its download rate to decide
whom to unchoke. Since choking is not reciprocal, in general the
set of neighbors that a node is uploading to may not exactly
coincide with the set of neighbors it is downloading from.

In order to give a chance to peers that may offer better
download rates and prevent the peers from getting bootstrapped
which have got nothing to upload, an optimistic unchoking is
deployed (via optimistic choking interval parameter) once every
30 s. For any time there is only one optimistic peer, a peer which is
unchoked regardless of its upload rate. If the optimistic peer is
interested in the available blocks, it is counted as one of the four
allowed downloaders. However, optimistic peer is not selected
uniformly among the neighbors. Peers that have not obtained a
block of the file are three times as likely to start as the current
optimistic unchoke as anywhere else in the rotation.

Block selection policy: In general, a peer has a choice of several
blocks that it could download. In order to make the number of
replicas of each block as evenly distributed as possible, BitTorrent
employs a local rarest first (LRF) policy in selecting the block to
download. Each peer tries to download the block that is least
replicated among its neighbors. Random selection policy is made as
an exception to the local rarest first policy in the case of a new
peer that has not downloaded any blocks yet. Since it is important
to get a complete block as quickly as possible for the newly joined
peer, blocks to download are selected randomly until the first
complete piece is obtained.

Key protocol parameters and their default values for the
BitTorrent protocol in our simulations are summarized in Table 1.
In relation to the tracker algorithm, the protocol parameters are
list size and maximum connection size. For the choking/unchoking
policy, the parameters are choking interval and optimistic choking

interval. Parallel upload limit parameter defines the maximum
number of concurrent uploads per peer and it is set to 5 as in the
official deployment of the protocol. It includes the connection
which is optimistically unchoked.
4.2. SeCond model

Simulation model for SeCond protocol is implemented based
on the descriptions given in Section 3. An example illustrating
block dissemination in SeCond is shown in Fig. 6. The list
indicated as B[block id list] represents blocks downloaded by the
corresponding peer up to that time, P represents the number of
peers that can be served additionally, and [upload capacity,

download capacity] represents the download and upload band-
width of the peer. T#:[a,c] represents the transmission of block a

with transmission rate c. Unit of bandwidth capacities is Kbps. In
Fig. 6, shared file consists of 5 blocks. At round 1, peer 2 initiates
transmission of block 1 from peer 1. Bandwidth initially reserved
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Fig. 6. Illustration of block dissemination in SeCond.

Table 2
SeCond parameter settings

Parameter Description Default

List size List size returned by index server after

registration

50

Maximum connection

size

Maximum size of the gossip receiver and

sender lists

50

Fan-out Number of peers gossip msgs are sent to at

each gossip round

3

Gossip interval Time interval at which each peer gossips

periodically

20 sec

Parallel upload limit Maximum number of parallel uploads 5
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for this transmission is equal to the minimum of the upload
capacity of peer 1 and, the download capacity of peer 2, namely
128 Kbps. Assuming that no block transmission is completed, peer
1 can serve at most 1 other peer in the remaining rounds.
Similarly, a transmission of rate 128 Kbps from the server is
started in round 1. At round 2, peer 1 starts to download block 2
from peer 3 with rate 128 Kbps. However, peer 4 also initiates a
transmission from peer 1 at round 2. Since upload capacity of a
peer is shared out equally among downloaders, both of the rates
reserved for transmissions 1 and 3 are set to 64 Kbps. At round 3,
peer 2 initiates a block download from peer 4. Reserved band-
width for this transmission is equal to the minimum of the down-
load capacity of peer 2 and the upload capacity of peer 4, which is
192 Kbps. Remember that peer 2 uses 64 Kbps of its download
capacity for transmission 1. Without completion of any block
transmission, no one can initiate a transmission after round 3.

