ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by
learning capacities using optimized Time-Lagged Feedforward Neural Network

Amin Karami*

Computer Architecture Department (DAC), Universitat Politecnica de Catalunya (UPC), Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain

Abstract

Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for
the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets
that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address
this problem many congestion control protocols have been proposed in literature which, however, they are highly
sensitive to their control parameters as well as unable to predict congestion traffic well enough in advance. This
paper develops an Adaptive Congestion Control Protocol in NDN (ACCPndn) by learning capacities in two phases to
control congestion traffics before they start impacting the network performance. In the first phase -adaptive training-
we propose a Time-Lagged Feedforward Network (TLFN) optimized by hybridization of particle swarm optimization
and genetic algorithm to predict the source of congestion together with the amount of congestion. In the second
phase -fuzzy avoidance- we employ a non-linear fuzzy logic-based control system to make a proactive decision based
on the outcomes of first phase in each router per interface to control and/or prevent packet drop well enough in
advance. Extensive simulations and results show that ACCPndn sufficiently satisfies the applied performance metrics
and outperforms two previous proposals such as NACK and HoBHIS in terms of the minimal packet drop and high-
utilization (retrying alternative paths) in bottleneck links to mitigate congestion traffics.

Keywords: Named Data Networking, Congestion Control, Time-Lagged Feedforward Network, Particle Swarm
Optimization, Genetic Algorithm, Fuzzy Set

1. Introduction copies of the requested content. The requested con-
tent is returned by any node that holds a copy of the
content in its cache. On the way back, all the interme-
diate nodes store a copy of the content in their caches
to satisfy subsequent users interested in that content
(i.e., in-network caching). Congestion takes place in
NDN routers when the number of arrival data packets is
higher than the queue’s capacity which causes an over-
flow in the routers’ buffer [9, 10, 11]. When this hap-
pens a high data packet loss and increase in the end-
to-end delay occur affecting negatively on the perfor-
mance, stability and robustness of the network [12, 13].
This leads to under-utilization of the available resources
and degradation of throughput and quality of service
[14, 15].

This difficulty has recently motivated researchers to ex-
plore ways of congestion control in NDN. Some of the
relevant contributions are [9, 10, 16, 17, 18, 19, 20]. The
main weak points of the proposed methods are: a too
high sensitivity to their control parameters as well as the

Information-Centric Networking (ICN) [1, 2, 3] has
been proposed as a solution for a viable and vital re-
placement for the current IP-based Internet due to the
fundamental limitations of the Internet in supporting to-
day’s content-oriented services [4, 5, 6, 7]. Named Data
Networking (NDN) [8] is a prominent example and on-
going research effort of ICN design. The main goal of
NDN is to support the dissemination of named content
rather than the current host-centric (end-to-end) deliv-
ery of content to a named host. In NDN, a consumer
asks for a Content (Data) by sending an Interest re-
quest using name prefix (content identifier) instead of
today’s IP prefix (content location). An Interest packet
is routed towards the location of the content’s origin
where it has been published. Any router (intermedi-
ate node) on the way checks its cache for matching
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inability to predict congestion traffic well enough in ad-
vance. This will often bring unfair bandwidth sharing,
network instability, packet loss, additional delay and so
on [21, 22]. The first goal of any method against con-
gestion can be the early detection (ideally long before
the problematic traffic builds up) of its existence. If
the congestion problem can be recognized in advance,
changing network parameters can possibly prevent such
costly network breakdowns. Network traffic prediction
plays an important role in guaranteeing quality of ser-
vice in computer networks [23]. The prediction of net-
work traffic parameters is feasible due to a strong cor-
relation between chronologically ordered values [21].
Their predictability is mainly determined by their sta-
tistical characteristics including self-similarity, multi-
scalarity, long-range dependence (LRD) and a highly
non-linear nature [24]. Prediction algorithms can be
embedded into network communications to improve the
global performance of the network by anomaly detec-
tion, proactive congestion detection (or avoidance), and
allow a better quality of service by a balanced utiliza-
tion of the resources [23, 25, 26]. Contributions from
the areas of operational research, statistics and com-
puter science have lead to forecasting methods. In par-
ticular, the field of Time Series Forecasting (TSF) deals
with the prediction of a chronologically ordered values
[27, 28]. The goal of TSF is to model a complex system
as a black-box in order to predict the systems behavior
based on the historical data [21, 29].

In this paper, we develop ACCPndn (Adaptive Con-
gestion Control Protocol in Named Data Networking)
which is a new congestion control protocol with learn-
ing capacities. The ACCPndn focuses on two phases for
congestion control before building up in NDN. The first
phase -adaptive training- learns from the past break-
downs to how to detect the problem beforehand. This
phase allows to identify the source of the congestion to-
gether with the amount of congestion. This phase uses
Time-Lagged Feedforward Neural Network (TLFN) ap-
proach. The TLFN adopts a multilayer perceptron ANN
(Artificial Neural Network) and time series forecasting
(TSF) [30, 31]. The major advantages of neural net-
works in time series forecasting are their flexible non-
linear modeling capability that there is no need to spec-
ify a particular model form and high data error toler-
ance [32, 33]. A Back-Propagation is a most popular
NN algorithm (BPNN) to determine and adjust network
parameters, weights and biases. Despite the advantages
of BPNN, it has some drawbacks that the most impor-
tant one being their poor trainability. It might fall to
local minima and cause overfitting and failure of the
network training [34, 35]. There is a recent trend to

train BPNN with bio-inspired optimization algorithms
for different applications [36, 37, 38]. In this paper,
in order to improve the performance of BPNN, a new
combined algorithm namely Particle Swarm Optimiza-
tion (PSO) and Genetic Algorithm (GA) is presented
to optimize the weights and the biases of network, and
to prevent trapping in local minima. The results show
that our proposed combination of PSO/GA with TLFN
(TLEN+PSO-GA) performs better than the GA/PSO,
PSO and GA in terms of the applied performance cri-
teria.

When the source(s) and the amount of congestion are
identified, they are sent to the second phase for con-
gestion control before building up. The second phase
-fuzzy avoidance- performs a fuzzy decision-making
approach to proactively respond to network congestion
rather than simply wait for a congested queue to over-
flow and the tail drop all subsequently arriving data
packets. The application of fuzzy decision-making tech-
niques to the problem of congestion control is suitable
due to the difficulties in obtaining a precise mathemat-
ical (or a formal analytical) model, while some intu-
itive understanding of congestion control is available
[39, 40]. Its use allows to regulate effectively the in-
coming Interest packets in each routers’ interface.

The main objective of the proposed protocol is to en-
able a stable equilibrium and satisfy some basic require-
ments which are characterized by the utilization of mul-
tiple paths and few packet drops. The second objective
is to present a scalable and fast convergence properties
with respect to varying bandwidths, traffic patterns, and
number of users at different times utilizing the network.
The evaluation through simulations shows that ACCP-
ndn can quickly and effectively respond against conges-
tion problems in a timely manner and performs success-
fully even in the large networks as compared to two
recent congestion control mechanisms namely NACK
[20] and HoBHIS [9] in terms of the applied perfor-
mance metrics.

The rest of the paper is organized as follows. Section
2 describes the background materials of NDN. Section
3 gives an overview of the time series forecasting ap-
proach. Sections 4 and 5 describe the PSO and the GA,
respectively. In Section 6, multilayer perceptron neu-
ral network is described in detail. Section 7 provides
a overview of fuzzy set theory. The proposed method
(ACCPndn) is completely presented in Section 8. Sec-
tion 9 presents the evaluation setup. The results of sim-
ulation is also presented in Section 10. Finally, Section
12 draws conclusions.



