
ar
X

iv
:1

61
0.

03
53

4v
1

 [c
s.

N
I]

 2
6

Ja
n

20
16

Comparative study of High-speed Linux TCP Variants over High-BDP Networks

Mohamed A. Alrshah1,a, Mohamed Othman2,a, Borhanuddin Alib, Zurina Mohd Hanapia

aDepartment of Communication Technology and Network, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor D.E., Malaysia
bDepartment of Computer and Communication Systems Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor D.E, Malaysia.

Abstract

Transmission Control Protocol (TCP) has been profusely used by most of internet applications. Since 1970s, several
TCP variants have been developed in order to cope with the fast increasing of network capacities especially in high
Bandwidth Delay Product (high-BDP) networks. In these TCP variants, several approaches have been used, some of
these approaches have the ability to estimate available bandwidths and some react based on network loss and/or delay
changes. This variety of the used approaches arises many consequent problems with different levels of dependability
and accuracy. Indeed, a particular TCP variant which is proper for wireless networks, may not fit for high-BDP wired
networks and vice versa. Therefore, it is necessary to conduct a comparison between the high-speed TCP variants that
have a high level of importance especially after the fast growth of networks bandwidths. In this paper, high-speed TCP
variants, that are implemented in Linux and available for research, have been evaluated using NS2 network simulator.
This performance evaluation presents the advantages and disadvantages of these TCP variants in terms of throughput,
loss-ratio and fairness over high-BDP networks. The results reveal that, CUBIC and YeAH overcome the other high-
speed TCP variants in different cases of buffer size. However, they still require more improvement to extend their
ability to fully utilize the high-speed bandwidths, especially when the applied buffer is near − zero or less than the
BDP of the link.

Keywords: Linux TCP, High-BDP, Congestion Control, Throughput, LossRatio, Fairness Index.

1. Introduction

Transmission Control Protocol (TCP) is commonly
used by most of Internet applications and becomes one
of the two original components of the Internet proto-
col suite, complementing the Internet Protocol (IP), thus
the entire suite is known as TCP/IP. TCP provides sta-
ble and reliable delivery of data packets without relying
on any explicit feedback from the underlying network.
However, it relies only on the two ends of the connec-
tion which are sender and receiver. That is why TCP
is known as end-to-end or host-to-host protocol. In the
last couple of years, TCP is profusely used by major
Internet applications such as file transfer, email, World-
Wide-Web and remote administration.

The first idea of TCP had been presented by
Cerf and Khan (1974). Thereafter, TCP has been im-

1Corresponding authors:
E-mail addresses: mohamed.asnd@gmail.com (Mohamed Alrshah),
mothman@upm.edu.my (Mohamed Othman).

2The author is an associate researcher at the Computational Sci-
ence and Mathematical Physics Lab, Institute of Mathematical Sci-
ence, Universiti Putra Malaysia.

plemented in several operating systems and examined
in real environment. With the advancement in network
technology, TCP faced many new scenarios and prob-
lems, such as network congestion, under utilization of
bandwidth, unfair share, unnecessary retransmission,
out of order delivery, non-congestion loss. All of these
problems encouraged researchers to review the behav-
ior of TCP. In order to solve these problems, many TCP
variants have been developed. Each TCP variant has
been designed to solve certain problems, some try to
survive over a very slow and congested connections, and
some try to achieve higher throughput to fully utilize the
high-speed bandwidths, while some try to be more fair.
In fact, they are mostly different from each other so that
categorizes them into high-speed, wireless, satellite and
low priority. Indeed, a particular TCP variant which is
proper for wireless networks, may not fit for high-BDP
wired networks and vice versa.

Therefore, it is necessary to conduct a comparison
between TCP variants that are designed for high-speed
networks to show the advantages and disadvantages of
each TCP variant. In this paper, Scalable TCP, HS-TCP,

Preprint submitted to JOURNAL OF NETWORK AND COMPUTER APPLICATIONS October 13, 2016

http://arxiv.org/abs/1610.03534v1

BIC, H-TCP, CUBIC, TCP Africa, TCP Compound,
TCP Fusion, NewReno, TCP illinois and YeAH have
been evaluated using NS2 network simulator. This per-
formance evaluation presents the advantages and disad-
vantages of the compared TCP variants and shows the
differences between them in terms of throughput, loss-
ratio and fairness over high-BDP networks. As well
as, it presents and explains the behaviors of the com-
pared TCP variants, shows the impacts of the used ap-
proaches, and arranges the thoughts. Thus, this paper
may help the researchers to improve the performance of
the existing TCP variants by cutting down the effort of
comparing the existing protocols in order to improve it
to fit the new generation of the networks.

The rest of this paper is organized as follows: Section
2 presents the motivations behind this work, challenges
and previous works. While, Section 3 presents the per-
formance evaluation of high-speed TCP variants and ex-
plains the experiments’ setup, network topology, perfor-
mance metrics, results and discussion. Finally, Section
4 concludes the paper with some final comments.

2. Motivations, Challenges and Previous Works

The rapid growth of network technologies reduces the
ability of TCP to fully utilize the resources of these net-
works. Due to this problem of under-utilization of net-
work resources, many high-speed TCP variants that aim
to increase the utilization of these resources have been
exist. These increase of TCP aggressiveness, in order
to fully utilize the high-speed bandwidths, arises the se-
vere problem of burst loss (Ha and Rhee, 2008). In ad-
dition to that, the variety of these TCP protocols leads to
some questions that need to be addressed: Which TCP
variant seems to be the best for high-speed networks?
Are the current TCP variants sufficient to fully utilize
the high-speed bandwidths? In order to answer these
questions, a comparative study of high-speed TCP vari-
ants is required. Such comparison or performance eval-
uation addresses the points of TCP weaknesses and con-
sequently supports the process of enhancing TCP per-
formance.

Nowadays, TCP is struggling to deal with different
network environments such as wireless or lossy net-
works, high-speed networks and highly congested net-
works. Each type of these networks has its own prob-
lems and limitations that are different from one to an-
other networks. Consequently, there are many TCP
variants designed for each certain type of networks. As
shown in Figure 1, Afanasyev et al. (2010) provided
an excellent evolutionary graph of most TCP variants
based on the problem of which they are trying to solve

Figure 1: The classification and evolution of variants of TCPconges-
tion control (Afanasyev et al., 2010).

and how they are behaving. In this paper, high-speed
Linux TCP variants that are available for research is pre-
sented and explained, as shown in Table 1, along the
following subsections.

