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Abstract

Cloud providers sell their idle capacity on markets through an auction-like
mechanism to increase their return on investment. The instances sold in this
way are called spot instances. In spite that spot instances are usually 90%
cheaper than on-demand instances, they can be terminated by provider when
their bidding prices are lower than market prices. Thus, they are largely used
to provision fault-tolerant applications only. In this paper, we explore how
to utilize spot instances to provision web applications, which are usually
considered availability-critical. The idea is to take advantage of differences
in price among various types of spot instances to reach both high availability
and significant cost saving. We first propose a fault-tolerant model for web
applications provisioned by spot instances. Based on that, we devise novel
cost-efficient auto-scaling polices that comply with the defined fault-tolerant
semantics for hourly billed cloud markets. We implemented the proposed
model and policies both on a simulation testbed for repeatable validation
and Amazon EC2. The experiments on the simulation testbed and EC2
show that the proposed approach can greatly reduce resource cost and still
achieve satisfactory Quality of Service (QoS) in terms of response time and
availability.
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1. Introduction

There are three common pricing models in current Infrastructure-as-a-
service (IaaS) cloud providers, namely on-demand, in which acquired virtual
machines (VMs) are charged periodically with fixed rates, reservation, where
users pay an amount of up-front fee for each VM to secure availability of
usage and cheaper price within a certain contract period, and the spot.

The spot pricing model was introduced by Amazon to sell their spare
capacity in open market through an auction-like mechanism. The provider
dynamically sets the market price of each VM type according to real-time
demand and supply. To participate in the market, a cloud user needs to
give a bid specifying number of instances for the type of VM he wants to
acquire and the maximum unit price he is willing to pay. If the bidding
price exceeds the current market price, the bid is fulfilled. After getting the
required spot VMs, the user only pays the current market prices no matter
how much he actually bids, which results in significant cost saving compared
to VMs billed in on-demand prices (usually only 10% to 20% of the latter) [1].
However, obtained spot VMs will be terminated by cloud provider whenever
their market prices rise beyond the bidding prices.

Such model is ideal for fault-tolerant and non-time-critical applications
such as scientific computing, big data analytics, and media processing ap-
plications. On the other hand, it is generally believed that availability- and
time-critical applications, like web applications, are not suitable to be de-
ployed on spot instances.

Adversely in this paper, we illustrate that, with effective fault-tolerant
mechanism and carefully designed policies that comply with the fault-tolerant
semantics, it is also possible to reliably scale web applications using spot
instances to reach both high QoS and significant cost saving.

Spot market is similar to a stock market that, though possibly following
the general trends, each listed item has its distinctive market behaviour ac-
cording to its own supply and demand. In this kind of market, often price
differences appear with some types of instances sold in expensive prices due
to high demand, while some remaining unfavoured leading to attractive deals.
Figure 1 depicts a period of Amazon EC2’s spot market history. Within this
time frame, there were always some spot types sold in discounted prices. By
exploiting the diversity in this market, cloud users can utilize spot instances
as long as possible to further reduce their cost. Recently, Amazon introduced
the Spot Fleet API [2], which allows users to bid for a pool of resources at
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Figure 1: One week spot price history from March 2nd 2015 18:00:00 GMT
in Amazon EC2’s us-east-1d Availability Zone

once. The provision of resources is automatically managed by Amazon using
combination of spot instances with lowest cost. However, it still lacks fault-
tolerant capability to avoid availability and performance impact caused by
sudden termination of spot instances, and thus, is not suitable to provision
web applications.

To fill in this gap, we aim to build a solution to cater this need. We
proposed a reliable auto-scaling system for web applications using heteroge-
neous spot instances along with on-demand instances. Our approach not only
greatly reduces financial cost of using cloud resources, but also ensures high
availability and low response time, even when some types of spot VMs are
terminated unexpectedly by cloud provider simultaneously or consecutively
within a short period of time.

The main contributions of this paper are:

• a fault-tolerant model for web applications provisioned by spot in-
stances;

• cost-efficient auto-scaling policies that comply with the defined fault-
tolerant semantics using heterogeneous spot instances;

• event-driven prototype implementations of the proposed auto-scaling
system on CloudSim [3] and Amazon EC2 platform;

• performance evaluations through both repeatable simulation studies
based on historical data and real experiments on Amazon EC2;
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Figure 2: Proposed Auto-scaling system architecture

The remainder of the paper is organized as follows. We first model our
problem in Section 2. In section 3, we propose the base auto-scaling policies
using heterogeneous spot instances under hourly billed context. Section 4
explains the optimizations we proposed on the initial polices. Section 5
briefly introduces our prototype implementations. We present and analyze
the results of the performance evaluations in Section 6 and discuss the related
works in Section 7. Finally, we conclude the paper and vision our future work.

2. System Model

For reader’s convenience, the symbols used in this paper are listed in
Table 1.

2.1. Auto-scaling System Architecture

As illustrated in Figure 2, our auto-scaling system provisions a single-
tier (usually the application server tier) of an application using a mixture
of on-demand instances and spot instances. The provisioned on-demand
instances are homogeneous instances that are most cost-efficient regarding
the application, whilst spot instances are heterogeneous.

