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Abstract

Utility-based power control in wireless networks has been widely recognized
as an effective mechanism to managing co-channel interferences. It is based
on the maximization of system utility subject to power constraints, which
is referred to as power control optimization problem. Global coupling be-
tween the mutual interference of wireless channels increases the difficulty
of searching global optimum significantly. In this paper, we decouple the
optimization problems with concave and non-concave utility functions; and
transform them into a global consensus problem by introducing locally slack
variables. We then propose two distributed iterative optimization algorithms
for the global consensus problems with concave and non-concave objective
functions, respectively, based on an alternating direction method of multi-
pliers. Furthermore, we prove that both algorithms converge to the global
optimum of the total network utility. Simulation results show the effective-
ness of the algorithms. Comparison experiments show that the developed
algorithms compare favourably against some other well-known algorithms.
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1. Introduction

Interference occurs due to simultaneous transmissions in the same wire-
less channel. This will significantly deteriorate the performance of wireless
networks. To mitigate interference in wireless networks, power control is one
of the most-widely used basic techniques (Xiao et al. , 2003). In power con-
trol, the interference is treated as noise and the signal-to-interference plus
noise ratio (SINR) was mapped to a utility; and the total system utility is
to be maximized subject to power constraints which is referred to as the
power control optimization problem. It can be considered as a network util-
ity maximization (NUM) problem with coupling power variables (Chiang et
al. , 2007). By distributively solving the power control problem, all network
users continually adjust their transmission powers until the total utility ap-
proaches the optimal, this can achieve the purpose of interference control. In
this paper, we address the distributed power control optimization problems
where concave and non-concave utility functions are used. In both cases,
utility functions depend on the received SINR. The objective is to optimize
the overall performance measured in terms of total network utility.

Research work has been done for power control and interference man-
agement in wireless networks based on NUM. In Wei et al. (2014), a dis-
tributed power control policy for wireless networks based on game-theoretic
approaches was proposed. It can only guarantee an optimal power allocation
for strictly concave utility functions. In Hussein and Tobias (2012) and Lip-
ing et al. (2009), globally optimal power control schemes were developed.
However, these algorithms are not suitable for practical implementations in
distributed networks. Campos et al. (2008) proposed a distributed power
control approach that can guarantee sub-optimality. Hande et al. (2008)
developed a distributed power control algorithm which can converge to the
global optimum in case of pseudo-linear utility functions. However, the pro-
posed algorithm does not guarantee a global convergence for non-concave
utility functions.

The goal of the paper is to develop distributed power control algorithms
for both concave and non-concave utility functions, which is similar to the
problems solved in Qian et al. (2012) and Lei et al. (2012). In Qian et al.
(2012), the authors presented a distributed power control algorithm and its
two enhanced versions. These algorithms can maximize any form of system
utility and converge to the global optimal solution through Gibbs Sampling
(Constantino , 1988). In these algorithms, each transmitter needs to update
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its power setting according to a given Gibbs probability distribution. These
algorithms are essentially heuristic, and their performances highly depend on
the parameters of the Gibbs distribution. In practice, it is very challenging
to set optimal Gibbs parameters for best algorithmic performances.

In Lei et al. (2012), the utility maximization problem is transformed
into an equivalent max-min problem. The extended duality theory (Chen
and Chen, 2010) is applied on the max-min problem to devise a distributed
power control algorithm in which each transmitter stochastically adjusts its
power to improve the total utility by simulated annealing (Kirkpatrick et
al., 1983). The authors argued that the proposed distributed power control
algorithm can guarantee global optimality but at the cost of slow convergence
due to the simulated annealing used for transmitter’s power adjustment.

In this paper, we propose to decouple the NUM problem with coupled
utilities by introducing a set of local slack variables. This method is similar
to the one presented in (Lei et al. , 2012) where a global slack variable
is introduced. However, the original problem is transformed into a global
consensus problem (Nedi and Ozdaglar , 2010) in this paper, while a max-
min problem is created in Lei et al. (2012).