2.1. TCP NewReno

TCP NewReno is a modification of TCP Reno which
developed by Floyd and Henderson (1999) then modi-
fied by Floyd et al. (2004), Henderson et al. (2012) to
overcome the problem of Reno’sFastRecovery during
the occurrence of multiple packet losses which signifi-
cantly decreases the Reno’s performance in heavy con-
gested networks. In NewReno, the exit from the state
of FastRecovery is only allowed if all the data from
the initial congestion window are being acknowledged
which senses thepartial data ACKs and differentiates
it from newdata ACKs. More specifically, thenewdata
ACK reception indicates to delivery success of all data
which sent before the loss detection while thepartial
ACK indicates to other losses in the initial congestion
window. In fact, NewReno is not designed for high-
speed networks (Afanasyev et al., 2010), as shown in
Figure 1, so it is used here to be compared with the high-
speed TCP variants as a benchmark.

2

Table 1: The evolution of High-speed TCP Variants and their implementations in the common operating systems (Afanasyevet al., 2010).

TCP Variant Year Base Windows Linux Sun Solaris
NewReno 1999 Reno NA > 2.1.36 NA
HS-TCP 2003 NewReno NA > 2.6.13 NA
S-TCP 2003 NewReno NA > 2.6.13 NA
H-TCP 2004 NewReno NA > 2.6.13 NA
BIC-TCP 2004 HS-TCP NA > 2.6.12 NA
TCP-AFRICA 2005 HS-TCP, Vegas NA NA NA
TCP-Compound 2006 HS-TCP, Vegas XP, Vista, Win7> 2.6.14 NA
TCP-illinois 2006 NewReno, DUAL NA > 2.6.22 NA
TCP-FUSION 2007 Westwood, Vegas NA NA 10, 11
YeAH-TCP 2007 STCP, Vegas NA > 2.6.22 NA
TCP-CUBIC 2008 BIC-TCP NA > 2.6.16 NA

2.2. Scalable TCP (STCP)

STCP was presented at CERN by Kelly (2003) to
overcome the poor performance of the existing conges-
tion control algorithms (such as NewReno) after the
increase of bandwidths in high-speed networks. The
challenge for this protocol was to achieve better net-
work utilization with higher Bandwidth Delay Products
(BDP) without causing any negative impact on the ex-
isting traffic. Indeed, STCP is merely sender-side modi-
fication to the TCP congestion control algorithm. STCP
has been implemented in Linux and then it has provided
an improved performance over the gigabit transatlantic
network using standard TCP receivers. At that time, the
results revealed that, the use of STCP would have a triv-
ial effect on existing network traffic at the same time as
enhancing data transfer performance in high-speed net-
works (Kelly, 2003).

The loss-based STCP congestion control algorithm
usesα, β while (0< α < 1) and (0< β < 1). STCP up-
dates its congestion window after receiving each ACK
in a round trip time byα, as shown in Equation (1),
in which congestion is not detected but if congestion is
detected, it decreases the congestion window byβ, as
shown in Equation (2) (Kelly, 2003).

cwnd = cwnd + α (1)

cwnd = cwnd − (β ∗ cwnd) (2)

While α andβ set to 0.01 and 0.125, respectively.

2.3. High-speed TCP (HS-TCP)

Floyd (2003) proposed a new high-speed TCP for
large congestion window sizes. This TCP variant was

proposed to overcome the poor performance of stan-
dard TCP over high-speed networks. HS-TCP is con-
sidered as loss-based congestion control algorithm. In
fact, HS-TCP did not change the behavior of standard
TCP therefore it did not present any risk such as conges-
tion collapse. HS-TCP is merely sender-side modifica-
tion which increases and decreases congestion window
by α(w) andβ(w), respectively. The resulting functions
α(w) andβ(w) vary from 1 and 0.5, respectively, (when
the congestion window is below or equal to 38 packet)
to 70 and 0.1, (when the congestion window is greater
than 84k packets) (Afanasyev et al., 2010, Lar and Liao,
2013).

Although, HS-TCP succeeded to increase the
throughput in high-speed networks, it presented an ag-
gressive behavior than standard TCP which affects its
sharing fairness especially when competing with stan-
dard TCP flows. Moreover, high-speed TCP presented
another problem over high-BDP networks. This prob-
lem is known as bursty packet losses which is caused
by the standard Slow Start during the phase of an initial
Slow Start when an approximate network capacity is not
yet determined. In order to overcome this problem, HS-
TCP limits its Slow Start to 100 packets. This behavior
is well known as “Limited Slow Start” which is one of
HS-TCP weaknesses.

2.4. Hamilton TCP (H-TCP)

H-TCP was presented by D. Leith (2004) at Hamil-
ton Institute. H-TCP is a loss-based congestion control
protocol, which is suitable for high-speed and long dis-
tance networks. It is designed to be more fair and ef-
fective than conventional TCP. H-TCP defines the in-
crease in the congestion windoww as α(∆) for each

3

RTT (which increases by a fractionα(∆)/w for each re-
ception of non-duplicate ACK), while∆ is elapsed time
since last congestion signal. The final function of the
increase is defined as in Equation (3) (Afanasyev et al.,
2010, Lar and Liao, 2013).

α(∆) = 1+ 10(∆ − ∆low) + 0.5 ∗ (∆ − ∆low)2 (3)

Where∆low is a predefined value, whenever∆ < ∆low,
α(∆) = 1. H-TCP reduces its congestion window by
RTTratio Eq.(4) if γ Eq.(5) is less than 0.2.

RTTratio =
RTTmin

RTTmax
(4)

γ =

∣

∣

∣

∣

∣

B(k) − B(k − 1)
B(k − 1)

∣

∣

∣

∣

∣

(5)

WhereB(k) is the estimation of achieved throughput and
B(k − 1) is the estimation of preceding loss event; oth-
erwise it will halve its congestion window.