2. Named Data Networking (NDN)

NDN communication protocol is receiver-driven and
data-centric. ~ All communication in NDN is per-
formed using two distinct types of packets: Interest
and Data. Both types of packets carry a name,
which uniquely identifies a piece of data that can
be carried in one data packet [41, 42]. Data
names in NDN are hierarchically structured, e.g.,
eight fragment of a youtube video would be named
/youtube/videos/A45tR7Kg5/8. In addition to the
data name, each Interest packet also carries a random
nonce generated by the consumer. A router checks both
the name and nonce of each received Interest packet. If
a newly arrived Interest packet carrying the same name
as a previously received Interest packet from a differ-
ent consumer, or a previously forwarded Interest looped
back, the router drops the Interest packet. Therefore In-
terest packets cannot loop. Each NDN router maintains
three major data structures [43, 44]:

1. The Pending Interest Table (PIT) holds all not yet
satisfied Interest packets that were sent upstream
towards potential data sources. Each PIT entry
holds one or multiple incoming physical interfaces
and their corresponding Interest packets.

2. The Forwarding Information Base (FIB) forwards
Interest packets to one or multiple physical net-
work interfaces based on the forwarding strategies.
The strategy module makes forwarding decisions
for each Interest packet.

3. The Content Store (CS) or buffer memory tem-
porarily buffers data packets for data retrieval ef-
ficiency.

When a NDN router receives an Interest packet, it first
checks its CS (cache). If there is no copy of the re-
quested content, it looks up its PIT table. If the same
name is already in the PIT and the arrival interface of
the present Interest is already in the set of arrival in-
terface of the corresponding PIT entry, the Interest is
discarded. If a PIT entry for the same name exists, the
router updates the PIT entry by adding a new arrival in-
terface to the set. The Interest is not forwarded further.
Otherwise, the router creates a new PIT entry and for-
wards the present Interest using its FIB. When an In-
terest packet is satisfied by the content’s origin where
it was published, on the way back, all the intermediate
nodes store a copy of content in their caches to answer
to probable same Interest requests from subsequent re-
quester [45, 43].

3. Time series analysis

A time series is a sequence of data points or time or-
dered observations (y1,yz, ..., y;) in which each period
recorded at a specific time 7. A time series forecast-
ing is the use of a model to predict future values based
on previously observed values [29, 46]. For time se-
ries feature extraction, a trace (set of events) should be
converted into time series with the regular time inter-
vals. This will be used as an input for the purpose of
prediction. The time series would be described by the
following formula [47]:

x(t + 1) = f(x(0), x(t — 1), ..., x(t — n71)) (D)

Where, f is a Time Series Forecasting (TSF) method,
7 is specified time delay and n is some integer val-
ues. The TSF methods have found applications in very
wide area including finance, business, computer sci-
ence, medicine, physics, chemistry and many interdisci-
plinary fields. Most time series modeling methods pro-
vide only a reasonable, but limited accuracy and suffer
from the assumptions of stationarity and linearity [48].
To improve TSF with nonlinear characteristics, several
researchers have successfully employed artificial neural
networks [49, 50].

4. Particle Swarm Optimization (PSO)

The PSO was firstly introduced by Kennedy and
Eberhart in 1995 [51]. It was inspired by the social
behavior of a bird flock or fish school. It is a compu-
tational method that tries to optimize a problem iter-
atively by improving a candidate solution with regard
to a given measure of quality as utility (cost) function.
PSO optimizes a problem by having a population (called
a swarm) of candidate solutions (called particles) and
moving these particles around in the search space ac-
cording to simple mathematical formula over the parti-
cle’s position and velocity. The movements of the parti-
cles are guided by their own best known position (called
local best) as well as the entire swarm’s best known po-
sition (called global best) [52]. The structure of the ve-
locity and the position updates is shown in Fig. 1. In
the first movement, particle moves slightly toward the
front in the previous direction with the same speed. Af-
terward, it moves slightly toward the previous local best.
Finally, it moves slightly toward the global best [44, 53].
At each iteration, the velocity and the position of each
particle are defined according to Eqs. (2) and (3), re-
spectively:
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Figure 1: The velocity and the position updates in PSO
for a 2-dimensional parameter space [43]

Xi(1) = Xi(t = 1) + Vi(1) 3)

Where i is the number of the particles in the swarm,
V(¢) is the particle’s velocity at time ¢, X(¢) is the par-
ticle’s position at time #, P; is the personal best of the
ith particle, G is the global best of the entire swarm, w
is the inertia weight (a larger w performs more efficient
global search and smaller one performs more effective
local search), ¢; (cognitive parameter) and ¢; (social pa-
rameter) are constants which control the search space
between the local best position and the global best posi-
tion (generally ¢; = ¢, = 2 [54]). Parameters ¢; and ¢,
are random numbers uniformly distributed within [0 1].
Eberhart and Shi [55] present a formula to properly bal-
ance between exploration (global search) and exploita-
tion (local search) over w:

w = (/_)’nax _ t . (wmax wmm) (4)

T

Where wax, Wmin, T and ¢ denote the maximum inertia
weight, the minimum inertia weight, the total and the
current number of iterations, respectively. According to
Eq. 4, the inertia weight is uniformly varying from its
maximum value to the minimum one.

5. Genetic Algorithm (GA)

Genetic Algorithm (GA) is a search heuristic and
stochastic optimization technique based on biological
evolution theory and genetic principles developed by
Holland on 1975. GA adopts a group of simulated en-
coded chromosomes and calculates the fitness function
of these chromosomes. GA applies three kinds of ge-
netic operators: selection, crossover and mutation to
produce next generation. This evolution process contin-
ues until the stopping criteria are met. The selection op-
erator chooses chromosomes from a population for later
breeding (recombination or crossover). The crossover
operator combines (mates) two chromosomes (parents)

to produce a new chromosome (offspring). The idea be-
hind crossover is that the new chromosomes might be
better than both of the parents if it takes the best char-
acteristics from each of the parents. The mutation oper-
ator alters one or more gene values in a chromosome
from its initial state. This can result in entirely new
gene values being added to the gene pool. With these
new gene values, the genetic algorithm might be able
to arrive at better solution than was previously possi-
ble. Mutation helps the genetic algorithm to avoid being
trapped in a local optimal. GA is appropriate for large-
sized and nonlinear space problems which solution is
unpredictable [56]. One of the main advantages of the
use of GA is that it is less likely to fall into a certain
local minimum or maximum [57, 58].

6. MLP Neural Network

In the last years, various neural network models have
been developed for different applications including sig-
nal processing, pattern recognition, system modeling
and so on [59]. The multi-layer perceptron (MLP)
with back-propagation learning is the most popular and
commonly used neural network structure due to its
simplicity, effectiveness and excellent performance in
many applications that require to learn complex pat-
terns [60, 61]. Multi Layer perceptron (MLP) is a feed-
forward neural network with one or more hidden layers
between input and output layer. Feed-forward means
that data flows are in the forward direction, from in-
put to output layer. MLP can solve problems which are
not linearly separable [62]. A graphical representation
of a MLP is shown in Fig. 2. In the training phase

Input layer

Hidden layer Output layer

Figure 2: Structure of a three-layer MLP

of the MLP, the training set is presented at the input
layer and the parameters of the network (weights and



biases) are dynamically adjusted using gradient-descent
based delta-learning rule (back-propagation learning) to
achieve the desired output [63, 64]. The training pro-
cess of MLP neural network is defined as follows:
Step 1: Network initialization. ~ The connection
weights and bias of the network are initialized ran-
domly, setting up the network learning rate 7, the error
threshold &, and the maximum iterations 7 .