To design a distributed power control algorithm, we combine the extended
duality theory with the alternating direction method of multipliers (ADMM)
(Boyd et al., 2011). Specifically, in case of concave utility functions, we
directly use the Lagrangian duality and ADMM to develop the distributed
power allocation algorithm. On the other hand, in case of non-concave utility
functions, we build up a new nonlinear Lagrangian function. It contains two
kinds of penalty terms, i.e., an lm1 -penalty term (Chen and Chen, 2010) and
a quadratic penalty term. Our method combines the ideas of the extended
duality theory and ADMM. The extended duality theory can guarantee zero
duality gap between the primal and dual problems in case that a lm1 -penalty
function is used for non-concave problems. The quadratic penalty term used
in ADMM can drive all local variables to reach a global consensus.

The rest of the paper is organized as follows. After a brief description of
the ADMM in Section 2, the model and the considered problem are presented
in Section 3. In Section 4, we apply the ADMM to obtain a distributed algo-
rithm for concave utility functions. Section 5 presents a distributed algorithm
for nonconcave utility functions based on the ADMM and the extended dual
theory. Section 6 describes the simulation results. Section 7 concludes the
paper.
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2. Preliminaries

In this section, we briefly review the alternating direction method of mul-
tipliers (ADMM) and the distributed iterative algorithms based upon it,
which form the basis of the distributed iterative algorithms presented in this
paper.

Let’s consider the following constrained optimization problem

min f(x) + g(z)
subject to Ax+Bz = c

(1)

where variables x ∈ Rn and z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp, and
f : Rn → R and g : Rm → R. The augmented Lagrangian for (1) can be
written as follows:

Lρ(x, z, μ) = f(x) + g(z) + μT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (2)

The corresponding augmented dual function is given by

Dρ(μ) = min
x,z

Lρ(x, z, μ) (3)

where μ is the dual variable and ρ ≥ 0 is the penalty parameter. The dual
problem corresponding to the primal problem (1) is defined as

max
ρ

Dρ(μ) (4)

Further, applying the dual ascent method to the dual problem yields the
following iterative algorithm:

(x(k + 1), z(k + 1)) = arg min
x,z

Lρ(x, z, μ(k)) (5)

μ(k + 1) = μ(k) + ρ(Ax(k + 1) +Bz(k + 1)− c) (6)

where k is the iteration counter and ρ is the step size.1 The algorithm (5)-
(6) is called as the basic method of multipliers for solving (1). From the
augmented Lagrangian (2), it can be seen that Lρ is not separable. Thus,
the minimization step w.r.t. (x, z) (Eq. (5)) cannot be carried out in parallel.

1The purpose for using ρ as the step size in the dual update is to guarantee that
(x(k+1), z(k+1), μ(k+1)) is dual feasible. For details, please refer to (Boyd et al., 2011)
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This means that the above basic method of multipliers cannot be used for
distributed optimization.

ADMM addresses this issue by separating the minimization over x and z
into two steps. The ADMM steps can be summarized as follows:

x(k + 1) = argmin
x

Lρ(x, z(k), μ(k)) (7)

z(k + 1) = argmin
z

Lρ(x(k + 1), z, μ(k)) (8)

μ(k + 1) = μ(k) + ρ(Ax(k + 1) +Bz(k + 1)− c) (9)

where the primary variables x and z are updated in an alternating mode,
which accounts for the term alternating direction. In ADMM, the dual vari-
able update uses a step size which is equal to the penalty parameter ρ.

The basic idea of ADMM is to eliminate some or all of the constraints by
adding a penalty term (cf. (2)). Associated with the method is the penalty
parameter ρ. ρ determines the severity of the penalty for infeasible solu-
tions and the extent to which the resulting minima of Eq. (2) approximates
the optimal solutions of the original constrained problem (1). Theoretically,
along the increase of the penalty parameter ρ, the approximation becomes
increasingly accurate. In this paper, we will use ADMM to produce accept-
able suboptimal solutions for practical use when a high accuracy cannot be
obtained.

3. System Model and Problem Formulation

We consider a wireless network with a set L of links with interference-
limited channels. Each link consists of a transmitter and a receiver. We
assume that multiple links may transmit data simultaneously, and the trans-
mission from one link may be interfered by other concurrent transmitters.