2.5. BIC-TCP

BIC-TCP was presented by Xu et al. (2004), after
they had pointed out the problem of RTT-unfairness
in HS-TCP and STCP. More specifically, assume that
two TCP flows are sharing one bottleneck and they de-
tect the loss synchronously, if the two flows are HS-
TCP, the flow that its RTT isx times smaller can
have a network share ofx4.56 times larger. But if two
STCP flows are used, the smaller RTT will grab all
the network bandwidth while the higher RTT will get
nothing. Hence, BIC-TCP was presented to solve this
problem of absolute RTT-unfairness (Harfoush, 2004,
Afanasyev et al., 2010).

Despite of the improved performance of BIC-TCP,
its function of window growth can be highly aggres-
sive especially over low-speed or short-distance net-
works. Furthermore, BIC-TCP may achieve a bad inter-
fairness and RTT-fairness due to its dependability on
RTT measurements. As well as, it has a high complex-
ity due to the several modes (binary search increase,
max probing, Smax and Smin) of the algorithm itself.
Thus, BIC-TCP has been reviewed and modified in CU-
BIC which conserves the stability and scalability of
BIC-TCP, decreases the complexity, and increases the
fairness (Ha and Rhee, 2008, Afanasyev et al., 2010).

2.6. TCP Africa

TCP-Africa (Adaptive and Fair Rapid Increase Con-
gestion Avoidance) was presented by King et al. (2005).
TCP-Africa was designed to solve the problems that

were appearing in high-BDP networks. The ag-
gressiveness and scalability of HS-TCP (in case of
congestion-free) and the conservative attribute of stan-
dard NewReno (in case of congestion) have been com-
bined to gain a better performance than the existing TCP
variants. TCP-Africa is loss-delay-based algorithm,
which has borrowed its behavior (congestion/non −
congestion) from TCP Vegas algorithm; by comparing
the estimated buffer of the network∆ to a predefined
constantα. In TCP-Africa, when (∆ < α) which indi-
cates to a little buffering space, it switches tof astmode
and immediately applies the Congestion Avoidance and
Fast Recovery of HS-TCP algorithm. In this case, the
decrease and increase steps are calculated asβ(w) and
α(w), respectively. Otherwise, it switches toslowmode
which applies the rules of NewReno that increases by
one after everyACK reception and decreases byhalving
the congestion window after loss detection.

TCP-Africa has been evaluated by simulation and
presented good bandwidth utilization in high-BDP net-
works (King et al., 2005, Afanasyev et al., 2010). It
showed a lower loss ratio than HS-TCP and STC. It also
presented high fairness (RTT-, intra-, inter-) similar to
that presented by NewReno. In despite of that improve-
ment, TCP-Africa has not been implemented in real op-
erating systems, whereas a similarmultiple−mode con-
gestion algorithm which is Compound TCP has been
implemented in Microsoft Windows operating systems
(Afanasyev et al., 2010, Lar and Liao, 2013).

2.7. TCP-illinois
TCP-illinois was introduced at UIUC by Liu et al.

(2008). It is a sender-side protocol which modifies
AIMD algorithm of the standard TCP (Reno, NewReno
or Sack). It usesloss anddelay as congestion signals
to increase or decrease its congestion window. TCP-
illinois achieves better performance than the standard
TCP and shares the network bandwidth fairly especially
over high-BDP networks. TCP-illinois updates its con-
gestion window after everyACK reception in a round
trip time by (α/cwnd) in which congestion has not de-
tected but when congestion detected, TCP-illinois de-
creases its congestion window by (β∗cwnd) as in Equa-
tions (6) and (7) (Liu et al., 2008), respectively.

cwnd = cwnd + (α/cwnd) (6)

cwnd = cwnd − (β ∗ cwnd) (7)

TCP-illinois uses loss signal to set the direction and
use delay to calculate the step of window size change
by f1(.) and f2(.) as explained in reference (Liu et al.,
2008), while (0≤ α ≤ 1), (0.125≤ β ≤ 0.5) andα =
f1(da), β = f2(da), where (da) is delay-average.

4

2.8. Compound TCP (C-TCP)

Tan and Song (2006) introduced new loss-delay-
based TCP variant named C-TCP. As TCP-Africa, C-
TCP combines two modes of NewReno and HS-TCP to
increase the bandwidth utilization over high-BDP net-
works. C-TCP comparesα to the estimated∆, where
α is small predefined constant. When∆ exceedsα, C-
TCP gently reducesW f ast by a predefinedζ as shown in
Equation (8) (Afanasyev et al., 2010).

W f ast = W f ast − (ζ ∗ ∆) (8)

C-TCP calculatesW f ast to add it to the final conges-
tion window as shown in Equation (9) (Afanasyev et al.,
2010).

W = Wreno +W f ast (9)

This W f ast is a smooth movement from HS-TCP
f astmode to NewRenoslowmode. C-TCP behavior is
very similar to TCP-Africa but C-TCP shows a convex
curve after exceeding the threshold while TCP- Africa
shows linear increase. In despite of the changes in its
behavior, C-TCP still achieves as same performance as
TCP-Africa and even presents another problem of RTT
estimation which is inherited from TCP Vegas. This
problem makes C-TCP very sensitive to RTT measure-
ments which makes it slightly unfair. However, C-TCP
is currently the most deployed congestion control algo-
rithm since its implementation in Microsoft Windows
operating systems (Afanasyev et al., 2010).

2.9. YeAH TCP

YeAH (Yet Another High-speed) TCP was presented
by Baiocchi et al. (2007). It is similar in spirit of TCP-
Africa and C-TCP. It combines loss detection and RTT
estimation to predict network delay. Similarly, YeAH
combines NewReno and STCP instead of HS-TCP, so it
increases the congestion window byone every RTT and
halving it if a loss is detected (by receiving three du-
plicated ACKs). More specifically, if (∆ < α), where
α is a predefined threshold, and (Q/RTTmin < φ),
whereφ is another predefined threshold, YeAH switches
to f astmode and behaves similarly as STCP. Other-
wise, a slowmode of NewReno is applied. Briefly,
YeAH showed higher efficiency and fairness (inter-,
intra-, RTT-) than TCP-Africa and C-TCP especially
in high-BDP networks but it still has the same prob-
lem of RTT estimation which is inherited from Vegas
(Afanasyev et al., 2010, Lar and Liao, 2013).

