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Abstract

Data storage in the cloud is becoming widespread. Deduplication is a key mech-

anism to decrease the operating costs cloud providers face, due to the reduction

of replicated data storage. Nonetheless, deduplication must deal with several

security threats such as honest-but-curious servers or malicious users who may

try to take ownership of files they are not entitled to. Unfortunately, state-of-

the-art solutions present weaknesses such as not coping with honest-but-curious

servers, deployment problems, or lacking a sound security analysis. In this paper

we present a novel Proof of Ownership scheme that uses convergent encryption

and requires neither trusted third parties nor complex key management. The

experimental evaluation highlights the efficiency and feasibility of our proposal

that is proven to be secure under the random oracle model in the bounded

leakage setting.
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1. Introduction

Cloud computing has emerged as a computational paradigm to provide ser-

vices for cloud users. A total of three layers can be distinguished in cloud

computing, namely, Platform, Infrastructure and Software as a Service (PaaS,

IaaS and SaaS respectively) [1]. SaaS is the layer that users are more likely to

interact with because it corresponds to applications running on the cloud in-

frastructure that are accessible from client devices, e.g. web browsers. Many of

these applications allow outsourcing data to the cloud, e.g. Dropbox1 or Box2.

Service providers try to avoid the upload and storage of replicated data, in an

effort to maximize bandwidth and minimize storage space. Deduplication is a

key technique to keep from storing multiple copies of the same data. Accord-

ingly, target-based, source-based and cross-user deduplication are distinguished

[2]. Target-based enforces deduplication at server side. Clients are not involved

in the process and only storage space is saved. By contrast, source-based dedu-

plication is enforced at client side. Hence, each client deduplicates his data what

saves storage space and bandwidth. More challenging, cross-user deduplication

helps saving both storage space and bandwidth to a greater extent. A file is

only uploaded to the server if it has not been uploaded by other user.

Deduplication involves security threats which pose new challenges. In par-

1www.dropbox.com
2www.box.com



ticular, service providers have to ensure that stored data is only available for

the right set of clients. Files are typically indexed in the server by its digest.

Originally, the upload of a file digest by a client was interpreted as a proof that

the client actually owns the file. However this procedure spots security threats

[2]. For instance, a cloud storage service could be used as a content-distribution

network (CDN). Hence, a CDN attack can be performed by exchanging among

different users the file digests of large files, e.g. movies. This attack was carried

out in the wild by Dropship [3]. In addition, an attacker can compromise the

server and can get access to the internal cache, which includes file hashes. Then,

in the possession of hashes the attacker is able to download the corresponding

files.

In order to mitigate the aforementioned threats the Proof of Ownership

(PoW) concept was introduced by Halevi et al. [4]. A PoW scheme is a se-

curity protocol used by a server to verify that a client owns a particular file.

If the probability of fraudulently proving the ownership of a file is negligible

given a security parameter, the PoW is assumed to be secure even if the ad-

versary knows part of the uploaded file [5]. Besides, PoW schemes look for

being computationally efficient at client and at server side in terms of I/O and

bandwidth. Additionally, PoW schemes should not require the server to load

large portions of the file from its back-end storage at each execution of PoW.

To enhance client-side efficiency, Di Pietro et al. [5] proposed s-PoW, an al-

ternative challenge-response PoW scheme to the one introduced by Halevi et al

[4]. s-PoW proofs refer to client responses to server challenges, which consist

of particular random bits of the requested file. Also in the context of PoW,

Blasco et al. [6] proposed a PoW scheme based on bloom filters (bf-PoW) that

provides flexibility and scalability. bf-PoW has been proven to be more efficient

than Halevi et al.’s approach at client side and more than Di Pietro et al.’s

proposal at the server side.

PoW is considered a part of remote data auditing (RDA) procedures, a novel

research topic that refers to a group of protocols that verify the correctness of

the data over a cloud managed by untrusted providers [7]. RDA involves security
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protocols such as Provable Data Possession (PDP) [8], Proof of Retrievability

(POR) [9], and the inner Proof of Ownership (PoW) [4]. PDP allows a cloud

client to verify that the server possesses the original data without retrieving it.

POR is a type of cryptographic Proof of Knowledge that ensures the privacy

and integrity of outsourced data without having to download the files. The

main difference between PDP and POR is the security features they provide.

Whereas in the POR approach the client’s data is completely stored on the

server, PDP solutions only guarantee that most of the client’s data is kept in

the server. Thus, in PDP schemes a small portion of the data may be lost by

the server.

Clients expect service providers to manage their deduplicated data appropri-

ately. However, data privacy preservation requires taking a step further towards

honest-but-curious servers. It is assumed that these servers 1) do not tamper

data, 2) honestly execute the proposed scheme and 3) try to learn the content of

stored files [10]. In this respect, it is important to note that cloud servers may

be hacked or make careless technical mistakes, which may expose client data to

unauthorized users. Protection mechanisms against this kind of adversary focus

on the use of convergent encryption (CE) cryptography [11]. CE symetrically

encrypts a file (or data block) with a key that is computed from the contents

of the file (or block). The rationale for using CE is to provide a deterministic

encryption scheme that makes decryption keys available to file owners. These

keys are unknown by the server which only stores the encrypted file.