Like other auto-scaling systems, our system is composed of the monitoring
module, the decision-making module, and the load balancer. The monitoring
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Table 1: List of Symbols

Symbol Meaning
T The set of spot types

Mmin The minimum allowed resource margin of an instance
Mdef The default resource margin of an instance
Q The quota for each spot group
R The required resource capacity for the current load

Fmax The maximum allowed fault-tolerant level
f The specified fault-tolerant level
O The minimum percentage of on-demand resources

in the provision
S The maximum number of selected spot groups

in the provision
ro The resource capacity provisioned by on-demand

instances
s The number of chosen spot groups
vm The VM type
vmo The on-demand VM type
cvm The hourly on-demand cost of the vm type instance

num(c, vm) The function returns the number of vm type
instances required to satisfy resource capacity c

Co The hourly cost of provision in on-demand mode
tbvm The truthful bidding price of vm spot group
m The dynamic resource margin of an instance
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Figure 3: Naive provisioning using spot instances1

module consists of multiple independent monitors that are responsible for
fetching newest corresponding system information such as resource utiliza-
tions, request rates, spot market prices, and VMs’ statuses into the system.
The decision-making module then makes scaling decisions according to the
obtained information based on the predefined strategies and policies when
necessary. Since in our proposed system provisioned virtual cluster is het-
erogeneous, the load balancer should be able to distribute requests according
to the capability of each attached VM. The algorithm we use in this case is
weighted round robin.

The application hosted by the system should be stateless. This restriction
does not reduce the applicability of the system as modern cloud applications
are meant to de developed in a stateless way in order to realize high scal-
ability and availability [4]. In addition, stateful applications can be easily
transformed into stateless services using various means, e.g., storing the ses-
sion data in a separated memcache cluster.

2.2. Fault-Tolerant Mechanism

Suppose there are sufficient temporal gaps between price variation events
of various types of spot VMs, increasing spot heterogeneity in provision can
improve robustness. As illustrated in Figure 3(a), the application is fully

1The red rectangles in Figure 3, 4, 5, and 6 stand for the minimum amount of capacity
required to process the current workload. Its value is dynamic and proportional to the
changing workload so as the amount of redundancy for fault-tolerance.
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Figure 4: Provisioning for different fault-tolerant levels

provisioned using 40 m3.medium spot VMs only, which may lead it to losing
100% of its capacity when m3.medium’s market price go beyond the bidding
price. By respectively provisioning 75% and 25% of the total required capac-
ity using 30 m3.medium and 52 m3.large spot VMs in Figure 3(b), it will lose
at most 75% of its processing capacity when the price of either chosen type
rises above the bidding price. Furthermore, if it is provisioned with equal
capacity using the two types of spot VMs, like in Figure 3(c), termination of
the either type of VMs will only cause it to lose 50% of its capacity.

This is still unsatisfactory as we demand application performance to be
intact even when unexpected termination happens. Simply, the solution is
to further over-provision the same amount of capacity using another spot
type, as the example illustrated in Figure 4(b), it can be 50% of the required
capacity provisioned using 9 c3.large instances. In this way, the application is
now able to tolerate the termination of any involving type of VMs and remain
fully provisioned. After detection of the termination, the scaling system can
either provision the application using another type of spot VMs or switch
to on-demand instances. Application performance is unlikely to be affected
if there is no other termination happens before the scaling operation that
repairs the provision fully completes.

However, it takes quite a long time to acquire and boot a VM (around
2 minutes for on-demand instances and 12 minutes for spot instances [5]).

2According to Amazon’s specification, the capacity of 1 m3.large instance is equal to
the capacity of 2 m3.medium instances.
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Figure 5: Provisioning for different fault-tolerant levels using 2 more spot
types

Hence, there is substantial possibility that another type of spot VMs could
be terminated within this time window. To counter such situation, it requires
further over-provision the application using extra spot types. We define the
fault-tolerant level of our auto-scaling system as the maximum number of
spot types that can be unexpectedly terminated without affecting application
performance before its provision can be fully recovered. Figure 4 respectively
shows the provision examples that comply with fault-tolerant level zero, one,
two, and three in our definition with each spot type provisioning 50% of the
required capacity.

Note that setting fault-tolerant level to zero is usually not recommended.
Though using multiple types of spot instances confines amount of resource
loss when failures happen, with no over-provision to compensate resource
loss, it may frequently cause performance degradations as failure probability
becomes higher when more types of spot instances are involved.

2.3. Reliability and Cost Efficiency

Though the provisions shown in Figure 4(b), 4(c), and 4(d) successfully
increase reliability of the application, they are not cost-efficient. The three
provisions respectively over-provision 50%, 100%, and 150% of resources re-
quired by the application, which greatly diminishes the cost saving of using
spot instances.

One possible improvement is to provision the application using more num-
ber of spot types. The illustrative provisions in Figure 5 employ two more
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Figure 6: Provisioning for different fault-tolerant levels using mixture of on-
demand and spot instances

spot types than that are used in Figure 4 to reach the corresponding fault-
tolerant levels. As the result, total over-provisioned capacities for the three
cases are reduced to 25%, 50%, and 75%. Though the provisions now might
become more volatile with more types of spot VMs involved, the increased
risk is manageable by the fault-tolerant mechanism with over-provision.

To reduce over-provision, the other choice is to provision the applica-
tion with a mixture of on-demand instances and spot instances. Like the
demonstrations shown in Figure 6, there are now only 20%, 40%, and 60%
over-provisioned capacities if 20% of the required resource capacity is provi-
sioned by on-demand instances. Moreover, using on-demand resources also
further confines amount of capacity that could be lost unexpectedly, thus,
improving robustness. On the other hand, this method incurs more financial
cost.

We define total capacity that is provisioned by the same type of spot VMs
as a Spot Group. In addition to that, we give definition to Quota (Q),
which is the capacity each spot group needs to provision given the capacity
provisioned by on-demand resources (ro) and the fault-tolerant level (f). It
is calculated as:

Q =
R− ro
s− f

(1)

where R represents the required capacity for the current load, and s denotes
the number of chosen spot types. The minimum amount of capacity that is
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required to over-provision then can be calculated as Q ∗ f .
We call a provision is safe if the provisioned capacity of each spot group

is larger than Q. Hence, the problem of scaling web applications using hetero-
geneous spot VMs is transformed to dynamically selecting spot VM types and
provisioning corresponding spot and on-demand VMs to keep the provision
in safe state with minimum cost when the application workload increases,
and timely deprovisioning various types of VMs when they are no longer
needed.