Step 2: Data preprocessing. Data samples are usu-
ally partitioned into three sets: training, validation and
test. The training sets are used for training (to adjust the
weights and biases) the network; the validation sets are
the part that assesses or validates the predictive ability
of the model during the training to minimize overfitting;
the test sets are used for independent assessment of the
model’s predictive ability (generalization performance)
after training.

Step 3: Training network. input the training sets
into MLP, compute network predicted output values,
and calculate the error E between output and the target
value. The error function is defined as follows:

1~
E=3 ;@(m ~y(h)? 5)
Where,
3K = () Wih()) k=12, (6)
i=1

Where, ¢, is an activation function for neuron k in hid-
den layer, h(i) is the output value for neuron (node) i
in the hidden layer, Wy is weight connection between
neuron { in hidden layer and neuron k in output layer, /
and m are the number of neurons for output layer and
the hidden layer, respectively. A(i) is calculated by:

W)= i WiX;+b) i=1,2,.m (D)
j=1

Where, ¢; is an activation function for neuron i in hid-
den layer, Wj; is the weight connection between neuron
i and input j, X is input value, and b; is the bias connec-
tion of neuron i in hidden layer.

Step 4: Updating the weights and biases. update net-
work weights and biases according to the prediction er-
ror E, making the predictive value of the network as
close to actual values through a Back-propagation algo-
rithm.

Step 5: Judgment of whether the end condition is met.
If E <= &, network training is stopped and go to step 7.
Step 6: Judgment of whether an overfitting has oc-
curred. If accuracy of the validation error has not been

satisfied network training is stopped and go to step 7;
otherwise, return to step 3 to continue training.

Step 7: Judgment of genmeralization performance.
Run test data set by trained network for generalization
performance measurement.

Step 8: Further usage. if the prediction error of the
network is acceptable, use the network for further us-
age; otherwise, go to the Step 1 and train the network
again until an ideal network with desire accuracy is
found.

7. Fuzzy Set

In classical set theory, an element either belongs or
not to a set of elements. Therefore, the membership
evaluation is boolean. A more flexible approach would
be fuzzy set theory, where elements belong to sets with
certain degree of membership that takes its value in the
interval [0 1]. This makes fuzzy set theory suitable for
complex models where some things are not either en-
tirely true nor entirely false and where the problems are
somehow ambiguous or it is needed to manage subjec-
tive judgments or opinions [65]. In our scenario, it could
be used to decide things like Is the PIT entry rate aver-
age or very high?”. Therefore, fuzzy set theory can be
successfully employed when most of the decision mak-
ing attributes are qualitative in nature, with the possi-
bility of subjective assessment [66]. In fuzzy set the-
ory, a linguistic variable is a variable whose values are
words or sentences in natural or artificial language [67].
A fuzzy rule is defined as a conditional statement in the
form:

IF xisA THENyisB (8)

Where x and y are linguistic variables; A and B are lin-
guistic values determined by fuzzy sets on the universe
of discourse X and Y, respectively. These rules are then
mathematically represented by a membership function.
The membership provides a measure of the degree of
presence for every element in the set [68]. A fuzzy
system often consists of four main parts: fuzzification,
rules, inference engine, and defuzzification [43]. In the
fuzzification step, a crisp set of input data is converted to
a fuzzy set using fuzzy linguistic terms and membership
functions. In step 2, a list of fuzzy statements are con-
structed to create what is called “rule base”. That rule
base will be used to process the fuzzy data by a com-
putational unit, which will output again fuzzy sets. In
the defuzzification step, that fuzzy output is mapped to
a crisp (non-fuzzy) output using the membership func-
tions.
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Figure 3: Two steps of the ACCPndn

8. The proposed method: ACCPndn

In this section, we introduce our proposal, ACCPndn:
a two phase framework for congestion control. The first
phase being adaptive training and the second one fuzzy
avoidance. This proposal aims to avoid congestion be-
fore it builds up. A diagram of the two phases of the
ACCPndn is shown in Fig. 3.

8.1. Phase 1: Adaptive Training

For TLEN modeling, we try to forecast the rate at
which entries are added to the PIT table in NDN routers
(In the rest of the paper we use the term PIT entries rate
interchangeably). Since all exchange in NDN is Inter-
est/Data (one Interest packet will be replied back with
one data packet), the rate of new PIT entries (the ex-
pected amount of returned data) could be a good indica-
tor of a future congestion in the router’s buffer. With the
prediction of new PIT entries rate in the next time inter-
val, the arrival rate of data packets at that are susceptible
to create congestion can be forecast in a timely manner.
In this phase, routers learn what are the kind of many
low and high frequent traffic patterns which cause an
overflow in the routers’ buffers and create congestion.

We adopt the nodes connectivity of the NDN routers
for defining the number of neural network layers, the
connectivity of layers and the number of neurons in
TLFEN. Fig. 4 shows the logic of the proposed neural
network connectivity. The neural network used consists

of m X n input nodes, two hidden layers and one output
layer containing n node. The m denotes the number of
features in the input layer and n denotes the number of
the contributing routers. The input features correspond
to the PIT entries rates for a set of consecutive time in-
tervals.

For the connectivity between input layer and first hidden
layer, the neural network reflects the connectivity of the
data network by only allowing links between neurons
representing adjacent nodes. For instance in Fig. 4a, n
would be six because only six nodes are actually con-
tributing traffic. Hence, the connection between node 1
in the input layer and node 4 in the first hidden layer
derived from their connectivity in the data communi-
cation network. We only allow connectivity between
nodes neighbors from input neurons (nodes) to repre-
sented neurons (nodes) in the hidden layer. On the other
hand, according to the definition of the NDN data com-
munication, when a node’s cache cannot satisfy Interest
packets, the node forwards Interest packets toward the
origin’s content through intermediate nodes. Thus, there
are data communications by routing Interest and return-
ing back data packets through intermediate routers. To
address this issue, we provide an extra layer in the hid-
den layer by a fully-connection communication. The
output of the neural network is a representation of PIT
entries rate forecasting in each considered routers which
are suspected causing the problem in the next time in-
terval. For instance, an output of [S0 0 0 30 90 0] would
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mean the first, fourth and fifth routers will be faced with
the new PIT entries with the probability of 50%, 30%
and 90% in the next time interval, respectively.

During the training and analysis, our assumption is that
the all network elements (routers and links) are switched
on and the network topology is constant. We plan to
investigate an approach as switching off network ele-
ments while still guaranteeing the least packet drop and
maximum link utilization during congestion in the fu-
ture work.