Deduplication faces threats that have been studied from different perspec-

tives. Some proposals have worked on the verification of the ownership of up-

loaded data [5, 6, 12], others have developed protection measures against honest-

but-curious servers [13, 14, 15, 16] and some others have provided solutions to

both problems [17, 18, 19, 20]. Indeed, the latter are especially noteworthy as

they combine encryption and PoW schemes. Unfortunately, they either lack a

formal security analysis, are difficult to deploy or do not present an evaluation of

their efficiency. For instance, [20, 19, 18] involve additional entities apart from

the server and the client, what diminishes the practicability of the proposal; and
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[21] does not analyse client and server side efficiency.

CE is pointed out as insecure [11, 17] in its original form [22] and modifica-

tions have been proposed [17, 18, 19, 20, 13]. CE applied in a straightforward

manner suffers from poisoning attacks. File contents may be susceptible to this

attack if the association between the plain text file and the encrypted stored

data can not be verified by the server. Thus, a malicious client could upload a

forged encrypted file that does not correspond with the file identifier. Conse-

quently, a legitimate client could deduplicate a file according to this identifier

and delete the local copy. Whenever the legitimate client subsequently down-

loads the encrypted file, he will download whatever the malicious client wanted.

This attack is also known as Target Collision attack [11]. In addition, CE is

not secure in the bounded leakage setting because the encryption key (i.e. file

hash) is generated from the input file in a deterministic way, and it is a short

piece of information that can be leaked.

Contributions. This paper presents ce-PoW, a novel PoW scheme that

is resilient to honest-but-curious-servers and poisoning attacks, making use of

CE. ce-PoW is proven to be secure in the bounded leakage setting [4]. In

addition, our experimental results show that ce-PoW is as efficient as the top

PoW proposals, i.e. s-PoW [5] and bf-PoW [6], it can be compared against.

This fact is remarkable because in contrast to s-PoW and bf-PoW, ce-PoW

faces honest-but-curious servers. Finally, contrary to other proposals [15, 23],

ce-PoW does not require complex key management or trusted third parties

different from the client and the server.

Roadmap. The paper is structured as follows. Section 2 introduces the

related work. In Section 3 the objectives and the design of ce-PoW scheme are

presented. Subsequently, Section 4 shows the security analysis and the com-

putational complexity of ce-PoW. Then, Section 5 describes the experimental

evaluation that compares ce-PoW with top solutions that it can be compared

against. Finally, conclusions and future work are outlined in Section 6.
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2. Related Work

The primary goal of deduplication is to save data storage avoiding data

replication. As a consequence of using this technique security issues emerge,

particularly the necessity of guaranteeing the ownership of files. The concept

of Proof of Ownership (PoW) was introduced by Halevi et al. [4] and they

proposed a scheme named b-PoW. In b-PoW the server computes a Merkle

tree of a precomputed buffer from each uploaded file. Then, clients prove the

ownership of a file computing the corresponding sibling paths based on a server

request. If clients correctly compute requested paths, it is assumed that they

are in the possession of the file. The security of b-PoW is admittedly based on

assumptions that are hard to verify. On the basis of this proposal, Di Pietro

et al. proposed s-PoW [5] in which security relies on information theoretical

assumptions. The server computes a set of challenges per file composed of

random bits of the uploaded file. Clients prove ownership of a file by delivering

the requested challenge to the server which refers, namely, to an array of file

bits. At the client side, in terms of efficiency and bandwidth consumption, this

approach is superior to the one proposed by Halevi et al. but less efficient at

the server side. Blasco et al. proposed a PoW scheme based on bloom filters

(bf-PoW) that is both flexible and scalable [6]. bf-PoW is more efficient at client

side than Halevi et al.’s approach and more efficient at the server side than Di

Pietro et al.’s scheme.

Zheng and Xu combined the concepts of PoW and PDP proposing Proof

of Storage with Deduplication (POSD) to achieve efficiency and security [12].

POSD consists of four phases, namely, key generation, uploading, auditing and

deduplication. The security weakness of POSD is that clients have to be reliable

in the key generation process. Shin et al. identified this security problem

and proposed an enhancement of POSD: keys are blended with random values

provided by the storage server.

Honest-but-curious servers are a threat to manage under the deduplication

scenario. CE is the most widely used technique in this regard. In the context
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of file systems, the combination of data confidentiality and data deduplication

was introduced by Douceur et al. [22]. Given that hashes are public data, the

original CE scheme is not secure [11, 21] and thus, different approaches apply

variations to the original scheme.

Following we describe the remaining worth mentioning proposals that use CE

for deduplication and we compare them with our approach in Section 2.1. Xu

et al. proposed a CE scheme in which files are encrypted with an AES random

key τ , which is in turn encrypted using the file hash as key obtaining Cτ [21].

In the first upload of a file, the file hash, hash(F ), the encrypted file CF and

Cτ are provided to the server. Subsequently, the server stores hash(F ), Cτ and

hash(CF ) in a look up table. Cτ is delivered to clients to prove file ownership.

A client passes the proof if he is able to construct the appropriate i-th leaf of

a Merkle hash tree created through the file F. Unfortunately, performance at

client and at server sides is not compared with state of the art proposals and

the leakage setting is not compatible with them.

Other proposals involve some third party apart from the server and the

client. Li et al. presented Dekey [18] that is focused on the enhancement of

key management. Files are convergently encrypted and decryption keys are

also encrypted by means of a master key which is managed by multiple servers.

