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a b s t r a c t 

The Session Initiation Protocol (SIP) has been adopted by the IETF as the control protocol for creating, modifying and terminating multimedia sessions. 
Overload occurs in SIP networks when SIP servers have insufficient resources to handle received messages. Under overload, SIP networks may suffer from 
congestion collapse due to current ineffective SIP overload control mechanisms. This paper introduces a probe-based end-to-end overload control (PEOC) 
mechanism, which is deployed at the edge servers of SIP networks and is easy to implement. By probing the SIP network with SIP messages, PEOC 
estimates the network load and controls the traffic admitted to the network according to the estimated load. Theoretic analysis and extensive simulations 
verify that PEOC can keep high throughput for SIP networks even when the offered load exceeds the capacity of the network. Besides, it can respond 
quickly to the sudden variations of the offered load and achieve good fairness. 

1. Introduction 

The Session Initiation Protocol (SIP) (Rosenberg e t al., 2002) is 
an IETF-defined application-layer control protocol widely used for 
creating, modifying and terminating multimedia sessions. Typical 
SIP applications include Voice over IP (VoIP), multimedia distribu­
tions, video conferencing, instant messaging and presence service 
(Liao et al., 2011). The SIP has been adopted by the 3GPP as the 
basis for the IP Multimedia Subsystem (IMS) architecture. 

SIP is a request/response-based protocol. Each end user is 
represented by a user agent (UA), which takes t he role of a user 
agent client (UAC) or a user agent server (UAS) for a request/ 
response pair. A UAC creates a SIP request and sends it to a UAS. 
The request traverses through one or more SIP servers (also called 
SIP proxies) in a SIP network. The main purpose of a SIP server is to 
route a request to its destination. The response traces back the 
pa th the request has taken. Fig. 1 shows an example of SIP call 
flow. A SIP call is initialized by an INVITE request and terminated 
by a BYE request. SIP is call-oriented and the SIP server can only 
reject/drop the INVITE requests if it is unwilling or unable to 
forward requests. There is no reason to reject/drop messages of an 
on-going call such as 200 response, ACK request and BYE request. 
Two typical SIP networks consisting of edge servers and core 
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servers are shown in Fig. 2 . Each UA is connected to the network 
via an edge server located closest to it. When a SIP call be tween 
two UAs goes through the network, the first server the call (i.e., the 
INVITE request of the call) arrives at is denoted as t he ingress 
server, and the last server the call arrives a t is denoted as the 
target server. Clearly, both ingress server and target server are 
edge servers. 

The widespread popularity of SIP has raised attention to its 
readiness of handling overload (Rosenberg, 2008). Overload of a 
SIP server occurs if t he message arrival rate to the server exceeds 
its message processing capacity. A SIP server can be overloaded for 
many reasons, such as emergency-induced call volume, flash 
crowds generated by the popular TV show, simultaneous registra­
tions of many users due to recovery after a large power outage, or 
even denial of service attacks. Under overload, the throughput of a 
SIP server can drop significantly and can even reach zero. Besides, 
t he call setup delay becomes unacceptable for a real-t ime media 
call. Furthermore, a number of retransmission t imers are defined 
in SIP to cope wi th message losses, especially w h e n the unreliable 
UDP transport is used. Thus, both t he SIP server and the UA 
retransmit a request if a response has not been received in t ime. 
Under overload, t he SIP server becomes significantly less respon­
sive, which causes a large number of requests to be retransmitted 
by its neighbors. This aspect not only aggravates t he load on the 
overloaded server, but also leads to overload in its neighbors. In 
this way, overload can spread in a network of SIP servers and 
eventually bring down the entire network. 

Several design approaches have been proposed in t he litera­
tures (Hilt and Widjaja, 2 0 0 8 ; Hilt et al., 2011; Gurbani et al., 2013) 
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in order to manage the overload in t he SIP networks, which can be 
classified into local, hop-by-hop and end- to-end overload control. 
In local overload control, the SIP server monitors its load and starts 

Fig. 1. Sample SIP call flow. 

to reject requests locally by using 503 (Service Unavailable) 
responses (Rosenberg, 2 0 0 8 ; Hilt and Widjaja, 2008) w h e n it 
detects overload. In hop-by-hop overload control, the overloaded 
SIP server can provide feedback to its direct ups t ream neighbors, 
which then adjust the amount of traffic forwarded to this SIP 
server to eliminate overload. The feedback can be conveyed in a 
SIP response header (Gurbani et al., 2013). In end-to-end overload 
control, the edge servers, which are considered as t he closest 
servers to the sources of traffic in a SIP network, are responsible 
for adjusting the amount of traffic forwarded to t he overloaded 
server to eliminate overload. The research in Hilt and Widjaja 
(2008) indicates that end-to-end overload control achieves t he 
best performance although it is the most complex among all types 
of overload control approaches. 

In this paper, w e propose and design PEOC, a probe-based end-
to-end overload control mechanism, which is deployed at edge 
servers and is easy to implement . By probing the SIP network wi th 
SIP messages, PEOC estimates the network load and controls t he 
traffic admit ted to the network based on the est imated load. The 
remainder of this paper is organized as follows: Section 2 surveys 
related work. Section 3 proposes the design of PEOC and Section 4 
analyzes t he Probe-based Rate Adaption (PRA) algorithm, which 
can dynamically adjust the rate of calls admit ted according to the 
overload feedback received from the network and the est imated 
network load obtained by probing the network. In Section 5, the 
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Fig. 2. Typical SIP network topologies. (a) Topology 1 and (b) topology 2. 



probing mechanism in PEOC is discussed in detail. Section 6 
describes the simulation models and presents the performance 
results. Finally, conclusions and possible future work are presented 
in Section 7. 

2. Related work 

The research on SIP overload control has attracted much 
attention recently. In (Rosenberg, 2008; Hilt and Widjaja, 2008; 
Hong et al., 2010), the overload problem of SIP and the ineffec­
tiveness of its built-in overload control mechanisms are studied in 
detail. In Hilt and Widjaja (2008), Ohta (2006a,b), Cyr et al. (1990), 
Kasera et al. (2001), and Garroppo et al. (2009), several local 
overload control mechanisms have been proposed. Furthermore, 
recent research focuses on studying hop-by-hop overload control 
mechanisms to handle overload more effectively, which are 
classified into receiver-based and sender-based overload control. 
In receiver-based control, the overloaded server calculates restric­
tions on its offered load according to current load and distributes 
these restrictions to its direct upstream neighbors as the feedback. 
Its direct upstream neighbors only follow the received restrictions 
to throttle traffic forwarded to the overloaded server. This type of 
overload control is adopted by Hilt and Widjaja (2008), Noel and 
Johnson (2007), Shen et al. (2008), and Garroppo et al. (2011). 
On the other hand, in sender-based control, the overloaded server 
only implements local overload control which rejects requests by 
using 503 responses. Based on the received 503 responses, its 
direct upstream neighbors calculate and then follow the restric­
tions on the traffic forwarded to the overloaded server. Abdelal 
and Matragi (2010) and Azhari et al. (2012) are typical implemen­
tations of sender-based overload control. Note that receiver-based 
control is more complex than sender-based control as receiver-
based control adds extra burden on the overloaded server to 
calculate restrictions and then distribute these restrictions to its 
direct upstream neighbors. 

