
This item is the archived preprint of:

Resilient application placement for geo-distributed cloud networks

Reference:
Spinnewyn Bart, Mennes Ruben, Botero Juan Felipe, Latré Steven.- Resilient application placement for geo-distributed cloud
networks
Journal of network and computer applications - ISSN 1084-8045 - 85(2017), p. 14-31
Full text (Publisher's DOI): http://dx.doi.org/doi:10.1016/J.JNCA.2016.12.015

Institutional repository IRUA

http://anet.uantwerpen.be/irua

Resilient Application Placement for

Geo-Distributed Cloud Networks

Bart Spinnewyna,⇤⇤, Ruben Mennesa,⇤, Juan Felipe Boterob,⇤, Steven Latréa,⇤

a
Department of Mathematics and Computer Science, University of Antwerp - iMinds,

Antwerp, Belgium

b
Department of Electronics and Telecommunications, University of Antioquia, Medellin,

Colombia

Abstract

The strong uptake of cloud computing has led to an important increase of
mission-critical applications being placed on cloud environments. Those ap-
plications often require high levels of availability coupled with guarantees on
a minimum level of throughput and a maximum level of response time. To
achieve the lowest response time possible, clouds are more and more decentral-
ized, leading to a heterogeneous network of micro clouds positioned on the edge
of the network and possibly interconnected by best-e↵ort links. This hetero-
geneous environment introduces important challenges for the management of
these clouds as the heterogeneity results in an increased failure probability. In
this paper, we address these challenges by providing a resilient placement of
mission-critical applications on geo-distributed clouds. We present an exact so-
lution to the problem, which is complemented by two heuristics: a near-optimal
distributed genetic meta-heuristic and a scalable centralized heuristic based on
subgraph isomorphism detection. A detailed performance evaluation shows that,
with the newly proposed heuristic based on subgraph isomorphism detection,
we can double the amount of applications satisfying availability requirements, in
cloud environments comprising over 100 nodes, while keeping the time required
to calculate the solution under 20 seconds.

Keywords: Cloud Computing, Quality of Service, Application Placement,

Reliability

2010 MSC: 00-01, 99-00

⇤Corresponding author
⇤⇤Principal corresponding author

Email addresses: bart.spinnewyn@uantwerpen.be (Bart Spinnewyn),
ruben.mennes@uantwerpen.be (Ruben Mennes), juanf.botero@udea.edu.co (Juan Felipe
Botero), steven.latre@uantwerpen.be (Steven Latré)

Preprint submitted to Journal of Network and Computer Applications January 26, 2017

1. Introduction

Cloud computing o↵ers computing resources as a utility: one no longer has
to manage and maintain its own private computing infrastructure, instead com-
puting infrastructure is time-shared and can be accessed on-demand. Cloud
technology allows elastic scaling of resources when the demand for an appli-5

cation changes. While traditionally a cloud infrastructure is located within a
data-center, recently, there is a need for geographical distribution. Consider for
instance the case of cloud robotics [1]. Modern robots are capable of adapting
to changing conditions, however they need a massive amount of intelligence to
function properly, resulting in complex machines and control systems. Because10

of latency constraints, great care must be taken with the placement and man-
agement of the intelligence. On the one hand, time-critical control services such
as navigation and sensor information processing must be placed close to the base
station serving the working area. On the other hand, non time-critical services,
such as the facility management function controlling the plant which houses the15

robots, can be placed remotely, as their actions do not a↵ect real-time behavior.
Lately, this need for geo-distribution has led to a new evolution of decen-

tralization. Most notably, the extension of cloud computing towards the edge
of the enterprise network, is generally referred to as fog or edge computing [2].
In fog computing, computation is performed at the edge of the network at the20

gateway devices, reducing bandwidth requirements, latency, and the need for
communicating data to the servers. Second, mist computing pushes processing
even further to the network edge, involving the sensor and actuator devices [3].
Closely related to mist computing is the cloud robotics architecture put forward
by Hu et al. [4]. The architecture leverages the combination of a virtual ad-hoc25

cloud formed by machine-to-machine (M2M) communications among partici-
pating robots, and an infrastructure cloud enabled by machine-to-cloud (M2C)
communications.

Compared to a traditional cloud computing environment, a geo-distributed
cloud environment is less well-controlled and behaves in an ad-hoc manner.30

Devices may leave and join the network, or may become unavailable due to
unpredictable failures or obstructions in the environment.

