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24210-240 Niterói - RJ, Brazil

Abstract

Given a connected region in two-dimensional space where events of a
certain kind occur according to a certain time-varying density, we consider
the problem of setting up a network of autonomous mobile agents to detect
the occurrence of those events and possibly record them in as effective a
manner as possible. We assume that agents can communicate with one
another wirelessly within a fixed communication radius, and moreover
that initially no agent has any information regarding the event density.
We introduce a new distributed algorithm for agent control based on the
notion of an execution mode, which essentially lets each agent roam the
target region either at random or following its local view of a density-
dependent gradient. Agents can switch back and forth between the two
modes, and the precise manner of such changes depends on the setting of
various parameters that can be adjusted as a function of the application
at hand. We provide simulation results on some synthetic applications
especially designed to highlight the algorithm’s behavior relative to the
possible execution modes.

Keywords: Autonomous agents, Mobile agents, Sensor networks, Coop-
erative control, Distributed optimization.
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1 Introduction

There exist several applications in which sensing a geographical region as accu-
rately as possible can be crucial. Examples include search and recovery oper-
ations, manipulation tasks in hazardous environments, surveillance, and envi-
ronmental monitoring for pollution detection [1]. Often it is the case that mon-
itoring the region in question with only one sensor to detect events all across
it can be extremely expensive if not downright infeasible, as well as hardly
fault-tolerant or scalable. In recent years, though, significant technological ad-
vances, especially those making communication, processing, and sensing more
cost-effective, have enabled the use of autonomous mobile agents [2].

If used in sufficient numbers given the size of the region to be monitored,
these agents offer a viable alternative to overcome the limitations of the single-
sensor scenario, provided only that they can perform local sensing and commu-
nicate with one another. Once put to work together on the same global sensing
task, the agents can communicate to one another the sensing results obtained
with their own relatively small sensing capabilities, thus generating a far greater
sensing power for the detection of the majority of events occurring in the re-
gion. The key to realize such a tantalizing possibility lies, naturally, in how
successfully the agents can cooperate toward a common goal.

One key additional ingredient is then agent mobility. Mobile agents can in
principle behave in several different modes, such as moving to places where no
events are currently occurring so that they can be detected when they do occur;
moving to places where a great number of events is currently occurring and
additional sensing power is needed; or simply moving in arbitrary directions
aiming to discover unanticipated places where events of interest may come to
occur or be already occurring. Given a specific sensing task, a successful ensem-
ble of agents will be one whose agents behave in the appropriate manner often
enough for the task to be accomplished accurately and with just enough agents.

Here we introduce a new distributed algorithm for the operation of such a
group of autonomous mobile agents. Our algorithm is based on the notion of an
execution mode to guide each agent toward participating in the overall sensing
task as effectively as possible while switching back and forth from one mode
to another as mandated by local circumstances and parameter values. As in
so many cases in which agent adaptation has a key role to play, here too we
aim to strike a fruitful balance between exploration and exploitation. We do
so by using two execution modes exclusively. The first one, called the random
mode, is designed so that the agent can contribute to the overall task at hand by
exploring new territory that so far may have remained insufficiently monitored.
The second mode, referred to as the gradient mode, lets the agent exploit the
best sensing opportunities available to it by focusing on those places at which
events are deemed more likely to occur insofar as the agent’s local view of the
global event density allows such a conclusion.

Our work is preceded by important related research providing both improve-
ment opportunities and inspiration [1,3–8]. Some of this research has addressed
the problem of maximizing coverage area when the agents are placed inside the
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target region either deterministically [3] or at random [4, 6], and also the sim-
ilar problem of adjusting the agents’ initial locations and their speeds along a
closed path so that all points inside such a perimeter are monitored as fully as
possible [8]. Another related problem addressed by such research has been the
convergence of all sensed data onto a base station while being mindful of the
energy spent on communication [5].

Although all these problems are undoubtedly related to the one we tackle,
the coverage-area maximization that lies at their core is only ancillary to us,
in the sense that what we seek is full event coverage even if this means leaving
some portions of the target region somewhat unmonitored. We share this goal
with the works in [1, 7], but solve the more general problem in which event
density is both time-varying and unknown to the agents initially. Moreover, the
problem is to be solved subject to the further constraints that agents need not
be within direct communication reach of one another, and that no centralized
element (like the leader-following procedure from [9] that the authors of [1, 7]
adopt) is to be part of the solution.