Key protocol parameters and their default values for the
SeCond protocol used in our simulations are given in Table 2. In
parallel with the default values of the official BitTorrent deploy-
ment, list size returned by the index server to a peer is set to 50.
Hence, the maximum size of the gossip receiver and gossip sender
lists, maximum connection size, would be 50. The fan-out

parameter of SeCond indicates the number of peers selected as
gossip targets in a gossip round, and the gossip interval identifies
the rate of gossip messages. Parallel upload limit parameter defines
the maximum number of concurrent uploads per peer and it is set
to 5 in consistent with the corresponding parameter in BitTorrent.
However, recall that if the parallel upload limit of a peer is reached
and a new upload request is received, the peer compares its uplink
utilization with the parameter utilization threshold. The default
value for the utilization threshold is 0.9 in our simulations. If the
uplink utilization is greater than the utilization threshold, the
request is rejected meaning that the peer’s uplink is almost fully
utilized. Otherwise, upload of the requested block is initiated as
described in Section 3.5.
4.3. Simulation settings

The shared file (content) is divided into blocks of size 256KB in
order to enable parallel downloading or swarming (Rodriguez and
Biersack, 2002). The size of the content is set to 200 MB (800
blocks) which indicates the typical size of a file such as software
update, movie/audio clip and game patch. It is assumed that there
is only one seed peer at the beginning which is the original
content publisher. Whenever a peer completes downloading of a
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Table 3
Heterogeneous bandwidth distribution

Downlink (Kbps) Uplink (Kbps) Fraction

784 128 0.2

1500 384 0.4

3000 1000 0.25

10 000 5000 0.15
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Fig. 7. Effect of gossip interval on uplink/downlink utilizations.
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block successfully, it starts sharing that block. Depending on the
popularity of the published content, the arrival and departure
patterns of peers may exhibit different characteristics. For this
purpose, we have considered various arrival and departure
patterns for the peers as described in Section 5.2.

A heterogeneous set of peers with different uplink and
downlink capacities is considered. The uplink capacity of the
primary seed is set to 6000 Kbps. For all other peers, the
distribution of the uplink and downlink bandwidths is given in
Table 3. This distribution is obtained from a real measurement
study of the Gnutella network (Saroiu et al., 2002).
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5. Performance results

In this section, our simulation results and analysis are given.
We first analyze the key protocol parameters of SeCond. Then, we
provide several comparative results with BitTorrent system
model. These include the scalability analysis for different arrival/
departure patterns, flash crowd scenario, overhead analysis and
fairness ratio. The major metrics we study are as follows:
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Fairness ratio: The ratio of the uploaded data size to the
downloaded data size by a peer.

5.1. Parameter analysis for SeCond

We examine smart peer policy, parallel upload limit and gossip
interval parameters of our system. When the smart peer policy is
activated, the peers reconfigure their fan-out parameter. In this
case, increasing the fan-out parameter as necessary increases the
probability of finding a peer for cooperation. Although decreasing
the frequency of gossiping reduces the control message overhead,
it decreases the average uplink/downlink utilization. Infrequent
gossiping is also expected to increase the average file download
time. Fig. 7 shows the effect of gossip interval on utilization both
with a fixed fan-out throughout dissemination and with smart-
peer policy where fan-out is adjusted. Clearly, smart peers
increase the utilization. Likewise, the average download time of
the file is improved with the smart peer policy as shown in Fig. 8
across various gossip interval values. Recall that smart peers
increment their fan-out parameter by 1 with a probability
P(1�uplink utilization) at each gossip round. Otherwise, the fan-
out is decreased by 1. Based on the data of Figs. 7 and 8,
the improvement resulting from smart peer policy is quantified in
Fig. 9, which is more visible as the gossiping becomes less
frequent. In this figure, improvement in average download time is
plotted against average probability obtained from uplink utiliza-
tion percentage without smart peer policy.