The constructed TLEN is trained offline in order to cre-
ate a pattern by learning the PIT entries rate in con-
tributing routers in the next time interval. Afterward,
we create a control agent containing this trained neural
network to being placed in the simulation environment.
A higher level view of our architecture is a network with
a control agent existing somewhere on a node in the
network. This controller should easily gather required
input information (historical PIT entries rate) from con-
tributing routers in a predefined time interval. When the
controller predicts the rate of PIT entries in contributing
routers, it sends the prediction rate to the correspond-
ing routers. Then, each router per interface performs a
fuzzy decision making to control or prevent the proba-
ble packet drop in a timely manner (see section 8.2).
For TLEN modeling, we propose a new technique, an
hybrid of particle swarm optimization and genetic algo-
rithm during the TLFEN training. The TLFN+PSO-GA
integrates PSO and GA to tune (optimize) weights and
biases of TLFN. The computational procedures for the
proposed TLEN+PSO-GA are as follows:

Step 1: Normalize data samples into [0 1]:

Xy —min(X;)
" max(X;) — min(X;)

()]

Where min(X;) and max(X;) are the minimum and maxi-
mum value of data samples and X; denotes the real value
of each vector.

Step 2: Define some initial parameters: ¢; = ¢; = 2,
Omin = 0.3, Wpax = 0.9, nSwarm 25 (number of
the particles), MaxIter = 500 (maximum number of the
main iteration), MaxlIterpso = 4 (maximum number of
the PSO iteration), Maxlterg, = 2 (maximum num-
ber of the GA iteration), Var,,;, = 0 (lower bound of
variables -particles’ position-) and Var,.. = 1 (upper
bound of variables).

Step 3: Randomly initialize a group of particles in
size of nSwarm. Each particle includes position (the
weights and the biases of TLFN) and velocity.

Step 4: Calculate the particles’ fitness value. The
performance (fitness) function is Mean Square Error
(MSE) between the actual target and output of the neural
network. Afterwards, update the pbest (personal best of
each particle) and the gbest (global best of the swarm).
Step 5: Repeat the following loop until the target
or maximum sub-iteration of PSO (Maxlterpsp) is
reached:

Step 6: Apply PSO main loop:

1. Update velocity by Eq. 2.

2. Apply velocity limits: If the velocity of a particle
exceeds the minimum or maximum allowed speed
limit, it should bring such particle back into the



search space:

Velocity = max(Velocity, Velyin) 10
Velocity = min(Velocity, Vely,.) (19)

Where Vele = 0.1 x (VarMax - Va}"M,‘n) and

Velyi, = —Vely,, are the minimum and maximum

values of the particles’ velocity.

Update position by Eq. 3.

4. Apply velocity reflection: it allows those particles’
position that move toward the outside the bound-
ary [Varyi, Varya,] to move back into the search
space multiplying particles’ velocity by —1.

5. Apply position limits: If the position of the parti-
cle exceeds the boundary of search space, this such
particle should bring back into the feasible search
space:

et

Position = max(Position, Vary;,) (11
Position = min(Position, Vary,,)
6. Evaluate fitness function.
7. Update the personal best (pbest) and the global
best (gbest).

Step 7: If Maxlterpso is not reached to its predefined
value go to the step 6; otherwise, if all particles up-
dated and Maxlterps o is reached to its predefined value
go to the next step.

Step 8: Apply real-coded GA operators: reproduc-
tion, crossover, mutation, selection:

1. Reproduction: reproduce a number of individuals
(chromosomes) for crossover and mutation:

nSwarm
nCrossover = |(pCrossover X T) X2

(12)
Where, pCrossover(=0.7) is crossover percentage,
nCrossover is the number of parents (Offsprings).

nMutation = | pMutation X nS warm| (13)

Where, pMutation(=0.2) is mutation percentage,
nMutation is the number of mutants.

2. Crossover: apply two-point crossover over two
random selected particles for the number of
nCrossover particles (individuals). It creates new
population set as popcrossover- Calculate fitness
function for popcrossover-

3. Mutation: apply mutation over random selected
particle for the number of nMutation particles:

Xyew = X X rand X N(0, 1) (14)

It creates new population set as pop yuzarion. Calcu-
late fitness function for popyusation-

4. Selection: merge populations
([nS warm popcrossover popMutation])s sort merged
populations based on their fitness values, and
select the first nS warm particles.

Step 9: Update pbest and gbest.

Step 10: If the sub-iteration of GA algorithm
(Maxltergy) is not reached to its predefined value go
to the step 8; otherwise, go to the next step.

Step 11: Update w by Eq. 4.

Step 12: If the maximum iteration (MaxlIter) or pre-
defined target is not reached, go to the step 5; oth-
erwise, the gbest includes the optimized parameters
(weights and biases) of TLFN+PSO-GA and the net-
work can be used for forecasting.

8.2. Phase 2: Fuzzy Avoidance

As we explained earlier, a controller based on the
trained TLFN+PSO-GA is placed in the network to
gather required information for PIT entries rate fore-
casting in the contributing routers. In this phase, a
Fuzzy Inference System (FIS) is applied to prevent
probable packet drop in susceptible routers to conges-
tion problem before building up. We deploy a combina-
tion of three criteria where each interface in contributing
routers gathers them in each time interval:

1. PIT entries rate forecasting in each router through
the first phase (training module).

2. Interest satisfaction rate in PIT per interface.
We take into consideration the unique feature of
NDN, i.e., one Interest packet will only return
back one data packet in reverse path of the Inter-
est packet. In a NDN router, if the number (rate) of
incoming Interest packets in PIT be varied widely
with the number (rate) of incoming data packets
for Interest satisfaction, there might be some ab-
normal Interests or congestion. If the number of in-
coming Interest packets be more than the PIT size,
PIT will apply its replacement policy for new in-
coming Interest packets. If the PIT removes old
PIT entries to accommodate new Interest packets,
returned data packets for removed PIT entries be-
come unsolicited. It might be led to congestion due
to the crowding of unsolicited data packets. On
the other hand, current unsatisfied Interest packets
in PIT table may also reach their timeout (lifetime
expiration) and become dangling state [20]. Such
dangling state can potentially block other Interest
packets. When a router is congested, it can poten-
tially lead to dangling state for unsatisfied Interest
packets. We maintain the Relative Strength Index



(RSI) for every interface of a router to reflect the
Interest satisfaction ratio in PIT:

A

I
RST = —— (15)
I, +D,

Where IA,, and ﬁn are the average number of the
placed Interests in the PIT table and the incom-
ing data packets of an interface at the nth time, re-
spectively. We apply the standard Exponentially
Weighted Moving Average (EWMA) with « coef-
ficient (a lower a counts widely earlier observa-
tions) [69] to calculate the placed Interest packets
in PIT and the incoming data packets periodically,
e.g., once a second:

L=al,+(1-a)l,_,

N . (16)
D,=aD,+(1-a) D,

Where I, and D, are the total number of incoming
Interest in PIT and incoming data packets of an in-
terface in the nth period. Generally, the reasonable
RSI of every interface should be around 50%.

. Cache hits rate per interface.

If an interface satisfies the most arrival Interest
packets by cache, it should be significantly con-
sidered in the decision making. Otherwise, if an
interface of a suspected router to congestion just
fills up PIT table, it should be negatively consid-
ered in decision making. We apply Exponential
Moving Average (EMA) to calculate the new aver-
age of the cache hits ratio in the recent nth time in-
terval. It applies weighting factors which decrease
exponentially (the weighting for each older datum
decreases exponentially):

Ci+0-a)Cr+...+(0-a)'C,
I+0-a)+..+(1-ay!
(17)
Where, C; denotes to the number of current cache
hit and C, is the number of the cache hits in the
recent nth time.

