
Application of the Java Message Service
in Mobile Monitoring Environments

Martin Kuehnhausen and Victor S. Frost

ITTC-FY2010-TR-41420-18

December 2009

Copyright © 2010:
The University of Kansas
2335 Irving Hill Road, Lawrence, KS 66045-7559
All rights reserved.

Project Sponsor:
Oak Ridge National Laboratory

Award Number 4000043403

Technical Report

The University of Kansas

i

Table of Contents

Table of Contents.. i
List of Figures ... i
List of Tables ... ii
Abstract .. 1
I. Introduction .. 1
II. Problem Area .. 1

A. Asynchronous Communication... 2
B. Message Security and Integrity ... 2
C. Scalability.. 2

III. Related Work ... 2
A. Java Message Service.. 2
B. Web Services... 2

IV. Proposed Solution.. 3
A. Java Message Service.. 3
B. Transportation Security SensorNet ... 4

V. Results... 8
A. Stationary .. 9
B. Mobile ... 9

VI. Conclusion ... 9
Acknowledgment ... 10
References.. 10

List of Figures

Figure 1: JMS administration according to [22] single consumer that have not been received. .. 4
Figure 2: Point-to-Point messaging .. 4
Figure 3: Publish/Subscribe messaging when the message is sent and vice versa. 4
Figure 4: TSSN physical architecture adapted from [25] ... 5
Figure 5: Mobile Rail Network message overview from [20] specifications............................... 5
Figure 6: Virtual Network Operation Center message overview from [20] 6
Figure 7: JMS transport receiver configuration in axis2.xml ... 7
Figure 8: JMS transport sender configuration in axis2.xml.. 7
Figure 9: JMS service queue name configuration in services.xml ... 7
Figure 10: ActiveMQ broker configuration in activemq.xml... 7
Figure 11: ActiveMQ transport connector configuration in activemq.xml 7
Figure 12: ActiveMQ MRN network connector configuration in activemq.xml 8
Figure 13: One-way JMS message transmission messages to be forwarded in both directions... 8
Figure 14: Two-way JMS message transmission ... 8
Figure 15: Route for longhaul field trial, route starts at San Luis Potosi and ends approximately
 210 miles down the track .. 8
Figure 16(a): ActiveMQ message queue for stationary scenario Initial test 9
Figure 16(b): ActiveMQ message queue for stationary scenario Follow-up tests........................ 9
Figure 17: ActiveMQ message queue for mobile scenario... 10

ii

List of Tables

Table I: Elapsed Time From MRN to VNOC During Trial in Seconds .. 9
Table II: Comparison of Elapsed Time From MRN to VNOC of Longhaul to Shorthaul Trial in
 Seconds ... 9

1

Application of the Java Message Service
in Mobile Monitoring Environments

Martin Kuehnhausen, Graduate Student Member, IEEE and Victor S. Frost, Fellow, IEEE

Abstract—Distributed systems and in particular sensor net-
works are in need of efficient asynchronous communication,
message security and integrity, and scalability. These points
are especially important in mobile environments where mobile
remote sensors are connected to a control center only via
intermittent communication, e.g. via satellite link. We present
an approach that is able to deal with the issues that arise in
such scenarios. In particular we focus on providing a solution
that allows for flexible and efficient cargo monitoring on trains.

The Java Message Service presents a flexible transport layer
for asynchronous communication that provides a transparent
store-and-forward queue mechanism for entities that need to be
connected to each other. Previously JMS was primarily used
in always-connected high-bandwidth enterprise communication
systems. We present the advantages of using JMS in a mo-
bile bandwidth limited and intermittently connected monitoring
environment and provide a working implementation called the
Transportation Security SensorNet (TSSN). It makes use of an
implementation of JMS called ActiveMQ that is used here to
enable monitoring of cargo in motion along trusted corridors.

Results obtained from experiments and a field trial show
that using JMS provides not just a practical alternative to
often custom binary communication layers but a better and
more flexible approach. One reason for this is transparency.
Applications on both communication ends only need to implement
JMS connectors while the remaining functionality is provided
by the JMS implementation. Another benefit arises from the
exchangeability of JMS implementations.

In utilizing JMS we present a new and flexible approach to
deal with challenges such as intermittent and low-bandwidth
communication in mobile monitoring environments.

Index Terms—Telemetry, Transport protocols, Intermittently
connected wireless networks, Communication system software,
Data communication, Software engineering

I. INTRODUCTION

THE primary use of Java Message Service (JMS) is in
always-connected high-bandwidth enterprise communi-

cation systems but its concepts and techniques are useful in
other scenarios as well. This paper describes the application
of JMS in mobile monitoring environments.

One of the main advantages of using JMS is the fact that
applications do not need to be modified to implement their
own store-and-forward or resend mechanisms. How this is
achieved is explained in detail later. Furthermore an example
of an implementation of a mobile monitoring system is given
that was field tested in stationary as well as intermittent mobile
scenarios.

M. Kuehnhausen and V. S. Frost are with the Information and Telecommu-
nication Technology Center, The University of Kansas, Lawrence, KS, 66045,
USA; Corresponding author: mkuehnha@ittc.ku.edu

This work was supported in part by Oak Ridge National Laboratory
(ORNL)—Award Number 4000043403. This material is also partially based
upon work supported while V. S. Frost was serving at the National Science
Foundation.

II. PROBLEM AREA

Whenever disparate systems are deployed in the field that
need to communicate with each other and a control center,
there exist particular problems that need to be addressed. Here
we used the following scenario as a motivating example.