3. Scaling Policies

Based on the previous fault-tolerant model, we propose cost-efficient auto-
scaling policies that comply with the defined fault-tolerant semantics for
hourly billed cloud market like Amazon EC2.

3.1. Capacity Estimation and Load Balancing

Our auto-scaling system is aware of multiple resource dimensions (such
as CPU, Memory, Network, and Disk I/O). It needs the profile of the target
application regarding its average resource consumption for all the considered
dimensions. Currently, the profiling needs to be performed offline, but our
approach is open to integrate dynamic online profiling into it.

With the profile, the system is able to estimate the processing capability
of each spot type under the context of the scaling application. Based on that,
it can easily determine how to distribute incoming requests to the heteroge-
neous VMs to balance their loads. In addistion, the estimated capabilities
are used in the calculation of scaling plans as well.

3.2. Spot Mode and On-Demand Mode

Our scaling system runs interchangeably in Spot Mode and On-Demand
Mode. Spot Mode provisions application in the way explained in Section
2.3. In Spot Mode, user needs to specify the minimum percentage of required
resources provisioned by on-demand instances, symbolized as O. He can also
set a limit on the number of selected spot groups in provision, denoted as S.
To define these parameters, users can utilize the simulation tool implemented
by us (described in Section 5) to find the optimal configurations according
to the recent spot market history without running real tests on the cloud.
Furthermore, these parameters can be dynamically adjusted using machine
learning technologies. We leave this as our future work. In On-Demand
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Mode, application is fully provisioned by on-demand instances without over-
provision. Switches between modes are dynamically triggered by the scaling
policies detailed in the following sections.

3.3. Truthful Bidding Prices

Bidding truthfully means the participant in an auction always bids the
maximum price he is willing to pay. In order to guarantee cost-efficiency,
truthful bidding price for each VM type in our policies is calculated dynami-
cally according to real-time workload and provision. Before computing them,
we first calculate the hourly baseline cost if the application is provisioned in
On-Demand Mode, which can be represented as:

Co = num(R, vmo) ∗ cvmo (2)

where function num(R, vmo) returns the minimum number of instances of
on-demand VM type required to process the current workload. cvmo is the
on-demand hourly price of on-demand instance type. Then truthful bidding
price of spot type vm is derived as follow:

tbvm =
Co − num(ro, vmo) ∗ cvmo

s ∗ num(Q, vm)
(3)

where num(ro, vmo) and num(Q, vm) are interpreted similarly to num(R, vmo)
in Equation (2).

This ensures that even in the worst situation that all chosen spot types’
market prices are equal to their corresponding truthful bidding prices, the
total hourly cost of the provision will not exceed that in On-Demand Mode.

3.4. Scaling Up Policy

Scaling up policy is called when some instances are terminated unex-
pectedly or the current provision cannot satisfy resource requirement of the
application. By resource requirement, in Spot Mode, it means the provision
should be safe under the current workload, which is defined in Section 2.3.
While in On-Demand Mode, it only requires the resource capacity of the
provision to exceed the resource needs of the current workload.

Algorithm 1 is used to find the ideal new provision when the system
needs to scale up. To avoid frequent drastic changes, the algorithm only
provisions VMs incrementally. As shown by line 1 in Algorithm 1, it limits
the number of provisioned on-demand instances to be at least its current
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Algorithm 1: Find new provision when the system needs to scale up

Input: R : the current workload

Input: nc : the number of on-demand VMs in current provision

Input: vmo : the on demand vm type

Input: O : the minimum percentage of on-demand resources

Output: target provision

1 min vmo ←max(nc, num(R ∗O, vmo));

2 max vmo ← num(R, vmo);

3 candidate set← call Algorithm 2 for each integer n in
[min vmo,max vmo];

4 return on-demand provision if candidate set is empty

5 otherwise the provision with minimum cost in candidate set;

number. For each valid number of on-demand instances, it calls Algorithm
2 to find the corresponding best provision among provisions with various
combinations of spot groups. Similarly, in Algorithm 2 (line 11), it retains
the spot groups chosen by the current provision and only incrementally adds
new groups according to their cost-efficiency (line 15). If there is no valid
provision found, the system switches to on-demand mode.

After the target provision is found, the system compares it with the cur-
rent provision and then contacts the cloud provider through its API to pro-
vision the corresponding types of VMs that are in short.

In the worst case, the time complexity of the scaling up policy is O(N ∗
S∗|T|)) where N is the number of on demand instances required to provision
the current workload in on demand mode, S denotes the maximum number of
chosen spot groups, and |T| is the number of spot types considered. Since the
parameters are all small integers, the computation overhead of the algorithm
is acceptable in an online decision making scenario.

3.5. Scaling Down Policy

Since each instance is billed hourly, it is unwise to shut down one instance
before its current billing hour matures. We therefore put the decision of
whether each instance should be terminated or not at the end of their billing
hours. The specific decision algorithms are different for on-demand instances
and spot instances.
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Algorithm 2: Find provision given the number of on-demand instances

Input: n : the number of on-demand VMs

Input: gc : the set of spot groups in current provision

Input: vmo : the on-demand vm type

Input: f : the fault-tolerant level

Input: T : the set of spot types

Input: S : the maximum number of chosen spot groups

Output: new provision

1 min groups←max(|gc|, f + 1);

2 max groups←min(|T|, S);

3 if max groups < min groups then
4 provision not found;

5 end

6 else
7 for s from min groups to max groups do
8 p← p ∪ (vmo, n);

9 compute Q using Equation (1);

10 compute tbvm for each vm in T;

11 p← p ∪ gc;