Cache hits =

PIT entry forecasting
(from 1st phase)
Fuzzy
Interest satisfaction rate Inference Interface load
inPITperinterface  ~ | System [0 100]
(FIS)

Cache hits rate
per interface

Figure 5: Proposed FIS for fuzzy congestion control

These three criteria themselves involve fuzziness be-
cause of bringing vague, imprecise or uncertain infor-
mation along in problem solving. For instance, the ex-
act value 0.7 (or 70%) cannot show that it is very high
percentage or partially high percentage of occurrence an
event (e.g., one of the three applied criteria). With the
uncertainty modeling, fuzziness subjective, incomplete
and imprecise data can be described. Thus, a fuzzy con-
trol system can construct a control system in terms of
many-values logic dealing with reasoning, i.e., approx-
imate rather than fixed or exact.

The output of proposed FIS is the amount of interface
load in a router. Interface load means the portion of
the corresponding interface in filling PIT table entries
up in that router. The structure of the proposed fuzzy
inference system is depicted in Fig. 5. When the con-
troller forecasts PIT entries rate and sends them to the
corresponding routers, the proposed fuzzy control sys-
tem is called in each contributing router to apply three
types of control per interface including (1) readjust In-
terest packets rate, (2) effect on forwarding strategy in
the downstream and (3) set default configuration. We
set two thresholds (threshold,,;, and threshold,,,) to
make decision regarding to the crisp output of the pro-
posed FIS. We set threshold,,;,, and threshold,,,, to 20%
and 80%, respectively. The procedure of the fuzzy de-
cision making approach is depicted in Fig. 6. Accord-
ing to Fig. 6, if the output of FIS from R;; is bigger
than threshold,,,, there is more likely that interface j
in router i will face to a malignant congestion (very
high packet drop in router’s buffer) and the best deci-
sion can be changing the interface j status to the un-
available (cannot bring data back) and will be deactive
for a predefined time interval ¢ in order to the down-
stream (neighbor router) does not send Interest packets.
It allows to downstream to forward its Interest pack-
ets via other available links. If the output of the FIS
is between [threshold,,;, threshold,,,,] in an interface j,
there is more likely by controlling the rate of Interest
packets in the downstream in a predefined time interval
t, the probability of packet drop reduces considerably.
Finally, if the output of FIS in an interface j in router i
is lower than threshold,;,, there is more likely that there
is no congestion (packet drop) in the next time interval
and the configuration of an interface j can be set to its
default values: set original Interest packet rate and/or
make available (can bring data back) the downstream
interface j.

We apply an ascending penalty for definition of time in-
terval ¢ during two restrictions (Interest packets rate and
interface unavailability). If in an interface j in a time
T, a restriction is needed, counter sets to 1 sec. If in
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Figure 6: ACCPndn: the first phase by a controller and the second phase by routers per interface

the next time interval 7 + 1 a same restriction again be
reported, counter sets to 2 sec. Our ascending penalty
method is in 2°°**¢", Tnitially, counter sets to 0 and in-
crease linearly in each time interval. The counter will
set to the initial value when the output of FIS be lower
than threshold,,;, in the next time interval. This ascend-
ing penalty intensifies the restriction to avoid packet
drop in the long-term.

9. Evaluation Setup

We use simulations to quantify effect of conges-
tion and its countermeasure. In this work, we used
the open-source ndnSIM [70] package, which imple-
ments NDN protocol stack for NS-3 network simu-
lator (http://www.nsnam.org/), to run simulations
for evaluating the performance of proposed method.
ndnSIM simulation environment reproduces the basic
structures of a NDN node (i.e., CS, PIT, FIB, strat-
egy layer, and so on). The proposed adaptive train-
ing method (first phase) was implemented by the MAT-
LAB software on an Intel Pentium 2.13 GHz CPU, 4
GB RAM running Windows 7 Ultimate. This algorithm
deployed to C++ project integrating as a C++ shared
library using the MATLAB compiler. Then, this C++
program was integrated with ndnSIM environment to
be able to adjust in the simulation environment. The
proposed fuzzy avoidance phase was also implemented
with C++ in ndnSIM environment. We choose two met-
rics to quantify the effectiveness of our countermeasure.
First criterion is the average of utilization of multiple
paths (retry alternative paths) to mitigate congestion in
bottleneck links. The indicator for evaluating the uti-
lization of bottleneck links and alternative links is the
rate of InData. InData denotes a number of arrival data
in an interface. InData guarantees that this amount of
data packet was actually transferred over the channel
during the congestion. Second criterion is the average
of packet drop rate. If the proposed ACCPndn consid-
erably decreases or totally removes packet drops, it can
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be concluded our proposed method is highly effective at
mitigating/removing packet drops.

Our experiments are performed over two topologies
shown in Fig. 7. Fig. 7a corresponds to DFN-like
(Deutsche Forschungsnetz as the German Research Net-
work) [71], and Fig. 7b corresponds to the Switch-like
(Swiss Education and Research Network) [72]. We use
the symbols Cx, Px, and Rx to represent x-th consumer,
producer and router, respectively. We leave the investi-
gation of the most complex arbitrary network topologies
to future work. The properties of the underlying topolo-
gies are listed in Table 1, which are defined as follows:

1. Nodes/Edge Nodes: The number of the nodes and
the edge nodes.

Links:
nodes.

The total number of the links between

Dia. (diameter of the topology): This is the length
(number of hops) of the longest path that an Inter-
est packet can be satisfied by a producer/router.
Bottleneck: The number of the slowest links in
terms of the bandwidth.

Degree,,,: The average of the outgoing links from
a node connected to adjacent nodes.

Degreegy: The standard deviation of the outgoing
links from a node connected to adjacent nodes.

In spite of various arguments and experiments, there is
no typically and properly justification for NDN param-
eters and they have specified based on authors’ experi-
ences and designs [6]. Therefore, the applied control
parameters of the ACCPndn are iteratively learned un-
der various network environments to make a real data
communication in considered topologies. For scalabil-
ity reasons, it is important for a congestion control pro-
tocol to be able to maintain their properties as network
characteristics change. We thus set nodes’ PIT size to
a range of [700 1000] randomly, while the Interest ex-
piration time was set to the default timeout of 4000 ms.
We set the link delay and queue length parameters to



Table 1: Properties of the applied network topologies

Topology Nodes/Edge Nodes Links Dia. Bottleneck Degree,,, Degreeyq
DFN-like 26/15 36 8 6 2.769 2.25
Switch-like 34/17 45 14 9 2.647 2.028

different values for every node in the simulated topolo-
gies. In particular, we set delay and queue length to
about 2ms and the range of 200-500 for both consid-
ered topologies, respectively. A various PIT entries re-
placement policies (i.e., perform different actions when
limit on number of PIT entries is reached) were adopted
randomly over the nodes in both considered topologies
including persistent (new entries will be rejected if PIT
size reached its limit) and least-recently-used (the old-
est entry with minimum number of incoming faces will
be removed). Moreover, The nodes’ cache capacity
was set to 1000 contents, while the caching replacement
policies were set to randomly over the nodes including
least-recently-used, FIFO (first-input first-output) and
random policies. We ran various traffic patterns within
the randomize and Zip-Mandelbort (@ is in range of
[0.4 0.9]) distribution. For both distribution methods,
we applied uniform and exponential patterns of distri-
bution. The expected frequency of Interest packets gen-
eration sets to a range of 100-1000 packets per second.
Each consumer changes five times the frequency ran-
domly during simulation run. We assign some bottle-
neck links with yellow dash lines in both considered
network topologies in Fig. 7. We set bandwidth in
the range 1 Mb/s to 3 Mb/s randomly. Table 2 is also
shown the Interest-Data communications. Finally, we
investigate the transient behavior of the utilization and
the packet drop rate at the bottleneck links and alterna-
tive paths for congestion control and/or avoidance dur-
ing simulation run.