Fig. 10 shows that increasing parallel upload limit has a
positive effect on the utilization of downlink capacities up to a
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Fig. 11. Effect of parallel upload limit on average file download time.
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certain value. After that point, downlink utilization stays almost
constant. However, the uplink utilization does not change
significantly with the increase of parallel upload limit. When
parallel upload limit is set to a small number, peers handle
few transmissions each with high upload rates instead of serving
more peers each with lower transmission rates. Since the number
of served peers is not a factor in calculation of the uplink
utilizations, we cannot observe any effect on the uplink utiliza-
tion. However, if we continue increasing parallel upload limit,
this may lead to latency in completion of the block transmissions.
As a result, since the peers cannot serve other participants
without owning a complete block, the uplink utilization starts
to decrease. In Fig. 11, we observe that the average file down-
load time decreases as the parallel upload limit increases up to
a certain value in the simulations. Increasing this parameter
after this threshold does not lead to further decrease in the
download time.
Another significant result is the data size uploaded by the
primary seed. As shown in Fig. 12, amount of the data served by
the primary seed decreases continuously as the parallel upload
limit increases. Departure pattern of the peers may lead to such a
decrease. In the simulation, the peers leave the system as soon as
they complete the download. Hence, when the number of peers
served simultaneously is set to small numbers, the peers that have
direct connection or are close to the primary seed complete the
download in shorter periods and leave the system without
uploading other peers. This forces the remaining peers to down-
load the blocks from the primary seed.
5.2. Scalability analysis and impact of arrival and departure patterns

According to the popularity of the published content, the
arrival and departure of peers can follow different patterns. For
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this purpose, we analyze five different arrival patterns, namely
constant, increasing, decreasing, triangular, and flash crowd. While
the constant arrival corresponds to a Poisson process with
constant rate for the generation of file requests, the increasing
and decreasing arrival rates stand for non-stationary Poisson
processes with increasing and decreasing rates, respectively. In
general, the published content gets more popular in time after it is
released. However, this popularity starts to decline as there are
more peers owning a full copy of the file. Triangular arrival rate,
which is first increasing then decreasing, models such a case.
Flash crowd stands for joining the system at the same time which
can be thought as a storm. Due to its uniqueness, we analyze it
separately together with the associated protocol overhead in the
next section.

Fig. 13 illustrates our implementation of the first four arrival
scenarios. The time period in which new peers join the system is
divided into 12 equal time intervals. The initial arrival rate is
duplicated/halved per two subintervals for increasing/decreasing
arrival patterns. For example, if the initial arrival rate is l,
it reaches 32l in the last two subintervals during the increasing



ARTICLE IN PRESS

1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of peers arriving in three hours

M
ax

im
um

 n
um

be
r 

of
 a

ct
iv

e 
pe

er
s Increasing

Decreasing
Constant
Triangular

Fig. 14. Maximum number of active peers vs. system size.

1000 2000 3000 4000 5000 6000 7000 8000
2050
2100

2150

2200

2250

2300

2350

2400

2450

Number of peers arriving in three hours

A
ve

lr
ag

e 
Fi

le
 D

ow
nl

oa
d 

T
im

e 
(S

ec
.)

Increasing

SeCond
BitTorrent

Fig. 15. Average file download time for increasing arrival pattern vs. system size.
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Fig. 16. Average file download time for triangular arrival pattern vs. system size.
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arrival period. In the triangular pattern, the initial arrival rate is
duplicated per subinterval up to the half of the total arrival period,
then for the rest of the period it is halved per subinterval.

For departure patterns, we assume two different cases, namely,
immediate and random departure. Immediate departure stands for
the case in which the peers leave the system as soon as their file
download is completed. In random departure, the peers continue
participating in the system as a seed for a random amount of time
after the download completion, which follows an exponential
distribution.

In the following results for different arrival patterns, it is
assumed that peers join the system within a three hour period
and follow an immediate departure pattern. The system consists
of heterogeneous peers whose bandwidth distribution was
described in the previous section. For scalability analysis, we vary
the peer population joining the system from 1000 to 8000. Fig. 14
shows the maximum number of active peers as a function of
system size for different arrival patterns. It is observed that the
system is the most crowded for the increasing arrival pattern and
the least for constant arrival rate.