Let pl denote the transmission power of the transmitter of link l with
Pmax
l being its maximum power constraint and nl be the receiving noise on

link l. The channel is modeled by a channel gain matrix G, where Glk is
the power gain from the transmitter of link l to the receiver of link k. The
channel model is shown in Fig.1.

The received signal-to-interference-plus-noise ratio (SINR) for link l can
be obtained as follows:

γl(p) =
Gllpl∑

k �=l

Gklpk + nl
(10)
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Figure 1: The channel model of a wireless network.

where p = (p1, p2, . . . , pL) is a vector of the transmission powers of all links.
Associated with the SINR γl of each link l is a utility function Ul(γl(p)). By
maximizing the aggregate utility functions

∑
l Ul(γl(p)) under the maximum

power constraints of links, we can establish the corresponding network utility
maximization in a wireless network as follows.

max
∑
l∈L

Ul(γl(p)) subject to 0 ≤ pl ≤ Pmax
l , ∀l ∈ L (11)

Remark 1 Many kinds of utility functions can be applied in different appli-
cations (Shenker , 1995; Liao and Campbell , 2001). In the next two sections,
we present the concave and non-concave utility functions used in this paper.

4. Distributed power control for concave utility maximization

Assume that the utility functions in (11) are concave and the feasible
SINR region is convex, then (11) is a convex optimization problem (Qian
et al. , 2009). However, as a result of the power-coupled model, i.e., each
utility depends not only its own transmission power but on others, solving the
problem (11) requires coordination among different nodes. It is impractical
in wireless ad hoc networks.

A key idea to tackle power-coupled utilities is to introduce slack variables
and build up a global consensus problem (Nedi and Ozdaglar , 2010). In this
section, we present a distributed algorithm for solving the proposed consensus
problem in conjunction with ADMM.
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By introducing slack variables (xl, l ∈ L) and regarding primary variable
p as global common variable, the optimization problem (11) can be formu-
lated equivalently as

min
∑
l∈L

−Ul(γl(xl))

subject to
xl = p, ∀l ∈ L
0 ≤ p ≤ (Pmax

1 , . . . , Pmax
l )T

(12)

Then, the augmented Lagrangian for (12) can be written as follows.

Lρ(x1, ·,x|L|,p,μl, ·,μ|L|) =
|L|∑
l=1

(
−Ul(γl(xl)) + μT

l (xl − p) +
ρ

2
‖xl − p‖22

)
(13)

where |L| denotes the number of links, μl, l ∈ L are the variables of multi-
pliers and ρ is a nonnegative penalty factor. Let λl =

1
ρ
μl, and define the

residual variables rl = xl − p, l ∈ L. Then, from (13) we have

xl(k + 1) = argmin
xl

(−Ul(γl(xl)) + μT
l (k)rl + (ρ/2)‖rl‖22) (14)

= argmin
xl

(−Ul(γl(xl)) + (ρ/2)[(2/ρ)μT
l (k)rl + ‖rl‖22) (15)

+
1

ρ2
‖μl‖22]−

1

2
ρ‖μl‖22 (16)

= argmin
xl

(−Ul(γl(xl)) + (ρ/2)‖rl + λl‖22 − (ρ/2)‖λl‖22) (17)
= argmin

xl

(−Ul(γl(xl)) + (ρ/2)‖rl + λl‖22) (18)

where the last step holds because ρ
2
||λl||22 is not related to the variable xl.

Similarly, we have

p(k + 1) = ΠC

⎛
⎝ 1

|L|
|L|∑
l=1

(xl(k + 1) + λl(k))

⎞
⎠ (19)

here C = {c = (c1, . . . , c|L|)
∣∣0 ≤ cl ≤ Pmax

l , ∀l ∈ L} and ΠC(c) denotes the
projection of vector c onto C.

Based on previous derivations, the resulting consensus ADMM algorithm
for solving (12) can be summarized in Alg. 1:
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Algorithm 1 The consensus ADMM algorithm for solving (12).