Table 2: Interest-Data communications

DFN-like Switch-like
Consumer  Producer | Consumer  Producer
Cl P1 Cl P1
C2 P2 C2 P2
C3 P5 C3 P3
C4 P4 C4 P1, P4
C5 P2, P3 C5 P3
Co6 P3 Co6 P2, P6
C7 P4, P6 C7 P5
C8 P1, P5 C8 PS5, P6
C9 P4, P6 C9 P7
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10. Evaluation Results

In this section we report the results of evaluation of
ACCPndn presented in Section 8.

10.1. Phase 1: adaptive training

Training phase consists of a collection of time or-
dered observations of PIT entries in contributing routers
from two considered NDN network topologies in Fig. 7.
Depending on the time scale, there are four main fore-
casting types including real-time, short-term, middle-
term and long-term [73]. The real-time forecasting is
the most appropriate type of PIT entries forecasting
where samples not exceed a few seconds and requires
an on-line forecasting and reaction in a timely manner.
The choice of the input time intervals has a crucial ef-
fect in the PIT entries forecasting performance. A small
number of time intervals will provide insufficient infor-
mation, while a high number of intervals will increase
the probability of irrelevant input features [29]. Sev-
eral configurations based on our observations of PIT en-
tries fluctuation in considered network topologies were
set. Five different sliding windows were empirically
adopted based on the predefined time interval (we set
1 sec):

o DFN-like:

.{12367811121324252638 39 40}
.{123678111213242526}
.{12345891011 12}
.{1237891213142627}
.{123678101112232425}

DN A W N =

o Switch-like:

.{1234891011})
.{123451011 1213 14}
. {1236781011 12}

. {1231011 12202122}
.{1237891617 18}

DN A W N =

Due to the application of different configuration settings
on considered network topologies, we run the experi-
ments 20 times independently to evaluate the proposed
training method (see section 8.1) in terms of applied
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(a) DEN-like topology

Domain 1 Domain 2

(b) Switch-like topology

Figure 7: Considered network topologies

performance metrics. The performance of the forecast-
ing model in training phase is evaluated by the Mean
Square Error (MSE) and Symmetric Mean Absolute
Percent Error (SMAPE):

l n
MSE =~ ) (T; — 0;)* 1
s ”Z‘( 0)) (18)
2 10 =Tl
SMAPE = 2i=121~ 11 19
20+ T)) (19)

where T is the actual value and O is the forecast value.
The MSE quantifies the difference between values im-
plied by an estimator and the true values of the quantity
being estimated. The SMAPE is an alternative to Mean
Absolute Percent Error (MAPE) when there are zero or
near-zero demand for items. It is a measure of accuracy
of a method for constructing fitted time series values in
statistics. In case of the 20 simulation runs, forecast-
ing methods likely yield different results. Therefore,
the forecasting results are investigated by statistical tests
if these differences are significant [74]. We have used
Pearson correlation coefficient and Kendall’s tau’b with
99% of confidence level implemented by MATLAB
software. Moreover, the time series data from consid-
ered NDN topologies were divided into three contigu-
ous blocks as training (70% of the series) to fit (train) the
forecasting models, validation (next 15% of the series)
to evaluate the forecasting accuracy during the training
and test (remaining 15% of series) to confirm the fore-
casting accuracy after training.
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10.1.1. DFN-like topology

Fig. 8 shows the optimal accuracy derived from the

first constructed sliding windows as the best configura-
tion setting. The box plot of TLFN + PSO-GA in Figs.
8a and 8b is comparatively short as compared to other
methods. This suggests that overall MSE and SMAPE
values are relatively small and have a high level of
agreement within 20 runs. TLFN + PSO-GA provides
better results than TLFN + GA-PSO which it confirms
that GA performs a good local search for better particles
movement in the swarm to minimize significantly both
applied cost functions. Indeed, TLEN + PSO and TLFN
+ GA obtain quite good forecasting errors as compared
to TLFN + BP by MSE and SMAPE in the almost all
20 runs, respectively. As expected, the hybridization of
the optimization algorithms reveal a better performance
as compared to standalone TLFN trained by BP.
The short lower and upper whisker in the Figs. 8c and
8d mean that the results of several runs are not varied.
As shown, the correlation between different applied al-
gorithms with 99% of confidence level is strong and
positive which is statistically significant. The signifi-
cant statistical correlation between 20 runs is the pro-
posed forecasting method in ACCPndn about 98.5%
as compared to other algorithms ranging 96%-98.3%.
Moreover, the values for concordance coeflicient from
Kendall’s tau’b results are close to +1, which means that
there is a large agreement between the forecasting re-
sults. The concordance coefficient of the proposed fore-
casting method in ACCPndn is better than other algo-
rithms ranging 86%-88%.
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Figure 8: The forecasting results in DFN (1st sliding window)

10.1.2. Switch-like topology

This large network can be formed and decomposed
to two separated clusters (or domains). The reason is
that the constructed TLFN would face high general-
ization error and non-proper training due to the poor-
trainability and the over-fitting against larger and more
complex network topologies. Therefore, we decompose
the Switch-like topology graph experimentally to two
clusters from the edge routers. This decomposition is
depicted in Fig. 7b by vertical dot points. First cluster
consists of eight routers (R1, R2, R3, R5, R6, R7, R9
and R10) and the rest (ten routers) appears in the sec-
ond cluster.

The optimal forecasting performance of the first and
the second cluster derived from the third and the second
sliding windows is depicted in Figs. 9 and 10, respec-
tively. The box plots clearly illustrate that the proposed
TLFN + PSO-GA is able to provide roughly appropri-
ate performance in terms of the MSE and SMAPE.

The extensive analysis in Figs. 9c¢-9d and Figs. 10c-
10d demonstrate that the correlation and the concor-
dance coefficient between results by the proposed train-
ing algorithm is more significant than other applied hy-
bridization during 20 runs. Similar to the results of
DFN-like topology (see section 10.1.1), TLFN by PSO-
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GA training satisfies performance criteria more appro-
priate than by GA-PSO in Switch-like topology. More-
over, as we expected, the application of the optimization
algorithms can perform a better performance as com-
pared to standalone training by BP.

10.2. Phase 2: fuzzy avoidance

In this study, MATLAB fuzzy logic toolbox is used
for fuzzy rule based decision-making regarding to con-
gestion control. The second phase is structured with fol-
lowing components:

1. Three fuzzy set of input variables: (1) RSI rate
in R;j, (2) Predicted PIT entries rate in R; and (3)
Cache hits rate in R;;; membership functions: Low,
Medium, High.

A fuzzy set of output variable: Interface load;
membership functions: Negligible, Small load,
Moderate load, Overloaded.

Fuzzy membership functions: Since the sigmoid
membership function [75, 76] is inherently open to
the right or to the left; thus, it is appropriate for
representing concepts such as "Low”, ”High” or
“Negligible”, "Overloaded”. The guass2mf is also
employed for middle linguistic values ("Medium”,
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Figure 11: The membership functions

”Small load”, "Moderate load”). The gauss2mf is
a kind of smooth membership functions, so the re-
sulting model has a high accuracy. It also covers
the universe sufficiently which leads to the com-
pleteness of a fuzzy system [77]. The membership
functions of input and output variables are shown
in Figs. 11a-11d.