The effect of system size on the average file download times
are given in Figs. 15 and 16 for increasing and triangular arrival
patterns, respectively. The other two arrival patterns yield similar
results that are not shown here. Our results indicate that the
average file download time is almost constant even if the system
size is scaled up for both Second and BitTorrent models. There is
not much difference in the average download times corresponding
to arrival patterns in SeCond simulation results. On the other
hand, for the BitTorrent, the increasing arrival pattern causes the
largest average file download time. For these arrival scenarios,
SeCond peers download the file in shorter time periods in
comparison to BitTorrent peers. In order to exploit the system
resources, SeCond proposes strategies such as smart peer and
view update policies. The results endorse that these policies
increase the utilization of the system resources and lead to
smaller download periods.

If peers download a large portion of the file from the primary
seed, the download time is expected to increase since the primary
seed would be overloaded and become a single point of failure.
Figs. 17 and 18 show the data sizes uploaded by the primary seed
as the system size scales up. These results indicate that in both of
the protocols, peers cooperate well among themselves instead of
requesting the blocks from the primary seed. For the increasing
arrival pattern, the load of the primary seed is relatively
higher than the other arrival patterns since the peers joining the
system initially cannot find so many downloaders to cooperate.
Because of the fact that the peers complete their download
faster in SeCond and leave the system immediately, the remaining
peers download more from the primary seed in comparison
to BitTorrent. This is the reason for the slight difference
between the two protocols in terms of the loads imposed on the
primary seed.
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The analogous results for random departure pattern are also
analyzed and the comparative conclusions are similar. As the
mean time that the peers remain connected after download
increases, the average file download time decreases dramatically
as expected. Likewise, the load of the primary seed is alleviated
when the mean time to departure is increased.
5.3. Flash crowd scenario and overhead analysis

We analyze the flash crowd arrival scenario in terms of average
file download time, the load on the primary seed and the
overhead associated with SeCond and BitTorrent. Fig. 19 shows
that even for this worst case scenario, SeCond scales well and
SeCond peers complete their download in a comparable time to
BitTorrent peers. However, the primary seed uploads a little more
for SeCond due to the immediate departure characteristics
described in the previous section.

Control messages used for the propagation of available block
information among the peers form overhead of the cooperative
protocols. In SeCond, at predefined time intervals, each peer sends
gossip messages to inform other peers about newly downloaded
blocks. On the other hand, each BitTorrent peer multicasts a
message indicating the availability of a newly downloaded block
to its neighbors immediately after completion of the block’s
transmission. Although a state update message in BitTorrent
indicates the availability of a single block, SeCond’s state update
exchanges, namely gossip messages, can contain varying number
of block identifiers. In order to make a comparison between
BitTorrent’s and SeCond’s protocol overhead, we calculate the
weighted loads. Weight of a state update message is determined by
the number of block identifiers inserted to the message. We
measure the state update messages for a system which consists of
1000 peers with flash crowd arrivals.

Figs. 20(a) and (b) show the histogram for the state update
messages and gossip messages sent by the BitTorrent and SeCond
peers, respectively. It is observed that more than half of the peers
send approximately the same number of gossip messages for the
SeCond system. However, the variation observed in the number of
state update messages sent by peers is higher for the BitTorrent
system. Likewise, Figs. 21(a) and (b) show the number of state
update messages sent by the BitTorrent and SeCond peers
respectively. In these simulations, the total number of state
update messages sent by BitTorrent peers is measured as
35,944,579 which is the weighted load of BitTorrent peers at the
same time. On the other hand, gossip message count sent by
SeCond peers is measured as 410,843, and the weighted load
imposed by the SeCond peers is calculated as 43,259,121.
Although the computed weighted load of the SeCond is greater
than BitTorrent’s, the number of state update messages of
BitTorrent is significantly larger than SeCond’s. The number
of state update messages of BitTorrent is measured as 87 folds
of Second’s. Furthermore, considering the fact that each individual
message generated contains a header field that is not taken into
account when computing the weighted loads, this causes an
additional large transmission overhead for BitTorrent. Hence,
comparatively lower protocol overhead of SeCond is one of the
major reasons behind the lower file download time of peers in the
system. Since the size of the state update messages sent in bytes
may vary depending on the implementations of the protocols, the
communication load in bytes is not calculated. For example,
instead of sending id of an available block as an integer, each state
update message can contain a bit vector indicating the availability
of the blocks.