Decryption keys will be only delivered once a PoW scheme is passed. Stanek et

al. presented a convergent threshold public key cryptosystem together with the

use of a PoW scheme [20]. Accordingly, a pair of trusted entities are involved, an

identity provider to prevent sybil attacks and an indexing service to prevent the

leakage of information of unpopular files. Jin et al. presents a scheme to keep

clients anonimity[19]. A trusted third party, called intermediator, is involved.

Cloud providers store encrypted files and intermediators enforce a PoW scheme

over plain text files. They guarantee client anonymity hiding the relationship

between clients and their files. ClouDedup provides deduplication at file and

at block level using CE [14]. It relies on a pair of trusted third parties, a

metadata manager to allow key-management and block-level deduplication and

an additional server to guarantee data confidentiality. Based on Message-Locked
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Encryption, DupLESS is proposed in [15]. Data is encrypted using keys provided

by a semi-trusted key server after authentication. Besides, again applying CE,

Li et al. presented a deduplication storage system where searches are enforced

over encrypted content [16]. Contrary to the use of CE, Ng et al. proposed

the combination of public key cryptography together with PoW [23]. Files are

encrypted at client side and decryption keys are distributed among a particular

group of users. It is based on devising privacy preserving proofs of ownership.

2.1. Comparison

To identify the novelty of our proposal a comparison of related works is de-

picted in Table 1. Analysed features are: addressing honest-but-curious servers;

development of a PoW scheme; use of third parties; tackling formal security

analysis; addressing bandwidth efficiency; addressing server storage efficiency;

applying block and/or file level deduplication; and practicability of the ap-

proach.

On the one hand, this analysis shows that several approaches [5, 6, 12] tackle

the ownership problem of uploaded data but they do not address honest-but-

curious servers. Just some of them [5, 6, 12] explore server storage efficiency

and client-server bandwidth efficiency as well. In addition, these works present

a formal security analysis and are practical. However, amongst these three, [12]

involves a third party, thus increasing management complexity.

On the other hand, other proposals develop countermeasures against honest-

but-curious servers [14, 11]. [15] is the one which provides bandwidth efficiency

together with honest-but-curious servers protection. Moreover, the practicabil-

ity of the approach and the use of third parties is also considered in [15], as well

as in [14].

By contrast, more challenging proposals address both problems, namely,

they build a PoW scheme and offer protection against honest-but-curious servers

[21, 18, 20, 19, 23]. Furthermore, [21, 20, 23] provide a formal security analy-

sis and [20] focuses on server storage efficiency as well. Nonetheless, this last

proposal, along with many others [19, 14, 15, 23], needs third parties and it
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Table 1: Related work comparison
Honest-but- PoW Third Formal Bandwidth Server Block File Pract.

curious scheme parties security efficiency space level level
Proposals servers analysis efficiency dedup. dedup.
[5] -

√
-

√ √ √
-

√ √

[6] -
√

-
√ √ √

-
√ √

[12] -
√

Auditor
√ √ √ √

-
√

entity
[20] Threshold

√
Identity

√
-

√ √
-

√

cryptosystem provider,
Indexing

service
[21] Modified

√
-

√
- -

√
- Partial

convergent
encryption

scheme
[18] Convergent

√
Key - - -

√ √ √

encryption management
cloud
server

provider
[19] Not specified -

√
Intermediator - - - -

√

use of public
keys

[14] Convergent - Metadata - - -
√

-
√

encryption manager,
Additional

server.
[15] Messsage-lock

√
* Key server -

√
- -

√ √

encryption

[23] Public key
√

Third party
√

- -
√

- -
encryption

[11] Convergent - Chunk store, - - - -
√

-
encryption Metadata

store
ce-PoW Convergent

√
-

√ √ √
-

√ √

encryption
*: mentioned but not applied
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makes management more complex. Indeed, [21] is the only approach which

deals with honest-but-curious servers without additional entities. However, it

does not consider bandwidth and server space efficiency. Besides, its practica-

bility is partially considered because it is not compared with other proposals

and just some parts of the scheme are analysed, namely hash functions and the

proposed PoW scheme at client side. Likewise, file content guessing attacks are

more challenging in ce-PoW than in [21] (see Section 4.3).

This paper proposes ce-PoW, a novel PoW scheme that incorporates a vari-

ation of CE. Apart from dealing with honest-but-curious servers, ce-PoW is

supported by a formal security analysis and looks for bandwidth efficiency and

server space efficiency. Additionally, the practicability of our approach is shown

by means of an experimental work.

It is very well known that CE in its original form is insecure because en-

crypted files can be decrypted by means of public data (i.e. the hash of the files

[22]). Moreover, Xu et al. exposed that the combination of a PoW scheme and

CE is incompatible [21]. PoW schemes assume that some data can be leaked

and consequently CE becomes insecure if hashes are leaked. On the bases of

these statements, it should be noticed that CE is applied at chunk level instead

of at file level. Then, the encryption of each file requires as many keys (hashes)

as the number of chunks. Besides, chunck size depends on the desired level of

security (see Section 4.1).

3. Convergent Encryption compatible Proof of Ownership Scheme

In this Section we describe our proposal. First, we provide an overview of

ce-PoW phases. Second, we introduce the adversarial model. Then, the design

goals of ce-PoW are described. Finally, ce-PoW is described in a detailed way.

3.1. System overview

Our scheme describes the interactions between a server S and clients, as

depicted in Figure 1. Each client C has a unique identifier id(C) and uploads
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Figure 1: System overview. Each file is divided in chunks of different sizes.

an arbitrary number of files, convergently encrypted in chunks, to a storage

provider using S.

