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Abstract. Social graphs can be easily extracted from Online Social Networks
(OSNs). However, as the size and evolution of this kind of networks increases
over time, typical sampling methods used to evaluate large graph information
cannot accurately extract network’s properties. Furthermore in an attempt to
deal with ever increasing access and possible malicious incidents (e.g. Denial of
Services), OSNs pose access limitations in their data, making the
crawling/sampling process even harder. A novel approach on Random
Sampling is proposed, considering both limitation set from OSNs and resources
available. We evaluate this proposal with 4 different settings on 5 different test
graphs, crawled directly from Twitter. Results show that every scenario needs a
different approach. Typical Random Node Sampling is better used for small
sampling sizes, while Enhanced Random Node Sampling provides quicker and
better results in larger samples. Still many questions arise from this work that
can be considered as future research topics.
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1 Introduction

Online Social Networks (OSNs) provide a great source for social graph analysis, but
due to their dynamic nature, advanced methods and lots of resources are required for
processing their statistical properties. This dynamic capacity is demonstrated in
Twitter, which climbed 22 spots in the world’s most visited sites within a year, it
currently is the second most visited OSN [10][11]. As such, every attempt to estimate
its graph properties is getting even harder.

Various sampling methods used throughout the years are not able to accurately
describe a social graph’s structure and properties. These methods analyse and
evaluate subgraphs, which only consists of the sampled nodes. For example, although
random sampling is widely popular in graph sampling processes, it fails to accurately
project most graph properties [9].

In addition, Twitter — and various other OSNs — imposes an hourly limitation of
350 requests per hour (for authenticated users), thus making data acquisition a costly
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procedure, resource wise. Despite that, if we effectively use these requests, various
sampling methods can still be efficient and further improve our sampling results.

So, the issues that must be addressed are described in the following questions:

» How can we fully utilise our limited graph crawling requests?

« Can sampling methods provide sufficient data about an OSN graph?

« Can we enhance existing sampling methods to further improve results?

The answer to all three questions is a real time enhanced sampling process. That is,
a selective process that takes request limiting into consideration coupled with
enhancements to improve our results.

This work aims to test two enhancements on the random sampling method. Our
proposal makes use of all the information available in a single node of an OSN. In
addition, it is executed in real time and in parallel with the crawling process, thus
saving valuable resources. Lastly, the proposed enhancements can be used with any
graph sampling method.

The OSN on which we tested our proposal is Twitter. Within a 25-day time period
we crawled data (called from this point herein as Test Graphs - TGs). To be more
specific the crawling process started on 51 of March 2012 and ended in the 30™ of the
same month. The method we used was Breadth First Crawling, with a minimum
number of nodes to be fully analysed of 25K.. They were randomly chosen and our
calculations showed that we fully analysed up to the fourth degree neighbours for
each seed. A wuser in Twitter corresponds to a graph’s node and the user’s
followers/following to in/out edges of that node.

The first enhancement we propose is based on the fact [12] that social networks
tend to follow a Pareto Distribution [7]. We tested three different degree distributions,
which could improve sampling results. Since we do not have any knowledge of graph
properties we are investigating the area surrounding Pareto 80 — 20 distribution. . We
prove that our implementation is not bound to any a-priori known properties, since it
is applied on the fly along with the crawling process.

The second improvement is based on the observation that when we sample a graph
and we only use the resulting subgraph for analysis, we lose a vital information
considering the hard request limitations we face. Thus, we propose to add all the
neighbouring nodes of a sampled node to the subgraph, which in fact is the
combination of two techniques, random and neighbourhood sampling.

In our work, the evaluated graph properties are the Number of Edges, Mean
Degree, Clustering Coefficient, Assortativity, Number of Components and time
required for the process. We compare the properties of each TG with sampled mean
value of multiple iterations, and in order to get a better idea on time handling, we
provide another comparison of results along with time required to produce them.

2 Related Work

Graph analysis has been the subject of many essays, while it is a significant topic in
many real-life applications in both technological and social field. From simple metrics
to advanced trend prediction, graphs can provide valuable information through OSN



analysis. However, the amount of disseminated information is vast, thus suggesting
graph sampling an important process for analysing OSNs structure and properties.

Leskovec and Faloutsos in [1] provided an extensive analysis and evaluation of
graph sampling. Their focus is graph patterns along with graph properties. However
graphs are relatively small (3 to 75 thousands nodes) but probably more cohesive than
our TGs. Ahn et al. in [2], analyse huge graph’s structure based on graph properties
and degree distributions. Having access to the full graph of an OSN provides valuable
information and a great benchmark for the sampling methods. Furthermore, they
compare results and properties of their full OSN with 3 other OSNs of much smaller
size.