Sensors are connected to cargo containers which they mon-
itor. A train is then used to transport these containers. The
sensors have limited capabilities and are managed locally by
a more powerful sensor node which has extended functionality
including a communication link back to a control center.
Whenever a sensor detects an event it notifies the sensor
node immediately. The sensor node then performs a simple
evaluation of the event and decides whether or not to send
it to the control center. In this paper we focus on the part
that comes next, sending messages to and receiving control
messages from the control center.

The communication link used may provide only intermittent
communication. Therefore, the sensor node must deal with
establishing the connection as well as transmitting messages.
Especially the latter can cause problems. In a synchronous
communication model the sensor node would only be able to
send one message at a time and block while waiting for its
acknowledgement. This is not feasible in this case because of
the intermittent connection, low bandwidth and high latency
of the communication link. An asynchronous communication
model overcomes this blocking problem and is therefore more
suitable. Furthermore, since messages cannot be send out
immediately due to the intermittent connectivity they need
to be stored. This is often done by implementing a queuing
mechanism inside of the sensor node.

It is also possible to send control messages such as location
or receive status inquiries from the control center to a specific
sensor node. Again, since there does not necessarily exist
an active connection to the sensor node messages need to
be queued. Hence, the applications in the control center
are responsible for implementing proper queuing and retry
mechanisms.

Security and message integrity are critical aspects of the
overall monitoring system. If thieves were able to tamper
with the message contents then they could easily spoof the
system. Security is essential and needs to be implemented in
each application that sends or receives messages as part of
the monitoring system. This brings up another issue, scalabil-
ity. Implementing asynchronous communication and security
components for each application in a small system may
work for experiments but is not feasible for large production
environments. In terms of the cargo monitoring scenario for
trains there could be many control centers, thousands of sensor

2

nodes and even more sensors on containers. This is a very
common scenario for sensor network deployments even though
the particular details of the deployments may be different.
In this paper we demonstrate that by using JMS in these
mobile monitoring environments it is possible to overcome
the common problems discussed above. In particular we focus
on the problems of asynchronous communication, message
security and integrity, and scalability.

A. Asynchronous Communication

Reliable communication between control centers and the
sensor networks cannot always be ensured. Additionally com-
munication is based on the form of underlying connectivity
that is provided. The connectivity may vary. The system could
use a 3G system when available and resort to the satellite
communication only when needed; exposing several issues.

First, message sizes should be small in order to accom-
modate for the slow speeds such as satellite communication
when needed. Possible optimizations are discussed in III-B4
but compression or conversion into binary formats are suitable
options here.

Second, in order to address reliable transmission of mes-
sages either a store-and-forward or a resend mechanism needs
to be implemented on both communication ends. The store-
and-forward technique in this context would mean that the
sensor networks need to hold to the data they capture until
connectivity is established. By contrast, in the resend scenario
they would attempt to transmit the data continuously or with
a backoff timer.

B. Message Security and Integrity

The data that is produced by sensor networks will likely be
sensitive and needs to be kept private. This is especially true
for systems whose main purpose is to provide monitoring of
cargo. Cargo information as well as status updates and events
should only be visible to authorized entities. Furthermore it
is critical that messages being transmitted cannot be tampered
with, for example control messages that allow the opening of
cargo containers.

In this sense it is also important to distinguish between
point-to-point and end-to-end security. Using transit networks
or message relay mechanisms is not possible when messages
are secured in a point-to-point manner because security may
be compromised at each individual connection point. However,
in end-to-end system security it is possible for messages to
pass through individual connection points. Another issue that
always needs to be kept in mind is that while control centers
often have adequate storage and computing power individual
sensors or sensor networks may not. This can be a challenge
when implementing security for the targeted scenarios.

C. Scalability

Sensor networks in general can be set up in two basic ways.
First, after an initial configuration they repeatedly report their
sensor data to a control center. Second, a control center sends
out messages to the sensors or sensor networks in order to

control their reporting or inquire for specific sensor data. Thus
efficient management and scalability can become an issue.

Even though the most common scenario is running a single
setup with one central control center or base station and
multiple sensors or sensor networks connecting to it, the
integration of multiple systems can be problematic. There are
issues in dealing with multiple control centers and multiple
sensor networks that need to be explored. This is especially
important when it comes to managing policies and subscrip-
tions properly.

III. RELATED WORK

A. Java Message Service

Musolesi et al. [1] present their experiences in implementing
a system called EMMA (Epidemic Messaging Middleware for
Ad hoc networks) based on JMS. In particular they identified
the need to adapt JMS in order to be applicable for mobile
ad hoc networks. Their approach consists in synchronization
of queues using a middleware layer that also manages reacha-
bility of individual nodes. For message delivery in partially
connected networks they make use of an approach called
epidemic routing which is described by [2] which works by
propagating messages to neighbors, their neighbors and so on.
In contrast the solution discussed here and implemented in the
TSSN is standards based using the original JMS specification
and therefore more compatible with other systems.

Vollset et al. [3] present a middleware platform built for
mobile ad-hoc networks. Their solution is “serverless” in the
sense that after an intial setup all the participating entities
have a local copy of the JMS configuration. Furthermore they
implement a new multicast protocol for delivering messages
on JMS topics to their subscribers. Their platform again is an
adaptation of the original JMS standard whereas the solution
presented here makes use of a specified and standardized
implementation and shows that JMS can be used unaltered.

In general the Java Message Service is primarily used in
always connected systems such as the one described by [4].
The Mission Data Processing and Control Subsystem (MPCS)
[4] utilizes JMS for different levels of event notifications.
However, the communication link with the flight systems is
custom. Although an extreme case, it seems that using the
Java Message Service for establishing mobile connectivity is
undervalued. Another, more realistic example is the Remote
Real-time Oil Well Monitoring System [5] where clients
receive event notifications via JMS but the data that is collected
by the remote terminal units is sent to the data processing
station using a custom process.

