
 Repositorio Institucional de la Universidad Autónoma de Madrid
https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Journal of Network and Computer Applications 41 (2014): 65-79

DOI: https://doi.org/10.1016/j.jnca.2013.10.011

Copyright: © 2013. This manuscript version is made available under the CC-
BY-NC-ND 4.0 licence http://creativecommons.org/licenses/by-nc-nd/4.0/

 El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Experience applying Language Processing techniques to

develop educational software that allow active learning

methodologies by advising students

Abstract

This paper is focused on those systems that allow students to build their own
knowledge by providing them with feedback regarding their actions while
performing a problem based learning activity or while making changes to
problem statements, so that a higher order thinking skill can be achieved.
This feedback is the consequence of an automatic assessment. Particularly,
we propose a method that makes use of Language Processor techniques for
developing these kinds of systems. This method could be applied in subjects
in which problem statements and solutions can be formalised by mean of a
formal language and the problems can be solved in an algorithmic way.

The method has been used to develop a number of tools that are partially
described in this paper. Thus, we show that our approach is applicable in
addressing the development of the aforementioned systems. One of these
tools (a virtual laboratory for language processing) has been in use for several
years in order to support home assignments. The data collected for these
years are presented and analysed in this paper. The results of the analysis
confirm that this tool is effective in facilitating the achievement of learning
outcomes.

Keywords: Environment for Active Learning, Formal Languages
Techniques, Automatic Assessment

1. Introduction

One of the main learning objectives of any teaching methodology is to
allow students to achieve higher order thinking skills (Bloom (1956); Ander-
son and Krathwohl (2001)) while they acquire knowledge and develop cor-
responding intellectual capabilities. To achieve this objective, teachers, lec-
turers and professors can use several teaching-learning methodologies (Oser

Preprint submitted to Journal of Network and Computer Applications June 13, 2013

and Baeriswyl (2001)). Education in the fields of Science and Engineering
usually incorporate learner-centred education (Norman and Spohrer (1996)).
The most widespread teaching-learning methodology usually merges theoret-
ical lectures and practical laboratory sessions (or virtual laboratory sessions)
in order to provide students an active learning environment (Bonwell and
Eison (1991); McConnell (1996)), by applying a Problem Based Learning
(PBL) approach (Dewey (1922)). Some researches have pointed out that
this approach facilitates more effective and improved learning, whereby stu-
dents are involved in learning activities that require problem solving (Eden
et al. (1996); Makonnen (2000)). Home assignments are usual tasks to in-
volve students in problem based activities. However, it has not been possible
to give individual feedback given the current resources (Salmela and Tarhio
(2004)).

Because Information Technologies can help to achieve the abovemen-
tioned higher order thinking skills (Churches (2008)), students can benefit
from the use of Computer Aided Learning (CAL) environments. Our re-
search will focus particularly on those systems that aid students in building
their own knowledge by providing feedback regarding the consequences of
their actions while engaged in a learning activity. In these systems, feedback
is the foundation for the building of knowledge (Gordijn and Nijhof (2002)),
as students can modify and improve the solutions they propose (Bravo et al.
(2009)). In this regard, the studies of Kumar (2004) suggest that systems
which provide any kind of feedback to students are more effective than those
that do not, and they can be used as a supplement to classroom instruction
(Fernandes and Kumar (2005)). In addition, Sanders and Hartman (1987)
noticed that when learners observed the assessment of their assignments, it
helped them to justify their choices when solving a problem by evaluating
the advantages and disadvantages of each possible choice.

Furthermore, feedback regarding a student’s assignments is not only use-
ful for that student, but also for the system, so that it can guide the stu-
dent’s learning process. This is the case with Intelligent Tutoring Sys-
tems (ITS) (Murray (1999, 2003)) and Adaptive Hypermedia Systems (AHS)
(Brusilovsky and Peylo (2003)), where the system sets the learning-activity
flow as a consequence of the assessment of what students deliver on specific
assignments. Therefore, in systems of this kind, feedback can be used: (1) to
assess the degree in which the objectives are being achieved in the learning
process; (2) to determine whether there is a need for replanning the learning
activities; (3) to adapt the learning process to a student’s specific cognitive

2

characteristics (Jurado et al. (2008)).
In addition, to allow students to test more alternatives, we hypothesise

that they must be able to introduce their own changes to the statement of
the problem, so that higher order thinking skills can be achieved. Thus,
taking Bloom’s Taxonomy (Bloom (1956)) into consideration, in which the
thinking skills order is categorised as: knowledge; comprehension; applica-
tion; analysis; synthesis; and evaluation; and allowing students to test as
many alternatives as they wish, and even to introduce their own proposals of
assignment in order to validate them, we could state that they are working
in the higher order thinking skills: (1) in the application level, because they
are able to use their knowledge to solve an assignment; (2) in the analisys
and synthesis levels, due to the fact that they are able to create new as-
signment statements; (3) in the evaluation level, because they are be able to
corroborate the accuracy of their evaluation for a specific solution.

Therefore, the aim of our research has been to identify a formal tech-
nique that facilitates the building of systems which allow students to specify
problem statements, to introduce alternatives solutions to problems and to
analyse the corresponding evaluation by mean automatic assessment. This
evaluation will provide the corresponding feedback to students and, conse-
quently, they will be able to identify possible mistakes in both the formali-
sation of the problem and the solution.

Thus, in this paper, we will present an approach that makes use of Lan-
guage Processor techniques for designing and developing educational soft-
ware tools that allow students to formalise problem statements, to express
possible solutions and to evaluate them. These tools could be applied in
those subjects where the problem statement and the solution can be for-
malised through a formal language, and where the problem can be solved
by means of a tractable algorithm to efficiently compute the solution to the
problem. In the designed formal languages, their semantic will be syntax-
driven. Therefore, the semantic analysis will be carried out directly into the
parsing process.

In order to have the corresponding application frameworks to test our
approach, we have selected three different engineering courses: Formal Lan-
guages and Automata Theory, Language Processors, and Electronic Circuits.
Therefore, we have enough scenarios to make a preliminary test of the ver-
satility of our proposal. In this way, as example to clarify our explanation,
we will expose our approach by showing the developed tools for the above-
mentioned courses.

3

This paper is organised as follows: firstly, an overview of related works
is presented; secondly, our approach is described; followed by an example
of application of the techniques, which will show how our approach is ap-
plied; subsequently the experimental results of the last six academic years
are discussed; and finally, some conclusions are drawn.

2. Overview and Related Works

There are several approaches in addressing the problem of analysing the
solutions to assignments provided by students in several specific learning
domains. Thus, COALA (Jurado et al. (2009, 2012)), uses fuzzy logic to
assess programming assignments by comparing the tutor’s ideal solution with
that delivered by the students, taking into account the imprecision while
implementing it. Also, ViLLE Tool (Rajala et al. (2008)) includes techniques
and mechanisms to provide automatic assessment and feedback. However,
these tools are not used in user-defined domain courses. A good survey about
techniques used in this kind of system can be found in (Ala-Mutka (2005))
and (Rahman and Nordin (2007)). They are only applied to programming
learning courses.

Co-Lab (Bravo et al. (2009)) analyses similarities of objects, and the re-
lationships between students’ solutions and the ideal solution in a modelling
process for System Dynamics. DomoSim-TPC (Bravo et al. (2006)) uses a
meta-description for Domotics Designs in terms of types of objects, relation-
ships between them, rules for model building, behavior of component model,
etc. so that the students solutions meta-description is compared to the ideal
meta-description. KERMIT (Suraweera and Mitrovic (2002)) assesses stu-
dents solutions by using a knowledge base that consists of a set of constraints
for conceptual database design. In He et al. (2009), we see an approach that
makes a semantic assessment of summaries written by students, by merging
Information Extraction and Natural Language Processing.