1: Initialization: Choose the initial values of variables xl(0),λl(0),p(0); and
input a stopping criterion;

2: for k = 0, 1, 2, . . . , do
3: Locally updates dual variables:

λl(k + 1) = λl(k) + xl(k)− p(k), ∀l ∈ L (20)

4: Solve sub-optimization problems for l ∈ L:

xl(k + 1) = argmin
xl

(
−Ul(γl(xl)) +

ρ

2
‖rl + λl‖22

)
(21)

5: Global aggregation: averages local variables and broadcasts the result
back to each link.

p(k + 1) = ΠC

(
1

|L|
∑
l

(xl(k + 1) + λl(k + 1))

)
(22)

6: If stopping criteria is satisfied, then stop, otherwise go to 2.
7: end for
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Remark 2. Averaging Eq. (20) gives

λ(k + 1) = λ(k) +
1

|L|
|L|∑
l=1

(xl(k)− p(k))

Substituting Eq. (22) into the above equation shows that λ(k + 1) = 0.
This reveals that although the dual variables are distributively updated, they
drive the primary variables into consensus. Meanwhile, for a higher penalty
parameter ρ, the penalty (ρ/2)‖rl+λl‖22 in Eq. (21) pushes all of the primary
variables toward their average value. This suggests that the sequence of
iterations (Eq. 21) is a good approximation to the primary problem (11).
Remark 3. Note that there is no local information exchange between links
in Algorithm 1. This differentiates significantly from other distributed algo-
rithms in wireless networks. However, the processing centre needs to gather
all local variables to update the global variable and broadcast it back to the
links (cf. line 5).
Remark 4. The choice of the stopping criteria depends on many conditions.
It is proved that when the primal and dual residuals2 are small, the objective
sub-optimality also must be small (Eckstein and Bertsekas , 1992; Boyd et
al., 2011). Thus, a common sense to choose a reasonable stopping criterion
is that the primal and dual residuals must be smaller than a predetermined
threshold.

The following result can be proved using standard analysis techniques in
ADMM’s convergence analysis as in (Nedi and Ozdaglar , 2010; Eckstein and
Bertsekas , 1992; Gabay , 1983; Boyd et al., 2011).

Proposition 4.1. Assume that the utility function in Algorithm 1 is bounded,
closed, concave, and when ρ = 0, the un-augmented Lagrangian L0 has a sad-
dle point, then the objective function in Algorithm 1 approaches the optimal
of the primary problem.

Proof. See Appendix A.

2In Alg. 1, the primal and dual residuals are of the forms xl(k + 1) − p(k + 1) and
−ρ(p(k + 1)− p(k)), respectively.
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5. Distributed power control for Non-concave Utility Maximiza-
tion

Assume that the utility functions in the model (11) are non-concave, then
(11) is a non-convex optimization problem. In practice, it is very difficult to
find a global optimal solution distributively for the problem.

Algorithm 1 fails to find global optimal solution as the duality gap appears
due to the non-concave utility functions. Actually, if we remove the last term
in the augmented Lagrangian (13), it becomes the ordinary Lagrangian which
will cause the duality gap for non-convex optimization. Fig. 2 shows the zero
duality gap and the nonzero duality for the ordinary Lagrangian duality,
where S denotes the set of constraint-objective pairs. The primal problem
can be considered as the Min Common Point Problem (MCPP). That is, it
requires to find the minimum intercept of S with the w-axis. On the other
hand, the dual problem can be seen as the Max Intercept Point Problem
(MIPP). That is, it requires to find the maximum point of interception of the
w-axis from all the hyperplanes supporting S from below (Bertsekas , 1995).
The bold black part denotes the intersection of S and the w-axis. It can
be seen that the zero duality gap was achieved by the ordinary Lagrangian
duality as shown in Fig.2(a). This means that the MCPP and the MIPP
are the same; while the nonzero duality gap (i.e., the red part) appeared for
the non-convex problem in Fig.2(b) means that there is no such hyperplane
which passes through the minimal common point and supports S from blow.

S S

u

w

u

w

Min Common Point

Max Intercept Point

Min Common Point

Max Intercept Point

(a) (b)

Figure 2: The geometric interpretation of the ordinary Lagrangian duality.