Additionally, while in a data-center heterogeneity is limited to multiple gen-
erations of servers being used, there is a large spread on capabilities within a
geo-distributed cloud environment. Memory and processing means range from35

high (e.g. servers), over medium (e.g. cloudlets, gateways) to very low (e.g.
mobile devices, sensor nodes). While some communication links guarantee a
certain bandwidth (e.g. dedicated wired links), others provide a bandwidth
with a certain probability (e.g. a shared wired link), and others do not provide
any guarantees at all (wireless links).40

Reliability is an important non-functional requirement, as it outlines how
the software systems realizes its functionality [5]. The unreliability of substrate
resources in a heterogeneous cloud environment, severely a↵ects the reliability
of the applications relying on those resources. Therefore, it is very challenging
to host reliable applications on top of unreliable infrastructure [6].45

2

Moreover, traditional cloud management algorithms cannot be applied here,
as they generally consider powerful, always on servers, interconnected over wired
links. Many algorithms do not even take into account bandwidth limitations.
While such an omission can be justified by an appropriately overprovioned net-
work bandwidth within a data-center, it is not warrented in the above described50

geo-distributed cloud networks.
As a motivating example, consider the problem introduced by Saska et

al. [7]. In the investigated scenario, the formation of multiple Micro Air Vehi-
cles (MAVs) has to reach a desired target region in a complex environment with
obstacles, while keeping predefined relative positions between the robots. The55

authors present a Model Predictive Control (MPC) based algorithm for main-
tenance of leader-follower formations of MAVs. MPC is normally implemented
in a centralized fashion. In large-scale interconnected systems a centralized
control scheme may not be possible, and decentralized or distributed control
is required [8]. In Figure 1, sense and actuation services (yellow) are placed

(a) O✏oading to a remote cloud. (b) Execution on the drones.

Figure 1: Distribution of MPC services in a leader follower scenario for MAVs.

60

on each MAV. Four distributed MPC services (green) are needed for real-time
control. A first way to distribute the MPC services is to o✏oad them to a re-
mote infrastructure cloud (Figure 1a). In this configuration, all communications
between the actuation and sensing services happen via M2C communications,
routed over one single base station, e↵ectively forming a single point of failure.65

A second way of distribution is to execute each MPC service on a MAV (1b).
In this configuration we only make use of M2M communications. While the
first configuration can benefit from the virtually infinite computing capability
that resides within the remote cloud infrastructure, the second has to make
do with the limited computing capabilities within the MAVs. However, while70

the first configuration requires all sensing data to be uploaded to the cloud in
real-time, the second configuration requires no up-link capabilities at all, as the
sensing data is kept within the M2M network. Additionally, while the first con-
figuration requires the MAVs, the remote cloud infrastructure and their M2C
interconnections to be on-line, the second configuration requires the MAVs, and75

their M2M interconnections to be on-line. Whichever configuration results in
the best availability will ultimately depend on the failure behavior of the physi-

3

cal resources used. To decide which is the best configuration, we need intelligent
cloud management algorithms that, next to computing resources and bandwidth
limitations, consider the availability of mission-critical applications.80

Current management approaches fail to provide availability guarantees in
these geo-distributed cloud networks for one of following reasons. First, most
approaches do not consider availability at all. Second, there are cloud manage-
ment solutions that consider failures, but lack a model to calculate availability.
Finally, there are approaches that model availability, but make too limiting85

assumptions.
In this paper, we consider the problem of processing an initial collection of

application requests upon startup of a cloud environment, which is referred to
as the o↵-line Application Placement Problem (APP) [9]. The APP has two
integral parts: first, there is admission control, which selects the application re-90

quests that are accepted. Second, there is placement control, which determines
how to distribute the application components in the cloud. The o↵-line APP
di↵ers from the on-line version, in that the application requests are all consid-
ered simultaneously, and not sequentially. We model the application requests
as Virtual Networks (VNs), consisting of services and their required communi-95

cation channels. The cloud infrastructure is modeled as a Substrate Network
(SN) consisting of physical nodes and their interconnecting links. The problem
of mapping the VNs to a SN, whilst considering failures in the SN is known as
the Survivable Virtual Network Embedding (SVNE) problem [10]. Given the
failure behavior of the cloud infrastructure, we solve the problem of initial distri-100

bution of application components over the cloud environment, whilst satisfying
a minimum level of total availability for each application.