2.10. TCP Fusion

Kaneko et al. (2007) presented TCP Fusion which
combining Westwood′s achievable rate, DUALs
queuing delay, and Vegas used network bu f f ering
estimations. Depending on the absolute threshold value
of queuing delay, Fusion switches to its three modes; if
the queuing delay is lower than the predefined threshold,
the f astmode is applied which increases itscwnd by a
predefined achievable rate estimation fraction of West-
wood. While if the current queuing delay is greater than
three times of the threshold,cwnd is decreased by the
number of buffered packets in the network. Otherwise,
if the queuing delay is somewhere betweenone and
three times of the predefined threshold, Fusion keeps
its cwnd as it is. Indeed, experimental results showed
the improvement of Fusion performance metrics such as
bandwidth utilization and fairness compared to C-TCP,
HS-TCP, BIC and Fast. Despite of the improvement,
Fusion has many limitations such as the problem of pre-
defining the threshold which is done manually, and the
more critical problem which may lead Fusion in some
cases to behave similar to standard NewReno most of
the time (Afanasyev et al., 2010).

2.11. CUBIC TCP

CUBIC TCP was presented by Ha and Rhee (2008)
ant it is the current default TCP algorithm in most Linux
operating systems. It modified thelinear function of
cwnd increase in the existing TCP variants tocubic
function in order to enhance its scalability over high-
BDP networks. Ha and Rhee (2008) have reviewed BIC
algorithm to come up with CUBIC which borrowed
the cubic function of congestion window from H-TCP
approach as shown in Equation (10) (Afanasyev et al.,
2010).

w = C















∆ −
3

√

β ∗ wmax

C















3

+ wmax (10)

whereC is a predefined constant,β is a coefficient of
multiplicative decrease in Fast Recovery, andwmax is the
congestion window size just before the last registered
loss detection.Limited S low S tart, Rapid Convergence
andRTT independence in CUBIC, all provided higher
fairness (RTT-, intra-) and higher scalability. The target
windowwmax is calculated in the initial stage of the win-
dow increase which is discovered by theright branch of
cubic function. The exponential increase of standard
Slow Start is more aggressive than the discovery of the
window increase which is more scalable in high-BDP
networks. Upon loss detection, if this loss is tempo-
rary andwmax is not reached yet,cwnd will be increased

5

according to bothright and le f t branches of thecubic
function.

Moreover, CUBIC ensures that, its throughput is not
lower than the throughput of the standard NewReno,
which is done by enforcing the calculated value ofwreno

wheneverwmax is going lower thanwreno. This com-
plicated behavior of CUBIC algorithm confirms a very
high performance and fairness attributes, which make it
the second most used TCP variant after being the stan-
dard TCP of Linux operating systems. However, CU-
BIC is still have some limitations that lead to under-
utilization of the available bandwidth and produces a
huge number of packet losses especially in high-BDP
networks. These limitations are due to the dependency
of loss which is the only congestion signal used in this
algorithm (Afanasyev et al., 2010, Lar and Liao, 2013,
Ha and Rhee, 2008).

2.12. Latest Issues

Fu et al. (2007), Mohamed A. Alrshah and Mohamed Othman
(2009), Qureshi et al. (2012) and
Mohamed A. Alrshah and Mohamed Othman (2013)
confirmed that, the single-based TCP with an appro-
priate modification can overcome and well replace
the parallel-based TCP and it may be able to fully
utilize the high-speed bandwidths. While Ha and Rhee
(2011) mentioned that, standard Slow Start becomes
inappropriate for the high-BDP networks and they
stated two reasons for this problem as below:

1. The exponential increase of the congestion win-
dow results a heavy packet losses that make the
entire system completely unresponsive for a long
period of time during the loss recovery stage.

2. Some optimizations, that applied to Slow Start,
happen to slow down the loss recovery followed
by Slow Start which leads to under-utilization of
the network resources.

In order to solve the above mentioned problems, they
presented a new Slow Start algorithm named ”HyS-
tart”. This algorithm finds a safe exit point from Slow
Start to Congestion Avoidance without causing a heavy
packet losses. This algorithm improves the throughput
of TCP and it has been already applied to CUBIC since
Linux 2.6.29 as a default Slow Start. Xu et al. (2011)
proposed a new hybrid congestion control called HCC-
TCP which is loss-delay-based. HCC-TCP improves
the throughput and fairness as well.

Dangi and Shukla (2012a) proposed a new hybrid
(loss-delay-based) congestion control scheme. The ex-
periments of Dangi and Shukla (2012b) reveals that,
HCC-TCP can achieve an efficient performance on

throughput over high-BDP networks. In order to in-
crease the bandwidth utilization, Khalil (2012) pro-
posed a new congestion control scheme calledS wi f t −
S tart. It changes the way of estimating the available
bandwidth to avoid the congestion which caused by over
or under bandwidth estimation. Cavendish et al. (2012)
prove that TCP can achieve a superior performance if
its parameters are tuned well depending on network and
path conditions.

Moreover, network buffers are going to-
wards the near − zero buffer, as mentioned in
(Enachescu et al., 2006, Beheshti et al., 2006,
Prasad et al., 2007, Vishwanath and Sivaraman, 2008,
Vishwanath et al., 2009a,b, Vishwanath and Sivaraman,
2009, Sivaraman et al., 2009, LeGrange et al., 2009,
Vishwanath et al., 2011), to fit the all-fiber networks
which is the fastest type of high-speed networks yet.
Consequently, it is very important to take the case of
near − zero buffer network into account in the future
TCP performance evaluation.

As mentioned above, TCP is still suffering from many
problems, and researchers are still modifying and im-
proving it. Some researchers mix different modes, such
as fast and slow modes, and switch between them based
on the state of the network. And some researchers
mix different approaches, such as loss and delay based
approaches, to improve the performance. And some
researchers are estimating the RTT and bandwidth to
avoid the severe congestion which can lead to conges-
tion collapse. While some are trying to modify the al-
gorithm itself by modifying Slow Start or Congestion
Avoidance algorithm, and some of the rest are trying to
tune the TCP parameters carefully to achieve a superior
performance.