Similar to hop-by-hop overload control, end-to-end overload 
control can also be classified into receiver-based and sender-based 
overload control. In receiver-based control, the SIP server sends 
its overload/restriction to the upstream neighbors, which then 
forward the overload/restriction to their upstream neighbors. In 
this way, the overload/restriction is eventually propagated to all 
ingress servers. The ingress server adjusts the amount of traffic 
forwarded to the overloaded server based on the received over­
load/restriction. Hilt and Widjaja (2008) and Wang (2010) belong 
to this type of overload control. 

Note that in receiver-based hop-by-hop overload control, the 
overload/restriction is propagated just through one hop and only 
the overloaded server takes charge of propagating. However, in 
receiver-based end-to-end overload control, it is propagated 
through multiple hops and SIP servers located between the edge 
server and the overloaded server are all involved in propagating, 
which needs the complex cooperation among them. Thus, 
receiver-based end-to-end overload control is even more complex 
than receiver-based hop-by-hop overload control. On the other 
hand, sender-based end-to-end overload control is simple and 
practical. In Liao et al. (2012), our previous work proposed a 
distributed end-to-end overload control (DEOC) mechanism, 
which is a sender-based overload control, where the core servers 
only implement local overload control that rejects requests by 
using 503 responses. Based on the received 503 responses, the 
edge servers calculate and then follow the restrictions on the 
traffic admitted to the SIP network. Simulation result shows that 
this approach can keep high throughput for SIP networks even 
when the offered load exceeds the capacity of the network and can 
respond quickly to the sudden variations of the offered load. 

DEOC is a reactive mechanism, because the edge servers in 
DEOC calculate restrictions only based on a simple binary overload 
feedback received from the network (i.e., whether or not 503 
responses are received), indicating whether the network is cur­
rently overloaded or underutilized. In order to further improve the 
throughput for SIP networks and respond more quickly to the 
sudden variations of the offered load, in this paper we propose a 
probe-based end-to-end overload control (PEOC) mechanism. 
PEOC is also a sender-based overload control. Besides, it is a 
proactive mechanism because the edge servers in PEOC firstly 
estimate the network load by probing the SIP network with SIP 
messages and then calculate restrictions based on both the 
estimated load and the binary overload feedback received from 
the network. 

3. Probe-based end-to-end overload cont ro l 1 

In this section we develop PEOC, a probe-based end-to-end 
overload control mechanism for SIP networks. In PEOC, the core 
servers only implement local overload control that rejects requests 
by using 503 responses. When receiving a 503 response from a 
downstream neighbor, the server forwards this response to the 
upstream neighbor, from which the INVITE request related to this 
response has been received. In this way, the 503 response will 
finally be forwarded to the edge server. The edge servers estimate 
the network load by probing the SIP network with SIP messages. 
Based on the received 503 responses and the estimated load, they 
calculate and then follow the restrictions on the traffic admitted to 
the SIP network. 

We deploy a set of PEOCs at each ingress server to control 
overload for the SIP network. At an ingress server, each PEOC is 
related to a specific target server and controls the arriving calls 
from UAs that take this ingress server as first-hop and the target 
server as last-hop in the network. Thus, the load of the network is 
controlled by PEOCs at all ingress servers. Note that our approach 
is completely distributed: there is no centralized entity to control 
PEOCs and each PEOC is functionally identical and operates 
independently. Besides, there is no communication between 
PEOCs. Finally, our approach can be deployed incrementally, by 
installing PEOCs on ingress servers, with no need to alter other 
servers in the SIP network. Therefore, our approach is easy to 
implement. 

The task of a PEOC can be split into four separate parts: 
measurement, restriction, probing and control decision. Fig. 3 
shows the functional modules in PEOC. The solid line and dashed 
line represent the data flow and the control flow, respectively. 
The arriving call at the PEOC firstly goes through measurer 
module, which is used to measure the inter-arrival time of calls. 
Afterwards, it goes through restrictor module, which determines 
whether or not to throttle the received calls in order to avoid 
overload in network. 

3.1. Measurement and restriction 

In the measurer module, the inter-arrival time of calls is 
measured and a standard EWMA (exponentially-weighted moving 
average) filter is applied to smooth out short-term fluctuations 

1 This section presents the architecture of PEOC. Since PEOC is based on DEOC 
(Liao et al., 2012) and further adopts a proactive control mechanism to achieve a 
more efficient overload control, the basic functional modules (Measurer and 
Restrictor) and the state machine of Controller are the same as those in Liao 
et al. (2012). We introduce these functional modules in this paper in order to make 
the paper more readable. 



Fig. 3. The functional modules in PEOC. 

based on a finite state machine. The state machine is executed at 
the end of each T, which takes λt and the number of received 503 
responses in the current T as input and outputs r t þ 1 to control 
admit ted calls in the next T. Note that the state machine only uses 
a binary overload feedback. That is, it only needs t he information 
about whether 503 responses are received in each T. The binary 
overload feedback indicates whether the network is currently 
overloaded or underutilized. A very good reason for adopting a 
binary feedback is that it makes t he PEOC as simple and practical 
as possible. Besides, it also minimizes the overhead of generating 
the feedback in t he network. We omit the introduction of the finite 
state machine in this paper, which is similar to that in Liao e t al. 
(2012). The detailed description of the finite state machine can be 
found in our previous work (Liao e t al., 2012). 

as follows: 

A/avg = (1-W)xA/avg + WX Ai, 0 < W < 1 (1) 

where Alavg is the average inter-arrival t ime of calls, Ai is the 
measured inter-arrival t ime of calls, and w is the EWMA smooth­
ing weight. We define call arrival rate X as the number of arriving 
calls at the PEOC per unit t ime and it is calculated as / l= 1/Alavg. 

The controller module calculates the call admission rate 
(denoted as r) periodically and the calculation interval is T. 
At the end of each interval T, the controller module obtains from 
the measurer module the current call arrival rate At, which denotes 
the call arrival rate at t ime t (in T). Note that the t ime t is measured 
in r since r is calculated periodically. Then the controller module 
obtains from the prober module the current application-layer 
round trip t ime RTTt, which represents the SIP network load at 
t ime t (in T). Finally the controller module calculates the call 
admission rate rt+1 for the next T and sends it to the restrictor 
module to throttle arriving calls according to this threshold. 

The prober module periodically probes the SIP network with 
SIP messages and passes the measured application-layer RTT to the 
controller module. We will detail the probing mechanism of the 
prober module in Section 5. 

In the restrictor module, we adopt call gapping (Berger, 1991) 
to throttle arriving calls. Once admitting a call, the restrictor starts 
a t imer of duration T, which is the gap interval. Then it rejects all 
subsequent calls arriving before the timer expires. Every time the 
restrictor module receives rt+1 from the controller module, it 
obtains At from the measurer module and then calculates the gap 
interval in the next T. Suppose that the arrival process of calls 
conforms to Poisson distribution. Referring to Berger (1991), the 
gap interval Tt+1 adopted in the next T is calculated as 

'Z't + 1 max(0, 1/Tt^1 -1jXt) (2) 

When the gap interval is 0, t he restrictor module does not 
throttle arriving calls and all arriving calls are admit ted to the 
network. 

3.2. Control decision 

The main function of PEOC is to calculate r. In the following, w e 
design a Probe-based Rate Adaption (PRA) algorithm that can 
dynamically adjust t he call admission rate r. The PRA consists of an 
increasing rule and a decreasing rule. When there is no overload 
feedback, PRA increases r according to the increasing rule. When 
receiving the overload feedback, PRA decreases r according to the 
decreasing rule. Besides, PRA uses the est imated network load, 
which is obtained from the prober module, to design the increas­
ing rule. We will elaborate on PRA in Section 4. 