Considerable amount of research work has been conducted for reducing
or eliminating the duality gap for non-convex problems (e.g. (Rockafellar
and Wets , 1998; Rubinnov et al., 2002; Nedi and Ozdaglar, 2008; Chen and
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Chen, 2010)). In (Chen and Chen, 2010), an extended duality theory was
proposed to achieve nonzero duality gap for non-convex problems based on
a new lm1 -penalty formulation which is a generalization of ll-penalty. For
problem (12), the lm1 -penalty function is defined as follows:

LEX(x1, . . . ,xl,p,μl) =

|L|∑
l=1

(−Ul(γl(xl)) + μT
l |xl − p|) (23)

However, to reach a global consensus of all local variables, we modify the
extended Lagrangian for problem (12) as

Lρ(x1, . . . ,xl,p,μl) =

|L|∑
l=1

(−Ul(γl(xl)) +μT
l |xl − p|+ (ρ/2)‖xl − p‖22) (24)

The key ideas in (23) and (24) for eliminating the duality gap of the non-
convex problems can be visually illustrated in Fig. 3.

The extended duality removes the duality gap by pushing different hy-
perplanes up to the minimum common point (0, f ∗) to collectively support S
as shown in Fig.3(a). From equation (24), we can see that it consists of two
parts, i.e., the extended Lagrangian and a quadratic penalty term. There-
fore, our proposed Lagrangian can be regarded as a perturbation around the
extended Lagrangian because of the presence of a quadratic penalty term,
which will make the Lagrangian function nonlinear (cf. the dotted lines).
The extended Lagrangian can guarantee zero duality gap between the pri-
mal and dual problems, while the quadratic penalty item used in ADMM can
drive all local variables to reach a global consensus. These two properties
can avoid the duality gap while preserving the global optimality as shown in
Fig.3(b).

Based on the above analysis, we can use (24) as its extended Lagrangian
for problem (11) with non-concave functions. This combines the ideas of
the extend duality theory and the augmented Lagrangian method. Thus, we
have

xl(k + 1) = argmin
xl

(−Ul(γl(xl)) + μT
l |xl − p|+ ρ

2
‖xl − p‖22)

= argmin
xl

(
−Ul(γl(xl)) + μT

l [(xl − p)⊗ sign(xl − p)] +
ρ

2
‖xl − p‖22

)
(25)
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Figure 3: The geometric interpretation of the extended Lagrangian duality.

and

p = argmin
p

Lρ(x1, . . . ,xl,p,μl) (26)

= argmin
p

|L|∑
l=1

(μT
l |xl − p|+ (ρ/2)‖xl − p‖22) (27)

= argmin
p

|L|∑
l=1

(μT
l [(xl − p)⊗ sign(xl − p)] + (ρ/2)‖xl − p‖22) (28)

where function sign(y) returns the signs of the elements of y; ⊗ denotes
element-wise production of two vectors.

Similarly to the method adopted in Section 4, from Eq. (26), we have

p(k + 1) =
1

|L|
|L|∑
l=1

(xl(k + 1) +
1

ρ
μl(k + 1)⊗ sign(xl(k + 1)− p(k))) (29)

Adopting the same method in Section 3, an extended ADMM for solving
the primary problem (11) with non-concave functions can be summarized in
Alg. 2.
Remark 5. Solving problems (25) and (26) usually are difficult because of
the term μT

l |xl − p|. However, each link l or the processing centre in lines 4
and 5 of Algorithm 2 can locally determine the positive and negative signs
of the components of xl − p. Therefore, the absolute value signs in (25) and
(26) can be removed as above.
Remark 6. The parameter ρ in Algorithm 2 has double roles, i.e., as a
penalty factor and a step sizes (see (31),(30) and (32), respectively). In
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Algorithm 2 Extended ADMM for solving (11) with non-concave functions.