B. Web Services

Service Oriented Architectures (SOA) present a flexible
approach to some of the problems mentioned earlier such as
message security and scalability. The idea is to implement
specific functionality in web services that communicate with
each other using standardized interfaces. Message exchanges
in general use the flexible SOAP message format [6]. This has
a number of advantages as for instance routing and security
are available as extensions to it. JMS is able to transmit SOAP

3

messages. Hence, applying JMS enables the use of web service
specifications in mobile monitoring environments.

1) WS-Addressing: The WS-Addressing core specification
by [7] and its SOAP binding by [8] defines how message
propagation can be achieved using the SOAP message format.
Usually the transport of messages is handled by the underlying
transport protocol but there are several advantages of storing
this transport information as part of the header in the actual
SOAP message. For example, it allows the routing of messages
across different protocols and management of individual flows
and processes within web services.

The Java Message Service uses a similar concept for its
addressing but its properties are adapted to the management
of messages in queues. However, since SOAP messages can be
transported over JMS flexible routing of messages is preserved.

2) WS-Security: The WS-Security specification as described
by [9] deals with the many features needed to achieve so-
called end-to-end message security. This provides security
throughout message routing and overcomes the limitations
of so-called point-to-point transport layer security such as
HTTPS. Furthermore, the specification aims to provide support
for a variety security token formats, trust domains, signature
formats and encryption technologies.

Whenever SOAP messages are transported using the Java
Message Service, WS-Security can be applied. In this scenario
JMS simply acts as a tunnel.

3) WS-ReliableMessaging: Without additional specifica-
tions like WS-ReliableMessaging [10] the delivery of SOAP
messages is based purely on best effort and cannot necessarily
be guaranteed. The Java Message Service provides several
mechanisms for dealing with message reliability issues. Within
transactions messages are acknowledged and if necessary
redelivered. When a message carries the persistent attribute,
JMS message brokers store the message in order to be able to
recover it in case of a failure.

4) Efficient Data Transmission: The SOAP 1.2 Primer [6]
includes references to several enhancements of the original
SOAP standard. In particular they deal with potential perfor-
mance problems and the need for binary data transport in
SOAP. The XML-binary Optimized Packaging (XOP) spec-
ification [11] defines the use of MIME Multipart/Related
messages provided by [12] to avoid encoding overhead that
occurs when binary data is used directly within the SOAP
message. XOP extracts the binary content and uses URIs to
reference it in the so-called extended part of the message.
An abstract specification that uses this idea is the Message
Transmission Optimization Mechanism (MTOM) [13].

Another extension of the SOAP standard is the Resource
Representation SOAP Header Block (RRSHB) [14] that allows
for caching of data elements using so-called Representation
header blocks. They contain resources that are referenced in
the SOAP Body which might be hard to retrieve or simply
referenced multiple times. Instead of having to reacquire them
over and over again, a service may choose to use the cached
objects which speeds up the overall processing time.

ActiveMQ, which is the JMS implementation that is used in
the Transportation Security SensorNet, allows several different
protocols (e.g. AMQP [15], OpenWire [16], REST [17], Stomp

[18], XMPP [19]), to be used for message transmission. By
default it uses the OpenWire protocol, an optimized binary
format for fast and efficient communication.

IV. PROPOSED SOLUTION

In order to be flexible and provide a suitable solution
for a mobile monitoring environment a transparent store-
and-forward approach is used here. A resend mechanism is
often implemented directly in the application which makes
it inflexible. However, the store-and-forward approach allows
for a more efficient and scalable centralized storage pool that
is automatically forwarding the messages.

How JMS can be applied effectively is described here
using the Transportation Security SensorNet (TSSN) [20] as
an example. The TSSN provides monitoring capabilities in
mobile environments and makes use of JMS. The TSSN uses
a SOA approach for monitoring cargo in motion along trusted
corridors. The system is built using web service specifica-
tions and utilizes a Java Message Service implementation for
connectivity between its Virtual Network Operation Center
(VNOC), the control center in this case, and the Mobile
Rail Networks (MRN), which contains the sensor nodes and
sensors, it monitors.

The TSSN uses the Java Message Service through one of
its open-source implementations called ActiveMQ which is
described in detail by Snyder et al. [21]. Each application in
the TSSN is a web service. These web services can be utilized
through their JMS addresses. ActiveMQ establishes a so-called
queue for each web service and uses these queues to store-
and-forward messages to them.

This queue approach has the advantage that applications do
not need to be modified and implement their own store-and-
forward or resend mechanisms. It is also transparent to clients
of the web services since apart from using another address, the
JMS address, interfacing with the web services stays the same.

In this paper we explain the basic concepts of JMS and in
particular how they relate to mobile monitoring environments
and one implementation, the TSSN. Furthermore the details
for the JMS implementation within the TSSN are discussed.

A. Java Message Service

The Java Message Service [22] provides a standardized
specification for synchronously and asynchronously transport-
ing messages using queues. Its implementation is vendor spe-
cific but the interfaces are clearly defined in the specification
so that in theory this is an open system where changing
vendors is possible. The following sections describe the Java
Message Service in detail.

1) Components: In the JMS context clients are called
producers when they create and send messages. The receiving
end is called a consumer. Note that a client can be both, a
producer and a consumer, at the same time. Clients connect
to JMS providers which are entities that have the specified
interfaces to send and receive messages.