The controller module periodically executes PRA (with interval T) 
and takes the number of received 503 responses during each T as the 
overload feedback to PRA. The controller module is implemented 

4. Probe-based Rate Adaption (PRA) design 

In this section w e design PRA. The overload of the SIP network 
is managed by a lot of PEOCs located on the edge of t he network. 
These PEOCs are distributed and each PEOC executes PRA to 
calculate the call admission rate based on the overload feedback 
received from the network. The feedback should be designed to be 
as simple as possible in order to make PEOC simple and practical. 
Considering that these features are similar to those of the TCP 
congestion avoidance (Allman et al., 2009), the design of PRA can 
be inspired by the TCP congestion avoidance. The basic TCP 
congestion avoidance algorithm, which is proposed by Chiu and 
Jain (1989) and Jacobson (1988) and is based on a simple binary 
overload feedback received from the network, is applied by Liao 
e t al. (2012) to the SIP overload control as follows: 

increasing : r t þ 1 ¼ rt þα; α40 

decreasing : rj+1 = rt -fiXt, 0 < /? < 1 

ð3Þ 

ð4Þ 

where r t is the call admission rate at t ime t (in T). α and β are 
constant factors. The algorithm is periodically executed ( the period 
is T). If no call rejection is received in the current period, the call 
admission rate in the next period is increased additively. Other­
wise, it is decreased multiplicatively. Therefore, this algorithm is 
called as AIMD (additive increase and multiplicative decrease) 
(Chiu and Jain, 1989). 

4.1. Aggressiveness, responsiveness and throughput 

Before presenting the PRA, w e first consider the important 
properties of call admission rate control algorithms in SIP ne t ­
works including aggressiveness, responsiveness and throughput 
(Liao e t al., 2012). The network is underutilized w h e n the call 
admission rate is below the capacity of the network. In this case, a 
good call admission rate control algorithm needs to increase the 
call admission rate as fast as possible in order to make full use of 
network resources and avoid unnecessary call rejections. Aggres­
siveness measures how fast a call admission rate control algorithm 
makes use of network resources as they are available. We define 
aggressiveness as the inverse of the t ime needed for the call 
admission rate control algorithm to achieve t he increment of a 
certain amount of call admission rate, in response t o : (1) a s tep 
increase of available network resources or (2) a s tep increase of 
call arrival rate w h e n there are available resources in the network. 
Obviously, high aggressiveness, implying potentially high utiliza­
tion, is desirable. 

The network is overloaded w h e n the call admission rate 
exceeds the capacity of t he network. In this case, a good call 
admission rate control algorithm needs to decrease the call 
admission rate as fast as possible in order to eliminate overload. 



Responsiveness measures how fast a call admission rate control 
algorithm decreases the call admission rate in response to over­
load. We define responsiveness as the inverse of the time needed 
for the call admission rate control algorithm to achieve the 
decrement of a certain amount of call admission rate, in response 
to a step increase of network overload. Obviously, high respon­
siveness, which allows call admission rate control algorithm to 
decrease the call admission rate quickly when overload occurs, is 
desirable. 

The network is fully utilized when the call admission rate is 
close to the capacity of the network. In this case, since the 
feedback is binary, the call admission rate oscillates around the 
network capacity over time and the throughput of the network is 
determined by the call admission rate control algorithm. The 
throughput in SIP overload control is determined by effective rate 
and stable duration. We define effective rate as the average call 
admission rate during one increasing phase. The increasing phase 
consists of a sequence of consecutive call admission rate increases, 
which is followed by call admission rate decreases. High effective 
rate, which implies high throughput of the SIP network, is 
desirable. We define stable duration as the number of periods in 
one increasing phase. A shorter stable duration leads to the 
occurrence of overload being more frequent. As the network's 
throughput can be reduced by the occurrence of overload, short 
stable duration is not desirable. 

Based on these properties, Liao et al. (2012) analyzes the 
performance of AIMD. As for the increasing rule, due to the 
constant increasing rate of call admission rate, the aggressiveness 
is low when α is small, which leads to rejecting a lot of arriving 
calls unnecessarily when the network is underutilized. On the 
other hand, the stable duration is short when α is large, which 
causes frequent decrease of call admission rate and thus results in 
low throughput of SIP network. Therefore, the constant increasing 
rate cannot satisfy the requirements for SIP overload control. 
On the other hand, the decreasing rule seems to be suitable for 
SIP overload control. Since the decreasing is multiplicative, it is 
possible to achieve high responsiveness even by using a small β, 
which can keep high throughput of the SIP network. 

4.2. Proactive vs. reactive algorithm 

Note that the AIMD is reactive. That is, this algorithm calculates 
the call admission rate only based on the binary overload feedback 
received from the network, which can be used to decide whether 
the increasing rule or the decreasing rule is adopted. During the 
increasing phase, this reactive algorithm only adopts a predefined 
increasing rule. However, the aggressiveness is low if the call 
admission rate is increased too slowly (i.e., α is small) and the 
throughput is low if the call admission rate is increased too fast 
(i.e., α is large). Thus the increasing rule (3) cannot achieve high 
aggressiveness and high throughput simultaneously. The research 
(Liao et al., 2012) further extends the linear increasing rule (3) to 
the non-linear one in order to achieve a better tradeoff between 
aggressiveness and throughput. However, it is still a reactive algo­
rithm and cannot achieve high aggressiveness and high throughput 
simultaneously. 

Therefore, in order to achieve high aggressiveness as well as 
high throughput, we should design a call admission rate control 
algorithm to adopt different increasing rules adaptively based on 
the different network load during the increasing phase. That is, 
when the current network load is low, since the network will not 
be overloaded, the call admission rate should be increased 
aggressively in order to achieve high aggressiveness. On the other 
hand, when the current network load is high, since the network tends 
to be overloaded, the call admission rate should be increased con­
servatively in order to avoid overload and achieve high throughput. 

The current network load can be obtained by probing the SIP network. 
Obviously, this algorithm is proactive, which can achieve both high 
aggressiveness and high throughput and thus is more suitable for SIP 
overload control than the reactive algorithm. 

4.3. The increasing rule of the Probe-Based rate Adaption (PRA) 

Motivated by the conclusion that the proactive algorithm is 
more effective than the reactive algorithm, in this paper we 
propose a probe-based call admission rate adaption algorithm 
(PRA). PRA also uses the binary overload feedback received from 
the network to decide whether the increasing rule or the decreas­
ing rule is adopted. Besides, it obtains the estimated network load 
from the prober module, which probes the SIP network with SIP 
messages. During the increasing phase, PRA adopts different 
increasing rules adaptively based on the different network load 
in order to achieve high aggressiveness as well as high throughput. 
Thus PRA is proactive and can control the overload of the network 
efficiently and in a timely manner. Note that the probing mechan­
ism is important to PRA because the PRA uses it to obtain the 
network load. We will detail the probing mechanism in Section 5. 