Note that, although gossiping leads to lower number of state
update messages, it may affect the density equalization of each
data block among neighboring peers as explained in Section 3.5.
SeCond approximates the rarest-first policy of BitTorrent in much
smaller scope by collecting density information via gossiping to
only a subset of the neighbors. However, we have not observed
degrading in performance in terms of average download time.
SeCond peers are able to download faster than BitTorrent peers for
the arrival patterns except flash-crowd. Even for the worst case
scenario of flash-crowd arrivals and immediate departures,
SeCond peers complete their download in a comparable time to
BitTorrent peers. In support of efficiency of gossiping mechanism,
the recent theoretical study of Sanghavi et al. (2007) investigates
the performance of gossip-based block selection protocols in the
context of file sharing.
5.4. Fairness ratio

An important issue for P2P file sharing systems is free-riding.
In heterogeneous systems, some peers may overuse the resources
of the other peers. In a fair world, the fairness ratio of a peer,
uploaded data size divided by downloaded data size by that peer,
is expected to be 1. BitTorrent deploys the tit-for-tat strategy
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Table 4
Bandwidth distribution according to peer identifiers

Peer Id Uplink (Kbps) Downlink (Kbps)

0–200 128 784

200–600 384 1500

600–850 1000 3000

850–1000 5000 10000
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Fig. 22. Fairness ratio.
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which encourages peers to upload. A peer uploads the peers
providing the best download rates. On the other hand, SeCond
aims to increase the performance of the overall system. Each peer
updates its gossip sender and receiver lists dynamically. Moreover,
smart peer policy is employed to adjust fan-out parameter based
on the utilization of uplink bandwidths.

In order to compare BitTorrent and SeCond, we study fairness
ratio for a system of size 1000. Bandwidth distribution according
to peer identifiers is given in Table 4. Fig. 22 shows that SeCond is
as fair as BitTorrent. The average fairness ratios are recorded as
0.97 and 0.98 for SeCond and BitTorrent, respectively. Despite the
fact that SeCond has no explicit strategy addressing free-riding,
the closeness of the fairness ratios is expected due to the form of
the peer selection in upload decisions. As presented in Section 3.2,
each peer’s Gossip Senders List consists of the peers from where
the blocks are downloaded, as well as the peers’ state which is a
list of block ids downloaded. During upload decisions, each peer
gives priority to the peers from which it has downloaded more.
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This strategy seems to compensate for the tit-for-tat strategy of
BitTorrent as observed in comparable fairness results.

Fairness is especially important in heterogeneous environ-
ments for giving high bandwidth users an incentive to participate.
Peers having larger capacities upload more than they download,
since the download time of a peer is not only determined by the
download capacity of the peer, but also by the upload capacities of
the neighbors it has. In a heterogeneous system, peers may have
neighbors having varying bandwidth capacities. For instance, in
Fig. 22, the peers having identifiers between 850 and 1000 have
larger fairness ratio values in comparison to the peers with lower
capacities implying that their uplink capacity is exploited by
several peers downloading concurrently. Such a high bandwidth
peer may be getting a low download rate itself, yet letting other
peers consume its uplink bandwidth at the same time. Fairness
ratio should ideally be 1, which is not achieved for such peers even
with BitTorrent’s tit-for-tat mechanism. The study of Bharambe
et al. (2006) confirms this observation with comparable values for
the maximum fairness ratio to those in Fig. 22. It further indicates
that matching peers according to their bandwidths during upload/
download decisions ensures fairness. Such a mechanism de-
creases uplink utilization hence degrades performance as a
drawback. On the other hand, it is observed that groups of
disconnected peers emerge if the tracker matches the peers
according to their bandwidths. It is shown that a hybrid of
bandwidth matching and random selection of peers by the tracker
performs well for both fairness and utilization metrics.
6. Analytical framework