Dasgupta et al. in [3], deal with community identification of huge information
networks. Many different databases are analysed with the graph conductance playing
a key role in conclusions. Huberman et al. in [4] deal mostly with Twitter properties,
rather than actual graph properties.

Noordhuis et al. provided an insight of mining twitter and further executing
PageRank to their dataset [5]. Another important work in respect to deep graph
analysis is authored by Broder et al [6]. Although this research conducted more than
one decade ago, it’s still relevant to modern datasets and networks. Lastly, Ye et al.
[8] analyse the crawling process of a graph, mainly on the part of edge and node
discovery. The authors also address the issues of multiple seed choices and protected
users, which affect both the crawling and sampling process of an OSN.

In this research, graph theory and sampling are combined with web crawling. The
practical problems of crawling Twitter and the evaluation of its sampling, should be
analysed in detail with the focus on efficiency rather than results. Various methods
and analysis schemes used in this work are inspired by the aforementioned related
work, and they are referred accordingly upon their application in the following
sections.

3 Methodology

3.1 Dataset and Resources Description

In this work, we have chosen Twitter as the OSN in test, not only because it is
constantly evolving scale and property wise, but also because it has a strong social
impact [13][14]. It uses directed link information and from technical point-of-view it
provides an open API for data acquisition (despite some limitations discussed in
previous section). Twitter users can either follow someone or be followed by
someone, identically to a node’s out and in edges. The analysis of user linking
associations provides the in and out degrees in respect to the connected users. Since
Twitter does not provide further information about its actual graph properties,
research teams and communities have to crawl and analyse their own data for
evaluating their methods.

Thus, during a three-week period (between March 5th and March 30th of 2012),
we fully analysed virtually 200K Twitter users in order to discover their links. Upon



concluding the crawling process, approximately 60GBs of data were obtained
containing more than 93M discovered users and 570M edges.

For the crawling process we used 30 different starting seeds (30 Greek users with
the highest number of followers) and then performed a breadth first sampling. For
every starting seed, we fully analysed its 2" level neighbours, while for some seeds
we analysed their 3@ and 4™ level neighbours. Since our goal was to test our
algorithms on several datasets, we chose not to analyse the dataset as a whole, but
instead we kept data separated based on seed nodes.

Data was kept separated, based on the seeding node. This allowed us to analyse
each part fairly quickly, using R project [15] and igraph package [16]. We compiled 5
different sampling methods and 6 graph property extraction and visualization
algorithms in R format. Subsequently we used igraph package to test them, which is
very fast but requires heavy utilisation of RAM. We ended up using 18 to 36GB of
RAM in order to analyse each TG. Due to RAM requirements and multiple
algorithms iterations needed, we decided to use Amazon Web Services high memory
instances so we could parallelize the analysis.

3.2 Proposed algorithmic enhancements

Both our enhancements can be applied to any sampling process, however in this work
we have tested them only according to random sampling method, since it is
commonly used, quite fast and provides reliable and robust results. The main
drawback of this method, is its inability to maintain the power law distribution of a
graph G.

Sampling a graph G provides some nodes and some edges. Usually after sampling,
the next step is to find the subgraph consisting only of N nodes -with E edges amongst
them- and then analyse the resulting graph. The problem of this subgraph approach is
that it discards many discovered edges £ along with their nodes However, in the
followings we will show that both N" and £ can improve the accuracy of random
sampling method.

Initially, upon random sampling on G, we test if we can use all discovered nodes
and edges to our advantage. So, adding a node to the subgraph along with all its
adjacent edges and neighbouring nodes, is the first proposed enhancement.

A power law distribution of a graph can be estimated by various methods such as
Maximum Likelihood Estimation in [17] and Kolmogorov—Smirnov estimation in
[18], but almost every estimation method requires full -or at least some- knowledge of
the graph and its properties. Unfortunately, upon crawling Twitter graph, the only
known property is the in/out degree of each node. Therefore, most of these methods
cannot be applied for sampling purposes.

The second enhancement we propose, depends on whether by accepting/rejecting
sets S of nodes to the subgraph (based on their degree distribution), will lead in
further sampling process improvement, where S has a predefined number of nodes to
be used in every set. In this sampling proposal, we check if the top-A percentage of a
node set has the B percentage of degree’s sum. B and A are coupled in 3 different
distributions, namely 85-15, 80-20, and 75-25. This means that in 85-15 distribution,



nodes are accepted into the sampling pool only if the top-15% of highest degree nodes
has the 85% of the set’s total degree, while similarly in case of 80-20 or 75-25
distributions, nodes are accepted if the-top 20% or top-25% of highest degree nodes
has the 80% or 75% of the set’s total degree respectively.