We proceed in the following manner. First we lay down our assumptions
regarding both the events to be monitored and the agents that will monitor
them. We do this in Section 2. Then we move to a detailed description of our
solution in Section 3. Simulation results on a few key scenarios are given in
Section 4, which is then followed by conclusions in Section 5.

2 System model

The target region is modeled as a connected set Ω ∈ R2. In this region, an event
happens at the infinitesimal vicinity dq of point q ∈ Ω with probability propor-
tional to φ(q, t)dq, where t is continuous time and φ(q, t) is a time-dependent
event density function such that

∫
Ω
φ(q, t)dq <∞ for all t ≥ 0. The function φ

is unknown to all agents initially.
We assume that the occurrence of an event leaves a footprint that only dis-

appears after a number of time units given by VisTime, a parameter, have
elapsed. Upon coming across such a footprint, an agent is capable of estimating
the corresponding event’s time of occurrence. A useful example here is the indi-
rect detection of a past fire at a certain point in Ω by means of the temperature
at that point when it is reached by an agent. We refer to VisTime as an event’s
visibility time and assume it is the same for all events, given a specific domain
of interest.

The probability that agent i, located at point si ∈ Ω, detects an event (or
its footprint) occurring at point q ∈ Ω is modeled as

pi(q) =

{ (
1− di

Rs

)2

if di ≤ Rs

0 otherwise,
(1)

where di is the Euclidean distance between points si and q and Rs is the sensor’s
maximum sensing range. That is, we assume that the agent’s sensing capability
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decays with the distance to the point of occurrence as a convex parabola, pro-
vided this point is located within the circle of radius Rs centered at the agent’s
location. No sensing is possible outside this circle. Whenever sensing is possible,
we assume it to be instantaneous.

Agents can communicate with one another wirelessly. When agent i is at
point si, any message it sends is assumed to be instantaneously received and
successfully decoded by some other agent j, located at point sj , with probability

ri(sj) =

{
1 if dij ≤ Rc

0 otherwise,
(2)

where dij is the Euclidean distance between agents i and j and Rc is the max-
imum separation between two agents across which they can still communicate.
We remark that, should an undirected graph be used to model the communi-
cation possibilities among all agents at a certain point in time, such a graph
would follow what is known as the Boolean model. This model is widely used
in theoretic studies (cf., e.g., [10, 11]) and mandates the existence of an edge
between two geometrically positioned vertices if and only if, in our terms, they
are no farther apart from each other than the distance Rc.

For simplicity’s sake, in this work all agents are assumed to be identical,
thence the values of Rs and Rc are the same for all agents. Additionally, we
note that, as will become clear in the sequel, agents will tend to stand still at
their current locations for far longer than the time they spend moving. For this
reason, another simplifying assumption we make is that, whenever agents move,
they do so instantaneously.

3 Proposed solution

At any given time, the probability that an event occurring at that time (or
earlier by no more than VisTime time units) at point q ∈ Ω is detected by
at least one of N agents positioned inside Ω at points given by the tuple s =
(s1, . . . , sN ) = ((s1x, s1y), . . . , (sNx, sNy)) is

P (q, s) = 1−
N∏

k=1

[1− pk(q)]. (3)

Thus, given that an event occurred in Ω at a certain time t (or remained visible
through time t, having occurred no earlier than t − VisTime), the probability
that it is detected by at least one agent is proportional to

F (s) =

∫
Ω

φ(q, t)P (q, s)dq, (4)

where the equality holds only if the density φ(q, t) driving the occurrence of
events at time t can be assumed to vary negligibly with time within a window
of width VisTime inside which instant t is to be found. We henceforth assume
that this is the case.
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The importance of function F resides in the following. Should an agent,
say i, decide to change its location si in order to maximize the probability of
detecting events generated according to the density φ, its best course of action
is to move in the direction given by ∂F/∂six and ∂F/∂siy, the components of
the gradient of F relative to agent i’s coordinates. We make use of this gradient
in what follows, but defer its calculation to Appendix A.