In this section, we discuss an analytical framework applicable
to SeCond’s behavior in order to clarify the effect of the network
parameters and various arrival/departure patterns on the file
dissemination time. Several analytical models of BitTorrent-like
networks have been proposed over the recent years. Yang and
De Veciana (2004) use branching processes and numerically
solved Markov chains to study the transient and steady state
behavior of the file sharing system, respectively. Inspired by this
study, the simple fluid model of Qiu and Srikant (2004) represents
a homogeneous network through deterministic differential equa-
tions. Clevenot-Perronnin and Nain (2005) equip the latter model
with multiple classes in order to represent a heterogeneous
network. More recently, Tian et al. (2006) construct a continuous
time Markov chain involving different states for the download job
completeness. This provides a detailed analysis of the number of
peers in the system with various fractions of the file in BitTorrent-
like systems. However, we focus on the total number of down-
loading peers and seeds along the lines of the former models since
our aim is to identify the role of the main parameters in
dissemination time. Although the fluid models contain few
parameters as a mathematical abstraction, they serve as an
estimate of the average behavior observed in simulations. The
following results complement the detailed performance analysis
accomplished through simulations in the preceding section where
the link bandwidth is indeed shared among the peers equally as in
a fluid flow.

In the simple fluid model of Qiu and Srikant (2004), the
dynamics is described by the deterministic equations

dx

dt
¼ l� yxðtÞ �minfcxðtÞ; mðZxðtÞ þ yðtÞÞg,

dy

dt
¼ minfcxðtÞ; mðZxðtÞ þ yðtÞÞg � gyðtÞ (1)

where x(t) and y(t) represent the number of leechers (down-
loaders) and the seeds at time t, respectively. Each peer is
assumed to have the same uplink m and downlink c bandwidth
capacities. The parameter l is the constant arrival rate of new
requests, and m and c are the uplink and downlink capacities of a
peer, respectively. The parameter y is the rate at which the
leechers abort the download and g is the rate at which the seeds
leave the system. Lastly, Z indicates the effectiveness of the file
sharing. The total upload rate of the system is given as
minfcxðtÞ; mðZxðtÞ þ yðtÞÞg. The solution (x, y) of the deterministic
model (1) represents the expected value of the leechers and the
seeds, respectively, in the limit as l goes to infinity in a stochastic
fluid model described by

xðtÞ þ
ffiffiffi

l
p

x̂ðtÞ; yðtÞ þ
ffiffiffi

l
p

ŷðtÞ (2)

where ðx̂; ŷÞ is a two-dimensional Ornstein-Uhlenbeck process.
That is, the variability around the mean number of peers is
described by Gaussian random variables. In the steady state, these
are mean zero random variables with variance that can be
explicitly computed in terms of the above parameters (Qiu and
Srikant, 2004, p. 371). In fact, model (2) is itself a stochastic fluid
limit for a continuous time Markov chain describing the number
of leechers and the seeds given in Yang and De Veciana (2004) as l
goes to infinity.

Clevenot-Perronnin and Nain (2005) propose a multiclass fluid
model (xi, yi), i ¼ 1, 2, generalizing (1) to describe heterogeneous
bandwidth capacities as well as service differentiation. The
system of differential equations is given by

dxiðtÞ

dt
¼ li � yixiðtÞ �minðcixiðtÞ; aimiðZixiðtÞ þ yiðtÞÞ

þ ð1� akÞmkðZkxkðtÞ þ ykðtÞÞÞ

dyiðtÞ

dt
¼ li � yixiðtÞ �minðcixiðtÞ; aimiðZixiðtÞ þ yiðtÞÞ

þ ð1� akÞmkðZkxkðtÞ þ ykðtÞÞÞ � giyiðtÞ (3)