Both of our improvements are proposed in an effort to further enhance sampling
results and overcoming the limits imposed by OSNs. These limits make each crawled
node valuable and the requests are to be considered as a limited - but necessary -
resource. To be specific, in Twitter one request is used to:

a) Obtain the number of followers and following of a user, thus essentially discover
anode’s in and out degree, and

b) Obtain linked (followers or following) users in sets of 5K, discover a node’s in
or out neighbours 5.000 at a time.

This means that in order to get all followers of a user with 10.000 followers and
5.000 following, we would use four requests; one to obtain the node’s in/out degree
and three to obtain its list of adjacent nodes..

3.3  Real Time Enhanced Random Sampling

In our research, sampling and crawling can be considered as a whole, since the way
we acquire data defines our sampling method. The sampling method we test apply is
separated in two-flow sub-charts. The enhancements are drawn with dashed lines,
while the typical crawling/sampling process is illustrated with solid lines (Fig.1).

The first sub-chart is the usual crawling process of an OSN and consists of three
separate steps:

1. Crawl a node

2. Add node to selection database

3. Methodically pick next user. We should note here, that step 3 differentiates upon
the method used (e.g. for Breadth First crawling we would use the first crawled
neighbour, while for Random crawling we would randomly choose one).

The second sub-chart consists of our proposed enhancement steps along with the
typical conditional symbol for sampling threshold control. Each step will be reviewed
in detail.

4. Using a predefined number of nodes, we choose a random set S from the total
crawled nodes. In our tests, we chose to use S=2% of the sample’s size we need, since
this percentage is ideal for frequent monitoring of the distribution check and adds
nodes to the sampled pool (step 7) relatively quick.

5. At this point, we check if the set of nodes follows the desired distribution, based
on the in and out degree this node has on the original OSN. If the set follows the
desired distribution, then it is added to sampled pool (step 7), while if not, we move to
loop control (step 6). At the end, we perform tests for the three different distributions,
starting with 85-15, then 80-20 and lastly 75-25.
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Fig. 1. Algorithm’s Flow Chart

6. Another conditional junction that prevents the node set distribution check (step
5) from looping. So, if our predefined distributions do not exist in the crawled graph,
the algorithm stops, using the nodes already added to step 7 in order to create the
sampled graph. The number of tries to discover a distribution is n=10 and it is
controlled through step 8. For example, in case that we find a desired distribution in
the 9™ try, we will then have 10 more tries to find another set that satisfies our
distribution rules.

7. This is the sampled pool. The nodes added to this pool will be used to create a
Sampled Graph.

8. The point we reset the number of tries remaining, as described in step 6.

9. This conditional junction tests if we reached the sampled threshold. During our
tests, we used various different sample sizes to evaluate our method, ranging from
10% up to 90%, with a 10% step.

10. Here the subgraph is created from nodes in the sampled pool. This is the last
step of Random node sampling (RNS).

11. Adjacent nodes and edges -to every node in the subgraph- are added to the
sampled graph. The adjacent nodes and edges can be discovered via the respective
requests to the OSN. This is the step that defines Random node sampling all edges
(RNSE).

All of the above steps are independent of the sampling/crawling method, meaning
that this algorithmic process can be applied to every sampling method, without any
structural changes.



4 EXPERIMENTATION

41  Testing

Fourteen graphs were tested in 8 variations of our proposed algorithm. These are the
following:

1. RNS

2. RNSE as described in Section 3.3.11

3. RNS with 85-15 selective distribution (RNS 85-15), see Section 3.3.5

4. RNSE 85-15

5. RNS80-20

6. RNSE 80-20

7. RNS 75-25

8. RNSE 75-25
Each variation was tested 10 times by 9 different sampled percentages. Here, we
present only the mean relative error, but we have to note that variance was very small
(<0.01%) for every iterations on the same TG. The algorithm was applied 10800
times and the calculation time was approximately 800 hours. When compared to
relevant work [8], our approach seems quite fast but requires large memory pools, as
mentioned above.