The main restriction in each of these approaches is that all are dependent
on the inclusion of a database with predefined problems and their ideal so-
lutions as specified by experts. These systems must then match the solution
delivered by the student with the ideal solution for a specific problem. Each
approach implements its specific matching technique in order to detect the
differences and similarities between solutions in order to advise students of
what they are doing well, and what they are doing wrong. This situation re-
stricts each approach to specific domains, and limits them to a set of problem

4

assignments.
ACE is a system for automatically assessing assignments related to fi-

nite state automata and parsers (Salmela and Tarhio (2004)). This system
includes a client to perform assignments as well as verifiers to check them.
However, ACE is applied only to a specific domain. In addition, with ACE
the assignments can not be defined by students.

So far, we can see that there is no one approach that can be used for sev-
eral domains. Moreover, none of these approaches allow students to specify
new assignment specifications by themselves, apart from the system’s pre-
defined assignments. Thus, in the next section we will present an approach
that allows the specification of both the problem and the solution, by using
Language Processing techniques. With this approach, students will be able
to propose their own problems, as well as possible solutions to those prob-
lems, while the system gives advice regarding how the proposed solution fits
the proposed problem.

3. What is the proposed approach?

In this section, we present our proposed technique for designing and de-
veloping educational software tools that allow students to specify problem
statements, to introduce alternatives solutions to those problems, and to
receive evaluation results from the system. This feedback is essential for stu-
dents to assess how they are progressing, and it could be used by the tool
to guide students through the learning process. Moreover, the tool could
also be used by teachers as a classroom aid in order to present and illustrate
lessons, to receive immediate feedback in lectures, and to allow examples to
be modified accordingly so that it will help students understand them bet-
ter. This promotes a new method of working in class which breaks with the
classical pattern of classroom activity based mainly on one-way knowledge
transmission/reception of pre-elaborated concepts.

In the next subsection, we will explain the suggested technique in detail;
next we will present the architecture of the designed tools based on this
technique; and finally, we will enumerate some guidelines that help to use
the suggested technique to design and educational software tool.

3.1. Technique

The purpose here is to introduce what is needed to develop educational
software tools as we have just described and, subsequently, to present the

5

technique suggested to design and build such systems.
First, we need a powerful communication mechanism that allows the users

to precisely define problems or problems and their solutions. A mechanism
is needed to establish how to specify both problems, and solutions provided
by students. To determine how the tools input will be provided, we have
considered several alternatives such as by means of forms (Cole et al. (1998)),
by using diagrams (Rodger and Finley (2011); Tamagnini et al. (2011)), or
by using an input language. The main advantage of input via forms is that
it is a guided process which makes it ideal for users who are new to the
process, but the drawbacks are that interaction with the tool is slow and
the user has to work online. The diagram option is suitable for users who
are not specialists in the area, but it shares the same negative aspects as
input via forms. Moreover, it does not allow relating results between them,
which impedes the experimentation with them. It is for this reason that we
chose to use text written in a given formal language as the input of the tool.
Although this alternative forces the student to learn a language, it has the
major advantage of allowing students to formulate and build problems, and
propose solutions to those problems quite easily, even at home without the
need of computers. It is the most useful input method in helping students
to formalise problems and their solutions.

Next, we need a mechanism to understand the user input in order to
acquire the useful information, resolve the problems given and explain how
the solutions are reached. Moreover, these solutions should be used to check
whether the solutions submitted by users are correct. Then, having taken into
account the result of this evaluation, it is necessary to recommend actions
to the student. Moreover, the student should be allowed to interact with
the output during the explanation process. In this way, we promote active
learning, where the student is guided by the system.

The suggested technique to design and build educational software tools
with feedback capability consists of:

• A formal specification language to specify the problem or exercise for
which the student wants to obtain an expert resolution. Moreover,
it must allow students to specify their own proposed solutions. At
first, the designer of this language must define its syntactic rules by
using context-free rules and then associate each syntactic rule with its
corresponding semantic rule.

• A language processor for processing that language and acquiring the

6

information needed to resolve the problem and to evaluate the student’s
solution.

• A problem solver (that we will call Resolutor) to provide a solution to
each problem and to explain that solution. To achieve this, it generates
all the information needed to understand the system’s solution.

• A corrector to correct the exercises completed by students, give them
feedback, and point out what they have learned or failed to learn.

• An instructor to guide students in their learning process and to assign
learning activities. To achieve this, it is necessary to know whether the
students have grasped the concepts involved in the learning activity.

• A presenter to create the most appropriate view of the system out-
put, with the aim of allowing students to interact with the problem.
The tool could have animation and simulation capabilities to facilitate
comprehension of the subject.

Below, we describe the architecture that arises from the suggested tech-
nique.

3.2. Architecture of the System

Figure 1 illustrates the suggested system architecture for building educa-
tional software based on the aforementioned technique.

The architecture suggested focuses on modular capabilities and empha-
sises how the interactions between modules are organised. Here we present
each module of our application:

• Input Processor. This module receives the exercises (statements and
their solutions, optionally) proposed by the user (student or tutor).
Unlike the other modules, it has access to the given input. The aim
of this module is to check that the input is correct, that is, the input
is free of syntax errors (e.g. malformed strings), and semantic errors
(e.g. violation of restrictions on the content, for instance, two input
exercises with the same associate ID). If there are errors, the module
must communicate this to the user, giving as much information as
possible in order to help the user solve the problem (e.g. line where
the error is located, or guidance on what is occurring) and stop the

7

Figure 1: Functional system architecture.

8

process. On the contrary, if there are no errors, the module should
extract useful information for other modules. This information can be
sent by means of information flows or stored in data structures for later
use. On the other hand, the extracted information relates to exercises
to be solved and must be sent to the Problem Resolutor. Moreover,
if the user includes a proposed solution, that must also be sent to the
Corrector of Proposed Solutions. Finally, the module is based on a
Language Processor of a Formal Language which allows inputs for the
system to be defined.

• Problem Resolutor. The aim of this module is to invoke the algorithms
that provide solutions by using the information gathered by the Input
Processor module. Each kind of exercise has an associated algorithm
to resolve it. It is important to note that this module always generates
an answer at this point in the architecture. The output of this module
consists of the steps and temporal information needed to understand
the process to be followed in order to solve the problem. We recall
that one of the main objectives of the tool is to assist in the learning
process. The output information could be stored as an intermediate
form of representation to be processed (e.g. XML document) or be
stored in data structures for later use.

• Corrector of Proposed Solutions. This module analyses the solutions
provided by the user, which have been previously obtained by the Input
Processor. A second objective of this module is to compare these so-
lutions with those generated by the Problem Resolutor. Problems and
their proposed solutions must correspond, and this association is nor-
mally made by means of IDs. Secondly, the module generates a report
with the result of the correction process. The report shows students
errors and where they occurred. Subsequently, this information is sent
to the Learning Instructor.

• Learning Instructor. This module works as a student’s personal tutor
and as a guide in the learning process. According to the information
provided by the previous module, it should recommend learning activi-
ties, for instance, to study a particular concept or lesson, or to complete
more exercises of different kinds. In order to develop this module, a
mechanism is necessary to store a student’s status during the learning
process and the learning method to apply following a learning design

9

(IMS-GLC (2003); Koper and Tattersall (2005)). Moreover, the mod-
ule stores in a database what the student has completed and learned,
and the point in the global learning process in which the student is cur-
rently located. Thus, the system can guide the student on subsequent
occasions when he/she uses the tool. There must also be an element to
establish relationships between frequent errors and the learning actions
specifically intended to help students avoid those errors. Accordingly, a
problem repository and a manager to recommend exercises to students
could be included.