1: Initialization: Choose the initial values of variables xl(0),μl(0),p(0); and
input a stopping criterion;

2: for k = 0, 1, 2, . . . do
3: Update locally the dual variables:

μl(k + 1) = μl(k) + ρ(|xl(k)− p(k)|), ∀l ∈ L (30)

4: Solve the following sub-optimization problem for all l ∈ L

xl(k+1) = arg min
xl

(−Ul(γl(xl))+μT
l [(xl−p)⊗sign(xl−p)]+

ρ

2
‖xl−p‖22) (31)

5: Global aggregation: averages local variables and broadcasts the result
back to each link.

p(k + 1) = (1/|L|)
|L|∑
l=1

(xl(k + 1) +
1

ρ
μl(k + 1)⊗ sign(xl(k + 1)− p(k))) (32)

6: If stopping criteria is satisfied, then stop; otherwise go to 3.
7: end for

13



a general sense, an augmented Lagrangian algorithm needs to continuously
increase the penalty factor, while an extend Lagrangian algorithm needs
to reset the penalty factor after some consecutive iterations, to guarantee
convergence. Algorithm 2 combines the different features by setting ρ a
constant value which is larger than a particular threshold.

Proposition 5.1. Suppose the utility functions of the primary problem (12)
are continuous, the sequence μl(k) in Algorithm 2 is bounded, and the penalty
factor ρ ≥ ρ0 (ρ0 is a nonnegative constant), then every limit of the sequence
(x1(k), . . . , x|L|(k),P(k)) produced by Algorithm 2 is a global optimal solution
to the primary problem (12).

Proof. See Appendix B.

6. Simulation

In this section, we justify empirically the effectiveness of the proposed
algorithms by considering a wireless network with five links randomly dis-
tributed on a 10m-by-10m square area. The power gains Glk are equal to
d−4
lk , where dlk represents the distance between the transmitter of link k and

the receiver of link k. We assume that Pmax
l = 1 and nl = 10−4 for all l ∈ L,

and consider one randomly generated realization of channel gains given by:

G =

⎛
⎜⎜⎜⎜⎝

0.4823 0.0397 0.0034 0.0007 0.0002
0.0338 0.9610 0.0368 0.0031 0.0007
0.0033 0.0397 0.6830 0.0282 0.0032
0.0007 0.0035 0.0368 0.2603 0.0309
0.0002 0.0007 0.0034 0.0282 0.3501

⎞
⎟⎟⎟⎟⎠

We first evaluate the convergence of Algorithm 1 with concave utility
functions which were set as Ul(γl(P)) = log(γl(P)) for all l ∈ L. The con-
vergence of the total utility over iterations is shown in Fig. 4 with different
penalty factors ρ = 30 and ρ = 45, respectively. From the figure, we can see
that the algorithm is able to approach the optimal utility very fast. However,
with ρ = 30, the convergence speed is faster than that of ρ = 45. This is
reasonable as a smaller penalty factor will cause a smaller deviation from the
optimal utility compared to the higher penalty factor while the total utility
is close to the neighbour of the optimal utility.

Subgradient-based algorithms are usually used to distributively solve a
NUM problem with concave utility functions. For comparison we show the
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(b) ρ = 45

Figure 4: The convergence of Algorithm 1 with ρ = 30 and ρ = 45.

convergence of the total utility in Fig. 5 for a subgradient-based algorithm as
in (Chiang , 2005) with a stepsize of 0.01 and our algorithm 1 with ρ = 45.
From Fig. 5, we can see that these two algorithms converge to the optimal
value. However, the convergence speed of our algorithm 1 is much faster than
the subgradient-based algorithm.
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Figure 5: Comparison for the convergence speed of Algorithm 1 and subgradient-based
algorithm

Next, we carry out simulation for the utility and convergence performance
of Algorithm 2 with non-concave utility functions (Lee et al., 2006). That
is, for each link l, we set the utility functions Ul(γl(xl)) =

1
1+exp(γl−7)

. Fig. 6
shows the convergence of Algorithm 2 in terms of total utility on different
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penalty factor settings (ρ =15, 30, and 45), respectively.
From Fig. 6, we can see that the total utility converges to the optimal

utility value, respectively. It can be seen from these figures that a larger ρ
may lead to slower convergence rate. This is because a larger ρ will cause a
smaller change to the global consensus variable P (cf. (25)). In our experi-
ments, we also found that if ρ is too small, Algorithm 2 may generate many
infeasible solutions. This is not surprising, because utility function Ul(•) is
non-concave and it is easy to create infeasible points in some search area.
However, a too small penalty factor is not enough to push infeasible points
into feasible regions.