12 groups← each group not in go and whose tbvm is higher than
market price;

13 k ← s− |gc|;
14 if |groups| ≥ k then
15 p← p ∪ top k cheapest groups in groups;

16 provisions← provisions ∪ p;

17 end

18 end

19 end

20 return the cheapest provision in provisions;
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Algorithm 3: Find target provision when the billing hour of one on-
demand instance is about to end

Input: R : the current workload

Input: nc : the number of on-demand instances in current provision

Input: vmo : the on-demand vm type

Input: O : the minimum percentage of on-demand resources

Output: target provision

1 if nc ≤ num(R ∗O, vmo) then

2 provision not found;

3 end

4 else
5 p1 ← call Algorithm 2 with nc;

6 p2 ← call Algorithm 2 with nc − 1;

7 return on-demand provision if neither p1 nor p2 is found otherwise
either provision that is cheaper;

8 end

3.5.1. Policy for on-demand instances

When one on-demand instance is at the end of its billing hour, we not
only need to decide whether the instance should be shut down, but also have
to make changes to the spot groups if necessary. The summarized policy
is abstracted in Algorithm 3. The algorithm first checks whether enough
on-demand instances are provisioned to satisfy the on-demand capacity limit
(line 1 and line 2). If there are sufficient on-demand instances, it endeavours
to find the most cost-efficient provisions with and without the on-demand
instance by calling Algorithm 2 (line 5 and line 6). Suppose the current
provision is in On-Demand Mode and no provision is found without the on-
demand instance, the provision will remain in On-Demand Mode. Otherwise,
if a new provision is found without the current instance, the policy switches
the provision to Spot Mode. In the case that the current provision is already
in Spot Mode, it picks whichever provision that incurs lower hourly cost.

3.5.2. Policy for spot instances

When dealing with a spot instance whose billing period is ending, in the
base policy, we simply shut down the instance when the corresponding spot
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quota Q can be satisfied without it. Thereafter, the policy will evolve with
the introduced optimizations in Section 4.

3.6. Spot Groups Removal Policy

Note that in both scaling up and down policies, we forbid removing se-
lected spot groups from provision. Instead, we evict a chosen spot group
when any spot instances of such type is terminated by the provider. Since
bidding price of each instance is calculated dynamically, instances within the
same spot group may be bid at different prices. This could cause some in-
stances to remain alive even after the corresponding spot groups are removed
from provision. We call the instances that are running but do not belong to
any group orphans. Though orphan instances are still in production, they
are not considered a part of the provision according to the fault-tolerant se-
mantics when making scaling decisions. In the base policies, although they
will not be shut down until their billing hour ends, extra instances still need
to be launched to comply with the fault-tolerant semantics, which causes
resource waste. This drawback is addressed by the introduced optimizations
in the following section.

4. Optimizations

We have made several optimizations on the above proposed base policies
to further improve cost-efficiency and reliability of the system.

4.1. Bidding Strategy

In the scaling policies, spot groups are bid at truthful bidding prices
calculated by Equation (3) due to cost-efficiency concern. While focusing on
robustness, the system can employ a different strategy to bid higher so as to
grasp spot instances as long as possible.

4.1.1. Actual Bidding Strategies

There are two actual bidding strategies, namely truthful bidding strategy
and on-demand price bidding strategy embedded in the system.

• Truthful Bidding Strategy: the system always bids the truthful
bidding price calculated by Equation (3) when new spot instances are
launched. Since partial billing hours ended by cloud provider are free of
charge, cloud users can save money by letting cloud provider terminate
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their spot instances once their market prices exceed the corresponding
truthful bidding prices. On the other hand, it leads to more unexpected
terminations.

• On-Demand Price Bidding Strategy: the system always bids the
on-demand price of the corresponding spot type whenever trying to
obtain new spot instances. This strategy will cost cloud users more
money but provides a higher level of protection against unexpected
terminations.

4.1.2. Revised Spot Groups Removal Policy

In the base policies, less cost-efficient spot groups could remain in provi-
sion for a long time unless some of their instances are terminated by provider.
When the actual bids are higher than the truthful bidding prices, the situ-
ation could become worse. Instead of just relying on provider terminating
uneconomical spot groups, the revised policy actively inspects whether mar-
ket prices of some spot groups have exceeded their corresponding truthful
bidding prices and remove them from the provision. In the meantime, for
spot groups whose market prices are still below their truthful bidding prices,
it looks for chance to replace them by more economical spot groups that
have not been selected. To minimize disturbance to provision, such oper-
ations should be conducted in a long interval, such as every 30 minutes in
our implementation. Members of removed or replaced spot groups become
orphans.

4.2. Utilizing Orphans

After removing or replacing some spot groups, if the system simply lets
members of these spot groups become orphans and immediately start in-
stances of newly chosen spot groups, the stability of provision will be af-
fected. Furthermore, as orphans are not considered as valid capacity in the
base polices, during the transition period, it has to provision more resources
than necessary, which results in monetary waste.

To alleviate this problem, we aim to utilize as many orphans in provision
as possible to deter the time to provision new VMs. As a result, resource
waste can be reduced and cost-efficiency is improved.

We modify the proposed fault-tolerant model to allow a spot group tem-
porarily accept instances that are heterogeneous to the spot group type under
certain conditions. Figure 7 illustrates such provision. In Figure 7(a), the
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Figure 7: Provisioning with orphans under fault-tolerant level one
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m1.small group does not have sufficient instances to satisfy its quota. Instead
of launching 2 new m1.small spot instances, the policy now temporarily move
the available orphan, one m1.medium instance, to m1.small group to com-
pensate the deficiency of its quota. Even though m1.small group becomes
heterogeneous in this case, it does not violate the fault-tolerant semantics
as losing any type of spot instances will not influence the application per-
formance. However, in some situations, heterogeneity in spot groups could
cause violation of the fault-tolerant semantics, for example, there might be
case that three m1.medium orphans are spread across three spot groups and
the total capacity of the three instances exceeds the spot quota. Then los-
ing the three m1.medium instances will violate the fault-tolerant semantics.
Fortunately, such cases are very rare as orphans are usually small in numbers
and are expected to be shut down in a short time.