To the best of our knowledge, this paper is the first that provides a compu-
tationally feasible approach to place applications in a realistic and large-scale
failure prone cloud environment that provides guarantees on the availability.105

More specifically, the contributions of this paper are four-fold. First, we present
a novel approach of placing applications in a failure prone cloud environment:
by adding additional replicas we are able to provide availability guarantees.
This is formulated as an Integer Linear Program (ILP), which can be used to
find an exact solution. Second, we propose a distributed fault-tolerant meta-110

heuristic based on genetic programming: a distributed set of workers concur-
rently search for the best placement of applications (including the definition of
replicas). Third, we present a scalable centralized algorithm using the paradigm
of subgraph isomorphism: this heuristic approach provides ultra-fast placement
of applications with a cost in optimality. Fourth, based on an extensive per-115

formance evaluation that investigates the performance of di↵erent application
types, we provide clear guidelines on when and how to apply which application
placement algorithm.

The remainder of the paper is organized as follows. Section 2 discusses
related works on cloud management algorithms and survivability. In Section 3120

our model for availability is introduced, and in Section 4 the APP is formulated
as an Integer Linear Program (ILP), which will be used to find exact solutions.
In Section 5 a near-optimal distributed genetic meta-heuristic, and a scalable

4

centralized heuristic based on subgraph isomorphism detection are presented.
Section 6 presents simulations results that evaluate the proposed heuristics.125

Finally, Section 8 concludes the paper and summarizes the key findings.

2. Related work

In this section, the state of the art with regard to the APP in cloud envi-
ronments is discussed. Early work on application placement merely considers
nodal resources, such as Central Processing Unit (CPU) and memory capabili-130

ties. Deciding whether requests are accepted and where those virtual resources
are placed then reduces to a Multiple Knapsack Problem (MKP) [11]. An MKP
is known to be NP-hard and therefore optimal algorithms are hampered by
scalability issues. A large body of work has been devoted to finding heuristic
solutions. For instance, Xu et al. focus on the multi-objective Virtual Machines135

(VMs) placement problem [12]. They propose a genetic algorithm with fuzzy
multi-objective evaluation for e�ciently searching the large solution space and
conveniently combining possibly conflicting objectives. While Yi et al. propose
an evolutionary game theoretic framework for adaptive and stable application
deployment in clouds [13]. Other works include Network Interface Card (NIC)140

capabilities as a dimension in the MKP [14] and assumes an over-provisioned
inner-network. While plausible within the boundaries of one data-center, this
condition rarely holds when a combination of multiple clouds or even a wireless
environment is considered.

When the application placement not only decides where computational en-145

tities are hosted, but also decides on how the communication between those en-
tities is routed in the SN, then we speak of network-aware APP. Network-aware
application placement is closely tied to Virtual Network Embedding (VNE) [15].

An example of a network-aware approach is the work from Moens et al. [16].
It employs a Service Oriented Architecture (SOA), in which applications are150

constructed as a collection of communicating services. This optimal approach
performs node and link mapping simultaneously. In contrast, other works
try to reduce computational complexity by performing those tasks in distinct
phases [17], [18].

While the traditional VNE problem assumes that the SN network remains155

operational at all times, the SVNE problem does consider failures in the SN.
For instance, Ajtai et al. try and guarantee that a virtual network can still be
embedded in a physical network, after k network components fail. They provide
a theoretical framework for fault-tolerant graphs [19]. However, in this model,
hardware failure can still result in service outage as migrations may be required160

before normal operation can continue.
Mihailescu et al. try to reduce network interference by placing Virtual Ma-

chines (VMs) that communicate frequently, and do not have anti-collocation
constraints, on Physical Machines (PMs) located on the same racks [20]. Addi-
tionally, they uphold application availability when dealing with hardware fail-165

ures by placing redundant VMs on separate server racks. A major shortcoming

5

is that the number of replicas to be placed, and the anti-collocation constraints
are user-defined.

Csorba et al. propose a distributed algorithm to deploy replicas of VM
images onto PMs that reside in di↵erent parts of the network [21]. The objective170

is to construct balanced and dependable deployment configurations that are
resilient. Again, the number of replicas to be placed is assumed predefined.