We now discuss the main elements of our distributed algorithm.

3.1 Execution modes

At any point in time, an agent is necessarily engaged in behaving according
to one of two execution modes, either the random mode or the gradient mode.
While in random mode, the agent moves about Ω somewhat haphazardly, sim-
ilarly to what happens in Brownian motion, regardless of the density φ. An
agent in this mode is free to roam the target region and, while doing so, is capa-
ble of putting together an estimate of the event density within a certain vicinity
of each particular point in space and time it goes through. Its contribution to
the overall sensing task is then invaluable: because no agent has any knowledge
of the event density initially, all that can be apprehended about this density
is what agents discover and communicate to one another. And because event
density may change with time, in many situations at least some agents must be
operating in random mode at all times.

If all agents operated in random mode at all times, clearly the entirety of
Ω would be sensed approximately uniformly, with places of negligible event
density receiving on average as much attention as those of high event density.
The result would be an insufficient concentration of agents in these latter places,
potentially leading them toward being severely undermonitored. At all times,
then, at least some agents must seek to move in the direction of places of high
event density. This is achieved by letting these agents behave in the gradient
mode, which directs agent i, when at location si, to move in the direction given
by ∂F/∂six and ∂F/∂siy, i.e., the direction in which the ascent on F is, locally
and at the current time, estimated to be steepest.

For completeness, we remark that letting all agents operate in gradient mode
at all times is as unreasonable as letting them all be in random mode all the
time. To make the point as clearly as possible, consider the two panels in
Figure 1. In each panel the outermost square represents the target region Ω
while the innermost squares stand for regions with nonzero event density inside
Ω, as indicated by the gray scale. Each panel refers to a specific time window,
t ∈ [0, 60] in panel (a), t ∈ (60, 120] in panel (b). If during the former interval all
agents happened to be concentrated near the light-gray square, and if the two
gray squares were sufficiently separated so that density information could never
be relayed across such a distance, then the higher event densities appearing only
during the latter interval would go permanently unnoticed by lack of at least
some agents being able to move around, possibly toward those densities, while
in random mode.
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(a) 0 ≤ t ≤ 60 (b) 60 < t ≤ 120

Figure 1: Dynamic event density.

Both the random mode and the gradient mode depend on a StepSize pa-
rameter. Each step taken by an agent in random mode carries it StepSize
distance units in a randomly chosen direction. If in gradient mode, the dis-
tance traversed by the agent in the (∂F/∂six, ∂F/∂siy) direction in one step is
StepSize|(∂F/∂six, ∂F/∂siy)|, where i is the agent in question. Note that, un-
like what happens in random mode, the distance traversed in one step by agent
i in gradient mode can vary with both s and t, as it depends on the magnitude
of (∂F/∂six, ∂F/∂siy).

3.2 Saving energy

Whatever energy an agent has left at any time must be used for moving, com-
municating, and sensing. Even though we do not model energy consumption
explicitly, we have striven for our algorithm to be mindful of the agents’ energy
usage so that each agent can keep on monitoring its surroundings for events of
interest for as long as possible. We let agents do their sensing at all times, but
moving and communicating are constrained for the sake of saving energy.

The constraint we impose on an agent’s movements is to allow it to move
only once every StillTime time units, regardless of which execution mode it
happens to be operating in, where StillTime is a parameter. As mentioned ear-
lier, we assume that StillTime is much greater than the time an agent would
spend in a single movement, so agent displacements are assumed to be instan-
taneous. As for constraining an agent’s ability to communicate to save energy,
we assume that whatever information the agent has gathered since last moving
is accumulated and sent out in a single message right after it moves next.
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3.3 Message handling

Each message contains its sender’s unique identification and current location,
as well as all events sensed by the sending agent during the past StillTime time
units. Each of these events is represented by the point in Ω and the time at
which it occurred. Upon receiving any such message, and having made sure
that originally it was sent out by another agent and is now being received for
the first time, an agent passes it on and updates its current view of the system.
This view includes node locations and event information, the latter easily kept
free of duplicates.