With this relaxation of the fault-tolerant model, the previous scaling up
and scaling down policies need to be revised to efficiently utilize capacity of
orphans.

4.2.1. Revised Scaling Up Policy

The new scaling up policy uses the same algorithm (Algorithm 1) to
find the target provision. However, instead of simply launching instances to
reach the target provision, the new policies take a deeper thought whether
it can utilize existing orphans to meet the quota requirements in the target
provision.

The new policy first checks whether the target provision chooses new
spot groups. If there are orphans whose types are the same to any newly
chosen groups, lying either within orphan queue or other spot groups, they
are immediately moved to the corresponding new spot groups. After that, the
policies endeavour to insert non-utilized orphans from the orphan queue into
spot groups that have not met their quota requirement. If all the orphans
have been utilized and some groups still cannot satisfy their quota, new spot
instances of the corresponding types then will be launched.

4.2.2. Revised Scaling Down Policy

Regarding policy for on-demand instances that are close to their billing
hour, the new policy utilizes the same mechanism in the revised scaling up
policy to provision any changes between the current provision and the target
provision.
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For spot scaling down policy, if the spot instance is in orphan queue, it
is immediately shut down. Suppose it is within the spot group of the same
type, it is shut down when the spot quota can be satisfied without it. In the
case that the instance is an orphan within other spot group, the new policy
shuts down the instance and in the meantime starts certain number of spot
instances of the spot group type to compensate the capacity loss.

4.3. Reducing Resource Margin

For applications running on traditional auto-scaling platform, administra-
tor usually leaves a margin at each instance to handle short-term workload
surge in order to buy time for booting up new instances. This margin em-
pirically ranges from 20 to 25% of the instance’s capacity.

With over-provision already in place in our system, this margin can be re-
duced under Spot Mode provision. We devise a mechanism that dynamically
changes the margin according to the current fault-tolerant level. Since higher
fault-tolerant level leads to more over-provision, we can be more aggressive
in reducing the margin of each instance. In detail, the dynamic margin is
determined by the formula:

m =
Mdef −Mmin

Fmax

∗ f + Mmin (4)

where Mmin means the minimum allowed margin, e.g., 10%, Mdef is the
default margin used without dynamic margin reduction, e.g., 25%, and Fmax

is the maximum allowed fault-tolerant level.

5. Implementation

We implemented a prototype of the proposed auto-scaling system on
Amazon EC2 platform using Java, the components of which are illustrated in
Figure 8. It employs an event-driven architecture with the monitoring mod-
ules continuously generating events according to newly obtained information,
and the central processor consuming events one by one. Monitoring mod-
ules produce and insert corresponding events with various critical levels into
the central priority event queue. They include the resource utilization moni-
tors that watch all dimensions of resource consumption of running instances,
the billing monitor that gazes billing hour of each requested VM, the VM
status monitor that reminds the system when some instances are online or
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Figure 8: Components of the Implemented Auto-scaling System

offline, the spot price monitor that records newest spot market prices for each
considered spot type, and the spot request monitor that surveillances any un-
expected spot termination. On the other side, the central event processor
fetches events from the event queue and assigns them to the corresponding
event handlers that realize the proposed policies to make scaling decisions or
perform scaling actions.

The prototype implementation provides a general interface for users to
plug different load balancer solutions into the auto-scaling system. In our
case, we use HAProxy with weighted round robin algorithm. It also offers
the interface to allow users to automatically customize configurations of VMs
according to their own available resources after they have been booted.

For quick concept validation and repeatable evaluation of the proposed
auto-scaling policies, we created a simulation version of the system. The
same code base is transplanted onto CloudSim [3] toolkit which provides the
underlying simulated cloud environment. Assuming bids from user impose
negligible influence on market prices, the simulation tool is able to provide
quick and economical validation of the proposed polices using historical data
of the application and the spot market as input.

For more details about the implementation, please refer to the released
code3.

3https://github.com/quchenhao/spot-auto-scaling
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Figure 9: The English Wikipedia workload from Sep 19th 2009 to Sep 26th
2009

6. Performance Evaluation

6.1. Simulation Experiments

As stated in Section 5, to allow repeatable evaluation, we developed a
simulation version of the system that allows us to compare the performances
of different configurations and policies using traces from real applications and
spot markets.

6.1.1. Simulation Settings

We use one week trace of 10% English Wikipedia requests from Sep 19th
2007 to Sep 26th 2007 as the workload [6, 7], which is depicted in Figure
9. Note that our approach is general purpose and can be applied to any
workload, as the proposed system does not make assumptions on the work-
load and is fully reactive. We adopt the Wikipedia workload in experiments
because it reveals significant variations that can trigger frequent scaling op-
erations to let us observe the behaviour of our system. We believe one week
trace is enough for the purpose of our experiments, as it gives the system
ample opportunities to exercise the scaling policies. In addition, as reported
by Eldin et al. [8], the Wikipedia workload revealed strong weekly pattern
with only gradual changes in amplitude, level, and shapes.

We consider 13 spot types in Amazon EC2. Their spot prices are simu-
lated according to one week Amazon’s spot prices history from March 2nd
2015 18:00:00 GMT in the relatively busy us-east region. The involving
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spot types and their corresponding history market prices are illustrated in
Figure 1.