3. Performance Evaluation of TCP Variants

In this paper, two simulation-based experiments have
been conducted to show the performance differences
among high-speed Linux TCP variants over high-BDP
congested and non-congested networks. The first exper-
iment has been conducted to evaluate the performance
of TCP over non-congested network to mimic the ideal
case of the network, then, to show the ability of TCP
on bandwidth utilization, and to determine the points of
weaknesses in its mechanism. In addition to that, the
second experiment has been conducted to evaluate the
performance of TCP over congested bottleneck in order
to simulate a real network scenario.

In the first experiment TCP variants have been evalu-
ated by measuring the average throughput and loss ratio

6

while in the second experiment they have been evalu-
ated by measuring the average throughput, loss ratio,
intra-fairness and RTT-fairness. More specifically, mea-
suring the average throughput is beneficial to show the
ability of link utilization, while measuring the loss ratio
is helpful to show the quantity of lost data which neg-
atively affects the general performance of TCP. On the
other hand, measuring (intra-, RTT-) fairness is to show
the quality of sharing the link between the competing
TCP flows based on Jain’s fairness index (Jain et al.,
1984). All of these measurements are conducted to
show the advantages and disadvantages of all involved
TCP variants to determine the points of strengths and
weaknesses of every TCP variant in order to help the
process of improving the performance of these variants.

3.1. Experiments Setup

In the first experiment, a standard single dumbbell
topology has been used as shown in Figure 2. Only one
sender (S 1) and one receiver (D1) are used.S 1 sends
data toD1 through two routers on the path.S 1 and
D1 are connected to the routers over LAN with 1Gbps
speed and 1ms propagation delay. While the routers
are linked by 1Gbps speed with a propagation delay of
100ms. As it is clear in this topology, this network does
not have bottleneck, therefore it is considered as the best
case of TCP over an ideal network.

Figure 2: Non-congested network topology.

As for the second experiment setup, a standard sin-
gle dumbbell topology has been used as shown in Fig-
ure 3. As shown in the network topology, there aren
competing senders (S 1, S 2, S 3, ...,S n) send data syn-
chronously ton receivers (D1, D2, D3, ...,Dn) through a
shared single bottleneck. All nodes of sources and des-
tinations are connected to bottleneck routers over LAN
with 1Gbps speed and 1ms propagation delay. While
the bottleneck link is 1Gbps speed with a propagation
delay of 100ms. Consequently, the proper bandwidth
of the shared bottleneck, which is needed by the con-
current senders, is 4Gbps while the available is only
1Gbps, this in order to simulate a real congested bot-
tleneck.

This experiment is repeated for every TCP variant
separately with different buffer sizes which starts from

Table 2: Experiment Parameters.

No. Parameter Value
1. TCP Variants Scalable, HS-TCP, BIC, H-

TCP, CUBIC, Africa, C-TCP,
Fusion, NewReno, illinois
and YeAH.

2. Link capacity 1000 Mbps for all.
3. Link delay 1ms node to router.

100ms router to router.
4. BDP 12750KB (High-BDP as

in Jacobson and Braden
(1988)).

5. Buffer size from 100 to 5000 packets.
6. Packet size 1000 bytes.
7. Queuing Algo Drop Tail.
8. Traffic type FTP
9. Simulation time 100 seconds.

100 to 5000 packets. In fact, this experiments show
the impact of bottleneck congestion and buffer size on
the performance of the examined TCP variants and also
show the performance changes when a smaller buffer
size is applied. Scalable, HS-TCP, BIC, H-TCP, CU-
BIC, Africa, Compound, Fusion, NewReno, illinois and
YeAH are involved in these experiments. All of these
TCP variants are added into NS2 version 2.35 which is
installed on Linux openSuse 12.2, kernel version 3.4.28
over Intel Core-i7 machine to perform this simulation-
based comparison. Table 2 shows the experiment setup
and the simulation parameters.

Figure 3: Network topology with standard dumbbell bottleneck.

7

3.2. Results and Discussion

Based on the results of the first experiment, it is
briefly concluded that, TCP Slow Start has a fatal prob-
lem known as burst loss. Burst loss happens when TCP
jumps exponentially to reach the maximumcwnd in or-
der to quickly utilize the bandwidth of the network. The
lack of the information about the link bandwidth makes
TCP increases itscwnd until it detects the first loss then
it halves itscwnd and enters the linear increase stage. In
other words, the burst loss happens when the first loss is
detected. Indeed, this burst loss can severely affect the
performance of TCP and it may even lead to congestion
collapse.

All the TCP variants in this experiment, jump to
reach acwnd of around 60000 packets but after the first
loss is detected, their behaviors become completely dif-
ferent. NewReno, Africa, illinois, C-TCP and Fusion
drop theircwnd to the half then increase it linearly in a
very slow manner as shown in Figures 4(a), 4(b), 4(c),
4(d) and 4(e), respectively. This linear increase behav-
ior consumes a long time to reach the upper limit of
the network bandwidth again which results an under-
utilization of the network resources.

Diversely, STCP, HS-TCP, H-TCP and YeAH drop
their cwnd to the half then increase it in an oscillating
manner as shown in Figures 4(f), 4(g), 4(h), 4(i), re-
spectively. This behavior increases the bandwidth uti-
lization to some extent, but some of these TCP vari-
ants such as STCP, HS-TCP and H-TCP are still suf-
fer from the problem of under-utilization while YeAH
has achieved higher bandwidth utilization due to its con-
servative reduction in the Congestion Avoidance stage.
More specifically, all of the aforementioned TCP vari-
ants reduce theircwnd to the half when the loss is de-
tected, but in YeAH,cwnd is reduced to the half if the
loss is detected in Slow Start stage while it reduced
gently in the Congestion Avoidance stage based on the
changes of network delay.

More differently, BIC and CUBIC drop theircwnd,
then increase it in a rapid convergence manner as shown
in Figures 4(j) and 4(k), respectively. Indeed, they re-
duce theircwnd to around 85% of the lastcwnd when-
ever a loss is detected regardless of the loss is coming
from Slow Start or Congestion Avoidance. This behav-
ior results in a higher bandwidth utilization than the
other TCP variants which halving theircwnd after ev-
ery loss. As a final point, and based on observation,
the conservative reduction of thecwnd can help TCP
to increase: (1) the bandwidth utilization by releasing a
small part of the used bandwidth, after every loss, which
helps to reach again to the higher limit more faster. (2)

the fairness by reducing the gab between the max limit
of the bandwidth and the reducedcwnd after loss detec-
tion.