• Formatter/Presenter of Information. The aim of this module is to
present the information generated for the user in the best way possi-
ble. The main idea is to choose the best possible representation in order
to promote the use of the system as a learning tool. Thus, the infor-
mation is represented as a text document, as a graphic, or in any other
way that facilitates interaction. To develop this module, we use XML,
HTML, figures, custom software or, indeed, interpreters with an asso-
ciated language, to facilitate interaction between users and generated
information.

This architecture could run through a web browser without any need for
local installation or automatically-installed plug-ins. Web-based design must
be the trend in educational software design, since it simplifies installation and
platform compatibility issues, and it provides immediate access (Boroni et al.
(1998)). Moreover, it could collect reports and statistics that would allow us
to analyse work completed by students.

3.3. Applying the Technique: Guidelines

The following guidelines have been developed (diagrammatically illus-
trated in Fig. 2) without including phase 0) to show how to design a tool
based on the suggested technique. The entire process consists of the following
key phases:

• Phase 0. Decide whether the domain fulfills the restrictions imposed
for the application of the proposed technique.

• Phase 1. Decide what types of exercises must be resolved by the system.

• Phase 2. Specify the solutions to the types of exercises identified in the
previous phase.

10

• Phase 3. Create a Domain-Specific formal language capable of express-
ing the exercises and their respective solutions.

• Phase 4. Build a language processor to parse and check the correctness
of the student’s input and to acquire the meaning of the input text. Its
design may be split into the following three independent steps:

– Step 1. Transform character stream into token stream.

– Step 2. Parse input token stream, signalling acceptance or rejec-
tion.

– Step 3. Map an input-language sentence into a formal represen-
tation of its meaning.

We recall that the semantic is syntax-driven, that is, each semantic rule
will be represented by actions depending on the problem. So, given a
syntactic rule, it will perform the mapping of a state into a result or it
will do semantic verifications.

• Phase 5. Design and implement algorithms to solve the problems.

• Phase 6. Establish which algorithms should be invoked by formal rep-
resentations of input-language sentence meaning.

• Phase 7. Design and implement an automatic correction module to
mark and correct the exercises/problems whose solutions are provided
by students in accordance with the solutions obtained in Phase 5. They
must been solved as though on paper.

• Phase 8. Design and implement a module to guide the student’s learn-
ing process. This module must be related to the automatic correction
module.

• Phase 9. Design and implement the output formatter to create output
from any of the system’s modules, so that it can be used in the most
advantageous way possible to improve student learning (and its use by
tutors in the classroom).

It should be noted that this technique cannot be applied in all cases,
only in those cases in which: (1) we can use a formal language as a tool
for representing exercises or problems and their solutions, and (2) there are
algorithms to efficiently compute the solutions to those exercises.

11

Figure 2: Guidelines to build educational software based on the suggested technique.

12

4. Example of application

This section examines in detail how the suggested idea is used in the
design of an educational software tool to be used in the subject of Language
Processors. This is just a case of study in order to show how to apply our
approach. The aim of this tool is to make it easier both to teach and to learn
the principal concepts that comprise this subject. Additionally, two further
implemented applications are also briefly shown, with the aim of verifying
the validity of the aforementioned idea. In these last two examples, we have
kept the discussion to a minimum in order to give a description of how the
idea is used rather than to provided a detail description of how the solution
has been reached and implemented.

4.1. PROLETOOL: A tool to be utilised both in teaching and learning Lan-
guage Processors

One concern that must exist in the teaching profession is the continuing
effort to improve the quality of training. To meet this goal, we encounter the
problem of the design and development of materials and applications that
will help to achieve improvements in training. In this regard, Proletool is an
educational software tool designed to be used both by teachers and students
for improving teaching and learning activities in courses pertaining to the
construction of language processors (Castro-Schez et al. (2011c)).

The purpose of Proletool is to complement materials that currently exist
(for example, see books by Aho et al. (2006); Grune et al. (2000); Cooper and
Torczon (2011)), in order to assist in the understanding of the relationship
between lexical and syntactic analysis stages, and to facilitate the teaching
and learning of top-down parsing techniques: LL1; and bottom-up parsing
techniques: SLR1, LR1 and LALR1; which are discussed in language pro-
cessor courses for graduate students of Computer Science and Information
Technology.

4.1.1. Issues Proletool faces

The main aims and objectives of the subject Language Processors (LP)
are to introduce students to:

• the concepts underlying the design and implementation of language
processors;

13

• the problems that arise during the construction of language processors,
translators, compilers and interpreters for programming languages, or
more generally, to introduce students to any software program in which
a formal language is the communication mechanism available;

• the algorithms for the implementation of mechanisms used in providing
the intended functionality of these systems to their users, in particular,
lexical and syntax analysis, context handling, and code generation and
optimisation.

To build these types of systems, knowledge of grammar and formal lan-
guages and machines for processing them is an essential requirement. The
contents of an introductory LP course are organised around the following
thematic units:

• Introduction. This unit introduces the topic of the subject, presents
the basic terminology of the field and shows how processing can be
divided into four principal phases: lexical analysis, syntactic analysis,
contextual analysis, and code generation.

• Formal Languages and Grammars Review. Since, a language proces-
sor works with formal languages, and a grammar is meant to describe
all lexical and syntactic constraints of a formal language, a review of
formal languages and grammars is given in this unit. Moreover, for-
mal language theory has led to tools that automate the production of
scanners and parsers.

• Lexical Analysis. This unit focuses on the lexical analysis stage, show-
ing how to group input characters into tokens which will be used by the
parser or syntax analyser. Additionally, other key tasks of the lexical
stage are studied.

• Syntax Analysis. This unit is concerned with the study of syntactic
analysis, showing how a parser can be constructed from the source
language’s syntactic specification. Top-down and bottom-up parsing
techniques are studied in detail.

– Top-Down Parsing Techniques (LL1).

– Bottom-Up Parsing Techniques (SLR1, LR1, LALR1).

14

• Semantic Analysis or Context Sensitive Analysis. This unit concen-
trates on correctness and meaning of sentences which are well formed.
This is done at the level of checking parts of speech against grammatical
rules.

Special importance is given to the study of the most commonly used
techniques in developing a lexical analyser, and the most commonly used
techniques of syntactic analysis. This is because many subsequent stages de-
pend on these elements. Proletool will be used both in teaching and learning
these essential concepts and techniques.

4.1.2. Proletool description

The main functionalities that the tool must offer, from the point of view
of teachers and students alike, are the following:

1. It may be used as a classroom aid to help tutors to improve instruction.
Tutors develop examples to explain subject concepts and algorithms.
These examples will be given as input to Proletool and its output pro-
jected onto a whiteboard at the front of the class. The use of examples
to teach concepts and algorithms could be decisive in helping students
understand them better. Moreover, the tool allows tutors to receive
immediate feedback in lectures and to modify examples accordingly.
Consequently, teaching activities are improved.

2. It may be used as a personal tutor to help students experiment with
the concepts and their relationships in order to fully develop a solid
understanding of them. Usually, the completion of a large number of
exercises helps students to achieve significant learning and knowledge
of the concepts with respect to the aforementioned topics and their
relationships. However, this cannot be accomplished in lectures, due
to the extent of the set of themes to be learned and the restricted
time available for lectures. Using the tool, students develop exercises
which are then processed by the tool before an output is generated,
providing solutions to those initial exercises. There are no limitations
regarding the number of exercises that can be submitted to the tool.
Furthermore, students could relate the subjects concepts by correlating
the output associated with one exercise with the input associated with
another exercise. As a result, the learning activity is more active which
helps students in developing their knowledge.