Our derivation in Appendix A leaves it clear that, in order for agent i to
compute ∂F/∂six and ∂F/∂siy when operating in gradient mode, it must make
use of all constituents of its current view, including the locations of agents oper-
ating in random mode. However, we know from experience that such locations
can be somewhat jittery and thereby contribute to gradient calculation mainly
as noise. For this reason, agents operating in random mode always communicate
invalid coordinates when sending out their locations. They can then be easily
identified by the receiving agents and their locations ignored when computing
the gradient of F .

3.4 Estimating the event density function

Computing ∂F/∂six and ∂F/∂siy also requires agent i to estimate the value of
φ all over Ω based on a recent time window. At time t this window is given by
the interval [t−TimeWindow , t], where TimeWindow is another parameter, one
that gives rise to a trade-off between how many events can be used to estimate
φ (larger values for TimeWindow are preferable) and how up-to-date φ can be
taken to be (smaller values for TimeWindow are preferable).

In order to handle the spatial dependencies of φ, we subdivide the target
region into ∆×∆ cells for suitably chosen ∆ and use a new density function, φ′,
as a surrogate for φ. The new function is best written as φ′i(`,m, t), where ` and
m are nonnegative integers serving to index each cell along the two dimensions
and the subscript i is meant to emphasize that φ′i refers to agent i’s local estimate
of φ′. The value of φ′i(`,m, t) is computed by first totaling the number of events
that according to agent i’s current view occurred at some point in cell (`,m)
during the time interval [t − TimeWindow , t], and then normalizing the result
over all cells so that the greatest resulting value of φ′i is 1.

3.5 Switching the execution mode

At time t = 0 it is impossible to calculate φ′ for any cell, so all agents start out in
random mode. From then on all agents may switch back and forth between the
two execution modes, depending on the event-occurrence pattern they detect at
their current locations. This movement between the two modes depends on the
current value of |(∂F/∂six, ∂F/∂siy)|, in the case of agent i, and on two further
parameters, RtoGMinGrad and GtoRMaxGrad .
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Whenever agent i is up for another move, it computes the magnitude |(∂F/
∂six, ∂F/∂siy)| based on its current view of the system. If agent i is currently
operating in random mode and the computed magnitude falls strictly above
RtoGMinGrad , then it switches to gradient mode already for the move it is
about to make. If its current mode is the gradient mode and the magnitude
falls strictly below GtoRMaxGrad , then it switches to random mode.

This is the basic switch policy that agent i follows, but note that it may per-
petuate the agent’s operation in gradient mode should it continually encounter
sufficiently high event densities. This can be problematic and a case in point is
precisely the scenario illustrated above with respect to Figure 1. We help agents
avoid such a pitfall by employing yet another parameter, GtoRProb, which is
the probability with which an agent in gradient mode switches to random mode
upon preparing to make a new move even if the relevant gradient components
indicate its permanence in gradient mode. Upon switching to random mode,
the first GtoRFirstSteps steps are all in the same, randomly chosen direction,
GtoRFirstSteps being another parameter. The goal of these first steps is to
jump-start the agent on the task of seeking new places to monitor.

4 Computational experiments

In this section we present computational results for a few representative sensing
tasks. They were designed to highlight the working of our algorithm’s inner-
most core, which is the agents’ ability to switch between two execution modes
depending on parameter values. Our results are derived from computational
simulations carried out for Ω a 1 000 × 1 000 square and ∆ = 10, with radii
Rs = 100 and Rc = 200. For each specific application, supplementary videos
are also provided.

We evaluate our algorithm’s performance through the use of two metrics,
both related to the number of events that, throughout the entire simulation, get
detected by the agents. Both metrics are significant, but each one’s particular
importance in practice depends on the sensing task at hand. They are:

Global fraction of events: The fraction representing how many events were
detected by at least one agent.

Average local fraction of events: The average of several fractions, one for
each agent, each representing how many events were taken notice of by
that specific agent. An agent takes notice of an event by either detecting
it directly or receiving it in a message from another agent.

The first of these metrics is of a global character and tends to be higher
as more events fall within an agent’s sensing radius. The second metric is
of an entirely local nature, since it relates to how the various agents perceive
the occurrence of events. This metric tends to be higher as both sensing and
communicating are carried out more effectively by the agents. In what follows,
these two metrics are always reported as averages (with confidence intervals at
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the 95% level) over all instants of 200 independent simulations, each one starting
with the agents positioned uniformly at random inside Ω.