As for the results of the second experiment, Figure 5
shows that, CUBIC, BIC and YeAH are the best three
TCP variants in terms of throughput. More specifically,
in the cases of 5000, 2500 and 1000 packets buffer size
YeAH is a bit better than CUBIC and BIC. While in the
other cases of smaller buffer sizes, CUBIC overcomes
all other TCP variants whenever buffer size is going
closer tonear−zero buffer. As mentioned above, YeAH,
BIC and CUBIC are using a conservative and gentle re-
duction of cwnd which helps them to outperform the
other variants of TCP that half theircwnd whenever a
loss is detected.

Indeed, average throughput solely is not enough to
evaluate the performance of TCP variants. The other
important performance metric, which is necessary to
evaluate the performance of TCP, is the loss ratio. In
Figure 6, the lowest loss ratio is NewReno, which has a
very poor throughput average because it is not designed
for high-speed networks. For this reason it will not be
considered. Unlikely, scalable and compound have the
highest loss ratio. While, BIC, CUBIC and H-TCP are
keeping their loss ratio stable regardless of the changes
in buffer size. In fact, all of the compared TCP variants
produce similar number of lost packets, but when the
count of lost packets compared to the total sent data as
a loss ratio, it will give a completely different readouts.

As regarding to (Intra-, RTT-) fairness as shown
in Figures 7 and 8, Scalable, Africa, Fusion, high-
speed, YeAH and NewReno are oscillating and they
show different fairness index whenever the buffer size is
changed. On the other hand, Compound, H-TCP, CU-
BIC, BIC and illinois are the best and they are mostly
very close to 1 which represents the best case of fair-
ness. As illinois and Compound presents a poor average
throughput and as CUBIC is a derived version from BIC
and H-TCP so the best TCP variant in terms of average
throughput, loss ratio and fairness is CUBIC followed
by YeAH.

As described in Section 2, CUBIC is a loss-based
algorithm and YeAH is a loss-delay-based algorithm.
Thus, both approaches can give a higher performance
than the other existing TCP variants and both can pro-
vide similar performance in the case of high-speed
wired networks. Despite of all, the bandwidth utiliza-
tion of CUBIC and YeAH, is still not enough to cope
with the new generation of these networks.

8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

newreno

(a) TCP NewReno

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

africa

(b) TCP Africa

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

illinois

(c) TCP illinois

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

compound

(d) Compound TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

fusion

(e) TCP Fusion

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

scalable

(f) Scalable TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

highspeed

(g) High-speed TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

htcp

(h) Hamilton TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

yeah

(i) YeAH TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

bic

(j) Bic TCP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 20 40 60 80 100

C
W

N
D

 (
P

ac
ke

ts
)

Simulation Time (Seconds)

cubic

(k) Cubic TCP

Figure 4: The congestion window dynamics of the examined TCPvariants.

4. Conclusion

In a nutshell, TCP Slow Start has a fatal problem
which known as the burst loss which happens at the end
of the initial stage of Slow Start. The cause of burst loss
is the exponential increase of the congestion window in
order to quickly utilize the bandwidth. Indeed, the burst

loss can dangerously congest the bottleneck and may
lead to slow down the performance of TCP and even to
congestion collapse. All the aforementioned TCP vari-
ants suffer from this problem in different levels of dan-
ger.

As shown in Figure 5, it is very clear that, the smaller

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 250 500 1000 2500 5000

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Buffer Size (Packets)

scalable
compound
highspeed

illinois
fusion
africa

yeah
htcp

newreno

cubic
bic

Figure 5: Average Throughput vs. Buffer Size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 250 500 1000 2500 5000

Lo
st

 R
at

io
 (

%
)

Buffer Size (Packets)

scalable
compound
highspeed

illinois
fusion
africa

yeah
htcp

newreno

cubic
bic

Figure 6: Loss Ratio vs. Buffer Size

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 100 250 500 1000 2500 5000

In
tr

a-
fa

irn
es

s
(I

nd
ex

)

Buffer Size (Packets)

scalable
compound
highspeed

illinois
fusion
africa

yeah
htcp

newreno

cubic
bic

Figure 7: Intra-fairness vs. Buffer Size

buffer size is the lower TCP throughput. Thus, all of the
existing TCP variants still require more improvement to
extend their ability to fully utilize the high-speed band-
widths, especially when the applied buffer isnear−zero
or less than the BDP of the link. Furthermore, all

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 100 250 500 1000 2500 5000

R
T

T
-f

ai
rn

es
s

(I
nd

ex
)

Buffer Size (Packets)

scalable
compound
highspeed

illinois
fusion
africa

yeah
htcp

newreno

cubic
bic

Figure 8: RTT-fairness vs. Buffer Size

the available TCP variants have preset variables which
make it more static and needs a different setting for each
network scenario. The existence of these preset vari-
ables makes the implementation of these TCP variants
more harder and reduces its adaptation capabilities to fit
different scenarios without any manual changes. Thus,
in future versions of TCP protocol, the use of the pre-
set variables should be avoided in order to increase the
adaptation capabilities of the protocol.

Furthermore, CUBIC (loss-based) is the best TCP
variant which overcomes all other variants in most sce-
narios. YeAH (loss-delay-based) shows a good perfor-
mance in most cases but they (CUBIC and YeAH) still
produce a huge burst loss. Consequently, this burst loss
may be avoided in the future, by implementing a way
which has the ability to find a safe exit point from the
Slow Start phase before the occurrence of the burst loss.
This safe exit point may be found by estimating the
available bandwidth or by calculating the chain of the
ACK arrivals.

For more details, Table 3 shows the results of the
second experiment in detail. While Throughput is the
rate of successfully received packets measured as Mbps.
LossRatio refers to the ratio between the total number
of lost data packets to the total of sent packets. Intra-
fair and RTT-fair determine whether the concurrent TCP
flows are receiving a fair share of network bandwidth
and time, respectively. Intra-fair and RTT-fair are mea-
sured as index fromzero to one, while the higher index
is the higher fairness.