Since most of the connections in general are point-to-point,
a so-called queue is the most commonly used destination
of a message. It contains messages from producers to a

4

JNDI Bindings

Client

JMS Provider1. Lookup

Object
Object

2. Connection

Fig. 1. JMS administration according to [22]

single consumer that have not been received. Within the
TSSN unique queues are used to represent the individual web
services. Messages are usually delivered in order First In, First
Out (FIFO) following the basic principle of a queue but this
is dependent on the underlying implementation of JMS.

Topics have multiple consumers and can have one or many
producers publishing messages. They are used in publish-
subscribe models and contain messages that have not yet been
published.

A message can be any object or data that needs to be
transported using JMS. The Java Message Service describes
messages as entities that consist of a header which contains
identification and routing information and a body carrying the
data. Additional properties such as application, provider or
standards specific properties can be attached to messages. This
is effectively used in providing things like security or reliable
messaging.

Note that since JMS per se does not define a message
format, implementation may vary significantly. For service
oriented architectures the agreed standard message format is
SOAP. Easton et al. [23] describe in detail how SOAP can be
used within the Java Message Service. Because the TSSN is
based on SOA and uses SOAP messages it is able use web
service specifications as part of JMS and therefore provide
features such as WS-Addressing and WS-Security as described
in III-B.

2) Java Naming and Directory Interface: In order to iden-
tify objects within the Java Message Service implementation
in a standardized way the specification makes use of the Java
Naming and Directory Interface (JNDI) Application Program-
ming Interface [24]. JNDI provides a directory service for
objects. This process is used for so-called connection factories
which are used to establish connections and destinations which
are either queues or topics in order to increase portability
and ease of administration. JMS clients look up objects and
use them in connections as shown in Figure 1. TSSN uses
local JNDI repositories for JMS lookups and a combination of
hostname and web service name for uniquely naming queues.

3) Messaging Models: JMS supports the two common mes-
saging models; point-to-point and publish-subscribe. These are
also called message domains. Both of them allow for true
asynchronous communication in which the message consumer
does not need to be connected to the producer at the time

Client ClientQueue
1. Produce 2. Consume

Fig. 2. Point-to-Point messaging

Client ClientTopic
2. Publish

Client1. Subscribe

Client1. Subscribe

3. Deliver

3. Deliver

1. Subscribe

3. Deliver

Fig. 3. Publish/Subscribe messaging

when the message is sent and vice versa.
a) Point-to-point: This messaging model makes use of

queues and is shown in Figure 2. Its main application is a
request-response type of message exchange. Messages in this
model are truly unique in the sense that once the consumer
received and acknowledged the message it is removed from the
queue. While there can be only a single consumer, messages
can be put on the queue by multiple producers. This is
the model used in the TSSN because message propagation
throughout the mobile monitoring system is done from one
web service to another.

b) Publish-subscribe: Whenever there is the need for
multiple consumers to receive messages, a subscription model
is useful. The consumers subscribe to a specific topic and
receive messages as soon as they are published by one or
multiple producers as shown in Figure 3. There exists no direct
connection between publishers and subscribers.

Two types of subscriptions are possible in this model.
The subscriber is either continuously connected to the topic
and checks for new publications or a durable subscription is
created in which the messages are kept within the topic while
the subscriber is not connected. Upon reconnection messages
are delivered to the subscriber.

In the TSSN the JMS publish-subscribe messaging model
is currently not used since publications are handled using
the web service standard WS-Eventing for SOAP messages.
However, JMS publish-subscribe presents a flexible approach
to scalability. Since switching between messaging models is
only based on configuration parameters and not on a different
implementation it is possible to use JMS publish-subscribe
effectively in mobile monitoring environments as well.

B. Transportation Security SensorNet

The Transportation Security SensorNet [20] as shown in
Figure 4 uses a Service Oriented Architecture approach for
monitoring cargo in motion along trusted corridors. The com-
plete system provides a web services based sensor manage-
ment and event notification infrastructure that is built us-
ing open standards and specifications. Particular functionality
within the system has been implemented in web services that
provide interfaces according to their respective web service

5

TDE
VNOC

Internet Cellularnetwork Satellite network
MRNGPS Receiver NotebookPC

DisplayalarmSMSalarm Sensor measurementsSensor alarmsSensor configurationsLocation information
Internet

Database
Shipment dataTrain & sensor IDsAlarmsLocation informationEmailalarm

Cargo seal Seal Interrogation Transceiver Comms. Transceivers
Fig. 4. TSSN physical architecture adapted from [25]

MRN

SensorNodeAlarmProcessor

VNOC

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

Alert
SensorNodeEvent

MRN_Alarm

SensorNodeStatus
Location

Subscription

Fig. 5. Mobile Rail Network message overview from [20]

specifications. This web services based implementation allows
for platform and programming language independence and
offers compatibility and interoperability with other systems.

The TSSN represents the integration of SOA, Open Geospa-
tial Consortium (OGC) specifications and sensor networks.
Previous systems and research focused either on the combina-
tion of SOA and OGC specifications or on OGC standards and
sensor networks. However, the TSSN shows that all three can
be combined and that this combination provides capabilities
to the transportation and other industries that have not existed
before. In particular, the preeminent lack of performance in
mobile sensor network environments has previously limited the
application of web services because they have been perceived
as too slow and producing a lot of overhead. The TSSN, as

shown by the results in [20], demonstrates that with proper
architecture and design the performance requirements of the
targeted scenario can be satisfied.

Furthermore, unlike existing proprietary implementations
the Transportation Security SensorNet allows sensor networks
to be utilized in a standardized and open way through web
services. Sensor networks and their particular communication
models led to the implementation of asynchronous message
transports in SOA and are supported by the TSSN.