PRA takes the application-layer RTT as the indicator of the 
network load. At the end of each T (at time t), the controller 
module obtains the current RTTt from the prober module, which 
represents the network load at time t. Based on the current 
network load RTTt, PRA adopts different increasing rules during 
the increasing phase. We compare RTTt with a predefined thresh­
old Tth and consider that the network load is low if RTTtoTth and is 
high if RTTtZTth. When the network load is low, since the network 
will not be overloaded, the call admission rate should be increased 
more aggressively in order to achieve high aggressiveness. Thus in 
this case, we choose the multiplicative increasing rule to achieve 
the high increasing rate of call admission rate. On the other hand, 
when the network load is high, since the network tends to be 
overloaded, the call admission rate should be increased more 
conservatively in order to avoid overload and achieve high 
throughput. Thus in this case, we choose the additive increasing 
rule to achieve the low increasing rate of call admission rate. 
To sum up, the increasing rule in PRA is as follows: 

increasing : 
rt+1 =rt+Srt, 

0>0, 
if RTTt oT t h 

if RTTt ZT t h 
(5) 

where δ and θ are constant factors (we set 0 o δ o 1 to prevent the 
call admission rate from increasing too aggressively). That is, when 
the network load is low, the call admission rate is increased 
multiplicatively. Otherwise, it is increased additively. Besides, 
PRA adopts the decreasing rule (4) as its decreasing rule since 
(4) is suitable for SIP overload control. 

According to (5), when the network load is low, the call 
admission rate is increased multiplicatively and δ determines its 
increasing rate. A larger δ leads to a much higher increasing rate. 
Obviously, a higher increasing rate achieves higher aggressiveness. 
On the other hand, it leads to lower throughput because the 
network tends to be overloaded more frequently when the call 
admission rate is increased too fast. Since a small δ can achieve 
high aggressiveness, δ should be set as a small value in order to 
keep high throughput. 

On the other hand, when the network load is high, the call 
admission rate is increased additively and θ determines its 
increasing rate. The increasing rate increases as θ increases, thus 
larger θ leads to higher aggressiveness and lower throughput. 
Since θ is the increasing step size of call admission rate when the 
network load is high, θ should be set as a small value in order to 
avoid overload and achieve a better tradeoff between aggressive­
ness and throughput. 



Fig. 4. Sample probing flow. 

Note that T th is t he predefined threshold value, which can 
determine whether the network load is high or low. Obviously, a 
larger Tth leads to a larger proportion of multiplicative increase, 
which results in higher aggressiveness and lower throughput as 
multiplicative increase enables t he call admission rate to increase 
very fast. On the other hand, a smaller Tth leads to a larger 
proportion of additive increase and thus results in lower aggres­
siveness and higher throughput . In the real circumstance, the 
value of T th can be defined according to our requirements of 
aggressiveness and throughput . 

5. Probing mechanism 

5.1. Probing mechanism and prediction of application-layer RTT 

PEOC uses t he prober module to probe the SIP network wi th 
SIP messages. We define a Probing header and insert it into the 
MESSAGE request for probing. The probing flow is shown in Fig. 4. 
At t he end of each T, PEOC sends a MESSAGE request wi th a 
Probing header to its target server. The MESSAGE request traverses 
through one or more core servers and finally arrives a t the target 
server. When a target server receives a MESSAGE request wi th a 
Probing header, it replies a 200 OK response immediately and the 
200 OK response traces back the path the MESSAGE request has 
taken. After receiving t he 200 OK response, PEOC calculates the 
elapsed t ime between sending the MESSAGE request and receiving 
the 200 OK response, and takes it as the measured application-
layer RTT. 

When receiving a probing message (request/response), the core 
server inserts it into t he processing queue. If the load of the core 
server is higher, more t ime is spent on forwarding the received 
probing message. Thus the t ime spent on forwarding the probing 
message can indicate t he core server's load. Similarly, the target 
server also inserts the probing request into the processing queue 
and the t ime spent on replying the 200 OK can indicate its load. 
Since the application-layer RTT includes the forwarding t ime in the 
core servers and the replying t ime in t he target server, the increase 
of load either in core servers or target server can lead to the 
increase of application-layer RTT. Thus application-layer RTT is a 
good indicator of t he SIP network load. 

The prober module probes the SIP network periodically. At t ime 
t (at the end of each T), it sends a MESSAGE request wi th a Probing 
header in order to probe t he SIP network and measure the current 
RTT. In the meanwhile , the prober module passes RTTt to the 
controller module, which is t he RTT at t ime t and reflects the 
current network load. However, due to the delay be tween sending 
the MESSAGE request and receiving its 200 OK response, the 

measured RTT is not available at the prober module at time t. 
Therefore, we should design a prediction algorithm in the prober 
module in order to predict RTTt based on the historical measure­
ments of RTT. 

5.2. Prediction algorithm 

The time series prediction is well investigated and many 
predictors have been proposed in control systems (Garroppo 
et al., 2011; Hayes, 1996; Haykin, 1991; Mishra et al., 1996; Adas, 
1998; Garroppo et al., 2008). Among these predictors, the linear 
predictors can provide low complexity as well as high accuracy 
and responsiveness (Garroppo et al., 2008). Therefore, we adopt a 
linear predictor in PEOC. 

The fe-step linear predictor is concerned with the predication of 
Zt_^ii using a linear combination of the current and previous values 
of Zt (Hayes, 1996). A pth-order linear predictor has the form 

p - 1 
^t + k = 2 '^l^t-l (6) 

where W/ (for 1=0,1, ..., p - 1 ) are the prediction filter coefficients. 
Let 

W = [W 0 ,W 1 , . . . ,Wp_1] 

Zj = [Zt,Z[_1, ...,Z[_p + 1 f 

et=Zt^k-Zt+k 

From (6) and (7), 

(7) 

(8) 

The filter coefficients can be determined according to arbitrary 
optimality criteria. One of the most famous and widely adopted 
prediction algorithms is t he Linear Minimum Mean Square Error 
(LMMSE) predictor (Hayes, 1996; Haykin, 1991), in which the filter 
coefficients are derived by minimizing the Mean Square Error of 
prediction: 

Minimize : E[e2] 9) 

The problem of this predictor is that the derivation of the 
LMMSE filter coefficients requires the knowledge of the autocor­
relation of Z|. and the inversion of a p xp matrix. These facts make 
LMMSE unsuitable for being used as an on-line technique for 
predicting (Adas, 1998). In order to solve this problem, we consider 
the Normalized Least Mean Square (NLMS) predictor (Hayes, 1996; 
Haykin, 1991), which is based on an adaptive approach. It does not 
require prior knowledge of the autocorrelation structure of a 
sequence (Haykin, 1991; Adas, 1998). Therefore, it can be used as 
an on-line technique for predicting. 

0 



Fig. 5. NLMS algorithm scheme. 

The operation of the NLMS predictor is shown in Fig. 5. The 
filter coefficients w^ are time-varying. The errors Ct are fed back 
and used to adapt the filter coefficients in order to decrease the 
mean square error. The NLMS operates as follows: 

• Initialize the filter coefficients W0 = 0. 
• For each new data (error e), update the filter coefficients w^ 

according to the following recursive equation: 

-'^"i^ (10) 

where ||Z|.||2 =z[Z|. and aj is a constant factor called step size. 
According to Haykin (1991), NLMS converges in the mean to 
LMMSE predictor if 0 < aj < 2. 