15

3. It may be possible to become a LP instructor. The instructor must
have the ability to identify what the student has learned or failed to
learn, so that he/she can plan for future programmes. This information
must then be used to guide students through the process of learning.

In order to achieve this, it will be necessary, firstly, to have a mechanism
that allows students to present exercises and their respective solutions to the
tool. Secondly, it will be necessary to have a mechanism with the capacity
to understand and resolve these exercises appropriately, and to check the
accuracy of solutions provided by students. Finally, a mechanism whereby
feedback is presented to students regarding exercises submitted should be in-
corporated, so that students can interact with the exercises to further develop
their knowledge.

An exercise is the specification of a grammar, G = (V, T, P, S), where
V is the set of nonterminal symbols, T is the set of terminal symbols, P
is the set of production rules that are used for transforming strings, and S
is a distinguished symbol from N (S ∈ N) which is the start symbol, to
which one or several kinds of Syntax Analysis Techniques (LL1, SLR1, LR1,
LALR1) are associated. Moreover, T could be explicitly specified, or be given
implicitly using a previously defined student’s lexer.

A solution is the generation of an appropriate analysis table based on the
Syntax Analysis Techniques associated with the exercise. Moreover, addi-
tional information will be used to generate the solution.

The educational software tool Proletool consist of:

• A formal language that encompasses both the specification of exercises
and their solutions. Therefore, it has a language processor to analyse
and understand this language and to extract the information that is
necessary to invoke the algorithms that resolve the exercises. Once
these solutions have been generated by the tool, it checks whether they
are the same as those provided by the student.

• A database to collect statistics which will then be used to determine
the stage at which the student is in the learning process. This is very
important as it will be used to make subsequent recommendations to
the student, for example, “You must study the way FIRST set is cal-
culated” or “You must do the following exercise . . . ”.

• A web-based architecture for enabling streamlined student-tool inter-
action throughout the learning process (see Fig. 3).

16

• An output interface with interactive animation and simulation capa-
bilities to study how the techniques work, in addition to static pictures
and text.

Below, a simple example of input in the Proletool input language is shown:

grammar gramatica

{

analysis SLR1, LR1;

nonterminal S, T, L;

terminal int, char, id;

S := T L ’;’;

T := int | char;

L := id ’,’ L | id;

}

The tool’s output with respect to this input is not shown here. In the
same way, discussion with respect to the design of the tool has been reduced
to a minimum due to space limitations and in the interests of clarifying the
really important aspects of the ideas presented in this paper. The tool can
be tested in Castro-Schez et al. (2011c) where it can be found these issues
as well as an accurate description of Proletool ’s input language.

4.2. SELFA-Pro: SoftwarE for Learning of Formal languages and Automata
theory

In this section, we briefly present the SELFA-Pro project (Castro-Schez
et al. (2011b)), an educational software tool designed to improve both the
teaching and learning of the main concepts of the subject Automata Theory
and Formal Languages (ATFL). This subject has great importance in the
formation of Computer Science engineers, because it provides the theoretical
basis of computation. It helps foster a better understanding of computer
science and its mathematical origins, as well as its strengths, limitations and
potential (Carrol and Long (1989); Harrison (1978); Hopcroft et al. (2001);
Kelley (1998); Lewis and Papadimitriou (1997); Martin (2003)). Moreover,
from a computational point of view, it is useful to present models of compu-
tation that could be used in the resolution of real problems.

The main aim of the ATFL subject is that students acquire knowledge and
develop abilities with respect to automata, formal grammars and languages,
which will allow them to analyse, understand and solve problems. An ATFL
course usually involves the following topics:

17

Figure 3: Deploying web-based architecture of Proletool.

18

• Introduction to abstract machines, formal languages and grammars.

• Regular languages and grammars, Finite Automata and regular expres-
sions.

• Context-free languages and grammars and pushdown automata.

• Unrestricted and context-sensitive languages and grammars and Turing
Machines.

SELFA-Pro is intended to be used by two categories of user: computer
science students and university lecturers. The aim of this tool is to facilitate
both the teaching and learning of the main concepts of the ATFL subject,
whose level of abstraction makes both activities difficult. To accomplish this,
the tool allows a set of objects (automata, grammars and regular expressions)
to be defined, manipulated and used by means of algorithms. The tool also
allows previous results to be used in subsequent work. The exercises that
SELFA-Pro solves can be put into the following four groups:

• exercises on finite-state automata (e.g. to convert a non-deterministic
automaton with null transitions (λ−NDFA) into non-deterministic fi-
nite automaton (NDFA), to convert a finite automaton (λ−NDFA or
NDFA) into a deterministic finite automaton (DFA), to obtain the min-
imal deterministic automaton equivalent to a given DFA,);

• exercises on pushdown automata (e.g. to obtain a context-free grammar
from a pushdown automaton,);

• exercises on grammars (regular and context-free) (e.g. grammar clean-
ing algorithms such as removing lambda productions or useless symbols
and productions, to convert a context-free grammar to Chomsky Nor-
mal Form,. . .);

• exercises on regular expressions (e.g. to convert a regular expression to
a λ−NDFA using Thompsons algorithm).

Each exercise solved requires the design and implementation of several
algorithms.

The main features of SELFA-Pro relevant to the ideas presented in this
work are the following:

19

• It uses Client/Server architecture.

• It is based on a formal specification language and its associated proces-
sor. This language will be used to define the automata and grammars,
and to manipulate and relate them (e.g. it allows two regular languages
to be defined by means of two regular expressions, it then allows two
non-deterministic automata that recognise the same languages to be ob-
tained from previously defined regular expressions, and then it checks
if they are equivalents, that is, if they recognise the same language).

• It uses images and visual representations to display results so that they
are easier to understand and interact with (e.g. to show how a non-
deterministic automaton with null transitions works).

• It has ability to solve exercises, explaining how the solution is reached
(e.g. to answer how a deterministic finite automaton is obtained from
a regular expression).

The main advantages of SELFA-Pro in comparison to other software tools
designed with the same purpose (Devedzic et al. (2000); Garcia-Osorio et al.
(2011); Rodger and Finley (2011); Tamagnini et al. (2011); Tran (2007)) are
the followings:

• It uses web technology to make it accessible by means of standard web
browsers.

• It has a text mode input that allows the user to interact quickly with
the tool.

Below, we demonstrate how the tool could be used by a tutor to explain
how to test the equivalence of Regular Languages. Hopcroft and Karp (1971)
presented an algorithm for testing the equivalence of two deterministic finite
automata (DFA). Considering the two merged DFAs as a single DFA, they
study if their respective start states are equivalent. The tutor could prepare
an example to explain this to the class, in which it is demonstrated that for
each regular expression it is necessary to obtain its equivalent nondeterminis-
tic finite automaton (NFA). It could subsequently be demonstrated how the
equivalent deterministic finite automaton (DFA) is obtained for each NFA.
Finally, it could be demonstrated how the Hopcroft and Karp algorithm
works. This example in SELFA-pro language is as follows:

20

/* Deciding equivalence of regular expressions exp1 and exp2 */

regexp exp1{ 1(01)*0 }

regexp exp2{ (10)+ }

/* Every regular expression has an equivalent nondeterministic

finite automaton(NFA), they match the same strings */

automata1=REtoFA(exp1);

automata2=REtoFA(exp2);

/* Every NFA has an equivalent deterministic finite

automaton(DFA), they match the same strings */

automata3=FAtoDFA(automata1);

automata4=FAtoDFA(automata2);

/* Graphical representation of each DFA is shown */

print(automata3);

print(automata4);

/* Hopcroft and Karp algorithm is applied */

equals(automata3,automata4);

Moreover, if a tutor wants to explain to students how an automaton
works, it would be helpful to make use of graphical representation and an-
imation so that the audience might better understand the concept. In this
regard, SELFA-Pro offers operations for visualisation and simulation (see
Figs. 4,5). The following copied text should be added to the end of the
previously typed text:

/* Invoking order to show in a visual way how

automata1 works with the input 1 0 1 0,

See Fig. 1 */

visualrecognize(automata1,1 0 1 0);

/* Invoking order to show in a visual way how

automata3 works with the input 1 0 1 0, See Fig. 2 */

visualrecognize(automata3,1 0 1 0);

21

Figure 4: Graphical representation and animation capacity for
visualrecognize(automata1,1 0 1 0);.