Acknowledgment

This work was supported by the Ministry of Higher
Education of Malaysia under the Fundamental Research

10

Table 3: A Performance Comparison of High-speed TCP Variants

100 pckts buffer 250 pckts buffer
TCP variants Throughput LossRatio Intra-fair RTT-fair Throughput LossRatio Intra-fair RTT-fair
bic 453.32 0.11 0.74 1.00 752.00 0.09 1.00 1.00
compound 107.89 0.05 1.00 1.00 112.30 0.07 1.00 1.00
cubic 513.72 0.12 0.85 1.00 775.79 0.09 0.99 1.00
highspeed 484.06 0.14 1.00 1.00 541.90 0.13 1.00 1.00
htcp 149.44 0.07 0.97 1.00 490.85 0.09 0.99 1.00
illinois 211.20 0.00 0.98 1.00 324.46 0.06 0.99 1.00
scalable 220.54 0.06 0.98 0.99 485.10 0.11 0.98 0.99
fusion 76.69 0.02 0.99 1.00 111.58 0.04 0.99 1.00
yeah 346.04 0.08 0.82 1.00 638.62 0.17 0.98 1.00
africa 315.06 0.08 0.93 1.00 343.42 0.09 0.91 1.00
newreno 69.69 0.01 1.00 1.00 89.88 0.03 1.00 1.00

500 pckts buffer 1000 pckts buffer
TCP variants Throughput LossRatio Intra-fair RTT-fair Throughput LossRatio Intra-fair RTT-fair
bic 768.76 0.09 1.00 1.00 799.73 0.10 1.00 1.00
compound 112.45 0.09 1.00 1.00 113.26 0.12 1.00 1.00
cubic 780.10 0.10 1.00 1.00 800.22 0.10 1.00 1.00
highspeed 601.40 0.10 1.00 1.00 670.91 0.12 0.99 1.00
htcp 717.18 0.13 0.98 1.00 808.99 0.13 0.99 1.00
illinois 440.99 0.12 1.00 1.00 572.63 0.14 0.99 1.00
scalable 616.65 0.22 0.99 0.99 794.60 0.35 0.69 0.99
fusion 149.91 0.08 0.99 1.00 241.08 0.10 0.93 1.00
yeah 716.10 0.16 1.00 1.00 849.71 0.14 0.89 1.00
africa 385.71 0.10 0.99 1.00 505.20 0.11 0.98 1.00
newreno 120.71 0.05 1.00 1.00 173.38 0.05 0.99 1.00

2500 pckts buffer 5000 pckts buffer
TCP variants Throughput LossRatio Intra-fair RTT-fair Throughput LossRatio Intra-fair RTT-fair
bic 891.81 0.12 0.98 1.00 958.70 0.12 0.96 1.00
compound 115.56 0.23 1.00 1.00 117.38 0.36 1.00 1.00
cubic 874.68 0.14 0.98 1.00 952.69 0.13 0.96 1.00
highspeed 774.36 0.12 0.87 1.00 863.42 0.11 0.89 1.00
htcp 854.11 0.14 0.99 1.00 920.58 0.15 1.00 1.00
illinois 695.97 0.13 0.98 1.00 746.00 0.14 0.96 1.00
scalable 860.40 0.40 0.83 0.99 912.83 0.42 0.73 0.99
fusion 508.18 0.19 0.90 1.00 889.58 0.11 0.82 1.00
yeah 890.39 0.18 0.80 1.00 966.83 0.16 0.82 1.00
africa 633.71 0.13 0.91 1.00 822.56 0.12 0.80 1.00
newreno 272.50 0.07 0.72 1.00 428.39 0.11 0.79 1.00

Grant FRGS/02/01/12/1143/FR for financial support. References

Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L., 2010.Host-to-
Host Congestion Control for TCP. IEEE Communications Surveys
and Tutorials 12 (3), 304–342.

Baiocchi, A., Castellani, A. P., Vacirca, F., 2007. YeAH-TCP : Yet
Another Highspeed TCP. In: Proc. PFLDnet. Roma, Italy, pp. 37–
42.

11

Beheshti, N., Ganjali, Y., Rajaduray, R., Blumenthal, D., McKeown,
N., 2006. Buffer sizing in all-optical packet switches. In: Optical
Fiber Communication Conference. Optical Society of America, pp.
1–3.

Cavendish, D., Kumazoe, K., Ishizaki, H., Ikenaga, T., Tsuru, M.,
Oie, Y., 2012. On tuning tcp for superior performance on high
speed path scenarios. In: INTERNET 2012, The Fourth Interna-
tional Conference on Evolving Internet. pp. 11–16.

Cerf, V. G., Khan, R. E., 1974. A protocol for packet network in-
tercommunication. IEEE Transactions on communication 22 (1),
637–648.

D. Leith, R. S., 2004. H-tcp: Tcp for high-speed and long distance
networks. In: Proceedings of PFLDnet. pp. 95–101.

Dangi, R., Shukla, N., 2012a. A New Congestion Control Algorithm
for High Speed Networks. International Journal of ComputerTech-
nology and Electronics Engineering 2 (1), 218–221.

Dangi, R., Shukla, N., 2012b. Experimental Analysis of congestion
control using delay and loss based control approaches. Interna-
tional Journal of Engineering Research and Technology 1 (3), 1–6.

Enachescu, M., Ganjali, Y., Goel, A., McKeown, N., Roughgarden,
T., 2006. Routers with very small buffers. In: Proc. IEEE Infocom.
Vol. 6. pp. 1–11.

Floyd, S., April 2003. HighSpeed TCP for Large Congestion Win-
dows. RFC 3649, IETF Network Working Group.

Floyd, S., Henderson, T., April 1999. The newreno modification to
tcps fast recovery algorithm. RFC 2582, IETF Network Working
Group.

Floyd, S., Henderson, T., Gurtov, A., April 2004. The newreno modi-
fication to tcps fast recovery algorithm. RFC 3782, IETF Network
Working Group.

Fu, Q., Indulska, J., Perreau, S., Zhang, L., 2007. Exploring tcp par-
allelisation for performance improvement in heterogeneous net-
works. Computer Communications 30 (17), 3321–3334.

Ha, S., Rhee, I., 2008. CUBIC : A New TCP-Friendly High-Speed
TCP Variant. SIGOPS Operating Systems Review 42 (5), 64–74.