. Fuzzy rules: 27 rules. The nonlinear control-
decision surface is shaped by the constructed rule
base and the linguistic values of the inputs and out-
put variables in Fig. 12. According to Fig. 12, the
cache hit ratio plays an important role for decision
making next to the RSI and PIT entries forecasting,
while, the high cache hit ratio might bring the not
highly interface load and the low cache hit ratio
might bring the highly interface load. Moreover,
the RSI criterion plays a main role as far as the in-
creasing the RSI will lead to high interface load. A
sample of constructed rule base is as follows:

O if CacheHits is low and PITentry is high and
RSI is high = Interfaceload is Overloaded

@ if CacheHits is medium and PITentry is high
and RSI is medium => Interfaceload is Moder-
ateLoad

© if CacheHits is high and PITentry is high and
RSI is medium = InterfaceLload is SmallLoad
O if CacheHits is high and PITentry is medium
and RST is low => Interfaceload is Negligible

. Inference: Mamdani fuzzy inference by fuzzy set
operations as max and min for OR and AND, re-
spectively.

6. Defuzzifier: Center of Gravity algorithm:

fmax
min

u p(u) d(u)

Center of Gravity = = —
pu) d(u)

min
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Where, u denotes the output variable, u is the mem-
bership function after accumulation, min and max
are lower and upper limit for defuzzification, re-
spectively. A sample solution area (fuzzy infer-
ence) of proposed fuzzy detection phase is given
in Fig. 13.

10.3. Results and Observations

In this section, we demonstrate through simulations
that ACCPndn satisfies applied performance criteria as
compared to NACK [20] and HoBHIS [9] methods. The
Interest NACK mechanism enables NDN routers to per-
form quick recovery per interface rate limit to avoid
congestion on a local outbound interface. The Hop-
by-hop Interest Shaping (HoBHIS) is also a congestion
control mechanism by shaping the rate of the Interest
which is currently sending towards content providers
with routers. NACK, HoBHIS and ACCPndn also have
a fundamental difference in the implementation of the
algorithm. ACCPndn controls or avoids congestion traf-
fic through an hybridization of TLFN, metahuristics and
non-linear fuzzy logic-based control system to predict
future PIT entries and perform an adaptive recovery
whereas NACK and HoBHIS apply a rate limiting af-
ter arriving congestion traffic which prevents the link
between the two nodes from being congested. The re-
sults demonstrate that ACCPndn outperforms NACK
and HoBHIS mechanisms sufficiently. In the training
phase of ACCPndn we select the first, the third and the
second time intervals configurations for DFN-like, the
first cluster and the second cluster of Switch-like topolo-
gies, respectively. These time intervals perform better
than others in (near) optimal configuration of TLFN +
PSO-GA predictor based on the applied performance
metrics within 20 runs.
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Figure 13: The sample solution area (fuzzy inference) of proposed fuzzy decision-making system

This TLEN + PSO-GA runs iteratively (we set 1 sec)
to gather historical information of PIT entries in con-
tributing routers in defined sliding windows in order to
predict the PIT entries in the next time interval (see sec-
tions 8.1 and 10.1). These amount of predictions are
sent to the corresponding routers to run second phase
of ACCPndn, i.e., a nonlinear fuzzy control system per
interface to control/avoid packet losses to mitigate con-
gestion (see sections 8.2 and 10.2). When the con-
troller runs initially, some time intervals are not avail-
able, that we set zero to those time intervals until their
time reaches.
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We show the results in four conditions (Baseline,
NACK, HoBHIS and ACCPndn) in the bottleneck links
to confirm the effectiveness and efficiency of ACCPndn
in terms of the applied performance metrics. Figs. 14
and 15 demonstrate the average Data packet drop within
10 runs in DFN-like and Switch-like topologies, respec-
tively. As shown in these figures, there is a considerable
benefits of the proposed countermeasure implemented
by ACCPndn in reduction of the packet drop. Tables 3
and 4 illustrate the statistics of packet drop rate in DFN-
like and Switch-like topologies, respectively. Accord-
ing to these tables, the average number of packet drop
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Figure 15: Average of Data drop in contributing routers’ buffer in Switch-like topology

and its boundary have considerably decreased by AC-
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CPndn as compared to the baseline, NACK and HoB-



Table 3: statistics of packet drop in DFN-like topology (mean of 10 runs)

Routers ~ Methods No. drop  Drop boundary ~ Mean Std. SEM (95%) 1 (95%) o (95%)
Baseline 108 [1971] 173.2488 237.2683 32.8018 [140.2479 206.2497] [216.1195 263.0411]
R2 NACK 145 [1600] 95.8657 151.1534 20.8966 [74.8422 116.8891] [137.6805 167.5722]
HoBHIS 69 [59 247] 52.5373 78.0588 10.7914 [41.6804 63.3943] [71.101 86.5377]
ACCPndn 37 [184] 5.1045 14.77 2.0419 [3.0502 7.1588] [13.4535 16.3744]
Baseline 179 [52063] 719.3085 536.6871 74.1958 [644.6624 793.9546] [488.8498 594.9836]
R3 NACK 111 [1565] 81.9303 116.5032 16.1063 [65.7263 98.1344] [106.1188 129.1582]
HoBHIS 83 [50 193] 46.7761 60.3131 8.3381 [38.3874 55.1649] [54.9371 66.8644]
ACCPndn 29 [139] 2.2289 7.2545 1.0029 [1.2199 3.2379] [6.6078 8.0425]
Baseline 89 [1 1065] 122.0796 193.2822 26.7208 [95.1966 148.9626] [176.0541 214.2771]
R4 NACK 42 [15109] 12.398 27.8455 3.8496 [8.5251 16.2709] [25.3635 30.8701]
HoBHIS 92 [1528] 100.3881 146.412 20.2411 [80.0241 120.752] [133.3616 162.3157]
ACCPndn 23 [129] 1.8657 6.0495 0.83633 [1.0243 2.7071] [5.5103 6.7067]
Baseline 40 [1487] 20.7413 67.6333 9.3502 [11.3344 30.1482] [61.6048 74.9798]
R5 NACK 28 [13 68] 5.9801 16.0652 2221 [3.7456 8.2146] [14.6332 17.8102]
N HoBHIS 62 [3 125] 14.0348 26.4268 3.6534 [10.3592 17.7104] [24.0712 29.2973]
ACCPndn 0 - - - - - -
Baseline 194 [17 2066] 494.1692  404.1683 55.8754 [437.9547 550.3836] [368.143 448.0703]
R6 NACK 52 [1232] 20.6368 43.2485 5.979 [14.6215 26.6521] [39.3936 47.9463]
HoBHIS 57 [1395] 71.1791 128.9646 17.8291 [53.2418 89.1164] [117.4694 142.9731]
ACCPndn 27 [12 98] 7.9652 22.1243 3.0586 [4.888 11.0424] [20.1522 24.5275]
Baseline 115 [1376] 72.209 109.1693 15.0924 [57.0249 87.393] [99.4386 121.0276]
R7 NACK 46 [168] 6.194 14.4975 2.0042 [4.1776 8.2104] [13.2053 16.0722]
HoBHIS 47 [2179] 115522 22,5388 3.1159 [8.4174 14.6871] [20.5298 24.9871]
ACCPndn 0 - - - - - -
Table 4: statistics of packet drop in Switch-like topology (mean of 10 runs)
Routers  Methods No. drop  Drop boundary ~ Mean Std. SEM (95%) 1 (95%) o (95%)
Baseline 182 [11943] 418.0249 294.9422  40.7751 [377.0023 459.0475] [268.6527 326.9797]
R7 NACK 113 [3521] 118.0498 120.7619 16.6951 [101.2534 134.8461] [109.9979 133.8794]
HoBHIS 123 [51120] 163.1791 184.8821 25.5595 [137.4644 188.8938] [168.4028 204.9646]
ACCPndn 0 - - - - - -
Baseline 21 [11177] 43.2786 185.2503 25.6104 [17.5127 69.0445] [168.7382 205.3728]
RS NACK 18 [2564] 19.5224 85.344 11.7986 [7.6522 31.3926] [77.7369 94.6143]
HoBHIS 15 [1848] 23.7861 116.7227 16.1366 [7.5515 40.0207] [106.3187 129.4014]
ACCPndn 10 [5 414] 7.6915 46.6156 6.4445 [1.2079 14.1752] [42.4606 51.6791]
Baseline 27 [1227] 11.0896 38.4164 5311 [5.7463 16.4328] [34.9922 42.5893]
RI10 NACK 0 - - - - - -
HoBHIS 6 [4 158] 2.1045 15.5169 2.1452 [-0.053718 4.2627] [14.1338 17.2024]
ACCPndn 0 - - - - - -
Baseline 78 [2 1068] 178.796 282.9273 39.1141 [139.4446 218.1475] [257.7088 313.6597]
RIl NACK 79 [1542] 98.2687 159.9374 22.111 [76.0235 120.5138] [145.6815 177.3103]
HoBHIS 74 [2559] 94.7811 157.2892 21.7449 [72.9042 116.658] [143.2693 174.3744]
ACCPndn 48 [1149] 6.7413 13.1428 1.817 [4.9133 8.5693] [11.9713 14.5704]
Baseline 172 [4 647] 316.8458 184.8103 25.5496 [291.1411 342.5505] [168.3374 204.885]
RI2 NACK 97 [62 250] 74.9851 85.8511 11.8687 [63.0443 86.9258] [78.1988 95.1765]
HoBHIS 155 [1260] 126.3781 80.6666 11.152 [115.1585 137.5978] [73.4764 89.4288]
ACCPndn 0 - - - - - -
Baseline 198 [15 683] 350.1343 117.5996 16.2579 [333.7778 366.4909] [107.1175 130.3737]
RI3 NACK 197 [5259] 160.6468 50.5236 6.9848 [153.6196 167.6739] [46.0202 56.0116]
HoBHIS 198 [9413] 189.7811 64.9344 8.977 [180.7496 198.8126] [59.1465 71.9877]
ACCPndn 47 [22 70] 10.1642 19.6443 2.7158 [7.4319 12.8964] [17.8933 21.7781]