Within the TSSN the Mobile Rail Network (MRN), which
is shown in Figure 5, represents a train-mounted sensor
network (sensors and sensor node) that monitors seals on
cargo containers. The MRN is able to receive control messages
such as when to start and stop monitoring. When an event is

6

MRN

VNOC

AlarmProcessor

AlarmReporting

StartMonitorSensors
StopMonitorSensors
getLocation

SetMonitoringState

MRN_Alarm

SensorManagement

Client

SensorNodeStatus
Location

getAllContacts
getAllAlarmContactMappings
getAllSmsProviders
getAllAlarms

Contacts
AlarmContactMappings
SmsProviders
Alarms

NOC_Alarm

startMonitoring
stopMonitoring
getLocation
setAlarmSecure

Status
Location
startMonitoring
 ServiceException

Subscription

TDE

ValidatedAlarmResponse
ShipmentQueryResponse

ValidatedAlarm
ShipmentQuery

Fig. 6. Virtual Network Operation Center message overview from [20]

detected it is transmitted from a sensor (seal) to the sensor
node where it is analyzed to determine whether or not to
send out a notification to the VNOC (Figure 6). Sensor
management and correlation of events with shipment and route
information is then performed in the VNOC. According to
specified mappings, people and organizations that subscribed
to these notifications then receive emails and/or sms messages
containing detailed information about the nature of the event.

In terms of the communication the critical link is between
the Mobile Rail Network and the Virtual Network Operation
Center because it cannot be guaranteed that there always exists
a link and hence an asynchronous communication model had
to be implemented. An approach that is able to deal with
message queuing on both ends of the communication is the
integration of the Java Message Service as the transport. The
TSSN implementation fully supports asynchronous communi-
cation using the so-called Enterprise Service Bus queues in
order to send and receive messages.

1) Axis2: The TSSN is based on the Apache Axis2 web ser-
vices software stack. By default Axis2 uses request-response
in a synchronous manner. This means that the client has to
wait and is therefore blocking until it receives the response
from the service. In certain scenarios, for instance when the
service needs a large amount of processing time, the client
can experience timeouts. Furthermore, in the TSSN where
the MRN is only intermittently connected to the VNOC,
synchronous communication is not feasible.

A better option is to make the communication between

services asynchronous. This resolves timeout issues and deals
with connections that are only temporary. The following
aspects were taken into consideration when developing the
asynchronous communication for this case:

a) Client: The client needs to make changes from syn-
chronous to asynchronous messaging in regard to how the
request is sent out. Axis2 provides a low-level non-blocking
client API and additional methods in the service stubs that
allow callbacks to be registered. These so-called AxisCallbacks
need to implement two methods, one that is being invoked
whenever the response arrives and the other to define what
happens in case of an error.

b) Transport Level: Depending on the transport protocol
that is being used, Axis2 supports the following approaches.

• One-way uses one channel for the request and another
one for the response such as used in the Simple Mail
Transfer Protocol (SMTP)

• Two-way allows the same channel to be used for the
request and the response, for example HTTP

For asynchronous communication to work in the TSSN the
two-way approach was modified as part of [20] through the
Axis2 client API which provides the option of using a separate
listener. This tells the service that it is supposed to use a new
channel for the response. In order to correlate request and
response messages Axis2 makes use of the WS-Addressing
specification, in particular the RelatesTo field.

c) Service: The final piece of asynchronous communica-
tion is to make the service processing asynchronous as well.

7

<transportReceiver name="jms"
class="org.apache.axis2.transport.jms.JMSListener">
<parameter name="myTopicConnectionFactory">
<parameter name="java.naming.factory.initial">
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</parameter>
<parameter name="java.naming.provider.url">
tcp://localhost:61616</parameter>
<parameter name="transport.jms.ConnectionFactoryJNDIName">
TopicConnectionFactory</parameter>

</parameter>

<parameter name="myQueueConnectionFactory">
<parameter name="java.naming.factory.initial">
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</parameter>
<parameter name="java.naming.provider.url">
tcp://localhost:61616</parameter>
<parameter name="transport.jms.ConnectionFactoryJNDIName">
QueueConnectionFactory</parameter>

</parameter>

<parameter name="default">
<parameter name="java.naming.factory.initial">
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</parameter>
<parameter name="java.naming.provider.url">
tcp://localhost:61616</parameter>
<parameter name="transport.jms.ConnectionFactoryJNDIName">
QueueConnectionFactory</parameter>

</parameter>
</transportReceiver>

Fig. 7. JMS transport receiver configuration in axis2.xml

<transportSender name="jms"
class="org.apache.axis2.transport.jms.JMSSender" />

Fig. 8. JMS transport sender configuration in axis2.xml

This is done by specifying so-called asynchronous message
receivers in the services configuration in addition to the
synchronous ones.

Axis2 then uses the ReplyTo field of the WS-Addressing
header in the client as a sign to send an immediate acknowl-
edge of the request back to it. Furthermore it processes the
request in a new thread and sends the response out when
it is done, allowing the communication to be performed in
asynchronous manner completely.

There exist various forms of transport protocols that are
suitable for asynchronous communication. Axis2 by default
supports HTTP, SMTP, and JMS as asynchronous transports
but other transports can easily be defined and plugged in.

In order to allow for the TSSN to use JMS as a transport
the following items were added to the Axis2 configuration
by the authors. First, a so-called transport receiver for JMS
as shown in Figure 7. This represents the receiving end of
the communication and allows web services and clients to
consume JMS messages by creating a JMS address for them.
In particular, connection factories are set up for queues and
topics. Second, a transport sender shown in Figure 8 allows
JMS messages to be produced.