This example can be tested in (Castro-Schez et al. (2011b)). An accurate
description of SELFA-Pros input language could be obtained from (Castro-
Schez et al. (2011b)). For a more detailed description SELFA-Pro, its design,
and how it is used, please see Castro-Schez et al. (2009).

4.3. ELECTRONICS: A tool for both designing and answering questions
about electrical circuits

The main goal of this educational software, called Electronics (Castro-
Schez et al. (2011a)), is to provide a tool for both teaching and learning the
fundamentals of electrical circuits. It could be incorporated into lectures and
laboratory sessions of introductory courses in Circuit Analysis for Electrical
and Computer Engineering, with the aim of teaching and learning to predict
the voltages and currents in electrical circuits. It introduces Mesh Analysis,
which is a powerful method for circuit analysis. The Electronics software
package has been designed to be accessed by all students in computer labo-
ratories.

The main features of Electronics relevant to the ideas presented in this
work are the following:

• It has a formal language to design electrical circuits, that is, to specify
the interconnection of analogue electrical elements such as resistors,
inductors and capacitors. Therefore, it has a language processor for
processing and understanding the circuit description.

22

Figure 5: Graphical representation and animation capacity for
visualrecognize(automata3,1 0 1 0);.

• It has a formal language to make queries regarding voltages and cur-
rents between nodes with respect to previously defined circuits. There-
fore, it has a language processor that could be considered as an in-
terpreter. The interpreter reads each query from the user and it is
answered on the fly. This happens every time the user submits a ques-
tion.

To use the system, we must first define the electronic circuit consisting of
a series of nodes connected to form edges (branches), which in turn can hold
a maximum of three components, that is, sources, resistors and capacitors.
To accomplish this, we must describe the electronic circuit using a formal
language. Once this is done, Electronics uses a compiler to understand the
electronic circuit and gives a graphical representation of the circuit diagram.

Below, we show an example of an electronic circuit description using the
Electronics input language:

program example_circuit {

/* First, the nodes of the circuit are defined. Node refers

to any point on a circuit where two or more circuit

elements meet */

nodo a (0,0);

nodo b (130,0);

nodo c (250,120);

23

nodo d (370,0);

nodo e (500,0);

nodo f (0,240);

nodo g (250,240);

nodo h (500,240);

/* Second, the nodes are connected according to the design */

arista AB (a,b);

arista BC (b,c);

arista CD (c,d);

arista DE (d,e);

arista GC (g,c);

arista FG (f,g);

arista GH (g,h);

/* Third, a mesh is define. A mesh is a circuit loop. */

malla l (AB,BC,GC,FG);

/* Last, individual electronic components, such as resistors,

capacitors are defined. Moreover, mesh currents are given. */

fuente fuent (c,b,0.2);

resistencia resis (FG,2.4);

condensador cond (AB,3);

fuente fuent1 (c,d,2.2);

resistencia resis1 (GC,0.2);

condensador cond1 (DE,4.4);

fuente fuent2 (h,g,3.6);

resistencia resis2 (AB,2.2);

}

After, the compilation process of the electronic circuit given above, the
system creates the graphical representation show in Fig. 6.

Once Electronics has loaded and compiled the circuit, we could then
apply the Mesh Analysis. The user could ask for calculations of potential
and intensity with regard to that circuit and an interpreter would process
the user’s queries.

Fig. 7 shows an example of a potential operation on the mesh defined in
the circuit. To invoke this operation, the user must specify the intensities
passing through each one of the edges that define the mesh. Then the inter-
preter analyses the question and detects if there is a mesh defined between

24

Figure 6: Viewing the circuit and nomenclature.

the source and destination of the calculation of potential, and also if the
intensity is specified for each branch of the mesh.

An example of calculation of intensity can be seen in 8. Firstly, the
user specifies the potential of each one of the branches between source and
destination nodes of the operation, and then the system calculates the current
through these branches.

Though still at the prototype stage (see Electronics Project Home Page
(Castro-Schez et al. (2011a)), this tool shows how the ideas presented in this
work are useful in defining circuits and answering questions about them.

4.4. Summing up the Examples

In order to sum up what the previous tools have in common and what
are their main distinct features, we show the Table 1.

The features we have considered just have been described in previous
sections. Thus, we focus on highlighting that Selfa-Pro can management
most complex statements. However, Proletool is the most complete and it
is being used in courses of Computer Science at our faculty for seven years.
Since its inception in 2005, Proletool has been in continuous operation and
has been improved and upgraded between 2005 and 2012 until reaching the
status described in this paper (see Section 3).

25

Figure 7: Example of calculation of potential.

Figure 8: Example of calculation of intensity.

26

For this reason, next section describes the registered data using Proletool
during these years/courses and draws some conclusions that we can extract
analysing them. Nevertheless, we recall that with the description of these
tools we just intend to show how to apply our approach and the result we
obtained.

Table 1: Main features of Proletool, Selfa-Pro and Electronics

Tools
Features Electronics Selfa-Pro Proletool
Input based on a domain-specific language (DSL) X X X
DSL processed by means of a specific language
processor (interpreter/compiler)

X X X

DSL allows to user specify new state-
ments/assignments

X X X

Support statements/assignments resolution X X X
Complexity of the problems supported by the tool low high medium
DSL allows to user specify solutions and alterna-
tive solutions to the statements/assignments

X

Support automatic correction of specified solu-
tions

X

Returns students assignments, with detailed notes
and grade

X

Database to collect statistics in the use X X
Database to collect statistics in the learning pro-
cess

X

Automatic assessment of the interactions with the
tool to guide the learning process

X

Provides feedback to students about their learn-
ing process

X

Provides feedback to professors X X
Formatter/Presenter of Information X X X
Implementation based on a Client/Server archi-
tecture

X X

27

T
ab

le
2
:

S
o
m

e
st

a
ti

st
ic

s
ex

tr
a
ct

ed
fr

o
m

th
e

u
se

o
f
P
ro
le
to
o
l

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

05
/0

6
06

/0
7

07
/0

8
08

/0
9

09
/1

0
10

/1
1

11
/1

2
N

r.
S
u
b
m

it
s

37
17

21
42

32
62

19
16

10
82

11
26

27
19

C
om

p
il
ed

G
ra

m
m

ar
s

38
84

22
42

33
84

19
42

10
86

11
47

27
47

T
ot

al
A

n
al

y
si

s
51

85
26

70
40

27
22

64
12

49
16

26
38

51
A

n
al

y
si

s
L

L
1

17
51

(3
3,

8%
)

10
37

(3
8,

8%
)

19
71

(4
8,

9%
)

10
57

(4
6,

7%
)

46
9(

37
,6

%
)

56
4(

34
,7

%
)

10
59

(2
7,

5%
)

A
n
al

y
si

s
S
L

R
1

14
66

(2
8,

3%
)

55
7(

20
,9

%
)

70
7(

17
,6

%
)

33
9(

15
,0

%
)

32
2(

25
,8

%
)

46
8(

28
,8

%
)

10
60

(2
7,

5%
)

A
n
al

y
si

s
L

R
1

13
49

(2
6%

)
72

4(
27

,1
%

)
75

7(
18

,8
%

)
46

5(
20

,5
%

)
18

0(
14

,4
%

)
25

0(
15

,4
%

)
96

4
(2

5,
0%

)
A

n
al

y
si

s
L

A
L

R
1

61
9(

11
,9

%
)

35
2(

13
,2

%
)

59
2(

14
,7

%
)

40
3(

17
,8

%
)

27
8(

22
,3

%
)

34
4(

21
,2

%
)

76
8

(1
9,

9%
)

N
r.