Note that at time t, the value of Zt+fe is not available to compute 
£[. Thus et_fe is used instead (Adas, 1998), and the one-step NLMS 
predictor update equation becomes: 

(»e t _ 1 t _ 1 

IIS-1l2 
(11) 

In PEOC, we adopt this one-step NLMS predictor to predict RTTt 
based on the historical measurements of R7T, in which we set the 
predictor step size a and the predictor order p to 0.8 and 20, 
respectively (Garroppo et al., 2011). Let W|. = [Wt0,Wt1, ...jWf19]'^ 
and RTTt = [RTTt,RTTt-1, ...,RTTt-19f. Assume that RTTt denotes 
the predicted RTT at time t. We have the following formulas: 

RTTt = 2 ^c.fiTTt^ WRTT 

St-2 = RTTt-1 -RTTt-1 =RTTt-1 - w [ 1RTTf, 

I 0 8 ^ ^ 2 f - 2 

II t-2 

(12) 

(13) 

(14) 

The pseudo-algorithm for predicting RTT in PEOC is shown in 
Algorithm 1. We elaborate it as follows: during an interval r(e.g., 
the time interval between t - 1 and t), when receiving the 200 OK 
response of the probing MESSAGE request sent at time t-1, we 
measure R7Tt_1 and use (13) to calculate et_2 based on the 
measured R7Tt_1 and RTTt^1. According to (14), we then calculate 
the predictor filter coefficients w^ in order to predict RTTt. Finally 
by using (12), we predict RTTt based on the calculated w^ and 
R7Tt_1. At the end of the interval T (at time t), the prober module 
passes the predicted value RTTt to the controller module. 

Algorithm 1. The pseudo-algorithm for predicting RTT. 

1. Receive a 200 OK (e.g., at time interval between t-1 and t); 
2. R7Tt_1 <-current time-MESSAGE sending time; 

3. e t_2^Rrr t_1-Rrr t_1 = R r r t _ 1 - w [ 1R7Tt_2 
e t_2ETTt_2 
l|R2Tt_2||2 

5. RTTt_1 <-combine RTTt^1 and RTTt_2 
Rrrt<-w[ RTTt_1 

4. Wt <-Wt_1 +0.8 

6. 

6. Performance evaluation 

6.1. Simulation environment 

The simulation platform used is the NS-2 simulator (NS-2 
Network Simulator). The proposed PEOC is implemented based 
on Prior's NS-2 SIP module (Prior). Two SIP network topologies 
shown in Fig. 2 are adopted in our simulations. These topologies 
are representatives of the topologies proposed in standards (e.g., 
the IMS architecture; 3rd Generation Partnership). Besides, they 
are commonly used in recent research (Hilt and Widjaja, 2008; 
Wang, 2010; Liao et al., 2012). A typical example of SIP call flow 
shown in Fig. 1 is adopted, and all SIP servers have the same 
processing capacities, which can process 200 messages per second, 
i.e., ~32 calls per second (cps). They use a round-robin (RR) 
scheme to balance the load whenever there are multiple next-hop 
servers available. Both edge servers and core servers receive a 
large number of calls from different UAs, and may be overloaded. 
Since a core server receives the traffic from multiple edge servers, 
it bears more load than edge server and is more likely to be 
overloaded. 

The SIP servers are set to operate in transaction stateful mode 
(Rosenberg et al., 2002). UAs and SIP servers transmit messages via 
UDP, thus the reliability of message transmission is achieved by SIP 
retransmissions. Servers are set to record route, which causes all 
SIP messages exchanged between two UAs to traverse through 
these servers. The processing time of SIP servers spent on 
forwarding a probing message is set as 0.5 ms. We use 503 
responses without Retry-After header recommended by Hilt 
et al. (2011) and Gurbani et al. (2013) to reject INVITE requests 
when a server's load gets close to its capacity limit. Considering 
that rejecting INVITE requests by sending 503 responses consumes 
processing resources, we set the processing time of SIP servers 
spent on sending a 503 response to be equal to that spent on 
processing any other message (except probing message). Besides, 
we adopt the early rejection method in SIP servers as suggested by 
Hilt and Widjaja (2008) to speed up the rejection process, in which 
INVITE requests are rejected before queuing them in the message 
buffer. Thus, in SIP servers, the INVITE request to be rejected and 
its 503 response are processed with high priority. All other SIP 
messages are served in a FIFO fashion. 

Our experiment uses an infinite number of UAs and each new 
call is generated by a new UA instance. The calls arrive at each 
edge server according to Poisson process, and the destination of a 
call is randomly picked among the other edge servers according to 
uniform distribution. The holding time for an established call is 
assumed to be exponentially distributed with an average of 30 s. 
The offered load to the network is the total number of calls 
per second initiated by all UAs. In the following results, we use 
the goodput and call setup delay as performance metrics. The 
goodput is defined as the number of calls per second successfully 
established. A call is successfully established if the UA receives a 
200 response within 10 s after the INVITE request is sent. The call 
setup delay is defined as the time between sending the initial 
INVITE request and receiving a 200 response. 

Similar to previous end-to-end overload control research (Hilt 
and Widjaja, 2008; Wang, 2010; Liao et al., 2012), we compare the 
performance of PEOC with no overload control (No Control), local 
occupancy-based control (OCC-Local) and hop-by-hop occupancy-
based control (OCC-Hop). Besides, the performance of PEOC is 
compared with DEOC proposed in Liao et al. (2012), which adopts 
a reactive algorithm to control overload for SIP networks. In No 
Control, the SIP server just drops messages if its buffer is full (i.e., 
drop-tail), and the buffer size is set to 100. In OCC-Local, each SIP 
server monitors its processor occupancy and calculates the accep­
tance probability, and then probabilistically rejects arriving calls 
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Fig. 6. Goodput comparison with varying offered load among different overload 
control mechanisms based on topology 1. 

Fig. 8. Goodput comparison with varying offered load among different overload 
control mechanisms based on topology 2. 

Fig. 7. Delay comparison with varying offered load among different overload 
control mechanisms based on topology 1. 

based on the acceptance probability, which is described in Cyr 
et al. (1990). The parameters of the OCC algorithms are set the 
same as those in Hilt and Widjaja (2008). OCC-Hop is extended 
from OCC-Local, in which each server still monitors its processor 
occupancy and calculates the acceptance probability. However, the 
overloaded server sends the acceptance probability as the feed­
back to its direct upstream neighbors as specified in Gurbani et al. 
(2013). The direct upstream neighbors then execute the rejection 
in place of the overloaded server. In PEOC, we adopt OCC-Local as 
the local overload control on each server. The EWMA smoothing 
weight w is set to 0.1. The decreasing parameter /? is set to 1/8 as 
used by Jain and Ramakrishnan (1988). The multiplicative increas­
ing parameter S is set to 0.1, the additive increasing parameter 9 is 
set to 0.1 and the threshold Tth is set to 50 ms unless otherwise 
specified. The overload control mechanism is terminated if there is 
no call rejection received within 100 s and is restarted as soon as 
the call rejection is received. The execution periods of all controls 
including OCC-Local, OCC-Hop and PEOC are set to 1 s, i.e., T in 
PEOC is 1 s. The parameters of DEOC except the increasing 
parameters, which are set to the default values as suggested by 
Liao et al. (2012), have similar values as those of PEOC. The 
following experiments are performed in topology 2 of Fig. 2 unless 
otherwise specified. Each experimental value is averaged over 10 
independent runs and the 95% confidence interval is calculated 
unless otherwise specified. 