Axis2 by default sets up a queue for each of the services
and uses the service name as the queue name. Since a service
is not necessarily unique this name can be changed in the
service configuration (Figure 9). For the Mobile Rail Network
this naming consists of the node id which is used to represent
a sensor network and the name of the service. For the Virtual
Network Operation Center the name is made up of the host

<parameter name="transport.jms.ConnectionFactory">
myQueueConnectionFactory</parameter>
<parameter name="transport.jms.Destination">
TSSN_NODE/2222/MRN_SensorNode</parameter>

Fig. 9. JMS service queue name configuration in services.xml

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="mrn2222"
dataDirectory="\${activemq.base}/data">
...
</broker>

Fig. 10. ActiveMQ broker configuration in activemq.xml

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61616" />

<transportConnector name="ssl"
uri="ssl://localhost:61617"/>

</transportConnectors>

Fig. 11. ActiveMQ transport connector configuration in activemq.xml

on which the service is run and its name. This makes it
possible to easily identify queues and avoid misconfiguration
of ActiveMQ while also offering a naming scheme that is
scalable.

2) ActiveMQ: Apache ActiveMQ is an open source imple-
mentation of the Java Message Service and is used by the
TSSN for JMS messaging. A detailed introduction is given
by Snyder et al. [21]. It is a JMS message broker mostly
used in enterprise systems where high bandwidth connectivity
is a given and throughput is most important. Note that the
version used within the TSSN had to be modified by the
authors because ActiveMQ could not work correctly without
an existing and permanent Internet connection. However, being
able to function without constant connectivity is essential in
mobile monitoring environments. For example, the connection
between the Virtual Network Operation Center and the Mobile
Rail Networks in the TSSN may be intermittent.

The following sections explain the important components of
ActiveMQ that are used in the TSSN and provide configuration
details.

a) Broker: A broker is responsible for managing queues
and topics. It receives message from producers which connect
to it and delivers them to the according consumers. The
configuration for a broker at a Mobile Rail Network is shown
in Figure 10.

b) Transport Connectors: Brokers allow producers and
consumers to use various protocols to connect to it. In Ac-
tiveMQ these connectivity entities are defined as transport
connectors. The TSSN configures the services and clients use
TCP in order to connect to the broker (Figure 11). Another use
of the specified protocols is for inter-broker communication
which is explained in detail later.

c) Network Connectors: Multiple brokers can form a
network of brokers using network connectors. This is allows
the use of distributed queues and is the setup that is used to
connect Virtual Network Operation Center and Mobile Rail
Networks. In order to be flexible the configuration of a so-
called network bridge is initiated by the Mobile Rail Networks
(Figure 12). Establishing a duplex connection then enables

8

<networkConnectors>
<networkConnector
name="MRN2222network"
uri="static://(tcp://laredo.ittc.ku.edu:61616)?
initialReconnectDelay=5000&
useExponentialBackOff=false"
duplex="true"
dynamicOnly="false"
networkTTL="5"/>

</networkConnectors>

Fig. 12. ActiveMQ MRN network connector configuration in activemq.xml

Service Service

Distributed Queue

Service
end

Service
end

2.
1.

3.

Fig. 13. One-way JMS message transmission

messages to be forwarded in both directions. The advantage
here is that the VNOC does not need to be reconfigured every
time a new MRN is set up.

ActiveMQ makes use of the OpenWire protocol [16] which
is an optimized binary compressed format tailored to efficient
management of JMS queues and topics as well as network
connectivity. This is another advantage of using ActiveMQ
since it makes sure that communication between brokers is
bandwidth efficient which is essential for slow and unstable
connections such as satellite links.

d) Distributed Queues: Connections from the VNOC
to the MRN and vice versa are point-to-point which corre-
sponds to queues in the Java Message Service. Queues can
be distributed across several brokers. Whenever the brokers
are connected to each other they exchange information about
which broker has the consumer and the other brokers forward
their queue messages to that broker. The two common types of
message exchanges are explained in the following paragraphs.

Notification messages require only one-way communication
as shown in Figure 13. Within the TSSN a web service acts
as a producer and puts the notification onto the queue which
corresponds to the web service it wants to notify. This is done
by using the specified transport connector to connect to the
local broker and deliver the message to it. The broker then
puts the message on the queue end that it manages. Whenever
the broker can contact the queue end with the consumer
it forwards the message. The receiving web service uses a
listener to detect when its queue at the broker contains new
messages. It then uses its local transport connector to consume
the notification.

Control messages that are sent by the VNOC to the MRN
are good examples of two-way communications. As shown
in Figure 14 in a request-response scenario the client creates
a temporary queue at its local broker that only itself knows
about. This is where the response message will be put. The
request then follows the usual path from the local transport
connector to the local broker, from the local broker to the
broker with the specified consumer and then using the remote
transport connector to the according web service. The JMS
message that is transmitted contains a ReplyTo field with the

Client Service

Distributed Queue

Client
end

Service
end

2.
1. 3.

Distributed Temporary Queue

Client
end

Service
end

5. 4.6.

Fig. 14. Two-way JMS message transmission

Fig. 15. Route for longhaul field trial, route starts at San Luis Potosi and
ends approximately 210 miles down the track

temporary queue that is used for the response. The response
is then sent to back using the web service’s local transport
connector, local broker, remote broker until it is consumed
from the temporary queue by the original client.