Ha, S., Rhee, I., 2011. Taming the elephants: New tcp slow start.
Computer Networks 55 (9), 2092–2110.

Harfoush, K., 2004. Binary increase congestion control (BIC) for fast
long-distance networks. In: Ieee Infocom 2004. Vol. 4. Ieee, pp.
2514–2524.

Henderson, T., Floyd, S., Gurtov, A., Nishida, Y., April 2012. The
newreno modification to tcps fast recovery algorithm. RFC 6582,
IETF Network Working Group.

Jacobson, V., Braden, R., October 1988. Tcp extensions for long-delay
paths. RFC 1072, IETF Network Working Group.

Jain, R., Chiu, D.-M., Hawe, W. R., 1984. A quantitative measure
of fairness and discrimination for resource allocation in shared
computer system. Eastern Research Laboratory, Digital Equipment
Corporation.

Kaneko, K., Fujikawa, T., Su, Z., Katto, J., 2007. TCP-Fusion : A
Hybrid Congestion Control Algorithm for High-speed Networks.
In: Proc. PFLDnet, ISI, Marina Del Rey (Los Angeles), California.
pp. 31–36.

Kelly, T., 2003. Scalable TCP : Improving Performance in Highspeed
Wide Area Networks. ACM SIGCOMM Computer Communica-
tions Review 33 (2), 83–91.

Khalil, E. A., 2012. A modified congestion control algorithmfor eval-
uating high bdp networks. International Journal of Computer Sci-
ence and Network Security 12 (11), 84–93.

King, R., Baraniuk, R., Riedi, R., 2005. TCP-Africa: An adaptive
and fair rapid increase rule for scalable TCP. In: INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings IEEE. pp. 1–11.

Lar, S.-u., Liao, X., 2013. An initiative for a classified bibliography
on tcp/ip congestion control. Journal of Network and Computer

Applications 36 (1), 126–133.
LeGrange, J. D., Simsarian, J. E., Bernasconi, P., Neilson,D. T., Buhl,

L., Gripp, J., 2009. Demonstration of an integrated buffer for an
all-optical packet router. In: Optical Fiber Communication-incudes
post deadline papers, 2009. OFC 2009. Conference on. IEEE, pp.
1–3.

Liu, S., Başar, T., Srikant, R., 2008. Tcp-illinois: A loss-and delay-
based congestion control algorithm for high-speed networks. Per-
formance Evaluation 65 (6), 417–440.

Mohamed A. Alrshah and Mohamed Othman, Nov. 2009. Test-bed
based comparison of single and parallel tcp and the impact ofpar-
allelism on throughput and fairness in heterogenous networks. In:
ICCTD 09, IEEE Proceedings of the 2009 International Confer-
ence on Computer Technology and Development. Vol. 1. Kota Kin-
abalu, Malaysia, pp. 332–335.

Mohamed A. Alrshah and Mohamed Othman, Nov. 2013. Perfor-
mance evaluation of parallel TCP, and its impact on bandwidth uti-
lization and fairness in High-BDP networks based on test-bed. In:
MICC’13, 2013 IEEE 11th Malaysia International Conferenceon
Communications. Kuala Lumpur, Malaysia.

Prasad, R. S., Dovrolis, C., Thottan, M., 2007. Router buffer sizing re-
visited: the role of the output/input capacity ratio. In: Proceedings
of the 2007 ACM CoNEXT conference. ACM, pp. 1–15.

Qureshi, B., Othman, M., Subramaniam, S., Wati, N., 2012. QTCP:
Improving throughput performance evaluation with high-speed
networks. Arabian Journal for Science and Engineering 38 (10),
2663–2691.

Sivaraman, V., Elgindy, H., Moreland, D., Ostry, D., 2009. Packet pac-
ing in small buffer optical packet switched networks. IEEE/ACM
Transactions on Networking 17 (4), 1066–1079.

Tan, K., Song, J., 2006. Compound tcp: A scalable and tcp-friendly
congestion control for high-speed networks. In: in 4th Interna-
tional workshop on Protocols for Fast Long-Distance Networks
(PFLDNet), 2006. pp. 80–83.

Vishwanath, A., Sivaraman, V., 2008. Routers with very small buffers:
Anomalous loss performance for mixed real-time and tcp traffic.
In: Quality of Service, 2008. IWQoS 2008. 16th International
Workshop on. IEEE, pp. 80–89.

Vishwanath, A., Sivaraman, V., 2009. Sharing small opticalbuffers
between real-time and tcp traffic. Optical Switching and Network-
ing 6 (4), 289–296.

Vishwanath, A., Sivaraman, V., Rouskas, G. N., 2009a. Considera-
tions for sizing buffers in optical packet switched networks. In:
INFOCOM 2009, IEEE. pp. 1323–1331.

Vishwanath, A., Sivaraman, V., Rouskas, G. N., 2011. Anomalous
loss performance for mixed real-time and tcp traffic in routers with
very small buffers. IEEE/ACM Transactions on Networking 19 (4),
933–946.

Vishwanath, A., Sivaraman, V., Thottan, M., 2009b. Perspectives on
router buffer sizing: recent results and open problems. ACM SIG-
COMM Computer Communication Review 39 (2), 34–39.

Xu, L., Harfoush, K., Rhee, I., 2004. Binary increase congestion con-
trol (bic) for fast long-distance networks. In: INFOCOM 2004.
Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies. Vol. 4. pp. 2514–2524.

Xu, W., Zhou, Z., Pham, D., Ji, C., Yang, M., Liu, Q., 2011. Hybrid
congestion control for high-speed networks. Journal of Network
and Computer Applications 34 (4), 1416–1428.

12

	1 Introduction
	2 Motivations, Challenges and Previous Works
	2.1 TCP NewReno
	2.2 Scalable TCP (STCP)
	2.3 High-speed TCP (HS-TCP)
	2.4 Hamilton TCP (H-TCP)
	2.5 BIC-TCP
	2.6 TCP Africa
	2.7 TCP-illinois
	2.8 Compound TCP (C-TCP)
	2.9 YeAH TCP
	2.10 TCP Fusion
	2.11 CUBIC TCP
	2.12 Latest Issues

	3 Performance Evaluation of TCP Variants
	3.1 Experiments Setup
	3.2 Results and Discussion

	4 Conclusion