where k ¼ 3�i, and i denotes the type of the peer, according to its
bandwidth capacity for example. The parameter ai determines
how a peer allocates its upload bandwidth between two classes of
peers. The system of differential equations is a switched system,
the analysis of which gets relatively complicated even for two
classes and no seeds, that is, y1(t) ¼ y2(t) ¼ 0 for all t40. It is
especially complex to study the existence and stability of these
solutions when the seeds are included (Clevenot-Perronnin and
Nain, 2005). Therefore, the authors study only the no seed case
with only two equations and single a, which nevertheless serves
as the worst case scenario where the downloaders depart as soon
as their file is complete.

In SeCond simulations, we have considered a heterogeneous
network with four levels of bandwidth as indicated in Table 1.
Even in the no seed case, this would require four classes of
downloaders xi, equivalently a system of four differential
equations generalizing (3) to include all other values of k. Such
an analysis could reveal the coupling between the peers with
varying bandwidth capacity. However, we leave it as future work
due to its complexity and adopt the homogeneous model (1) for
illustrating the ballpark effect of download and upload capacities
on the download time below. The other aspects have been
considered only through simulations in the preceding section.

For the steady state analysis of (1), the rate of changes in the
number of seeds and the number of leechers are assumed to be
zero. Namely, dx/dt ¼ dy/dt ¼ 0. It is shown that average file
download time in the steady state regime is given by T ¼

1=ðyþ bÞ, where 1=b ¼ maxf1=c; 1=Z ð1=m� 1=gÞg. This shows
that the average download time T is independent of the arrival
rate l confirming scalability from another viewpoint (Qiu and
Srikant, 2004). The simulations with a constant deterministic
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arrival rate given in Alagoz (2006) show that the average file
download time stays constant as l increases in the heterogeneous
case as well.

In the following analysis, we run simulations over a homo-
geneous network according to the bandwidth parameters chosen
in Qiu and Srikant (2004) to demonstrate their effect on the
download time in the steady state. As shown in Fig. 23, the
simulation results agree well with the solution of the determi-
nistic model given in (1). The level of agreement is similar to Fig. 8
of Qiu and Srikant (2004) where a real experiment with BitTorrent
is compared with the analytical model. This is due to the fact that
there are several parameters that the analytical model does not
take into account, but appears in the real system and its
simulation. The agreement with model (2), which is yet a very
close analytical model to (1), is almost perfect for larger arrival
rates as predicted by the theory (Qiu and Srikant, 2004). As the
analytical models are good approximations for greater values of l,
it is chosen relatively large in the following. For the results given
in Figs. 23(a) and (b), the parameters are chosen as m ¼ 0.00125,
c ¼ 0.002, g ¼ 0.001 all with the units of 1/min, y ¼ 0 and l ¼ 0.1
with the units of peers/min, equivalently 1 peer per 10 min. The
bandwidth values are rates with respect to the file size, which is
assumed to be 1 in the analytical model. In simulations, they are
adjusted according to the actual file size. Finally, the effectiveness
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Fig. 23. Deterministic model vs. SeCond: normalized
parameter Z is set to 1, which indicates that the uplink capacity of
the leechers is fully used. It is taken as 0 only when the leechers in
the system is 1. In Figs. 23(c) and (d), we have the same setting as
the first experiment, except that we set g ¼ 0.005. In these results,
when the departure rate is set as g ¼ 0.001, it refers to a system
where the downloading bandwidth is the bottleneck, namely
gom. When the departure rate of seeds g is set to 0.005, the
uploading bandwidth of the peers now becomes the bottleneck
(Qiu and Srikant, 2004). Here, normalized number of seeds (or
leechers) indicates the ratio of the number of seeds (or leechers)
to the arrival rate l. According to Little’s law, this ratio is equal to
the download time in the steady state. Indeed, the simulations
seem to fluctuate around a steady state value in all graphs. For
g ¼ 0.001, the number of leechers are 50 on the average and hence
the average download time is 500 min. The model predicts the
download time by T ¼ 1/c ¼ 500 since m4g in this case. On the
other hand, we observe that the average number of seeds stabilize
at 100 which coincides with the arrival rate l with 1/g ¼ 1000 as
expected from Little’s law since g is the departure rate for the
seeds. For g ¼ 0.005, similar calculations hold except that mog
this time yielding T ¼ 1/m/�1/g ¼ 600 min. The average number of
leechers is 60 and the average number of seeds is 20 which
appear as 600 and 200, respectively, in Figs. 23(c) and (d) after
normalization.
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For the varying arrival rates considered in the previous section,
we modify model (1) by making l depend on time as in Fig. 13 and
solve for the number of leechers x and seeds y. Realizations for the
decreasing, triangular and increasing arrival patterns are com-
pared with the analytical model in Figs. 24(a)–(c), respectively, for
the departure rate g ¼ 0.005. Note that the model represents the
average behavior in the transient state as the arrivals are
nonstationary. The numbers of leechers and seeds in the system
reflect the arrival pattern they stem from in each case. These
results indicate that the analytical model can approximate the
expected number in the system for all arrival patterns. For the
flash crowd scenario, the minimal time to disseminate the file
to all peers can be computed using the bound given in Mundinger
et al. (2007) as a benchmark.
7. Conclusions