Table 1. Test Graph Values

Edges Vertices Mean Mean Cl.ustering Mean

Degree Coefficient Assortativity
Max 69872473 8444642 19,61 0,022451 -0,31064
Average | 40731274 6643998 12,14 0,013787 -0,44001
Min 25658132 4662987 9,74 0,007862 -0,51234

Every graph part we obtained was tested, their mean values are presented along
with min and max values to provide a measure of graph scale (Table 1). These
properties and their values show that all graphs have a dissortative pattern and are not
densely connected. Furthermore, we have to note that every graph has only one
component, which is a direct result of the crawling method we used (Breadth First).

On every error chart (Figures 2, 4, 6 and 8 in the Appendix), we distinguish the
results according to the variables taken into account. Essentially, two different
sampling techniques are used with four different evaluations. In one hand, RNS and
RNSE consider the mean degree, the clustering coefficient and the assortativity. On
the other hand, RNS ED and RNSE ED consider the previous variables with the
addition of edge discovery relative error. This presentation was selected in order to
highlight the benefits of our proposed sampling scheme, mainly in cases where edge
discovery is as crucial as every other property of a sampled graph.

In respect to each error chart, we provide a “result improvement over time” chart
where the percentage improvement scaling is illustrated accordingly. It is obvious that
in every tested case, increasing the sample size has exclusively positive results.




4.2  Results — Discussion

On every test, we noticed that RNS (either with or without selective distribution)
sustained the clustering coefficient and assortativity values throughout the different
sample sizes, while it failed completely on mean degree and component size. Since
our initial graphs have already low clustering coefficient and assortativity, we are
unsure on whether this was related with our data. However, while on one hand RNSE
maintained a fairly stable mean degree and component size for different sample sizes,
on the other hand the clustering coefficient and assortativity were marginally
improved on sample sizes greater than 20%. Furthermore, edge discovery evaluation
is heavily favoured by RNSE, with a mean accuracy improvement over RNS of 40%.

Table 2. Mean percent error for non-selective sampling

Method
RNS RNSE RNS ED RNSE ED
Sample size
10% 29,85% 41,93% 46,91% 49,96%
20% 25,45% 29,48% 42,41% 35,84%
30% 21,81% 21,21% 38,08% 26,07%
40% 18,77% 15,19% 34,00% 18,93%
50% 16,28% 11,07% 30,26% 13,89%
60% 10,46% 4,35% 20,64% 5,54%
70% 8,51% 2,90% 17,18% 3,70%
80% 4,81% 0,86% 9,93% 1,11%
90% 2,37% 0,20% 5,02% 0,26%

Regarding the results from non-selective distribution random sampling (Table 2),
we can distinguish the results based on our sampling goals. When our aim is, to
accurately sample a social graph based only on its properties (mean degree,
assortativity and transitivity), RNSE is more accurate for sampling sizes greater than
20%. Similarly, when we have to consider edge discovery as well as graph’s
properties, then RNS provides better results only for sample sizes up to 10%.
Furthermore RNSE ED accuracy over RNS ED is growing exponentially as the
sample size increases. The same results are demonstrated on the best selective
distribution case, 80 — 20 (Table 3). Although the improvement of results for RNSE
and RNSE ED start from 30% and 20% sampling sizes, for the respective cases. The
loss of accuracy on RNS ED and RNS ED evaluations, is due to the high percent error
of edge discovery compared to the mean low percent error of the other 3 properties.
This connection is maintained throughout the different sampling sizes, but on sizes
greater than 70% the effect is fading and the results of ED are almost identical to
those of non-ED evaluations.



Table 3. Mean percent error for 80/20 selective sampling

Method RNS RNSE | RNSED | RNSEED
) 80/20 | 80/20 80/20 80/20
Sample size
10% 31,48% | 4680% | 48.36% 55,34%
20% 2752% | 3507% | 44.63% 42,27%
30% 2412% | 2592% | 40,83% 31,67%
40% 20,62% | 1850% | 36,45% 22,85%
50% 1711% | 12,46% | 31,56% 15,58%
60% 1370% | 7.76% | 26,23% 9,79%
70% 10,19% | 420% | 20,33% 5,37%
80% 6,88% | 1,79% | 14,05% 2,32%
90% 345% | 0,38% 7,09% 0,51%

On all three selective implementations, we used fewer vertices to create the sample
graph (Table 4) when compared to those used in non-selective RNS and RNSE. Thus,
we should consider the results in relation to the “economy” of recourses. As
mentioned previously, in Twitter APl one request is needed for the analysis of a
node’s degree (in and out) or for the discovery of 5K neighbours (in or out). In the
worst case scenario, for each sampled size, we managed to use 111 less requests,
while in the best case, we preserved half a million requests. Even in a moderate case
where 10K less requests are used, 27 less hours are needed to discover the same part
of the OSN and sample it. We can only imagine the scalability of resource
conservation when this method is used for larger datasets. But, what is the cost of
economy when results are needed?