S
im

u
la

ti
on

s
44

0
68

6
56

0
78

9
67

7
25

3
65

2
S
im

u
la

ti
on

s
L

L
1

18
8(

42
,7

%
)

35
8(

52
%

)
31

7(
56

,6
%

)
32

5(
41

,2
%

)
50

1(
74

,0
%

)
12

9(
51

,0
%

)
22

8
(3

5,
0%

)
S
im

u
la

ti
on

s
S
L

R
1

12
7(

28
,9

%
)

62
(9

,0
%

)
79

(1
4,

1%
)

62
(7

,9
%

)
29

(4
,3

%
)

36
(1

4,
2%

)
16

7
(2

5,
6%

)
S
im

u
la

ti
on

s
L

R
1

68
(1

5,
5%

)
21

6(
31

,5
%

)
68

(1
2,

1%
)

70
(8

,9
%

)
10

(1
,5

%
)

61
(2

4,
1%

)
10

4
(1

6,
0%

)
S
im

u
la

ti
on

s
L

A
L

R
1

57
(1

3,
0%

)
50

(7
,3

%
)

96
(1

7,
1%

)
33

2(
42

,1
%

)
13

7(
20

,2
%

)
27

(1
0,

7%
)

15
3

(2
3,

5%
)

28

5. Showing results using Proletool between 2005 to 2012

The purpose of this section is to present the data collected during the
period 2005-2012 showing the use of the Proletool. This tool has been used by
the students to learn concepts and techniques from the Language Processors
course at the Computer Science and Engineering Faculty of the University of
Castilla-La Mancha (Spain). Moreover, the tool was used freely by students
who considered it useful to study the subject. That is, no experiments were
designed (not an experimentation itself) and the free use of the tool could
be seen as an indicator of its utility.

In this section, we also show some data of students’ academic results dur-
ing the period 2000-2012 in the course where has been used the tool. This
course was taught by the same teacher in all years of the period and assess-
ment and evaluation were similar. In addition, we will analyse the impact of
the Proletool usage on the academic results obtained by the students and its
influence in the students’ scores. This analysis comprises the academic years
2005 to 2011, when the tool is used, against the academic years from 2000
to 2004 when the tool was not available.

First, in Table 2 we show some data regarding the use of the tool which
are related to the concepts and techniques of the subject: submissions and
compiled grammars (problem specifications and solutions to those problems
make at home and how many times they compiled them), as well as the num-
ber of analyses performed and simulations subdivided by the type of analysis.
Additionally, Table 3 shows the anonymous usage data (unregistered user).
As it can see, a large amount of activity has been performed anonymously.
That means that the tool is used not only by the professor and the students
of the subject where the tool is primarily used, but also by others that are
interested in the tool. Perhaps, the consider it useful.

Table 4 shows the degree of satisfaction of users with the tool. In Pro-
letool has been added a form where users can provide feedback regarding
the perceived utility (The tool has been useful in learning the subject con-
cepts) and usability (The tool is easy to use) of the tool by means of a Likert
scale. The format of the five-level Likert item used is: 1) strongly disagree;
2) disagree; 3) neither agree nor disagree; 4) agree; 5) strongly agree.

Tables 2, 3 and 4 show not only that students used the tool over a number
of years and still use it, but they also think that it is easy to use and useful.
Therefore, students consider that it is easy to specify new learning activities
statements and that the system is able to provide the corresponding feedback

29

regarding the relevant solutions delivered.

Table 3: Some statistics collected regarding the use of Proletool for the anonymous user

Course Course Course Course Course Course Course
05/06 06/07 07/08 08/09 09/10 10/11 11/12

Nr. Compiled
1832 1348 2256 1590 886 626 1911

Grammars
Nr. Simulations 256 573 473 754 658 213 600

Table 4: Proletool ’s utility and usability perceived by the students

Course Course Course Course Course Course Course
05/06 06/07 07/08 08/09 09/10 10/11 11/12

Nr. Received Comments 42 51 56 21 16 34 29
Avg. Utility (1-5) 4,3 4,4 4,6 4,6 4,8 4,8 4,6
Avg. Usability (1-5) 4,0 4,0 4,6 4,5 4,6 4,4 4,5

Proletool provides to the students with the mechanisms to solve any ex-
ercise that they could propose and it also allow to evaluate their respective
solutions if they are present. As a consequence, it allows to work on high
order cognitive skills levels and provides an active learning environment. But
also raises a question of general significance: has the use of the tool some
influence on the students’ academic results? This can be evaluated using the
data presented in Tables 5, 6 and 7. Table 5 shows the percentages of stu-
dents that obtained a given score for the Language Processors subject. We
can see from the data registered since the 2005 academic year, differences
between those students that used Proletool in order to prepare the subject
and those that did not: Students which used Proletool for their homework
obtained higher scores in the exams. On the other hand, in Table 6 we can see
the percentages of students per academic year that passed the subject before
the tool was available, and Table 7 exhibits the percentages of students per
academic year that passed the subject after the tool was available. This last
table also collects information about the academic results of those who used
the tool when it was available and from those who did not it. Graphically,
this information is shown in Figures 9 and 10.

In order to analyze if the scores for the students that passed the subject
by using Proletool is significantly better than the others, we have applied

30

Table 5: Percentages of students that obtained a given score (in a 0 to 10 scale) for the
Language Processors subject

Score
Course Tool Use 5 ≤ x < 6 6 ≤ x < 7 7 ≤ x < 8 8 ≤ x < 9 9 ≤ x ≤ 10 Pass rate

05/06
Yes (41) 36,59% 34,15% 7,32% 9,76% 2,44% 90,24%
No (61) 47,62% 14,29% 14,29% 0,00% 0,00% 76,19%

06/07
Yes (24) 54,17% 20,83% 0,00% 8,33% 8,33% 91,67%
No (78) 48,00% 16,00% 4,00% 0,00% 0,00% 68,00%

07/08
Yes (20) 35,00% 20,00% 15,00% 10,00% 5,00% 85,00%
No (58) 31,25% 25,00% 6,25% 0,00% 0,00% 62,50%

08/09
Yes (19) 52,63% 26,32% 5,26% 5,26% 5,26% 94,74%
No (36) 50,00% 11,76% 5,88% 2,94% 2,94% 73,53%

09/10
Yes (8) 37,50% 25,00% 12,50% 0,00% 25,00% 100,00%
No (39) 39,13% 8,70% 8,70% 13,04% 0,00% 69,57%

10/11
Yes (21) 27,27% 31,82% 18,18% 9,09% 9,09% 95,45%
No (27) 69,23% 7,69% 0,00% 7,69% 0,00% 84,62%

11/12
Yes (22) 50,00% 36,36% 4,55% 4,55% 0,00% 95,45%
No (13) 28,57% 42,86% 14,29% 0,00% 0,00% 85,71%

Table 6: Students who pass before the availability of Proletool

Course Course Course Course Course
00/01 01/02 02/03 03/04 04/05

Students enrolled 49 55 70 103 106
Pass 34,69% 54,55% 47,14% 43,69% 34,91%
Not pass 65,31% 45,45% 52,86% 56,31% 65,09%