Our proposal in this article, SeCond, is a P2P protocol
addressing the distribution of large sized data to several end
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systems in an efficient manner. For the ease of deployment,
scalability, adaptivity to dynamic peer arrivals/departures, and
also increasing the utilization of the system resources, it employs
mechanisms such as adjusting protocol parameters according to
the bandwidth usages dynamically. Moreover, SeCond peers
continuously update their views to maximize the cooperation
among themselves. Another distinguishing feature of SeCond is
the deployment of epidemic dissemination scheme for state
propagation of available blocks and initiation of block transmis-
sions. In SeCond, at each predefined time interval, each peer sends
gossip messages to inform other peers about newly downloaded
blocks.

We have developed a simulation model of SeCond and
analyzed its behavior via several simulations for different peer
arrival patterns. Performance metrics such as average download
time, load on the primary seed, uplink/downlink utilization, and
communication overhead have been studied in terms of protocol
parameters. Smart peer policy and parallel upload limit para-
meters are the key features of our system. We examine these
features together with the gossip interval parameter. Although
increasing the gossip interval parameter reduces the overhead,
it decreases uplink/downlink utilization. Smart peer policy
increases the utilization dramatically.

A well known and widely used P2P content distribution system
is BitTorrent which we also model and compare as a benchmark.
A comprehensive performance evaluation of our system, and its
comparison with the BitTorrent system model have been accom-
plished for a wide range of scenarios. Performance analysis
results include scalability analysis for different arrival/departure
patterns, flash-crowd scenario, overhead analysis, and fairness
ratio. SeCond peers download the file faster compared to
BitTorrent peers for most of the scenarios and the protocol is as
fair as BitTorrent although it has no explicit strategy addressing
free-riding. We show that SeCond is a scalable and adaptive
protocol which takes the heterogeneity of the peers into account.
Furthermore, SeCond has comparatively lower protocol overhead
than BitTorrent which is one of the major reasons behind the
lower file download time of SeCond peers.

An analytical fluid model is used to approximate the behavior
of SeCond. We have compared the results obtained through
simulations with the fluid model and shown that simulation
results are consistent with the analytical predictions for various
arrival patterns. For the flash crowd scenario, analytical studies of
epidemic dissemination can provide a lower bound for the
expected dissemination time and average delay.

As future work, we consider enhancing our protocol with a
dynamic gossip interval adjustment mechanism to alter the rate
of gossip messages. In the long term, we plan to implement
SeCond’s peer software to deploy on the Internet in order to
evaluate the performance of the protocol in real network
conditions.
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