From the experiments, we observed that Algorithm 2 has good perfor-
mance on convergence if ρ ≥ 11. This shows consistency with Proposition
2 which requires that the penalty factor should set bigger than a constant
threshold. Readers interested in the selection of the penalty factor ρ and
its influence on convergence of algorithms please refer to (Boyd and Van-
denberghe, 2004; Bertsekas , 1995; Huang and Yang, 2003; Chen and Chen,
2010)
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(a) ρ = 15
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(b) ρ = 30
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(c) ρ = 45

Figure 6: The convergence of Algorithm 2 for different ρ = 15, 30 and 45.

In (Lei et al. , 2012), a distributed power control algorithm, namely the
EDSPC algorithm, was presented to solve a NUM problem with non-concave
utility functions. Fig. 7 presents the convergence behavior of the total utility
for EDSPC algorithm and our algorithm 2 with ρ = 45. From Fig. 7, we can
see that these two algorithms almost have the same convergence speed. From
Fig. 6, we know that the convergence speed of our algorithm 2 decreases as
the penalty factor ρ is increased. Therefore, with a smaller penalty factor,
for example ρ = 30, our algorithm 2 will be faster than EDSPC.

We can also see that the total utility values in EDSPC have an oscillation
when they are close to the optimal. Near the optimal, the oscillation will
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Figure 7: Comparison for the convergence speed of Algorithm 2 and EDSPC

worsen the network performance, thus, our algorithm 2 leads to a better
performance compared with EDSPC.

7. Conclusion

In this paper, we studied the distributed power control problem based
on NUM model with globally coupled utility functions in wireless networks.
We first transformed the original power control problem into a global con-
sensus problem by introducing multiple local slack variables to decouple the
globally coupled objective function. Appealing to Lagrangian duality or the
extended duality theory, we decomposed the primary problem into subprob-
lems, and proposed two distributed power control algorithms for concave and
non-concave primary problems where ADMM is adopted to solve the sub-
problems. The proposed two algorithms can efficiently converge to the global
optimum in terms of the total network utility for concave and non-concave
power control problems, respectively. Numerical results showed that the pro-
posed algorithms are able to converge to global optimum, which is consistent
with the theoretical analysis.

Appendix A. Proof of Proposition 1

Proof. Let U∗ be the optimal solution of the primary problem (12) and Uk

be the utilities produced by Algorithm 1 in the k-th iteration. Assume that
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(x∗
1, . . . ,x

∗
|L|,P

∗,λ∗
1, . . . ,λ

∗
|L|) is a saddle point for Lagrange function L0, and

define

V k =
1

ρ

|L|∑
l=1

‖λl(k)− λ∗
l ‖22 + ρ‖P(k)−P∗‖22

The sequel analysis is based on the following two inequalities (see (Boyd
et al., 2011), inequalities A.1 and A.2,P.107):

V k+1 ≤ V k − ρ

|L|∑
l=1

||xl(k + 1)−P(k + 1)||22 − ρ||P(k + 1)−P(k)||22 (A.1)

Uk+1 − U∗ ≤
|L|∑
l=1

−λT
l (k + 1)(xl(k + 1)−P(k + 1))− ρ(P(k + 1)−P(k))T ×

|L|∑
l=1

−(xl(k + 1)−P(k + 1)) +P(k + 1)−P∗ (A.2)

From inequality A.1, we have

ρ

∞∑
k=0

⎛
⎝ |L|∑

l=1

‖xl(k + 1)−P(k + 1)‖22 + ρ‖P(k + 1)−P(k)‖22

⎞
⎠ ≤ V 0 (A.3)

Through assumptions, it follows that V 0 is bounded. Inequality A.3 im-
plies that xl(k+1)−P(k+1) → 0 and P(k+1)−P(k) → 0 as k → ∞. There-
fore, the righthand side of A.2 goes to zero as k → ∞, because P(k+1)−P∗

is bounded and both xl(k + 1) − P(k + 1) and P(k + 1)− P(k) go to zero.
Hence, we have