In the TSSN all of the queue creation, message queuing
and brokering is transparent to the web services. Whenever
asynchronous communication using the Java Message Service
is required the clients and web services simply use JMS
addresses instead of the default HTTP ones which can be set
in the their configuration files. This makes the solution very
scalable and flexible since a store-and-forward mechanism
does not need to be implemented in each web service but
is provided by an ActiveMQ JMS message broker. This holds
true not only for Service Oriented Architectures that make use
of web services but is also applicable to other systems.

V. RESULTS

The described system above has been successfully tested in
a field trial. Here are results from two scenarios which were
explored: a stationary scenario and a mobile scenario, carried
out by mounting the equipment onto a train. Throughout the
experiments communication between the VNOC and the MRN
in the TSSN is using a satellite link, in this case Iridium at
2.4 kb/s. Both scenarios were performed as part of a longhaul
trial in Mexico (see Figure 15).

9

1

2

3

4

5

6

0 300 600 900 1200

ActiveMQ Message Queue

Bridge established

On Queue in sec

Time in seconds from 2009-07-29 12:45:00

M
es

sa
g

e

(a) Initial test

1

2

3

4

5

6

7

8

0
300

600
900

1200
1500

1800
2100

2400
2700

3000
3300

3600
3900

4200
4500

4800
5100

5400
5700

ActiveMQ Message Queue

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

On Queue in sec

Time in seconds from 2009-07-29 14:55:00

M
es

sa
g

e

(b) Follow-up tests

Fig. 16. ActiveMQ message queue for stationary scenario

A. Stationary

Figures 16a and 16b show tests results acquired from when
the MRN was set up in a rail yard but not mounted on
a train and not moving. The time each message spent on
the distributed queues as well as when the MRN and the
VNOC brokers had a JMS network bridge established and
were therefore fully connected is displayed. It can be seen
that while all messages were successfully transmitted the time
a message was on a queue is dependent on the quality of the
satellite connection. Only once the satellite connection is stable
enough for ActiveMQ to establish a network bridge messages
can be transmitted.

B. Mobile

The more interesting scenario is to use TSSN as a mobile
monitoring environment. For this purpose the MRN was
deployed on a train and sensors attached to cargo containers.
Figure 17 shows results of roughly the first hour (8:30-
9:30am July 30th 2009) of the longhaul trial along the path
shown in Figure 15. Due too a hardware problem after about
9:30am the system clock synchronization is significantly off
and the remaining data, especially time measurements, cannot
be analyzed. Therefore, only the time before the hardware
issue occurred is shown in Figure 17. However, it is important
to note that the TSSN kept operating correctly for more than
32 hours and ActiveMQ was successfully transmitting and
receiving messages.

Figure 17 shows in detail when messages were put on
a queue, when they were consumed and at which time the
JMS network bridge, actual connectivity, was established.
A comparison of times message required to be transmitted
from the MRN to the VNOC is shown in Table I. Whenever
connectivity, in ActiveMQ a so-called bridge, is established
the actual message transmission takes about 11.6 seconds
on average. This is in stark contrast to when the satellite
link is down and needs to be established before sending out
messages. In that case it took 616.2 seconds on average with

TABLE I
ELAPSED TIME FROM MRN TO VNOC DURING TRIAL IN SECONDS

Minimum Maximum Mean Median Std. Dev

Link Down 31.29 1273.1 616.26 553.23 411.36

Link Up 5.85 40.53 11.62 6.02 10.77

Average Case 5.85 1273.1 481.90 430.97 441.86

TABLE II
COMPARISON OF ELAPSED TIME FROM MRN TO VNOC OF LONGHAUL TO

SHORTHAUL TRIAL IN SECONDS

Minimum Maximum Mean Median Std. Dev

Shorthaul 0.45 2.90 1.89 1.94 0.62

Longhaul 5.85 1273.1 481.90 430.97 441.86

the slowest message being received 1273.1 seconds or more
than 21 minutes after it was sent.

The key characteristic here is the availability of the satellite
link. The trial was performed in a mountainous environment
where the satellite view was partially obstructed and hence the
times measured may not be the same in a different geographic
region. Looking at the average case of about 7 minutes per
message transmission though the system is found to be in
range of mobile monitoring environments.

A comparison of these results to a previous shorthaul trial
described in [20] is shown in Table II. During the shorthaul the
MRN was continuously connected to the VNOC using a GSM
modem with a peak throughput of about 700 kb/s. Looking at
the minimum times and assuming this as the best case scenario
the satellite configuration is slower by a factor of about 13.

VI. CONCLUSION

As discussed in the previous sections the approach of
using JMS in mobile monitoring environments works. We
showed that Java Message Service technology can be utilized
to provide drop-in connectivity between disparate and delay
tolerant systems. Previously JMS was primarily used in always
connected high bandwidth scenarios but its concepts and

10

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900

ActiveMQ Message Queue

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Bridge established

Seconds on queue

Time in seconds from 2009-07-30 08:29:00

M
es

sa
g

e

Fig. 17. ActiveMQ message queue for mobile scenario

techniques are useful in mobile monitoring environments as
well.

JMS provides a transparent asynchronous communication
model that is scalable and flexible since a store-and-forward
mechanism does not need to be implemented in each com-
ponent but is provided by a JMS message broker. This is
done using distributed queues that are managed by network
connectors as described above.

Since JMS allows the transport of all types of messages
including SOAP messages, web service specifications were
used here to provide features such as end-to-end message
security and integrity. In terms of scalability JMS makes it pos-
sible to connect disparate systems with limited effort without
having to implement store-and-forward, resend mechanisms
and security again and again. Furthermore, JNDI and support
for different messaging models enhance scalability for JMS
based systems.