Window-based versions of these metrics can be obtained by taking into ac-
count only the events detected within a certain time window centered at time
t. We give plots of these versions in Appendix B, where averages over the 200
simulations are shown as a function of t, again with confidence intervals at the
95% level. These intervals are sometimes quite small, therefore imperceptible
in the figures.

In all cases we report results for three distinct agent behaviors regarding the
switch between the random mode and the gradient mode, each one controlled
by the RtoGMinGrad , GtoRMaxGrad , and GtoRProb parameters:

Random behavior: This agent behavior occurs when RtoGMinGrad is very
large (denoted by RtoGMinGrad =∞) and therefore no agent ever leaves
the random mode. This is our control scenario for evaluating how effective
gradient-following can be.

Gradient behavior: At the opposing end we have GtoRProb = 0, in which
case an agent can only return to the random mode as a function of the
gradient of F . Because all agents start out in random mode, this means
that any agent encountering sufficient event density for it to switch to
gradient mode (as controlled by the RtoGMinGrad parameter) will remain
in gradient mode until that density once again becomes insufficient (as
controlled by the GtoRMaxGrad parameter).

Mixed behavior: This is the general behavior described in Section 3. It
corresponds to setting RtoGMinGrad , GtoRMaxGrad , and GtoRProb to
nonzero finite values.

4.1 Experiment 1: One moving rain cloud

In this experiment, a rain cloud is simulated that moves uniformly from left
to right across Ω as shown in Figure 2. Each of the simulations comprised
a total of 900 000 events, each one representing the fall of a raindrop on the
ground but with VisTime = 0 (no further visibility, as in the case of a highly
porous surface). All parameters are as given in Table 1, results in Table 2.
Sample animations are given in supplementary videos for the random (http:
//www.cos.ufrj.br/~valmir/EPB2015-E1-R.mp4), mixed (http://www.cos.
ufrj.br/~valmir/EPB2015-E1-M.mp4), and gradient (http://www.cos.ufrj.
br/~valmir/EPB2015-E1-G.mp4) behaviors.

No matter which of the two metrics we concentrate on, Table 2 is unequivocal
in pointing to the gradient behavior as the one to be chosen. In a situation in
which events leave no footprint and moreover occur only on a moving patch
inside Ω, the only possibility for agents operating in random mode to come
across any event at the time of its occurrence is to chance upon the moving
patch and then switch to gradient mode. This explains the superiority of the
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(a) t = 0 (b) t = 90 000

Figure 2: Initial (a) and final (b) event densities for Experiment 1.

Table 1: Parameter values for Experiment 1.

Parameter
Behavior

Random Mixed Gradient
Maximum value of t 90 000
N 30
StillTime 10
RtoGMinGrad ∞ 0.01 0.01
GtoRMaxGrad ∞ 0.00001 0.00001
GtoRProb 1 0.005 0
GtoRFirstSteps 0 10 0
StepSize 30
VisTime 0
TimeWindow 1 000

Table 2: Results for Experiment 1. Confidence intervals correspond to the 95%
level.

Metric
Behavior

Random Mixed Gradient
Global fraction of events (%) 15.0± 0.1 51.5± 0.3 76.3± 0.1
Average local fraction of events (%) 6.8± 0.1 33.2± 0.4 72.0± 0.3
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gradient behavior, followed by the mixed behavior and by the random behavior
(this one trailing far behind).

Further examining the figures for the gradient behavior reveals only a small
difference between the global metric and the average local one. This means that,
while clustering about the moving patch, those agents that do so are capable of
efficiently communicating to one another most of what they sense. In the end,
on average an agent has been notified of almost all events that got detected by
at least one agent.

Additional details can be seen in Figure B.1, where the evolution in time of
the window-based versions of the two metrics is shown for this experiment. The
metrics’ evolution is mostly uneventful, with values rising toward a certain level
and being sustained there throughout the simulation. The one marked exception
is that of the window-based local metric when the agents operate under the
mixed behavior. In this case, the value that is attained after the initial growth
fails to be sustained and begins to undergo a slow decrease. Readily, the farther
the rainy patch is from the middle longitudes of Ω, the less effective inter-agent
communication becomes. This is so because the distance between the agents
actually detecting the events (those operating in gradient mode) and the ones
roaming about all of Ω (those operating in random mode) becomes on average
significantly larger.