The behaviour of the system is different for the first and for subsequent

uploads of any given file f . The server identifies each file according to a digest

hc that the client computes over the convergently encrypted file chunks. First,

the user uploads the digest hc that allows the server to distinguish the first

from subsequent uploads. In particular, the upload is treated as initial if the

server receives a particular digest for the first time; the upload is treated as

subsequent if the server has already received the digest. For the first upload of

file f , the server requires the client to upload the file convergently encrypted in

chunks (Client Initialization Phase, Figure 2). Then, the server initializes a set

of data structures to be used during subsequent uploads of the same file (Server

Initialization Phase, Figure 2). When the file is going to be uploaded again by

a different client, he is challenged by the server to prove the ownership of the

file (Challenge Phase, Figure 2). The server verifies the responses provided by

the client against the information computed in the Server Initialization Phase.

A client passes the PoW if he correctly responds to the challenges sent by the

server. If this is the case, the client legitimately owns the file and the ownership
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Figure 2: Overview of the ce-PoW phases

is stored in the corresponding file data structure. Accordingly, he can later

request the download of the file with no further need to pass a challenge phase.

3.2. Adversarial model

The main goal of a malicious client is to pass a PoW execution in regard

to a file he does not own. The legitimate owner of the file may collude with a

malicious client leaking a bounded part of the file. However, in a PoW scheme

it is assumed that the exchange of information does not take place interactively

during the PoW challenge. In other words, a PoW does not protect against an

adversary who uses the rightful owner of a file as an interactive oracle to obtain

the correct responses to a PoW challenge. It is also assumed that 64MB is a

size big enough to discourage collusion [4].

3.3. Objectives

The design objectives of the ce-PoW scheme can be summarized as follows:

security: the probability that a malicious client C̃, who does not own a complete

file f , succeeds in a PoW is negligible given a security parameter κ;

collusion resistance: in order to be able to engage in a successful PoW a

malicious client C̃, who does not posses file f , must exchange a minimum

amount Smin of information with the legitimate owner of f ;

bandwidth efficiency: the number of exchanged bytes between client and

server along a PoW execution should be minimized;
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space efficiency: while a PoW is running, the server should only be required

to load in memory a small piece of information, whose size is independent

of the input file size.

The first two objectives tackle the security requirements of the scheme: a

malicious client succeeds in a PoW for file f with negligible probability or by

exchanging ahead of time at least Smin bytes with the colluding owner of f . The

concept of Smin is inspired by the work of Halevi et al. [4] and accordingly, it

is set to 64MB. It acts as a deterrent for a legitimate owner C to collude with a

malicious client C̃. C is forced to issue a large enough data transferred over the

network to C̃. The last two objectives are related to performance requirements.

They look for minimizing network bandwidth and memory consumption (on the

server side).

3.4. Our Scheme: ce-PoW description

Let H2 : {0, 1}B → {0, 1}l be a cryptographic hash function: the two system

parameters B and l represent the chunk size and the token size respectively.

They play an important part in the security and performance of the scheme as

described in Section 4.1. Let also H1 : {0, 1}∗ → {0, 1}n be a cryptographic

hash function where n is a positive integer. In our scheme, the file is split in

chunks and the i-th chunk of file f is identified as f [i].

Our scheme has two separate phases (see Figure 3): In the initialization

phase, the client sends the file size to the server. The server sends to the client

the number of chunks the file should be split into. This number is computed ac-

cording to the analysis performed in Section 4.1. Then, the client convergently

encrypts each chunk, computes H2 over each encrypted chunk and, finally, com-

putes H1 over the resulting hashes obtaining hc (see Algorithm 1). Thereafter,

the client sends hc and the encrypted chunks to the server. The server then

computes hc from the received encrypted chunks and compares the result with

the received hc, in order to avoid poisoning attacks. If the comparison is suc-

cessful, the server creates an associative array A that maps strings of finite size

to 4-tuples; we use the dot notation to refer to components of tuples. The hash
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Figure 3: ce-PoW scheme

of the encrypted chunks (hc) is the lookup key for A: A[hc].ENC contains the

convergently encrypted file chunks, A[hc].CH stores 10,000 challenges (with J

random positions each), A[hc].RES keeps the expected response tokens that

correspond to the challenges and A[hc].AL contains a list of identifiers of clients

who own f (see Algorithm 2). The number of challenges has been selected

according to s-PoW, in order to perform a fair comparison. As in s-PoW or bf-

PoW, new challenges are generated when computed ones are consumed. This

process can be done when the workload of the server is low.

Algorithm 1: First client upload. Client side

Input: The number of chunks N and a file f
Output: The hash hc of the convergently encrypted file chunks; and the
convergently encrypted chunks EH2(f [i])f [i]
for i 0 to N − 1 do

token[i] H2(EH2(f [i])f [i]);
end
hc H1(token);
return hc and EH2(f [i])f [i];

14



Algorithm 2: First client upload. Server-side

Input: Encrypted chunks ENC[i] = EH2(f [i])f [i] and hc uploaded by
client C.
Output: The entry A[hc]
for i← 0 to N − 1 do

Compute array token from received ENC[i]
token[i]← H2(ENC[i]);

end
hc ← H1(token);
if ¬Match(hc,H1(token)) then

return ⊥;
end
Store 10,000 random challenges CH with J indexes each
for x 0 to 9999 do

for y 0 to J − 1 do
pos[y] PRF (seed);
CH[x, y]← pos[y];
RES[x, y] token[pos[y]];

end

end
A[hc].ENC ← ENC;
A[hc].CH ← CH;
A[hc].RES ← RES;
A[hc].AL← {id(C)};
return A[hc];