HIS within 10 runs. We also show the benefit of the AC-
CPndn by Mean, Standard Deviation (Std.), Standard
Error of the Mean (SEM) and lower and upper bound-
aries of the 95% confidence interval in probability dis-
tribution of the amount of packet drop in contributing
routers. The total average packet drop rate in both con-
sidered topologies is illustrated in Fig. 16. In Figs. 17
and 18 we show the average utilization of the bottle-
neck links and retrying alternative links in four condi-
tions. Accordingly, we observe that ACCPndn achieves
the highest and the better average utilization and retry-
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ing alternative links as compared to NACK and HoB-
HIS.

These highlights confirm that the ACCPndn is effective
and efficient in presence of bottleneck links and con-
gestion problems, and outperforms the NACK and the
HoBHIS sufficiently.

11. Discussion

In this paper, an Adaptive Congestion Control Pro-
tocol in Named Data Networking by learning capaci-
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Figure 17: Average of InData in contributing routers in DFN-like topology

(1) congestion forecasting by an adaptive training to
identify the source of the congestion together with the
amount of congestion in the next time interval through

ties called ACCPndn has been proposed to detect and
respond to the congestion traffic before degrading data
delivery performance. ACCPndn works in two phases:

19
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Figure 18: Average of InData in contributing routers in Switch-like topology

TLEN+PSO-GA, and (2) congestion avoidance by a
non-linear fuzzy logic-based control system to make
a proactive decisions against congestion traffic well

enough in advance.
Scalability of the ACCPndn is studied over two fre-
quently used network topologies in NDN as DFN-like

20
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and Switch-like (Fig. 7). In particular, we were inter-
ested in decomposing the Switch-like network topology
graph to two clusters for two reasons: (1) avoiding poor
trainability and high generalization error by TLEN over
larger and more complex topology graphs, and (2) eval-
uating feasibility and accuracy of the ACCPndn over
two interconnected clusters forming a larger topology
graph. There will be several future works, such as ap-
plying ACCPndn over larger, more complex and arbi-
trary network topologies by several separated clusters
to assess and measure the robustness and the feasibil-
ity of the ACCPndn in more than two interconnected
NDN clusters. Another future work for scalability mea-
surement is directly towards investigating the combina-
tion of different status of the routers and links (e.g., link
failure, connecting and disconnecting nodes to the net-
work, changing the topology of the clusters or the entire
graph) in a dynamic network environment.

On the other hand, the implementation of ACCPndn
needs more time and effort than two applied preexist-
ing algorithms. Because ACCPndn works in two phases
(i.e., offline training and online avoidance), in which the
first phase needs more effort for configuring the network
parameters as well as evaluating the effect of tuning pa-
rameters on performance of the training. Putting more
effort into finding well-tuned parameters (e.g., sliding
windows for TLFN and logic-based rules for fuzzy con-
trol system) leads to forecast congestion traffic with an
appropriate performance. In spite of being more time
consuming to build TLFN in the first phase of the AC-
CPndn, we enabled a suitable compromise by ACCPndn
between overhead of implementation and the applied
performance metrics including the rate of data packet
drop and the number of arrival data packet during con-
gestion (see section 10.3). The results confirm that the
ACCPndn for congestion control in NDN can yield high
accuracy as compared to NACK and HoBHIS without
very much computational cost.
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Finally, in case of choosing preliminary appropriate
sliding windows for constructing TLFN, we applied em-
pirically different sliding windows in order to find the
most appropriate sliding windows. Accordingly, we
employed the best configuration setting in the first phase
of the ACCPndn (see section 8.1).

12. Conclusion

Our main contribution is to develop an Adaptive Con-
gestion Control Protocol in Named Data Networking
(ACCPndn) that works in two phases. The first phase -
adaptive training- forecasts the source of congestion to-
gether with the amount of congestion in NDN routers
with a Time-Lagged Feedforward Network (TLFN) op-
timized by hybridization of PSO and GA. The second
phase -fuzzy avoidance- employs a non-linear fuzzy
logic-based control system based on the outcomes of
first phase, which it makes a proactive decision in each
router per interface to control and/or prevent packet
drop well enough in advance. Extensive simulations
and results show that ACCPndn sufficiently satisfies the
performance metrics and outperforms two previous pro-
posals such as NACK and HoBHIS in terms of the min-
imal packet drop and high-utilization (retrying alterna-
tive paths) in bottleneck links to mitigate congestion
traffics. In addition, it is found to be scalable with re-
spect to varying bandwidths, packet generation, and re-
placement policies in cache and PIT table.
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