We set requests timeout at 30 seconds. In addition, we respectively
set minimum allowed resource margin (Mmin) and default resource margin
(Mdef ) at 10% and 25%. We found out that c3.large instance is the most
cost-efficient type for the wikipedia application based on a small scale re-
source profiling test of the Wikibench application [9] on Amazon EC2 and
the resource specifications of each instance type released by Amazon. It is
selected to provision all the on-demand resources in the experiments. All
simulation experiments start with 5 c3.large on-demand instances. Length
of simulated requests are generated following a pseudo Gaussian distribu-
tion4 with mean of 0.07 ECU5 and standard deviation of 0.005 ECU so that
different tests using the same random seed are receiving exactly the same
workload. The VM start up, shut down, and spot requesting delays are
generated in the same way using pseudo Gaussian distribution. The means
of the above three distributions are respectively 100, 100, 550 seconds, and
the standard deviations are set at 20, 20, 50 seconds. The test results are
deterministic and repeatable on the same machine.

We tested our scaling policies with various fault-tolerant levels and differ-
ent least amounts of on-demand resources, which are represented respectively
as “f − x” and “y% on-demand” in the results. We also tested the polices
using the two embedded bidding strategies and static/dynamic resource mar-
gins.

We concentrate on two metrics, real-time response time of requests (av-
erage response time per second reported) and total cost of instances, in all
the experiments.

6.1.2. Benchmarks

We compare our scaling policies with two benchmarks:

• On-Demand Auto-scaling: This benchmark only utilizes on-demand

4Since Wikipedia is serving mostly the same type of requests - page view, the time
taken to process each request is also likely to fall in a certain interval. To coarsely model
such behaviour, we utilize Gaussian distribution. Other distributions with small head and
tail can serve the same purpose as well.

5It means the request takes 70ms to finish if it is computed by the VM equipped with
vCPU as powerful as 1 Elastic Computing Unit (ECU)
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Figure 10: Response time for on-demand auto-scaling

instances. It is implemented by restricting the auto-scaling system al-
ways in On-Demand Mode.

• One Spot Type Auto-scaling: The auto-scaling policies used in
this benchmark, like the proposed policies, provision a mixture of on-
demand resources and spot resources. The benchmark also has a limit
on minimum amount of on-demand resources provisioned. However,
for spot instances, it only provisions one spot group that is the most
cost-efficient at the moment without over-provision. If the provisioned
spot instances are terminated, a new spot group then is selected and
provisioned. Suppose a more economic spot group is found, the old
spot group is gradually replaced by the new one. It is implemented by
setting fault-tolerant level to zero and limiting at most one spot group
can be provisioned.

6.1.3. Response time

Figure 10, 11, 12, and 13 respectively depict real-time average response
time of requests using on-demand, one spot, and our approach with truth-
ful bidding strategy and dynamic resource margin. From the results, the
on-demand auto-scaling produced smooth response time all along the exper-
imental duration except for a peak that was caused by the corresponding
peak in the workload. All experiments employing one spot type auto-scaling
experienced periods of request timeouts caused by termination of spot in-
stances, and only increasing the amount of on-demand resources cloud not
improve the situation. While our approach greatly reduced such unavailabil-
ity of service even using f − 0 with no over-provision of resources. By using
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 11: Response time of one spot type auto-scaling with various percent-
age of on-demand resources and truthful bidding strategy
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 12: Response time of f − 0 with various percentage of on-demand
resources, truthful bidding strategy, and dynamic resource margin
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 13: Response time of f − 1 with various percentage of on-demand
resources, truthful bidding strategy, and dynamic resource margin
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(a) 0% on-demand resources

(b) 20% on-demand resources

(c) 40% on-demand resources

Figure 14: Response time of one spot type auto-scaling with various percent-
age of on-demand resources and on-demand bidding strategy
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f − 1, we were able to completely eliminate the timeouts under the recorded
spot market traces. We omit the results for tests using f − 2 and f − 3 as
they reveal similar results as Figure 13.

To show the effect of different bidding strategies, we compare the response
time results of one spot type auto-scaling using the two proposed bidding
strategies as they reveal the most significant difference. As Figure 11 and
Figure 14 present, it is obvious that service availability can be much improved
with higher bidding prices using one spot type auto-scaling. On the other
hand, the remaining timeouts also indicate that increasing bidding prices
alone is not enough to guarantee high availability.

6.1.4. Cost

Table 2 lists the total costs produced by all the experiments. Comparing
to the cost of on-demand auto-scaling, we managed to gain significant cost
saving using all other configurations. Tests using one spot type auto-scaling
with 0% on-demand resources realized the most cost saving up to 80.87%
regardless of its availability issue.

The results show the amount of on-demand resources has a significant
influence on cost saving. It also can be noted that higher fault-tolerant
level incurs extra cost. Though optimal configuration of fault-tolerant level
is always application specific, according to our results, configuration using
f − 1 with 0% on-demand resource is the best choice under current market
situation in regards of both financial cost and service availability.

The resulted cost differences caused by different bidding strategies are
generally small. Therefore, it is better to bid higher to improve availability
if user’s bidding has negligible impact on the market price.

As dynamic resource margin is only applicable when application is over-
provisioned, we give the results for tests using dynamic resource margin when
fault-tolerant level is higher than zero. According to the results, dynamic
resource margin can bring extra cost saving and the amount of cost saving
increases when more over-provision is necessary (i.e., higher fault-tolerant
level). Though the resulted cost saving is not significant, it is safely achieved
without sacrificing availability and performance of the application.

6.2. Real Experiments

We conducted two real tests on Amazon EC2 respectively using on-
demand auto-scaling policies and the proposed auto-scaling policies with
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The Client Driver HAProxy Load Balancer

MediaWiki Servers

English Wikipedia Database

Auto-scaling System

Figure 15: The Testbed Architecture

configuration of f − 1 and 0% on-demand. Other parameters are defined
the same to the simulation tests.