4.2 Experiment 2: Two moving rain clouds

The setting for this second experiment is similar to that of Experiment 1, the
main difference being a second rain cloud that trails the first across Ω, having
entered the scene at t = 10 000 (Figure 3). The number of events per simulation
now totals 1 650 000. Parameter values are given in Table 3, results in Table 4.
Sample animations are given in supplementary videos for the random (http:
//www.cos.ufrj.br/~valmir/EPB2015-E2-R.mp4), mixed (http://www.cos.
ufrj.br/~valmir/EPB2015-E2-M.mp4), and gradient (http://www.cos.ufrj.
br/~valmir/EPB2015-E2-G.mp4) behaviors.

Comparing the results in Table 4 to those of Table 2 (for Experiment 1)
reveals that now agents are better off adopting the mixed (rather than the
gradient) behavior. To see why this is so, consider that the appearance of the
second rain cloud is challenging to the agents currently concentrating on the first
one, in the sense that, in order to reach it, they first have to leave the gradient
mode, then cross the dry patch between the two rain clouds, and finally revert
to gradient mode once again upon detecting the increase in event density that
the second rain cloud entails.

The superiority of the mixed behavior in the case of Experiment 2 holds for
the two metrics we have adopted, with the gradient behavior following close
behind and the random behavior once again trailing significantly farther back.
Moreover, once again it is the case that, for the mixed behavior, the two metrics
do not differ greatly and therefore we see that whatever the agents detect is
nearly as effective locally as it is globally. In the case of Experiment 2, this is
true of the gradient behavior as well.
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(a) t = 0 (b) t = 15 000

(c) t = 40 000 (d) t = 90 000

Figure 3: Evolution of the event density for Experiment 2 (a–d).
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Table 3: Parameters values for Experiment 2.

Parameter
Behavior

Random Mixed Gradient
Maximum value of t 90 000
N 30
StillTime 10
RtoGMinGrad ∞ 0.01 0.01
GtoRMaxGrad ∞ 0.00001 0.00001
GtoRProb 1 0.0005 0
GtoRFirstSteps 0 10 0
StepSize 30
VisTime 0
TimeWindow 1 000

Table 4: Results for Experiment 2. Confidence intervals correspond to the 95%
level.

Metric
Behavior

Random Mixed Gradient
Global fraction of events (%) 14.9± 0.1 50.1± 0.2 41.5± 0.1
Average local fraction of events (%) 6.9± 0.1 44.8± 0.3 39.1± 0.1

Still in comparison to the data for Experiment 1, it is worth noting that
figures are now significantly lower under the gradient behavior (this, in fact, is
why in Experiment 2 the mixed behavior rose to the top). The reason for this,
clearly, is that while in the gradient behavior agents neglect the second rain
cloud altogether, thence the ensuing drop in their performance.

Additional insight can be gained by examining the evolution in time of
the window-based versions of the two metrics (Figure B.2). Clearly, up un-
til t = 10 000 (the time of appearance of the second rain cloud), the agents’
performances in either of the two gradient-based behaviors are indistinguish-
able. Between this time and that at which the second wet patch becomes fully
contained in Ω, performance under these two behaviors undergoes a significant
drop. Afterwards the mixed behavior succeeds in gradually leading the system
to some degree of recovery from the drop while the gradient behavior does not.

4.3 Experiment 3: Persistent pollutants

This experiment continues the trend initiated by Experiment 2 in that events are
concentrated in more than one patch inside Ω and moreover new patches appear
as time elapses. The two settings differ, though, mainly in that the event patches
no longer move, but also in that they now appear more abruptly and also with
different event densities, totaling 750 000 events (Figure 4). The new experiment
also sets VisTime = 100, the metaphor now being that of pollutant particles
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(a) 0 ≤ t ≤ 25 000 (b) 25 000 < t ≤ 50 000

(c) 50 000 < t ≤ 75 000 (d) 75 000 < t ≤ 100 000

Figure 4: Evolution of the event density for Experiment 3 (a–d).
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Table 5: Parameter values for Experiment 3.