In the challenge phase, the server receives an hc value. If hc entry is not

found, the server requests the client to upload the file size, coming back to step

1 of the ce-PoW scheme (see Figure 3). Alternatively, if an entry for hc is found

in A, the server loads in memory the first unused challenge (an array pos with

J random chunk indexes) together with the corresponding responses and sends

the challenge to the claiming client. The client then performs his part of the

challenge phase (Algorithm 3): in particular, the client computes the response

token for each of the J chunk indexes and sends the array of response tokens to

the server. Subsequently, the server can execute its part of the challenge phase

(Algorithm 4). It checks whether the array of response tokens matches the array

of response tokens loaded in memory. If this is the case, the server considers the

PoW successful and assigns f to C. Otherwise, the client has failed the PoW.
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Algorithm 3: Challenge phase – client side.

Input: A file f and an array pos of J indexes
Output: An array res of J response tokens
for i← 0 to J − 1 do

res[i]← H2(EH2(f [pos[i]])f [pos[i]]);
end
return res;

Algorithm 4: Challenge phase – server side.

Input: hc of a file f ; two arrays pos and res of J indexes and client
response tokens, respectively
Output: The outcome of the challenge
for i← 0 to J − 1 do

if ¬Match(res[i],A[hc].RES[∗, i])) then
return ⊥;

end

end
A[hc].AL← A[hc].AL

⋃
{id(C)};

return >;

Finally, a client C may request the download of a particular file f by sending

hc to the server; if the file exists in the server, the latter will check whether

id(C) ∈ A[hc].AL and A[hc].ENC will be sent to C if the check is successful.

4. Theoretical analysis

This Section presents first the security of our PoW scheme. Then we perform

a complexity analysis to compare it with s-PoW and bf-PoW. The security

analysis provides the rationale to define the settings of the experimental setup.

Finally the execution of content guessing and poisoning attacks is discussed.

4.1. Security

The security of the proposed scheme is analysed in this section. ce-PoW

relies on the information theoretical assumptions that were established by Di

Pietro et al. [5] for s-PoW, and assumed by Blasco et al. [6]. Given a file f , the

objective of the adversary C̃ is to engage in a successful PoW, without actually

possessing the entire file. PoWs are not designed against an adversary that uses
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a legitimate file owner as a real-time oracle to provide the correct responses to

the PoW challenges. However, the adversary can collude with clients prior to

the PoW challenge. In order to model this interaction and taking into account

that C̃ may know parts of the file, the adversary’s knowledge of the target file

can be bounded to a percentage p. In other words, the probability the adversary

knows a byte of the file at a randomly chosen position is p. We also assume

that if the adversary does not posses a particular byte, he will be able to guess

it with probability g. It is easy to prove that the best strategy for the adversary

is to cluster his knowledge of the file into contiguous and aligned chunks of size

B to obtain an optimal probability of success. Accordingly, we will refer to p as

the probability that the adversary knows the whole content of a chunk of size

B whose position is chosen at random.

The ce-PoW challenge phase requires from the adversary the knowledge of J

tokens that correspond to J random chunks. Once received by the server, each

token is checked against the one computed locally. Let us consider the generic

i-th position out of the J random positions requested by the server. The PoW

is passed if the C̃ produces J tokens toki correctly. Therefore, we can compute

the probability of success (let us call the event succ) of the adversary as:

P (succ) = P (toki)
J (1)

Let us notice that the adversary cannot answer with the token that corresponds

to another chunk (unless the two are equal). Let us now analyse the probability

of the event toki, i.e. the probability that the adversary can successfully produce

the bits of the i-th token. Let also knowi be the event that the adversary

knows the i-th chunk—recall that the probability of this event is p. At this

point, the adversary either knows the chunk, and can therefore compute the

token (convergently encrypting it using H2), or does not; in the latter case, the

adversary can either guess the y unknown bytes that compose the chunk (the

probability of a correct guess being gy under our simplifying assumptions) or

guess the l-bit output of H2 that is used to generate the token (the probability

of a correct guess being 0.5l, where 0.5 stems from the random oracle model and

17



the assumption that each bit outputted by H2 is truly random). Given that the

token is always shorter than the chunk, we postulate that – in the absence of

other information – it is easier for the adversary to guess the token. That is, we

assume that gy << 0.5l; then we can write:

P (toki) = P (toki ∩ (knowi ∪ knowi))

= P (toki|knowi)P (knowi) + P (toki|knowi)P (knowi)

= p+ 0.5l(1− p) (2)

The adversary is challenged on J independent chunk positions. Conse-

quently, the probability of success of the adversary is:

P (succ) = P (toki)
J

= (p+ 0.5l(1− p))J (3)

From Equation 3 we can derive a lowerbound for J that ensures P (succ) ≤ 2κ,

where κ is the security parameter, as

J ≥ κ ln 2

(1− p)(1− (0.5l))
(4)

The first security requirement highlighted in Section 3.3 is satisfied by ce-PoW

according to Equation 4. In order to satisfy the second security requirement,

collusion resistance, we need to ensure that a legitimate client C needs to ex-

change at least Smin bytes with a malicious client C̃ to allow him to run a

successful PoW for an unknown file. Given that tokens are typically shorter

than the entire file chunks, the best strategy for the adversary is to request all

tokens from the colluding client3. Taking into account that there are F
B tokens

in a file f of size F , the token length l can be set as:

l ≥ Smin
B

F
(5)

3We do not consider the case of files with an extremely low entropy, whose chunks may be
compressed down to a size smaller than the corresponding chunk.
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Note that Equation 5 holds only in the case of files whose size is bigger than

Smin. For smaller files the adversary would circumvent the restriction by ex-

changing the file’s content instead. Consequently, for smaller files, Smin must

be scaled down to the file size itself. To discourage collusion, Halevi et al. pro-

posed a value of 64MB for Smin. This value was also considered in s-PoW and

bf-PoW and, accordingly, we take it into account as well.