6.2. Performance results 

In this section, we evaluate PEOC's performance in terms of 
goodput, aggressiveness, responsiveness and fairness. The experiment 

results prove that PEOC can keep high throughput even when the 
offered load exceeds the capacity of the network. Besides, it responds 
quickly to the sudden variations of the offered load and achieves good 
fairness. 

6.2.1. Goodput and call setup delay 
In this section, w e evaluate the goodput and the call se tup 

delay obtained from different overload control mechanisms under 
two network topologies. The network topology 1 and 2 are used in 
our first and second experiment, respectively and the results in 
both experiments are similar. The results of goodput and call se tup 
delay in our first experiment are shown in Figs. 6 and 7, 
respectively and those in the second experiment are shown in 
Figs. 8 and 9, respectively. 

As Figs. 6 and 8 show, w h e n the offered load is within the 
capacity of t he network, all mechanisms achieve comparable 
goodput. When the offered load goes beyond t he capacity of the 
network, PEOC and DEOC outperform other mechanisms. Besides, 
PEOC achieves better performance than DEOC. We detail it as 
follows: (1) in No Control, t he goodput rapidly drops to zero wi th a 
severe congestion collapse. It is because the simple drop-tail 
cannot relieve overload. Requests will be retransmitted if they 
are dropped, which amplifies the load on the overloaded server 
and eventually leads to congestion collapse of the network. (2) In 
OCC-Local, t he goodput degrades approximately linearly as the 
offered load increases, which is explained as follows: the over­
loaded server rejects incoming calls by itself. Since t he rejection 
also consumes t he processing resources, the overloaded server 
spends more and more resources on rejecting incoming calls and 
thus fewer resources are left for serving calls as the offered load 
increases. (3) OCC-Hop performs better than OCC-Local under 
overload, because the task of rejection is shifted to upstream 
neighbors. Thus t he overloaded server would not waste its 
resources on rejecting calls. However, this approach is still sub-
optimal. This is because overload is resolved near t he overloaded 
server rather than close to t he source of traffic, thus a lot of 
resources in SIP networks are wasted on processing a request that 
will finally be rejected. (4) DEOC and PEOC outperform other 
mechanisms. This is because the end-to-end overload controls 
thrott le traffic at t he edge of the network, thus min imum 
resources of SIP networks are wasted on processing a request that 
will finally be rejected. Besides, PEOC achieves better performance 
than DEOC. The reason is explained as follows: t he DEOC is a 
reactive mechanism, which controls the overload only based on a 
binary overload feedback received from the network. On the other 
hand, t he PEOC is a proactive mechanism, which controls the 
overload not only based on the received binary overload feedback, 



Fig. 9. Delay comparison with varying offered load among different overload 
control mechanisms based on topology 2. 

Fig. 10. Goodput comparison among different overload control mechanisms when 
the offered load is varied suddenly between overload and underutilization. 

but also by probing the SIP network proactively. Thus PEOC can 
infer the network load more accurately and perform the overload 
control more efficiently. 

Figs. 7 and 9 show the results of call setup delay. Note that for 
No Control case, the delay is plotted only up to 50 cps in the first 
experiment and 60 cps in the second experiment as no call can get 
through the network under overload. When the offered load is 
under the capacity of the network, all mechanisms ensure the 
same call setup delays. When the offered load increases above the 
capacity of the network, PEOC and DEOC perform up to an order of 
magnitude better than other mechanisms. Besides, their call setup 
delays are always at a low value (i.e., 0.1 s). In this case, the call 
setup delays do not increase significantly even when the network 
is under heavy offered load and thus the user experience is always 
assured. 

6.2.2. Aggressiveness and responsiveness 
In this section, we vary the offered load to the SIP network to 

study how fast the overload control mechanisms respond to the 
sudden load variations. Initially, the offered load to the network is 
25 cps, which is below the capacity of the network. At 200 s, the 
offered load is increased to 100 cps suddenly, which is beyond the 
capacity of the network. At 400 s, the offered load is decreased 
back to 25 cps. We measure the instantaneous goodput and call 
setup delay every 10 s and show a sample path of goodput and call 
setup delay as a function of time in Figs. 10 and 11 , respectively. 

As expected, in No Control, the network suffers from conges­
tion collapse under overload and can hardly recover from it even if 
the offered load is decreased below the capacity. OCC-Local, OCC-
Hop and PEOC all respond quickly to the sudden load variations. 

Table 1 
Response time comparison between DEOC and PEOC. 

DEOC 

Response time (s) 14.1 
(95% confidence interval) (12.63, 15.57) 

PEOC 

5.3 
(4.37, 6.23) 

Fig. 11. Delay comparison among different overload control mechanisms when the 
offered load is varied suddenly between overload and underutilization. 

Besides, PEOC achieves better goodput and call setup delay when 
the offered load goes beyond the capacity of the network. 

In Fig. 10, we observe that there is a decrease just after an 
increase in the goodput curves of all mechanisms at 200 s when 
the offered load is increased suddenly. This is because in our 
experiment the control parameters (e.g., processor occupancy, 
acceptance probability, call gap interval, etc.) are updated once 
per second, but the offered load is increased immediately at 200 s. 
Therefore, at 200 s, a large number of new calls are admitted into 
the network before the control parameters are updated. Due to the 
call-oriented property of SIP, if the INVITE message is admitted, all 
subsequent messages belonging to the same call as the INVITE 
message should also be admitted. Thus, the network is overloaded 
after 200 s, and the overload controls of all mechanisms begin to 
decrease the call admission rate to eliminate overload, which 
causes the decrease of goodput. After the overload is eliminated, 
the goodput recovers. 

As for PEOC, we observe that after a sudden increase of the 
offered load (i.e., after 200 s), the goodput drops immediately as 
shown in Fig. 10. Besides, the call setup delay is limited to a lower 
value (i.e., less than 1 s) under overload as shown in Fig. 11. This is 
mainly because in PEOC, the call admission rate is decreased more 
quickly when overload occurs, and thus few calls, which will 
amplify the overload of the network, are admitted. Therefore, 
PEOC has high responsiveness. After the overload is eliminated, 
the goodput increases immediately to the capacity of the network 
as shown in Fig. 10. Therefore, PEOC has high aggressiveness. 

Table 1 shows the comparison of response time between DEOC 
and PEOC. In the following experiments, when comparing 
response time, we use the same simulation setup as in this section. 
The response time in the simulation is defined as the time (i.e., the 
number of periods and the period is 1 s in the experiment) that the 
network spends on increasing goodput to its capacity after over­
load is eliminated (after 200 s). In our simulation, the beginning of 
response time is at the time when the processor occupancy of each 
core server is less than 50% (i.e., the goodput starts to increase 
after overload is eliminated). The end of response time is at the 
time when goodput increases to the network's capacity. We can 
see that our defined response time indicates aggressiveness, in 
which shorter response time means higher aggressiveness. 



From Table 1, we can observe that the response time in DEOC is 
longer than that in PEOC. This is because PEOC probes the network 
proactively and thus can infer the network load in a timely 
manner. Therefore, PEOC has higher aggressiveness than DEOC. 