Parameter
Behavior

Random Mixed Gradient
Maximum value of t 100 000
N 50
StillTime 20
RtoGMinGrad ∞ 0.01 0.01
GtoRMaxGrad ∞ 0.00001 0.00001
GtoRProb 1 0.01 0
GtoRFirstSteps 0 10 0
StepSize 25
VisTime 100
TimeWindow 1 000

Table 6: Results for Experiment 3. Confidence intervals correspond to the 95%
level.

Metric
Behavior

Random Mixed Gradient
Global fraction of events (%) 57.5± 0.2 80.6± 0.2 45.3± 0.3
Average local fraction of events (%) 51.8± 0.3 59.7± 0.4 24.5± 0.1

that stick to the environment and therefore have a nonzero visibility time. The
parameter values used are those shown in Table 5. We give results in Table 6.
Sample animations are given in supplementary videos for the random (http:
//www.cos.ufrj.br/~valmir/EPB2015-E3-R.mp4), mixed (http://www.cos.
ufrj.br/~valmir/EPB2015-E3-M.mp4), and gradient (http://www.cos.ufrj.
br/~valmir/EPB2015-E3-G.mp4) behaviors.

The most striking figures in Table 6 are those for the random behavior,
which not only surpass those of the previous experiments by a great margin
but also put random behavior ahead of gradient behavior. The main reason
for this seems clear: given that the event patches remain spatially static once
they appear, the freely roaming agents in random mode eventually succeed in
detecting a sizable fraction of the events, even if they cover the denser patches
somewhat thinly.

Other interesting data in the table are those referring to the agents’ perfor-
mance under the gradient behavior. In this case they fare worse than they do
under random behavior, and again the reason seems clear: as denser patches
continue to crop up, those agents not yet involved with monitoring the already
existing patches will tend to be too few, certainly fewer than necessary to pro-
vide the new patches with any degree of satisfactory coverage.

Given these explanations for the agents’ performance under the random
behavior and the gradient behavior, it should be no surprise that, as in Experi-
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ment 2, once again the mixed behavior is the best option. Its mixed nature seems
to alleviate the shortcomings of the other two behaviors, much as it strengthens
their advantages. Note, additionally, that in the two behaviors involving any
participation of the gradient mode the local metrics are valued significantly be-
low the global one. What seems to be happening is that, because of the patches’
spatial separation from one another, effectively conveying sensing information
from agents at one patch to those at another depend more on agents operating
in random mode than it would otherwise do.

The evolution in time of the window-based metrics, shown in Figure B.3,
provides further valuable information. As in the case of Experiment 2, the
appearance of each new, spatially separated patch of events causes significant
drops in performance when the agents are in either of the two gradient-based
behaviors. Recovery always follows under the mixed behavior, though to some-
what lower levels, which eventually guarantees its overall superiority. As for the
gradient behavior, some recovery also takes place but is severely insufficient to
lead to any significant level of overall performance. In particular, such recovery
only happens while there exist agents operating in random mode, which is re-
flected in the complete absence of any recovery from the appearance of the new
event patches right past t = 50 000 and t = 75 000.

5 Conclusion

We have introduced a new distributed algorithm for a collection of mobile agents
to monitor a two-dimensional domain seeking to sense and possibly store events
of a certain nature occurring in their target region. The algorithm is fully
distributed, in the sense that not even leader agents are needed, and is also
fully adaptive, in the sense that it strives for agents to perform well in their
sensing tasks even if the events in question vary both spatially and temporally.
At the heart of the algorithm lies the notion of an execution mode, of which
there are two (the random mode and the gradient mode), which in essence is a
pattern of behavior allowing the agent to concentrate on certain specific aspects
of the monitoring task to be carried out.

Agents operating in random mode are tailored to handle the uncertainties
of some situations, such as those in which events tend to happen unpredictably.
Those operating in gradient mode find guidance in the locally perceived density
of events to move toward points that may surround their current locations hav-
ing higher values of a density-dependent function. Depending on a variety of
parameters whose setting in turn depends on the specific application at hand,
agents are capable of switching back and forth between the two execution modes
and thereby help the system as a whole profit as much as possible from each
mode’s characteristics.