According to the previous analysis, given that clients have to store the de-

cryption keys in order to decrypt stored files, the required storage space for

decryption keys is of 64MB for files bigger than 64MB. For instance, encrypting

a movie of 1.280 GB requires the client to store as many decryption keys as 5%

of the original file size. By contrast, for files smaller than 64 MB, the client

needs to store as much information as the file size. Nevertheless, it is very likely

that there is a lot of redundancy in client files. For instance, different versions of

a document will share multiple chunks and the corresponding decryptions keys

can be stored only once. Accordingly, source-based block level deduplication at

client side would greatly reduce the storage needs or alternatively, decryption

keys could be stored in a different cloud storage [14, 18].

4.2. Complexity

In this section, the bandwidth and space complexity of our scheme is anal-

ysed, along with its computational and I/O requirements. We compare our

solution against Di Pietro et al. [5] and Blasco et al. [6] proposals. Already

used, s-PoW and bf-PoW refer to these two schemes respectively. In all cases,

we only analyse the upper bounds and we consider all hash functions to have

the same computational cost. Results are summarized in Table 2. s-PoW and

bf-PoW require hashing the entire file f for identification purposes while ce-

PoW requires hashing the encrypted chunks. Although Di Pietro et al. reduce

this complexity by using a function with similar properties but a smaller com-

putational footprint [5], we choose to factor out this optimization as it can be

applied to all three schemes alike.

At the client side, the computational cost is higher in ce-PoW due to en-
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cryption and computation of the two hashes. Nevertheless, the I/O in the client

is similar in the three proposals and it just depends on the file size. The server

initial computation is also higher for ce-PoW due to the fact that two hashes

have to be computed.

In the case of bf-PoW, given that each time a client C issues a request to S

he must calculate H1 over the entire file f , we conclude that the overall com-

putational cost is O(F ). In the case of ce-PoW the computational cost depends

on the time to calculate two hashes and these hashes are in turn dependent on

the chunk size and the cost of computing the CE of the chunks. At the server

side, for bf-PoW the computational cost of the initialization phase is dominated

by the cost of hashing elements to be inserted in the bloom filter. Overall, this

requires k hash operations over the file. In the case of ce-PoW, the incurred cost

depends on computing two hashes. For the server regular computation ce-PoW

and s-PoW have a comparable complexity.

Regarding memory consumption, initialization involves loading the entire

file into memory. During regular execution, the server in ce-PoW just checks if

the responses received from the client match the precomputed tokens loaded in

memory. The server is only required to read from disk the list of J precomputed

challenges and responses, similarly to what is done in s-PoW.

In terms of bandwidth, ce-PoW requires J tokens to be sent to the server.

This number increases roughly linearly as the security parameter κ increases.

This is somehow similar to what happens with bf-PoW, but in bf-PoW J de-

creases proportionally when the BF’s false positive rate increases pf . Finally,

s-PoW requires only K bits of the file chosen at random positions to be sent to

the server, where K is a superlinear function of the security parameter κ.

4.3. Content guessing and poisoning attacks

CE does not provide semantic security as it is vulnerable to content-guessing

attacks. Bellare et al. [13] formalized CE under the name message-locked

encryption. Their security analysis highlights that message-locked encryption

offers confidentiality for unpredictable messages only. This fact may be a threat
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s-PoW bf-PoW ce-PoW

Client O(F ) · hash O(F ) · hash O(B) · CE · hash · hash
computation
Client I/O O(F ) O(F ) O(F )
Server init O(F ) · hash O(F ) · hash O(B) · hash · hash
computation

Server O(n · κ) · PRF O
(
l·κ·(log1/pf )

pf

)
· hash O(n · l · κ) · PRNG

regular
computation
Server init O(F ) O(F ) O(F )
I/O
Server O(n · κ) O(0) O(0)
regular
I/O

Server O(n · κ) O
(
log(1/pf )

l

)
O(n · l · κ)

memory
usage

Bandwidth O(κ) O
(
l·κ
pf

)
O(l · κ)

Table 2: Complexity analysis of the ce-PoW against the other proposals. F is the file size, κ
is the security parameter, n is the number of precomputed challenges in s-PoW. l is the token
size and pf is the false positive rate of the BF.

to user privacy. CE might be susceptible to offline brute-force dictionary attacks

if the file has low min-entropy. Knowing that the file f underlying a target

ciphertext C is drawn from a dictionary S = {f1, . . . , fn} of size n, the attacker

can recover f in the time for |S| off-line encryptions. The elements of S are

convergently encrypted and the result compared to C. Whenever a match is

found, the attacker knows f . Consequently, security against an honest-but-

curious server depends on the length of S. If the number of elements in S is

long enough, content guessing attacks are not feasible. Otherwise, it is a serious

threat.