Table 4. Mean vertices conservation

Method Mean Vertices Used Mean Percent Error
85-15 3387917 51,69%
80-20 4072877 16,16%
75-25 4071613 16,59%

Non-Selective 4403086 14,75%

To answer this question and accurately define that cost, we will have to go through
every different distribution we tested. First of all, in the case of 85-15 we needed
23.06% less vertices to get 51.69% less accurate results. For 80-20 and 75-25 we used
7.5% less vertices to get 16.16% and 16.59% less accurate results respectively.
However the greater the sample size, the lower the loss of accuracy. The reduction in
vertices used results in less time dedicated to crawling/sampling, with a moderate
time gain of 25 hours per sample analysed, which equals to 300 hours for all of our 14
TGs. Furthermore in time/results charts we can see that RNSE scales results in



relation with time much better than RNS on all four occasions. Time wise, all
selective methods are slower than RNS. Similarly RNSE is slower than RNS on a
smaller scale. To conclude, it is apparent that RNSE outperforms RNS in every case,
either with selective distribution or not.

5 Conclusions — Future work

New limitations force us to reconsider our algorithms and find new ways to
enhance our methods. We demonstrated a novel approach to crawling/sampling an
OSN. Although not applicable to every research scheme, it provides sufficient —if not
better- results. Sampling can be combined with crawling in a way that we conserve
our time and computational resources.

As far our research showed us, we would not propose one method for every
sampling scheme. For crawling an OSN with small sampling size (<20%), we
estimate that RNS is the most efficient sampling method. If we aim to crawl an OSN
that does not have request limitations and we seek larger sample sizes (>20%) the
RNSE method fits perfectly. While on most occasions where OSNs impose requests
limitations and we are unsure of the sample size, we believe that the best scheme to
use is the RNSE 80-20, since we not only conserve resources (requests and time in
our case), but also we are not losing in terms of accuracy. Furthermore sampling
results of RNSE 80-20 on samples greater than 70% where almost identical to the
most accurate method (RNSE).

Still many questions arise from this initial research. Can we implement this method
in crawling “undirected” OSNs? Will this proposal work on denser and/or assortative
graphs? What about graphs with more components? Can we use different
distributions? Can these enhancements work effectively on different sampling
methods? Unfortunately, our resources are not unlimited.

All these questions are research subjects for the future. We will work towards
analysing multiple OSNs, one at a time. Our direct goal is to establish whether the
results were network dependant or this random sampling method will work on every
OSN.

Twitter is evolving on an hourly basis, creating a vast social graph with so much
information. Unfortunately this expansion enforces new policies from Twitter but
most of these restrict access to Twitter’s data, making is the only way to overcome
these restrictions. Likewise, sampling is a solid base for trend analysis, a procedure
which gets harder every day. Using proposed sampling schemes for analyzing and
discovering user’s links is not a necessary condition, but surely is a sufficient one.
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Appendix

On relative error charts we can see a comparison of the mean percentage error on 4
different occasions. RNS and RNSE label lines, show the mean percentage error of
three properties -Mean Degree, Clustering Coefficient and Assortativity. Similarly,
RNS ED and RNSE ED label lines, present the mean percentage error of Mean
Degree, Clustering Coefficient, Assortativity and Edges Discovery.
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On the variation charts, we can see the percentage variation of time, having as
starting point the time required for the sampling and analysis of 10% sample size.
Result plots have as a starting point the accuracy of the results derived from analysing
samples of 10% size.
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100% o—°
90% x '
% y
80% X /
70% X s
X
< 60% A‘ o
o
B 50% [ 1
< X 4
Z 0% /
XA / X RNS
30% | g4 | ®— RNSE
20% A / A~ RNSED
X
10% / ®- - RNSE ED
ox bl /
0 20 40 100 120

'ﬁr%e (sec)

Fig. 3. RNS and RNSE Result Improvement over Time
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A2. 85— 15 Selective Distribution
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Fig. 4. RNS85-15 and RNSE85-15 Relative Error
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Fig. 5. RNS85-15 and RNSE85-15 Result Improvement over Time
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A3. 80 — 20 Selective Distribution
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Fig. 6. RNS80-20 and RNSE80-20 Relative Error
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Fig. 7. RNS80-20 and RNSE80-20 Result Improvement over Time
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A4. 75 — 25 Selective Distribution
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Fig. 9. RNS75-25 and RNSE75-25 Result Improvement over Time