We set up the experimental environment to run the Wikibench [9] bench-
mark tool. The major advantage of this tool compared to other tools such as
TPC-W, RUBiS, and CloudStone is that it is stateless, which is the charac-
teristic of modern highly scalable cloud services [10]. The tool is composed
of three components:

• a client driver that mimics clients by continuously sending requests to
the application server according to the workload trace;

• a stateless application server installed with the Mediawiki application;

• a mysql database loaded with the English Wikipedia data by the date
of Jan 3rd, 2008.

Our aim is to scale the application-tier. Thus, we inserted a HAProxy load
balancer layer into the original architecture in order to let the client driver
talk to a cluster of servers. The architecture of the testbed is illustrated in
Figure 15. We picked the first 3 days of the Wikipedia workload [6, 7] (Figure
9) and scaled it down to half of its original rate as the workload for testing
because Amazon limits the number of instances each account can launch.

The testing environment resided in Amazon us-east-1d zone which is
in a relatively busy region with higher degree and frequency of price fluctua-
tions. Regarding each component, we launched one c4.large instance acting
as the client driver, one m3.medium instance running the HAProxy load bal-
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Figure 16: Response time for on-demand auto-scaling on Amazon
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Figure 17: Response time for spot auto-scaling on Amazon

ancer, and one c4.2xlarge6 instance serving the mysql database requests. The
auto-scaling system itself is running on a local desktop computer remotely in
Melbourne. Before the tests, we profiled each component to make sure none
of them become the bottleneck of the system.

The test using the proposed approach started at 3:30am September 9,
2015, Wednesday, US east time. Its testing period spanned across three busy
weekdays from Wednesday to Friday.

Figure 16 and 17 presents real-time response time results of the two exper-
iments. Both results suffer from peaks of high response time. By studying the
recorded log, we confirmed they were not caused by shortage of resources as
resource utilizations of all the involving VMs were never beyond safe thresh-

6The 4th generation instances were introduced between the time we performed the
simulations and the real experiments. To be consistent, we only consider the 13 spot
types listed in Figure 1 for both the simulations and the real experiments
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Table 3: Cost of the Experiments

Cost(USD$)
on-demand 19.01

ft− 1 and 0% on-demand 5.69

old during both tests. Various other reasons can be the culprits, such as cold
cache, short term network issues, interference from the shared virtualized
environment, and garbage collection [11]. We encountered three unexpected
terminations during the test of our approach. Thanks to the fault-tolerant
mechanism and policies, we managed to avoid service interruption and per-
formance degradation during those periods. In addition, because resources
are tighter in on-demand auto-scaling, it generally performs worse in response
time compared to the proposed approach.

Regarding cost, we calculated the total cost of application servers in both
experiments. Table 3 presents the results. The proposed approach reaches
70.07% cost saving.

6.3. Discussion

Even with high fault-tolerant level, the proposed approach cannot guar-
antee 100% availability, and no solution can ever manage to assure absolute
service continuity due to the nature of spot market. What our system of-
fers is a best effort to counter large scale surges of market prices of the
selected spot types in a short time, which is highly unlikely under current
market condition. In fact, we have not encountered any case that more than
one spot group fail simultaneously during simulations, real experiments, and
testing phases. However, market condition could change. Hence, application
provider should adjust configuration of the auto-scaling system dynamically
according to real-time volatility of the spot market. In addition, the nature
of the application also affects the decision. If the application is availability-
critical, higher fault-tolerant level is always desirable. Adversely, for some
applications, such as analytical jobs, even one spot type auto-scaling is ac-
ceptable.

The presented results in Section 6 only indicates the cost saving potential
of a certain application considering a selected set of spot types under the
recorded spot market prices and workload traces. Thanks to the dynamic
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truthful bidding price mechanism, even in competitive market condition, we
can ensure that the cost reduction gained by our approach will not vanish
but only diminish. To reach more cost saving, the application provider can
take into account a broader set of spot types, which is available in Amazon’s
offering.

To save cost and time for testing, application providers can tune the
parameters of the auto-scaling system in a similar way as we did by first
utilizing simulation for fast validation and then test the system in production
environment.

There are also differences in price among the same spot types across dif-
ferent availability zones. It is trivial to extend the current fault-tolerant
model to utilize spot groups from multiple availability zones. Currently,
the auto-scaling system limits the selection of spot groups within the same
availability zone due to charges for traffic across availability zones. If the ap-
plication provider has already adopted a multi-availability-zone deployment,
such extension is able to realize more cost saving.

The overhead of the auto-scaling system is negligible. As presented in
Section 3, the time complexity of the scaling policies is not significant. The
frequency that the scaling policies are called depends on the monitoring in-
terval and the frequency of price changes, which are at least in the scale of
seconds.

7. Related Work

7.1. Horizontally Auto-scaling Web Applications

Horizontally auto-scaling web applications have been extensively studied
and applied [12]. Basically, auto-scaling techniques for web applications can
be classified into three categories: reactive approaches, proactive approaches,
and mixed approaches. Reactive approaches scale applications in accordance
of workload changes. Proactive approaches predicts future workload and
scale applications in advance. Mixed approaches can scale applications both
reactively and proactively.

Most industry auto-scaling systems are reactive-based. Among them,
the most frequently used service is Amazon’s Auto Scaling Service [13]. It
requires user to first create an auto-scaling group, which specifies the type
of VMs and image to use when launching new instances. Then user should
define his scaling policies as rules like “add 2 instances when CPU utilization
is larger than 75%”. Another popular service is offered by RightScale. Their
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service is based on a voting mechanism that lets each running instance decide
whether it is necessary to grow or shrink the size of the cluster based on their
own condition [14].