Proposals that deal with content guessing attacks over CE schemes are all

based on the use of trusted third parties (TTPs) [14, 15]. In the case of ce-

PoW, the worst scenario is faced whenever the size of the chunks is 16 bytes.

If the content of the chunks is random (i.e the highest entropy), the dictionary

S would have 2128 elements. Given that AES is the encryption algorithm, if

21



we consider an encryption rate of 61 MiB/sec4, a content guessing attack over

an encrypted chunk would take 1024 years on the average case. Likewise, if S

is composed of just 280 elements this time would be 1017 years. Nonetheless,

for chunks with very low min-entropy ce-PoW would become vulnerable. For

such a case, our scheme could be directly adapted to use a TTP [14] where

every file is reencrypted by the TTP with the same key prior to be uploaded

to the server. However, our proposal in its current form presents a trade-off

between usability and security concerning content guessing attacks. Similar to

ce-PoW, Xu et al. [21] presents a PoW scheme under the bounded leakage

setting that faces honest-but-curious servers avoiding TTPs. Their work does

not address content guessing attacks. Indeed, their proposal is vulnerable in a

straightforward manner. In [21] file hashes are stored in the server and then, an

honest-but-curious server can directly compute the hashes over the dictionary

of guessed files S = {f1, . . . , fn} to verify matches. By contrast, in ce-PoW

the server stores hc, a digest over encrypted chunks, what hinders the attack

to a certain extent. Assuming S = {f1, . . . , fn}, an attacker would have to

convergently encrypt the chunks of each element in S, then compute H2 over

each encrypted chunk and finally compute hc over the result to verify each

possible match.

To successfully perform a poisoning attack on ce-PoW, a collision over hash

hc has to be found due to the check done by the server (see step 5 in Figure

3). An adversary has to find two different plain text files whose hash over the

digests of convergently encrypted chunks is the same. Thus, assuming hash H1

is collision resistant, ce-PoW becomes resilient to poisoning attacks.

5. Experimental Results

This Section presents an experimental comparison of the proposed scheme,

ce-PoW, with the schemes proposed by Di Pietro et al. [5] and by J. Blasco et al.

[6], referred to as s-PoW and bf-PoW respectively. We exclude the Halevi et al.

4http://www.cryptopp.com/benchmarks.html
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approach [4] from our experiments because its security is admittedly based on

assumptions that are hard to verify. All these schemes are implemented in C++

using OpenSSL for cryptographic operations. Particularly, used cryptographic

primitives are AES in counter mode and SHA-1. Besides, H1 corresponds to

SHA-1 and H2 corresponds to the application of SHA-1 over each encrypted

chunk, applying RC4 to extend the length of the hash to l.

The experiments have been performed on a AMD Athlon(tm) II x2 220

processor with 4GB of RAM. Input files have been randomly generated and

their sizes range from 4MB to 2GB doubling the size at each step.

On the bases of [5] [6], the following parameters are applied: the security

parameter is set to k=66 and the min entropy to Smin=64MB ; the size of the

tokens (l) is set to {16, 64, 256,1024} bytes; and the probability (p) that an

adversary knows a chunk of a file is established to {0.5; 0.75; 0.9; 0.95}. In this

regard, the size of chunks (B) is calculated according to Equation 5 given the

values of l, Smin and the input file size. The correspondence is depicted in Table

3. Similarly, the number of requested challenges, J , is computed according to

Equation 4 leading to these values: {91, 182, 457, 914}.

Table 3: Chunk sizes (B) in bytes, computed from the file size, the token size and Smin

l (bytes) 16 64 256 1024 File size (Mbytes)
16 64 256 1024 4
16 64 256 1024 8
16 64 256 1024 16
16 64 256 1024 32
16 64 256 1024 64
32 128 512 2048 128
64 256 1024 4096 256
128 512 2048 8192 512
256 1024 4096 16384 1024
512 2048 8192 32768 2048

5.1. Server side

The time the server initialization takes has been measured and compared.

In s-PoW the server precomputes n challenges composed of J random file bits
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by means of a pseudorandom number generator F (Algorithm 1 of [5]). In bf-

PoW the server initializes a bloom filter, divides the input files in chunks of

a fixed size, creates a token per chunk and inserts a function of each token

in the bloom filter (Algorithm 1 of [6]). In the case of ce-PoW, the server

computes a hash per each encrypted chunk and generates n challenges (see

Algorithm 2). A comparison between s-PoW, bf-PoW and ce-PoW of the server

initialization phase is depicted in Figure 4 taking n=10,000. The size of file

chunks in ce-PoW has been computed according to Table 3. It can be noticed

that bf-PoW is the fastest approach. Nonetheless, ce-PoW with l=256B is

comparable with bf-PoW with l=16B and faster than s-PoW with l=256B for

all file sizes. In general, ce-PoW behaves quite well for small files (smaller than

32MB) and for big files the achieved results are comparable with s-PoW and

bf-PoW, if it is properly tuned. One of the heaviest task for ce-PoW in the

server is the computation of hashes to provide file integrity (avoiding poisoning

attacks). Thus, removing the time to create chunk hashes, ce-PoW is the fastest

approach in all cases except for ce-PoW l=256B and files between 4-32MB, as

Figure 5 depicts. The computational cost of ce-PoW is particularly affected

by computations to protect against poisoning attacks and honest-but-curious

servers. However, s-PoW and bf-PoW do not deal with this kind of adversary.