We illustrated some of this interplay of parameter values by means of three
computational experiments, each one designed to highlight those aspects of an
application that justify the spectrum of behaviors we called random, mixed, and
gradient. Such aspects include the occurrence of events whose spatial coordi-
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nates vary with time, both within a connected portion of the target region and
otherwise; the rapid change in the overall event density across spatially sepa-
rated portions of the target region; and some of the peculiarities of an event’s
environmental footprint.

Our solution has been given for the case of a two-dimensional target region
but nothing prevents its straightforward extension to three dimensions, provided
only that the agents themselves can exist and move in a three-dimensional set-
ting. It would also be straightforward to adopt sensing and communication
models more realistic than those of Eqs. (1) and (2), respectively. In a similar
vein, and notwithstanding its already large set of parameters, endowing the al-
gorithm with even more parameters should not be out of the question. In fact,
the ability to have so many of its details adjustable is precisely what makes it
potentially applicable to a wide variety of situations.
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A Computing the gradient

We first rewrite Eq. (4) for fixed t as

F (s) =

∫
Ω

φ(q)dq −
∫

Ω

φ(q)

N∏
k=1

[1− pk(q)]dq. (A.1)

Then we proceed by differentiating F with respect to six, which yields

∂F

∂six
= −

∫
Ωi

φ(q)

N∏
k=1
k 6=i

[1− pk(q)]
∂

∂six
[1− pi(q)]dq, (A.2)

where Ωi is the intersection of Ω with the radius-Rs circle centered at si =
(six, siy). This follows from the fact that pi(q) does not depend on six for
q ∈ Ω \ Ωi, by Eq. (1). By the same token, noting further that pk(q) = 0
whenever Ωk ∩ Ωi = ∅ leads to

∂F

∂six
= −

∫
Ωi

φ(q)

N∏
k=1
k 6=i

Ωk∩Ωi 6=∅

[1− pk(q)]
∂

∂six
[1− pi(q)]dq. (A.3)

Using q = (qx, qy), and recalling that di = [(six−qx)2 +(siy−qy)2]1/2, we obtain

∂pi
∂six

=
2(six − qx)

Rs

(
1

Rs
− 1

di

)
(A.4)

and

∂F

∂six
=

∫
Ωi

φ(q)

N∏
k=1
k 6=i

Ωk∩Ωi 6=∅

[1− pk(q)]
2(six − qx)

Rs

(
1

Rs
− 1

di

)
dq. (A.5)

As explained in Section 3.4, for use in the algorithm by agent i in relation
to time t, subdividing Ω into the square cells of side ∆ while φ′i substitutes
for φ requires an approximation to the above expression for ∂F/∂six. Using
q = (q`, qm) as the central point of cell (`,m) leads to the discrete approximation

∂F

∂six
≈
∑
`

∑
m

φ′i(`,m, t)

N∏
k=1
k 6=i

Ωk∩Ωi 6=∅

[1− pk(q)]
2(six − qx)

Rs

(
1

Rs
− 1

di

)
, (A.6)

where ` and m range over the cells that intersect Ωi and di = [(six − q`)2 +
(siy − qm)2]1/2.

The case of ∂F/∂siy is entirely analogous and yields

∂F

∂siy
≈
∑
`

∑
m

φ′i(`,m, t)

N∏
k=1
k 6=i

Ωk∩Ωi 6=∅

[1− pk(q)]
2(siy − qy)

Rs

(
1

Rs
− 1

di

)
. (A.7)
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B Additional figures

The figures in this appendix accompany the discussion in Section 4. They refer
to the window-based versions of the two metrics introduced in that section.

(a)

(b)

Figure B.1: Evolution in time of the average global (a) and local (b) window-
based metrics for Experiment 1. Window size is 900. Confidence intervals
correspond to the 95% level.
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(a)

(b)

Figure B.2: Evolution in time of the average global (a) and local (b) window-
based metrics for Experiment 2. Window size is 900. Confidence intervals
correspond to the 95% level.

21



(a)

(b)

Figure B.3: Evolution in time of the average global (a) and local (b) window-
based metrics for Experiment 3. Window size is 1 000. Confidence intervals
correspond to the 95% level.
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