Table 7: Students who pass after the availability of Proletool

Course Course Course Course Course Course Course
05/06 06/07 07/08 08/09 09/10 10/11 11/12

Students enrolled 102 102 78 55 47 48 35
Pass 52,94% 40,20% 53,85% 76,36% 51,06% 77,08% 77,14%
Not pass 47,06% 59,80% 46,15% 23,64% 48,94% 22,92% 22,86%

Students whom use 41 24 20 19 8 21 22
Use and pass 90,24% 91,67% 85,00% 94,74% 100,00% 95,45% 95,45%
Not use and pass 76,19% 68,00% 62,50% 73,53% 69,57% 84,62% 85,71%

31

Figure 9: Percentage of students pass and not pass the exam before the use of Proletool
and while using it

Figure 10: Percentage of students that use Proletool and pass and those who do not use
it and pass

32

Table 8: Some statistics obtained from the samples of scores

Before Using Not using
Sample size 250 156 139
Sample mean 4.82 6.07 5.13
Sample std. deviation 2.06 1.40 1.56

the corresponding t-test. It will be used to compare whether the average
difference between the groups of students is really significant or if it is due
instead to random chance. Thus, Table 8 shows the number of items for
the sample, as well as the means and standard deviations for the scores of
that students before the availability of Proletool (labeled before), and that
who use it (labeled use) and do not use it (labeled do not use) after its
availability. Furthermore, Figure 11 shows the box plot for those samples.
The obtained results for the corresponding two-sample t-test with a 0.05 (or
5%) of significance are:

1. T-test for “use” against “not use”: tvalue = 5.44, pvalue = 1.125 · 10−07.
Then, it can be concluded that the null hypothesis can be rejected.
Thus, the means for the scores of that students who “use” Proletool
against “do not use” it are different and slightly higher for those who
“use” it.

2. T-test for “before” against “use”: tvalue = −6.667, pvalue = 8.592 ·
10−11. So, the null hypothesis can be rejected. Therefore, the means
for the scores of that students who “do not used” Proletool before its
availability and that “use” it now are different and a little higher for
those who use it now.

3. T-test for “before” against “do not use”: tvalue = −1.547, pvalue =
0.1227. Therefore, the null hypothesis can not be rejected. The means
for the scores of that students who “do not used” it before the availabil-
ity of Proletool against those who “do not use” it now, have not changed
significantly in order to think that they have different distributions.

Regardless, what we can see with all this analysis is that the students
who pass the exam with better score usually use Proletool. This could be
because: a) the students are excited about to have found in Proletool the
way in order to practice without limits and without require support from the

33

Figure 11: Boxplots comparing the scores for students before Proletool, and for those who
use it and for those who do not use it

teacher, which use to be one of the goals in tutoring system; b) the tool helps
them a lot and therefore they have passed and, because students typically
want to pass, there are many who decide to use it in order to pass the course.

Nevertheless, these data allow to us to conclude that the tool has already
been successfully used in teaching and in learning the Language Processors
subject at the Computer Science and Engineering Faculty of the University of
Castilla-La Mancha (Spain). These collected data suggest that our approach
is satisfactory, especially when comparing the scores for students who used
Proletool with those who do not.

6. Concluding remarks

As previously mentioned, we have focused our research on those systems
that aim to assist students in developing their own knowledge by provid-
ing them with feedback regarding the learning activity they are performing
for their homework. Thus, they can build their knowledge by means of
modifying and improving their solutions. We have started introducing and
analysing some related works with regard to the automatic evaluation of
learning activities, showing that there are no integral approaches that can be

34

used independently of the learning domain or which allow students to specify
their own learning activities. To solve this issue in some learning domains,
we have described a proposal that allows students to specify their own as-
signments, introduce alternative solutions to those assignments and view an
automatic evaluation provided by the system in order to check the validity
of the solutions provided. Our proposal makes use of Formal Language and
Automata Theory techniques, both in the definition of formal languages for
the assignment statement description and the respective solutions specifica-
tion, and in the development of computational models to solve the problem
and to analyse the solutions so that feedback may be provided.

In order to clarify the concepts related with the proposal, as well as to
show its versatility, we have described three different tools that we have devel-
oped for three different domains, namely: Proletool, for language processors
related subjects; SELFA-pro, for formal languages and automata theory; and
Electronics, for electronics circuits. Furthermore, with the aim of showing
the viability and validity of our proposal we have presented and commented
on some statistics extracted from Proletool, which is the most complete of
our tools and the most used by the students since 2005.

Together with the description regarding the development and use of these
applications, we believe the versatility of our proposal has been proved in this
paper. We have also documented the types of scenarios where our proposal
can be applied, that is, all those scenarios where problems can be expressed
by a formal language and whose domain provides deterministic algorithms to
solve them. Of course, the pedagogical validity of the system will depend on
multiple end factors, like the usability of the user interface, the availability
of proper simulation and visualisation capabilities, etc.

In order to expose the first impression we have obtained from the experi-
ence, we have analysed the results showing that students who have used the
tool for six academic years think that it is both possible and easy to specify
new learning activities statements and that the system is able to provide
appropriate and useful feedback for the solutions provided to solve those ac-
tivities. That is, students have a mechanism to test as many alternatives and
variations of problem statements and their respective solutions as desired. In
addition, the results show that students who used the tool obtained better
scores than those who did not.

Taking this into consideration, we think that it is possible to build systems
that allow students to specify problem statements, to introduce alternative
solutions for those problems, and to analyse the corresponding evaluation,

35

that is, the corresponding feedback provided to the students. Thus, students
are able to identify their mistakes in both the formalisation of the problem
or in the solution. Therefore, they are able to introduce their own changes to
the problem statements, so that higher order thinking skills can be achieved.

Thinking in terms of Blooms Taxonomy, this means that the students
are working on the highest thinking skills order. They are able to use their
knowledge to solve an assignment (application level), to create new assign-
ment statements (synthesis level), and to corroborate the accuracy of their
evaluation for a specific solution (evaluation level). Furthermore, the sys-
tem provides an active learning environment, and allows them to obtain high
scores because they are involved in learning activities that require problems
to be solved.

Presently, our work is focused on obtaining data pertaining to experi-
mental studies in other domains which have been presented in this paper
and these data will contribute to obtaining a more exact conclusion.

References

Aho, A., Lam, M., Sethi, R., Ullman, J., 2006. Compilers: Principles, Tech-
niques, and Tools, 2nd Edition. Addison Wesley.

Ala-Mutka, K., 2005. A survey of automated assessment approaches for pro-
gramming assignments. Computer Science Education 15 (2), 83–102.

Anderson, L., Krathwohl, D. (Eds.), 2001. A Taxonomy for Learning, Teach-
ing, and Assessing: A Revision of Bloom’s Taxonomy of Educational Ob-
jectives. New York: Longman.

Bloom, B. S., 1956. Taxonomy of Educational Objectives, Handbook I: The
Cognitive Domain. New York: David McKay Co Inc.

Bonwell, C., Eison, J., 1991. Active learning: Creating excitement in the
classroom. Tech. rep., The George Washington University, School of Edu-
cation and Human Development.

Boroni, C. M., Goosey, F. W., Grinder, M. T., Ross, R. J., 1998. A paradigm
shift! the internet, the web, browsers, java and the future of computer
science education. In: 29th ACM SIGCSE Technical Symposium on Com-
puter Science Education. pp. 145–152.

36

Bravo, C., Redondo, M. A., Ortega, M., Verdejo, M. F., 2006. Collaborative
environments for the learning of design: A model and a case study in
domotics. Computers & Education 46(2), 152–173.

Bravo, C., van Joolingen, W. R., de Jong, T., 2009. Using co-lab to build
system dynamics models: Students’ actions and on-line tutorial advice.
Comput. Educ. 53 (2), 243–251.