Additionally, the server verifies the response of challenges. In bf-PoW the

server calls a pseudo random function to enforce the verification process for

each token involved in the requested challenge. This task is performed before

the bloom filter is checked (Algorithm 3 of [6]). Conversely, in s-PoW the server

has to verify that the received response matches the precomputed one. Similarly,

in ce-PoW the server verifies that received tokens match precomputed ones. As

a result, the time to enforce this computation is negligible for both ce-PoW and

s-PoW, but not for bf-PoW.

5.2. Client side

The time spent by clients to respond to challenges is relevant. s-PoW clients

look for the requested bits until they complete the challenge (Algorithm 2 of
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Figure 4: Clock cycles of the server initialization phase. The number of precomputed chal-
lenges is set to n=10,000.

Figure 5: Clock cycles of the server initialization phase. ce-PoW hash calculations to provide
file integrity are not considered. The number of precomputed challenges is set to n=10,000

[5]). Similarly, bf-PoW clients compute a token for each J chunk index using

a hash function (Algorithm 2 of [6]). By contrast, ce-PoW clients first apply

CE to the chunks defined by J indexes, and then compute a hash over each

encrypted chunk. We have compared the client response times for a different

number of requested challenges, J={91, 182, 457, 914}. Results are depicted in

Figures 6-9. Regardless of J , ce-PoW achieves better results than s-PoW for
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Figure 6: Client response creation clock cycles for J=91 challenges.

all file sizes and it is comparable with bf-PoW for most settings. The strong

point of ce-PoW is that the time remains constant for every file size, except

those greater than 2048MB. In fact, ce-PoW is much better than s-PoW and

comparable with bf-PoW.

It is noteworthy that the time to compute challenges in ce-PoW in indepen-

dent of chunk sizes and it remains constant. Recall from Table 3 that chunk

size depends on file size. Thus, the same amount of encryptions and hashes are

performed for every file. For instance, the time to encrypt file chunks of 32B

is comparable with the time to encrypt chunks of size 512MB. Nonetheless, the

time increases for files bigger than 2048MB because encryption is affected by

big chunks, particularly for l=1024B.

In sum, bf-PoW is the fastest scheme for client response creation except for

l=1024B and s-PoW is the slowest one, while ce-PoW is in the middle of both.

It is particularly noticeable that in our scheme the time remains constant for

files between 4-1024MB due to the different size of chunks. Besides, results

achieved by ce-PoW are comparable with those of bf-PoW for big files.

26

a 

l ,OOE+16 

l ,OOE+15 

l ,OOE+14 

l ,OOE+13 

l ,OOE+12 

~ l ,OOE+ll 

j l ,OOE+l O 
1,,1 

l ,OOE+0 9 

l ,OOE+0 8 

l ,OOE+07 

l ,OOE+0 6 

l ,OOE+0 5 

/ 
J.' '.!J 

--
4 8 

-
.-- -- - -.-~ - - -LI." ••!.!.• :.:•,. -· -.or. .... -. - --

I 
I 

I I 

I I 

I 
---, 

I ' -· - - - - - -
16 32 64 128 256 512 1024 2048 

File size (MB) 

--s-PoW j=91, 1=16B 

--s-PoW j=91, 1=64B 

--s-PoW j=91, 1=256B 

--s-PoW j=91, 1=10246 

- bf-Pow j=91, 1=16B 

- bf-Pow j=91, 1=64B 

- bf-Pow j=91, 1=256B 

- bf-Pow j=91, 1=1024B 

• • • • • • CE-Pow j=91, 1=16B 

• • • • • • CE-Pow j=91, 1=648 

...... CE-Pow j=91, 1=256B 

• • • • • • CE-Pow j=91, 1=10246 



Figure 7: Client response creation clock cycles for J=182 challenges.

Figure 8: Client response creation clock cycles for J=457 challenges.

5.3. Summary

ce-PoW is specially efficient for files between 4-32MB. In this regard, as the

average size of files uploaded to cloud providers like Amazon or Azure is 350kb5,

our scheme is as efficient as top solutions in average cases. Moreover, ce-PoW

5http://www.nasuni.com/blog/57-whats the cost of a gb in the cloud
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Figure 9: Client response creation clock cycles for J=914 challenges.

is analysed to be faster than s-PoW at client side and it can be compared with

both s-PoW and bf-PoW at server side.

It is noteworthy that the performance comparison among ce-PoW and the

other two proposals is not straightforward. ce-PoW offers protection against

honest-but-curious-servers by the use of a CE scheme. Therefore, the success-

fulness of ce-PoW is to achieve results comparable with top proposals that do

not deal with threat.

6. Conclusions

Cross-user deduplication is commonly applied by cloud providers to save

storage space and bandwidth. However, if it is performed in a straightforward

manner security flaws arise. This paper presents ce-PoW, a proposal that com-

bines a Proof of Ownership scheme with Convergent Encryption to protect cloud

stored data against honest-but-curious servers and outside adversaries. ce-PoW

is proven to be secure under the bounded leakage setting. Weaknesses of state-

of-the solutions such as the dependency on trusted third parties, have been

overcome. ce-PoW is as efficient as top PoW schemes that do not deal with

honest but curious servers.
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Future work involves the reduction of client storage space in regard to decryp-

tion keys. Likewise, content guessing attacks against very low min-entropy files

remains as an open research problem. Finally, exploring other cryptographic

approaches such as Attribute Based Encryption [24] and Proofs of Work [25]

could lead to outstanding new solutions.
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