In this paper we presented a new and flexible approach to
deal with challenges such as intermittent and low-bandwidth
communication in mobile monitoring environments. This ap-
proach is to utilize the features that the Java Message Service
provides to address the issues of asynchronous communica-
tion, message security and integrity, and scalability. We have
shown that this is possible and presented an implementation
of a mobile monitoring system called TSSN that successfully
uses the approach.

ACKNOWLEDGMENT

This work was supported in part by Oak Ridge National
Laboratory (ORNL) Award Number 4000043403. This mate-
rial is also partially based upon work supported while V. S.
Frost was serving at the National Science Foundation.

REFERENCES

[1] M. Musolesi, C. Mascolo, and S. Hailes, “Adapting asynchronous mes-
saging middleware to ad hoc networking,” in MPAC ’04: Proceedings of
the 2nd workshop on Middleware for pervasive and ad-hoc computing.
New York, NY, USA: ACM, 2004, pp. 121–126.

[2] A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected
Ad Hoc Networks,” Duke University, Tech. Rep., 2000.

[3] E. Vollset, D. Ingham, and P. Ezhilchelvan, “JMS on Mobile Ad-Hoc
Networks,” in In Personal Wireless Communications (PWC. Springer-
Verlag, 2003, pp. 40–52.

[4] D. Allard, “Development of a ground data messaging infrastructure for
the mars science laboratory and beyond,” in Aerospace Conference, 2007
IEEE, March 2007, pp. 1–8.

[5] L. Hongsheng, W. Yu, D. Yongzhong, and P. Zhongxiao, “Implemen-
tation of network-computing and nn based remote real-time oil well
monitoring system,” in Neural Networks and Brain, 2005. ICNN&B ’05.
International Conference on, vol. 3, Oct. 2005, pp. 1810–1814.

[6] Y. Lafon and N. Mitra, “SOAP version 1.2 part 0: Primer (second
edition),” W3C, W3C Recommendation, Apr. 2007, http://www.w3.org/
TR/2007/REC-soap12-part0-20070427/.

[7] M. Gudgin, M. Hadley, and T. Rogers, “Web services addressing 1.0
- core,” W3C, W3C Recommendation, May 2006, http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509.

[8] M. Gudgin, M. Gudgin, M. Hadley, T. Rogers, T. Rogers, and
M. Hadley, “Web services addressing 1.0 - SOAP binding,”
W3C, W3C Recommendation, May 2006, http://www.w3.org/TR/2006/
REC-ws-addr-soap-20060509.

[9] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-Baker,
“Web Services Security: SOAP Message Security 1.1 (WS-Security
2004),” OASIS, OASIS Standard, Feb. 2006, http://docs.oasis-open.org/
wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf.

[10] P. Fremantle, S. Patil, D. Davis, A. Karmarkar, G. Pilz, S. Winkler,
and mit Yalinalp, “Web Services Reliable Messaging (WS-
ReliableMessaging) Version 1.1,” OASIS, OASIS Standard, Jun. 2007,
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.
pdf.

[11] N. Mendelsohn, H. Ruellan, M. Gudgin, and M. Nottingham, “XML-
binary optimized packaging,” W3C, W3C Recommendation, Jan. 2005,
http://www.w3.org/TR/2005/REC-xop10-20050125/.

[12] E. Levinson, “The MIME Multipart/Related Content-type,” RFC
2387 (Proposed Standard), Aug. 1998. [Online]. Available: http:
//www.ietf.org/rfc/rfc2387.txt

11

[13] M. Nottingham, H. Ruellan, N. Mendelsohn, and M. Gudgin,
“SOAP message transmission optimization mechanism,” W3C,
W3C Recommendation, Jan. 2005, http://www.w3.org/TR/2005/
REC-soap12-mtom-20050125/.

[14] M. Gudgin, Y. Lafon, and A. Karmarkar, “Resource representation
SOAP header block,” W3C, W3C Recommendation, Jan. 2005, http:
//www.w3.org/TR/2005/REC-soap12-rep-20050125/.

[15] “Advanced Message Queuing Protocol (AMQP) version 0-10 Specifica-
tion,” Specification, 2009, http://www.amqp.org.

[16] “OpenWire Version 2 Specification,” Apache ActiveMQ, Specification,
2009, http://activemq.apache.org/openwire-version-2-specification.html.

[17] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[18] J. Strachan, “Stomp Protocol Specification, Version 1.0,” FuseSource,
Specification, 2005, http://stomp.codehaus.org/Protocol.

[19] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 3920 (Proposed Standard), Internet Engineering Task Force,
Oct. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3920.txt

[20] M. Kuehnhausen, “Service Oriented Architecture for Monitoring Cargo
in Motion Along Trusted Corridors,” Master’s thesis, University of
Kansas, Jul. 2009.

[21] B. Snyder, D. Bosanac, and R. Davies, ActiveMQ in Action. Manning
Publications, 2009.

[22] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java(TM)
Message Service Specification,” Sun Microsystems, Specification, 2002,
http://java.sun.com/products/jms/.

[23] P. Easton, B. Mehta, and R. Merrick, “SOAP over java message service
1.0,” W3C, W3C Working Draft, Jul. 2008, http://www.w3.org/TR/2008/
WD-soapjms-20080723.

[24] “Java Naming and Directory Interface Application Programming Inter-
face (JNDI API),” Sun Microsystems, Specification, 1999, http://java.
sun.com/products/jndi/.

[25] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,
L. S. Searl, E. Komp, M. Zeets, J. B. Evans, and G. J. Minden, “Ex-
periences from a Transportation Security Sensor Network Field Trial,”
Information Telecommunication and Technology Center, University of
Kansas, Lawrence, KS, Tech. Rep. ITTC-FY2009-TR-41420-11, June
2009.