6.2.3. Fairness 
Fairness is an important performance metric for distributed 

rate control algorithms. In this section, we define an admitted call 
flow as the admitted calls that have the same ingress server and 
the same target server. We investigate the goodput of each 
admitted call flow, whose ingress server is in domain A and target 
server is in domain B, to study the performance of different 
overload control mechanisms in terms of fairness. We choose 
these admitted call flows to evaluate the fairness as they have the 
same bottleneck (Bertsekas and Gallager, 1987) in the SIP network. 
In the experiment, we measure the goodput of each admitted call 
flow when the offered load is 50, 100, 150 and 200 cps and then 
calculate Jain's fairness index (Jain et al., 1984), which is defined as 
follows: 

/ 

The fairness index f considers k admitted call flows where the 
goodput of flow i is xi. f is between 0 and 1, where 1 is completely 
fair (all flows share the bottleneck resource equally). Fig. 12 shows 
the results in terms of the fairness index. 

When the offered load is within the capacity of the network 
(i.e., the offered load is 50 cps), all mechanisms have good fairness 
since there is no call rejection. When the offered load goes beyond 
the capacity of the network (i.e., the offered load is 100, 150 and 
200 cps), in No Control case, the index is not plotted as no call can 
get through the network under overload. All other mechanisms 
have good fairness (all indexes are above 0.98). Note that when the 
offered load is high (150, 200 cps), OCC-Local and OCC-Hop have 
slightly better fairness than PEOC and DEOC. We explain it as 
follows: both OCC-Local and OCC-Hop control overload near the 
overloaded server. Thus they have better knowledge of the over­
load. However, both PEOC and DEOC infer the overload at the edge 
of the network. This inference may not be as accurate or timely as 
that of OCC-Local and OCC-Hop. Even so, PEOC can still achieve 
good fairness. 

6.3. Parameter tuning 

6.3.1. Effect of parameter δ 
The parameter δ determines the increasing rate of call admis­

sion rate when the network load is low. According to the analysis 
in Section 4, a smaller δ leads to a higher goodput and a lower 

aggressiveness. Fig. 13 shows the goodput obtained from PEOC 
with δ¼0.05, δ¼0.1, δ¼0.2 and δ¼0.5 under different offered load. 
When the offered load goes beyond the capacity of the network 
(i.e., the offered load is 100, 150 and 200 cps), the PEOC with 
minimum δ has the highest goodput and the PEOC with maximum 
δ has the lowest goodput. Table 2 shows the response time of PEOC 
with different δ. We can see that the PEOC with minimum δ has 
the longest response time and the PEOC with maximum δ has the 
shortest response time. Thus the larger δ leads to lower goodput 
and higher aggressiveness. This conclusion validates our analysis 
of δ in Section 4. From Table 2 we can see that even a small δ can 
achieve high aggressiveness, thus in practice δ should be set as a 
small value in order to keep high throughput. 

6.3.2. Effect of parameter θ 
The parameter θ is the increasing step size of call admission 

rate when the network load is high. According to the analysis in 
Section 4, a smaller θ leads to a higher goodput and a lower 
aggressiveness. Fig. 14 shows the goodput obtained from PEOC 
with various θ under different offered load. When the offered load 
goes beyond the capacity of the network, the PEOC with smaller θ 
has higher goodput. The response time of PEOC with different θ is 

Fig. 13. Goodput comparison with varying offered load among PEOC with δ¼0.05, 
δ¼0.1, δ¼0.2 and δ¼0.5. 

Table 2 
Response time comparison among PEOC with δ¼0.05, δ¼0.1, δ¼0.2 and δ¼0.5. 

(5—0.05 5 = 0.1 5=0.2 5=0.5 

Response time (s) 10.1 5.3 2.4 1.3 
(95% confidence interval) (8.36, 11.84) (4.37, 6.23) (2.08, 2.72) (1.00, 1.60) 

Fig. 12. Jain's fairness index comparison among different overload control mechan­
isms when the offered load is 50, 100, 150 and 200 cps. 

Fig. 14. Goodput comparison with varying offered load among PEOC with θ¼0.05, 
θ¼0.1, θ¼0.5, θ¼1.0 and θ¼2.0. 



Table 3 
Response time comparison among PEOC with θ¼0.05, θ¼0.1, θ¼0.5, θ¼1.0 and θ¼2.0. 

6*—0.05 

Response time (s) 9.7 
(95% confidence interval) (8.27, 11.13) 

6*-0.1 

5.3 
(4.37, 6.23) 

6*-0.5 

3.5 
(2.90, 4.10) 

6*-1.0 

2.1 
(1.56, 2.64) 

6'-2.0 

1.6 
(1.17, 2.03) 

Fig. 15. Goodput comparison with varying offered load among PEOC with 
Tth¼20 ms, Tth¼50 ms, Tth¼100 ms and Tth¼200 ms. 

Table 4 
Response time comparison among PEOC with Tth¼20 ms, Tth¼50 ms, Tth¼100 ms 
and Tth¼200 ms. 

Tth —20 ms Tth —50 ms Tth—100 ms Tth —200 ms 

Response time (s) 7.2 5.3 2.9 1.5 
(95% confidence interval) (6.29, 8.11) (4.37, 6.23) (2.16, 3.64) (1.06, 1.94) 

shown in Table 3 . We can see that t he PEOC with smaller θ has 
longer response t ime. Therefore, t he smaller θ, the higher goodput 
and the lower aggressiveness. This conclusion validates our 
analysis of θ in Section 4. From Table 3 w e can see that even a 
small θ can achieve high aggressiveness, thus in practice it is 
suitable to set θ as a small value in order to keep high throughput . 

6.3.3. Effect of parameter T th 

The parameter Tth is the threshold value that determines 
whether t he network load is high or low. According to t he analysis 
in Section 4, a smaller Tth leads to a higher goodput and a lower 
aggressiveness. Fig. 15 shows the goodput obtained from PEOC 
with various Tth under different offered load. When the offered 
load goes beyond the capacity of the network, t he PEOC with 
smaller T th has higher goodput. Table 4 shows the response t ime of 
PEOC with different Tth. We can see that the PEOC with smaller Tth 

has longer response t ime. Therefore, the smaller Tth, the higher 
goodput and the lower aggressiveness. This conclusion validates 
our analysis about Tth in Section 4. In practice, w e may choose a 
proper threshold Tth to balance the performance be tween goodput 
and aggressiveness according to our needs. 

network. The current existing end-to-end overload control solu­
tions can be classified into receiver-based and sender-based 
control. The receiver-based mechanisms (Hilt and Widjaja, 2 0 0 8 ; 
Wang, 2010) control the overload based on the complicated 
cooperation among edge servers and core servers, which are too 
complex to be practical. On the other hand, the sender-based 
mechanism DEOC (Liao e t al., 2012) controls the overload based on 
the simple binary overload feedback without the need of the 
complicated cooperation among servers and thus is practical and 
easy to implement . 

In this paper, w e proposed PEOC, which is a probe-based end-
to-end overload control mechanism for SIP networks. Similarly to 
DEOC (Liao et al., 2012), PEOC controls the overload based on the 
simple binary overload feedback. Besides, it est imates the network 
load by probing the SIP network wi th SIP messages and thus can 
control the overload of t he network in a more efficiently and 
timely manner compared wi th DEOC. We presented t he design of 
t he proposed approach, and evaluated its performance through 
simulation experiments. Our simulation results demonstrated that 
PEOC can keep high throughput even w h e n the offered load 
exceeds t he capacity of the network. Besides, it responds quickly 
to t he sudden variations of t he offered load and achieves good 
fairness. 