Brusilovsky, P., Peylo, C., 2003. Adaptive and intelligent web-based educa-
tional systems. International Journal of Artificial Intelligence in Education
13, 156–169.

Carrol, J., Long, D., 1989. Theory of Finite Automata with an Introduction
to Formal Languages. Prentice Hall.

Castro-Schez, J. J., del Castillo, E., Hortolano, J., Rodriguez, A., 2009.
Designing and using software tools for educational purposes: Flat, a case
study. IEEE Transactions on Education 52 (1), 66–74.

Castro-Schez, J. J., Garcia-Bermejo, D., Garcia-Bermejo, R., 2011a. Elec-
tronics project home page.
URL http://www.esi.uclm.es/jjcastro/electronics

Castro-Schez, J. J., Hortolano, J., Rodriguez, A., 2011b. Selfa project home
page.
URL http://portal.esi.uclm.es/selfa/

Castro-Schez, J. J., Santos, P. A., Santos, J., 2011c. Proletool project home
page.
URL http://portal.esi.uclm.es/proletool/

Churches, A., 2008. Bloom’s taxonomy blooms digitally. Educators’ eZine.
URL :http://www.techlearning.com/article/8670

Cole, D., Wainwright, R., Schoenefeld, D., 1998. Using java to develop web
based tutorials. In: 29th ACM SIGCSE Technical Symposium on Com-
puter Science Education. pp. 92–96.

Cooper, K., Torczon, L., 2011. Engineering a Compiler, 2nd Edition. Morgan
Kaufmann.

37

Devedzic, V., Debenham, J., Popovic, D., 2000. Teaching formal languages
by an intelligent tutoring system. J. Educational Technology & Society
3 (2), 36–49.

Dewey, J., 1922. How We Think, A Restatement of the Relation of Reflective
Thinking to the Educative Process. D.C. Heath and company, New York.

Eden, H., Einsenberg, M., Fischer, G., Repening, A., 1996. Making learning
a part of life. Commun. ACM 39 (4), 40–42.

Fernandes, E., Kumar, A., 2005. A tutor on subprogram implementation. J.
Comput. Small Coll. 20 (5), 36–46.

Garcia-Osorio, C., Arnaiz-Moreno, A., Arnaiz-Gonzalez, A., 2011. Thoth
project home page.
URL http://pisuerga.inf.ubu.es/cgosorio/THOTH/

Gordijn, J., Nijhof, W. J., 2002. Effects of complex feedback on computer-
assisted modular instruction. Computers & Education 39 (2), 183–200.

Grune, D., Bal, H., Jacobs, C., Langendoen, K., 2000. Modern Compiler
Design. Wiley & Sons.

Harrison, M., 1978. Introduction to Formal Language Theory. Addison-
Wesley.

He, Y., Hui, S. C., Quan, T. T., 2009. Automatic summary assessment for
intelligent tutoring systems. Computers & Education 53, 890–899.

Hopcroft, J. E., Karp, R. M., 1971. A linear algorithm for testing equivalence
of finite automata. Tech. rep., Cornell University.
URL http://hdl.handle.net/1813/5958

Hopcroft, J. E., Motwani, R., Ullman, J. D., 2001. Introduction to automata
theory, languages and computation. Addison Wesley.

IMS-GLC, 2003. Ims learning design. Online.
URL http://www.imsglobal.org/learningdesign/index.cfm

Jurado, F., Molina, A. I., Redondo, M. A., Ortega, M., Giemza, A., Bollen,
L., Hoppe, H. U., 2009. Learning to program with coala, a distributed
computer assisted environment. Journal of Universal Computer Science
15 (7), 1472–1485.

38

Jurado, F., Redondo, M. A., Ortega, M., 2012. Using fuzzy logic applied to
software metrics and test cases to assess programming assignments and
give advice. Journal of Network and Computer Applications 35 (2), 695–
712.

Jurado, F., Santos, O. C., Redondo, M. A., Boticario, J. G., Ortega, M.,
September 24-26 2008. Providing dynamic instructional adaptation in pro-
gramming learning. In: Corchado, E., Abraham, A., Pedrycz, W. (Eds.),
Proceeding of the Hybrid Artificial Intelligence Systems (HAIS2008). Vol.
5271/2008 of Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg, Burgos (Spain), pp. 329–336.

Kelley, D., 1998. Automata and Formal Languages: An Introduction. Pren-
tice Hall.

Koper, R., Tattersall, C. (Eds.), 2005. Learning design: A handbook on
modelling and delivering networked education and training. Springer.

Kumar, A., 2004. Using online tutors for learning - what do students think?
In: Proceedings of Frontiers in Education Conference (FIE 2004). IEEE,
pp. 524–528.

Lewis, H. R., Papadimitriou, C. H., 1997. Elements of theory computation.
Prentice Hall.

Makonnen, P., 2000. Do www-based presentations support better (construc-
tiristics) learning in the basics of informatics? In: 33rd Hawaii Int. Conf.
System, Sciences.

Martin, J., 2003. Introduction to Languages and Theory of Computation.
McGraw-Hill.

McConnell, J. J., 1996. Active learning and its use in computer science.
SIGCUE Outlook 24 (1-3), 52–54.

Murray, T., 1999. Authoring intelligent tutoring systems: An analysis of the
state of the art. International Journal of Artificial Intelligence in Education
10, 98–129.

Murray, T., 2003. An Overview of Intelligent Tutoring System Authoring
Tools: Updated analysis of the state ofthe art. Kluwer Publishers, Ch. 17,
pp. 491–544.

39

Norman, D. A., Spohrer, J. C., April 1996. Learner-centered education. Com-
munications of the ACM 39 (4), 24–27.

Oser, F. K., Baeriswyl, F. J., 2001. AERA’s Handbook of Research on Teach-
ing, 4th Edition. Washington: American Educational Research Association
(AERA), Ch. Choreographies of Teaching: Bridging Instruction to Learn-
ing, pp. 1031–1065.

Rahman, K. A., Nordin, M. J., December 2007. A review on the static anal-
ysis approach in the automated programming assessment systems. In: Na-
tional Conference on Programming 07.

Rajala, T., Laakso, M.-J., Kaila, E., Salakoski, T., 2008. Effectiveness of pro-
gram visualization: A case study with the ville tool. Journal of Information
Technology Education: Innovations in Practice 7, 15–32.

Rodger, S. H., Finley, T. W., 2011. Jflap project home page.
URL www.jflap.org

Salmela, L., Tarhio, J., 2004. Ace: Automated compiler exercises. In: Pro-
ceedings of the 4th Finnish/Baltic Sea Conference on Computer Science
Education. pp. 131–135.

Sanders, D., Hartman, J., 1987. Assessing the quality of programs: a topic for
the cs2 course. In: SIGCSE ’87: Proceedings of the eighteenth SIGCSE
technical symposium on Computer science education. ACM, New York,
NY, USA, pp. 92–96.

Suraweera, P., Mitrovic, A., 2002. Kermit: A constraint-based tutor for
database modeling. In: S. A. Cerri, G. G. . F. P. (Ed.), Intelligent tu-
toring systems. Berlin: Springer, pp. 671–680.

Tamagnini, J. J., Cavadini, S. V., Berdaguer, P. L., Cheda, D. A., Pachado,
F., Petersen, M., 2011. Sepa! project home page.
URL http://www.ucse.edu.ar/fma/sepa/

Tran, Q.-N., 2007. Interactive symbolic software for teaching formal lan-
guages, automata and beyond. J. Computing Sciences in Colleges 22 (4),
129–136.

40

	plantilla_actualizada_ELSEVIER1.pdf
	experience_castro_journal_network_computer_applications_2014_ps