Uk+1 − U∗ ≤ 0, as k → ∞ (A.4)

Since (x∗
1, . . . ,x

∗
|L|,P

∗,λ∗
1, . . . ,λ

∗
|L|) is a saddle point of the Lagrange function

L0, we have L0(x
∗
1, . . . ,x

∗
|L|,P

∗,λ∗
1, . . . ,λ

∗
|L|) ≤ L0(x1(k + 1), . . . ,x|L|(k +

1),P(k + 1),λ∗
1, . . . ,λ

∗
|L|).

By setting x∗
l = P∗, l = 1, 2, . . . , |L| in the above inequality, we have

U∗ − Uk+1 ≤
|L|∑
l=1

λ∗T
l (xl(k + 1)−P(k + 1))
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The righthand side of the above inequality goes to zero as k → ∞. Therefore,
we have

U∗ − Uk+1 ≤ 0, as k → ∞ (A.5)

Combining Eqs. A.4 and A.5, it follows that Uk converges to U∗ when k
tends to infinity.

Appendix B. Proof of Proposition 2

We need the following Lemma Appendix B.1 to finish our proof. It is
similar to Theorem 3.1 presented in (Chen and Chen, 2010).

Lemma Appendix B.1. Suppose (x∗
1, . . . , x

∗
|L|,P

∗) is a global optimal so-

lution and U∗ is the optimal value of the primary problem (12). Suppose
(x∗

1, . . . , x
∗
|L|,P

∗) satisfies the constraint qualification3, then there exist a set

of positive μ∗
i ≥ 0, 1 ≤ i ≤ |L| such that

U∗ = min
xl,P

Lρ(x1, · · · , x|L|,P,μ1, · · · ,μ|L|), for any μl ≥ μ∗
l , l ∈ L.

Proof. Let (x1, . . . ,x|L|,P) = limk→∞(x1(k), · · · ,x|L|(k),P(k)). For the sim-
plicity of the notation, let Ψ denote the feasible region, and (x1, . . . ,x|L|,P,μ1, . . . ,μ|L|)
is abbreviated to (xl,P,μl). Based on Lemma Appendix B.1 and Algo-
rithm 2, we have

Lρ(xl(k),P(k),μl(k)) ≤ Lρ(xl,P,μl(k)), ∀xl,P ∈ Ψ (B.1)

and

U∗ = min
xl=P,xl,P∈Ψ

|L|∑
l=1

(−Ul(γl(xl))

= min
xl=P,xl,P∈Ψ

|L|∑
l=1

(−Ul(γl(xl) + μT
l (k)|xl − p|+ (ρ/2)‖xl − p‖22))

= min
xl=P,xl,P∈Ψ

Lρ(xl,P,μl(k)) (B.2)

3For the definition of the constraint qualification, please refer to (Chen and Chen, 2010)
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Therefore, by taking the infimum of the righthand side of B.1 and com-
bining with B.2, we have

Lρ(xl(k),P(k),μl(k)) =

|L|∑
l=1

(−Ul(γl(xl(k)) + μT
l (k)|xl(k)− p(k)|

+(ρ/2)‖xl(k)− p(k)‖22)) ≤ U∗ (B.3)

The sequence μl(k) is bounded and thus we can assume μl(k) → μl. By
taking the limit superior in B.3 and using the continuity of utility functions
in the primary problem (12), we have

|L|∑
l=1

(−Ul(γl(xl) + μT
l |xl − p|+ lim sup

k→∞
(ρ/2)‖xl(k)− p(k)‖22) ≤ U∗ (B.4)

Since lim supk→∞ ‖xl(k) − p(k)‖22 ≥ 0, it follows that xl(k) − p(k) → 0
and xl − p = 0. Otherwise, the left hand side of B.4 would be bigger than
U∗ for a sufficiently large ρ.

From B.4, we obtain
∑|L|

l=1(−Ul(γl(xl))) ≤ U∗. This proves that (x1, . . . ,x|L|,P)
is a globally optimal solution.
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