In our future work, w e plan to implement PEOC and evaluate its 
performance in real networks. In real networks, some edge servers 
may not deploy PEOC as they are not under the control of the 
carrier. If only some of the edge servers deploy PEOC, it will lead to 
t he unfairness be tween the edge servers wi th PEOC and those 
wi thout PEOC w h e n overload occurs in the core servers. This is 
because the edge servers wi th PEOC decrease t he call admission 
rates in response to overload, while the edge servers wi thout PEOC 
are not cooperative and do not decrease t he call admission rates. 
Therefore, w e need to design and implement a mechanism in core 
servers that can guarantee t he fairness be tween all edge servers, 
w h e n only some of t he edge servers deploy PEOC. 

Acknowledgments 

This work was jointly supported by: (1) the National Basic 
Research Program of China (No. 2013CB329102); (2) National 
Natural Science Foundation of China (Nos. 61372120, 61271019, 
61101119, 61121001, 61072057, and 60902051); (3) PCSIRT (No. 
IRT1049); (4) Spanish Research Council (MICCIN) under Project no. 
TIN2010-19077; and (5) Madrid Research Foundation (CAM) under 
Project no. S2009TIC-1692 (cofunded by ERDF and ESF). 

References 

7. Conclusion and future work 

With the increasing popularity and rapidly growing deploy­
ments of SIP, t he issue of overload control in SIP networks 
becomes more and more important . Compared to t he traditional 
Local and Hop-by-hop overload controls, the end- to-end overload 
control can better utilize network resources and improve the 
throughput w h e n the offered load exceeds t he capacity of the 

3rd Generation Partnership Project. http://www.3gpp.org . 
Abdelal A, Matragi W. Signal-based overload control for SIP servers. In: Proceedings 

of IEEE CCNC; January 2010. p. 1–7. 
Adas AM. Using adaptive linear prediction to support real-time VBR video under 

RCBR network service model. IEEE Trans Networking 1998;6(5):635–44. 
Allman M, Paxson V, Blanton E. TCP congestion control, IETF RFC 5681; September 

2009. 
Azhari SV, Homayouni M, Nemati H, Enayatizadeh J, Akbari A. Overload control in 

SIP networks using no explicit feedback: a window based approach. Comput 
Commun 2012;35(12):1472–83. 

http://www.3gpp.org
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref1
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref1
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref2
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref2
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref2


Berger A. Comparison of call gapping and percent blocking for overload control in 
distributed switching systems and telecommunications networks. IEEE Trans 
Commun 1991;39(4):574–80. 

Bertsekas D, Gallager R. Data networks. Prentice Hall; 1987. 
Chiu D-M, Jain R. Analysis of the increase and decrease algorithms for congestion 

avoidance in computer networks. Comput Networks ISDN Syst 1989;17 
(1):1–14. 

Cyr BL, Kaufman JS, Lee PT .Load balancing and overload control in a distributed 
processing telecommunication systems, United States Patent No. 4,974,256; 
1990. 

Garroppo RG, Giordano S, Pagano M, Procissi G. On traffic prediction for resource 
allocation: a Chebyshev bound based allocation scheme. Comput Commun 
2008;31(16):3741–51. 

Garroppo RG, Giordano S, Niccolini S, Spagna S, Prediction-Based A. Overload 
control algorithm for SIP servers. IEEE Trans Network Serv Manage 2011;8 
(1):39–51. 

Garroppo RG, Giordano S, Spagna S, Niccolini S. Queueing strategies for local 
overload control in SIP server. In: Proceedings of IEEE GLOBECOM; December 
2009. p. 1–6. 

Gurbani V, Hilt V, Schulzrinne H. Session Initiation Protocol (SIP) overload control, 
draft-ietf-soc-overload-control-13, IETF, Work in Progress; May 2013. 

Hayes M. Statistical digital signal processing and modeling. Wiley; 1996. 
Haykin S. Adaptive filter theory. Prentice Hall; 1991. 
Hilt V, Widjaja I. Controlling overload in networks of SIP servers. In: Proceedings of 

IEEE ICNP; October 2008. p. 83–93. 
Hilt V, Noel E, Shen C, Abdelal A. Design considerations for Session Initiation 

Protocol (SIP) overload control, IETF RFC 6357; August 2011. 
Hong Y, Huang C, Yan James. Mitigating SIP overload using a control-theoretic 

approach. In: Proceedings of IEEE GLOBECOM; December 2010. p. 1–5. 
Jacobson V. Congestion avoidance and control. In: Proceedings of ACM SIGCOMM; 

1988. p. 314–329. 

Jain R, Ramakrishnan KK. Congestion avoidance in computer networks with a 
connectionless network layer: concepts, goals and methodology. In: Proceed­
ings of the computer networking symposium; 1988. p. 134-143. 

Jain R, Chiu D-M, Hawe W. A quantitative measure of fairness and discrimination 
for resource allocation in shared systems, digital equipment corporation. 
Technical report TR-301; September 1984. 

Kasera S, Pinheiro J, Loader C, Karaul M, Hari A, LaPorta T. Fast and robust signaling 
overload control. In: Proceedings of IEEE ICNP; November 2001. p. 323-331. 

Liao J, Wang J, Li T, Wang J, Zhu X. A token-bucket based notification traffic control 
mechanism for IMS presence service. Comput Commun 2011;34(10):1243-57. 

Liao J, Wang J, Li T, Wang J, Wang J, Zhu X. A distributed end-to-end overload 
control mechanism for networks of SIP servers. Comput Networks 2012;56 
(12):2847-68. 

Mishra PP, Kanakia H, Tripathi SK. On hop-by-hop rate-based congestion control. 
IEEE Trans Networking 1996;4(2):224-39. 

NS-2 Network Simulator. (http://www.isi.edu/nsnam/ns/). 
Noel EC, Johnson CR. Initial simulation results that analyze SIP based VoIP networks 

under overload. In: Proceedings of the international teletraffic congress; June 
2007. p. 54-64. 

Ohta M. Overload control in a SIP signaling network, enformatika transactions on 
engineering. Comput Technol March 2006a: 205-210. 

Ohta M. Overload protection in a SIP signaling network. In: Proceedings of IEEE 
ICISP; August 2006b. 

Prior R. SIP module for NS-2. (http://www.dcc.fc.up.pt/'-rprior/ns/index-en.html). 
Rosenberg J. Requirements for management of overload in the session initiation 

protocol, IETF RFC 5390; December 2008. 
Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J, Sparks R, et al., SIP: 

Session Initiation Protocol, IETF RFC 3261; June 2002. 
Shen C, Schulzrinne H, Nahum E. Session Initiation Protocol (SIP) server overload 

control: design and evaluation. In: Proceedings of IPTComm; July 2008. p. 149-173. 
Wang Y. SIP overload control: a backpressure-based approach. In: Proceedings of 

ACM SIGCOMM (poster); August 2010. p. 399-400. 

http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref3
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref3
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref3
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref4
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref5
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref5
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref5
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref6
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref6
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref6
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref7
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref7
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref7
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref8
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref9
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref10
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref10
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref11
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref11
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref11
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref12
http://refhub.elsevier.com/S1084-8045(13)00260-9/sbref12
http://www.isi.edu/nsnam/ns/
http://www.dcc.fc.up.pt/~rprior/ns/index-en.html
http://www.dcc.fc.up.pt/'-rprior/ns/index-en.html
http://www.dcc.fc.up.pt/~rprior/ns/index-en.html