Other than just using simple rules to make scaling decisions, researchers
have developed scaling systems based on formal models. These models aim to
answer the question that how many resources are actually required to serve
certain amount of incoming workload under QoS constraints. Such model can
be simply obtained using profiling techniques as we did in this paper. Other
commonly adopted approaches include queueing models [15, 16, 17, 18, 19, 20]
that either abstract the application as a set of parallel queues or a network
of queues, and online learning approaches such as reinformacement learning
[21, 22, 23].

Proactive auto-scaling is desirable because time taken to start and config-
ure newly started VMs creates a resource gap when workload suddenly surges
to the level beyond capability of the available resources. To satisfy strict
SLA, sometimes it is necessary to provision enough resources before work-
load actually rises. As workloads of web applications usually reveal temporal
patterns, accurate prediction of future workload is feasible using state-of-art
time-series analysis and pattern recognition techniques. A lot of them have
been applied to auto-scaling of web applications [16, 24, 25, 26, 27, 28, 29, 30].

Most auto-scaling systems only utilize homogeneous resources. While
some, including our system, have explored using heterogeneous resources to
provision web applications. Upendra et al. [31], and Srirama and Ostavar
[32] adopt integer linear programming (ILP) to model the optimal heteroge-
neous resource configuration problem under SLA constraints. Fernandez et
al. [33] utilizes tree paths to represent different combinations of heteroge-
neous resources and then searches the tree to find the most suitable scaling
plan according to user’s SLA requirements.

Different from the above works, our objective goes beyond using minimum
resources to provision the application. Instead, we want to devise fault-
tolerant mechanism and auto-scaling policies that comply with the fault-
tolerant semantics to reliably scale web applications on cheap spot instances.
We believe the reviewed auto-scaling techniques are complementary to our
approach. The proposed system can incorporate their resource estimation
models, and workload prediction techniques as well.
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7.2. Application of Spot Instances
There have been a lot of attempts to use spot instances to cut resource

cost under various application context. Resource provision problems using
spot instances have been studied for fault-tolerant applications [34, 35, 36,
37, 38, 39, 40, 41, 42, 43] such as high performance computing, data analytics,
MapReduce, and scentific workflow.

For these applications, the fault-tolerant mechanism is often built on
checkpointing, replication, and migration. Multiple novel checkpointing mech-
anisms [44, 45, 46] have been developed to allow these applications to harness
the power of spot instances. SpotOn [43] combines multiple fault-tolerant
mechanisms to increase the cost-efficiency and performance of batch process-
ing applications running on spot instances.

Regarding web applications, Han et al. [47] proposed a stochastic algo-
rithm to plan future resource usage with a mixture of on-demand and spot
instances. Except they only use homogeneous resources, their problem is
also different to ours as they aim to plan the resource usage with the knowl-
edge of the future while we provision resources dynamically. Mazzucco and
Dumas [48] also explored using a mixture of homogeneous on-demand in-
stances and spot instances to provision web applications. Instead of building
a reliable auto-scaling system, their target is to maximize web application
provider’s profit by using an admission control mechanism at the front end
to dynamically adapt to sudden changes of available resources.

Sharma at al. proposed a derivative IaaS cloud platform based on spot
instances called SpotCheck [49, 50]. To transparently provide high availabil-
ity on spot instances to end users, they incorporated technologies, such as
nested virtualization, live VM migration, and time-bounded VM migration
with memory checkpointing, to dynamically move users’ VMs when under-
lying spot instances are available or revoked. Because of its transparency
to end users, it is ideal for cloud brokers and large organizations with high
resource demands. While our approach is lightweight and thus more suitable
for small organizations who want to harness the power of spot instances by
themselves. He et al. [51] from the same group evaluated the ability of the
approach to reliably run web applications on spot instances. Though they
do not provision redundant capacity as we do, they reported non-negligible
overhead incurred by nested virtulization. Their proposed system [49, 50, 51]
is able to preserve the memory state of the revoked spot VMs, which enables
it to seamlessly host stateful applications. Though our approach requires
the application to be stateless, this does not reduce its generality as highly
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scalable cloud applications are expected to be stateless [10], and stateful ap-
plications can be easily turned into stateless by storing session information in
a memory cache cluster [10]. Their system relies on the termination warnings
issued by existing providers [52] to be able to conduct migrations in time.
Our approach is capable of operating in possible future spot markets that do
not provide termination warnings.

Recently, Amazon EC2 introduced a new feature, called Spot Fleet API
[2]. It allows user to bid for a fixed amount of capacity possibly constituted by
instances of different spot types. It continuously and automatically provisions
the capacity using the combination of instances that incurs the lowest cost.
However, as its provision decision ignores reliability, it is not suitable to
provision web applications.

8. Conclusions and Future Work

In this paper, we explored how to reliably and cost-efficiently auto-scale
web applications using a mixture of on-demand and heterogeneous spot
instances. We first proposed a fault-tolerant mechanism that can handle
unexpected spot terminations using heterogeneous spot instances and over-
provision. We then devised novel cost-efficient auto-scaling policies that com-
ply with the defined fault-tolerant semantics for hourly-billed cloud market.
We implemented a prototype of the proposed auto-scaling system on Amazon
EC2 and a simulation version on CloudSim [3] for repeatable and fast valida-
tion. We conducted both simulations and real experiments to demonstrate
the efficacy of our approach by comparing the results with the benchmark
approaches.

In the future, we plan to further optimize our system by incorporating
the following features:

• selection of spot groups according to predicted spot prices in near fu-
ture;

• dynamic decision of fault-tolerant level and proportion of on-demand
instances according to volatility of the spot market using machine lean-
ing technologies;

• an interface that allows web application providers to plug in different
workload prediction techniques into the auto-scaling system to achieve
proactive auto-scaling; and

36



• utilization of spot groups across different availability zones.
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