SiMPLE allocates additional bandwidth resources along multiple disjoint
paths in the SN [22]. This proactive approach assumes splittable flow, i.e.
the bandwidth required for a Virtual Link (VL) can be realized by combining175

multiple parallel connections between the two end points. The goal of SiMPLE is
to minimize the total bandwidth that must be reserved, while still guaranteeing
survivability against single link failures. However, an important drawback is
that while the required bandwidth decreases as the number of parallel paths
increases, the probability of more than one path failing goes up exponentially,180

e↵ectively reducing the VL’s availability.
Chowdhury et al. propose Dedicated Protection for Virtual Network Em-

bedding (DRONE) [23]. DRONE guarantees VN survivability against single
link or node failure, by creating two VNEs for each request. These two VNEs
cannot share any nodes and links.185

Aforementioned SVNE approaches [19], [20], [21], [22], [23] lack an avail-
ability model. When the infrastructure is homogeneous, it might su�ce to
say that each VN or VNE need a predefined number of replicas. However,
in geo-distributed cloud environments the resulting availability will largely be
determined by the exact placement configuration, as moving one service from190

an unreliable node to a more reliable one can make all the di↵erence. There-
fore, geo-distributed cloud environments require SVNE approaches which have
a computational model for availability as a function of SN failure distributions
and placement configuration.

The following cloud management algorithms have a model to calculate avail-195

ability. Jayasinghe et al. model cloud infrastructure as a tree structure with
arbitrary depth [24]. Physical hosts on which VMs are hosted are the leaves of
this tree, while the ancestors comprise regions and availability zones. The nodes
at bottom level are physical hosts where VMs are hosted. Wang et al. were the
first to provide a mathematical model to estimate the resulting availability from200

such a tree structure [25]. They calculate the availability of a single VM as the
probability that neither the leaf itself, nor any of its ancestors fail. Their work
focuses on handling workload variations by a combination of vertical and hori-
zontal scaling of VMs. Horizontal scaling launches or suspends additional VMs,
while vertical scaling alters VM dimensions. The total availability is then the205

probability that at least one of the VMs is available. While their model su�ces
for traditional clouds, it is ill-suited for a geo-distributed cloud environment as
link failure and bandwidth limitations are disregarded.

In contrast, Yeow et al. define reliability as the probability that critical nodes
of a virtual infrastructure remain in operation over all possible failures [26].210

They propose an approach in which backup resources are pooled and shared
across multiple virtual infrastructures. Their algorithm first determines the re-

6

quired redundancy level and subsequently performs the actual placement. How-
ever, decoupling those two operations is only permissible when link failure can
be omitted and nodes are homogeneous.215

In previous work [27], an availability model for geo-distributed cloud net-
works was introduced, which considers any combination of node and link fail-
ures, and supports both node and link replication. The aforementioned model
was employed to study the problem of guaranteeing a certain level of availabil-
ity for applications. Using an ILP formulation of the problem and an exact220

solver, an increased placement ratio was demonstrated, compared to naive ap-
proaches which lack an availability model. While the ILP solver can find optimal
placement configurations for small scale networks, its computation time quickly
becomes unmanageable when the substrate network dimensions increase. In
[28] a first heuristic is presented. This distributed evolutionary algorithm em-225

ploys a pool-model, where execution of computational tasks and storage of the
population database (DB) are separated.

Compared to previous work, this paper presents the following novelties.
First, a fast new algorithm, based on subgraph isomorphism detection, is in-
troduced. In contrast to previous work, this new algorithm is scalable and is230

the only one that is applicable for real-life large-scale environemnts. Second,
a much more extensive evaluation is provided, considering multiple SN topolo-
gies and dimensions, and application types. In comparison to our previous
work, next to a flat SN, now also real-world Internet type topologies, gener-
ated by a transit-stub model, are studied. Additionally, not only unstructured235

applications, but also more practical application models, namely 3-Tier and
MapReduce, are simulated. Third, we carry out a detailed comparative study
to the performance of the presented heuristics, relative to traditional placement
algorithms, and homogeneous survivability methods. This study provides clear
guidelines about the applicability of each algorithm.240

3. Resilient cloud placement model

3.1. Application requests

This paper considers a SOA, which is a way of structuring IT solutions
that leverage resources distributed across the network [29]. In a SOA, each
application is described as its composition of services. Throughout this work,245

the collected composition of all requested applications will be represented by
the instance matrix (I).

Services have certain CPU (!) and memory requirements (�). Additionally,
bandwidth (�) is required by the VLs between any two services. A sub-modular
approach allows sharing of memory resources amongst services belonging to250

multiple applications.

3.2. Cloud infrastructure

Consider a substrate network consisting of nodes and links. Nodes have
certain CPU (⌦) and memory capabilities (�). Physical links between nodes

7

Symbol Description

A set of requested applications

S set of services

!
s

CPU requirement of service s

�
s

memory requirement of service s

�
s

1

,s

2

bandwidth requirement between services s1 and s2
I
a,s

instantiation of service s by application a: 1 if instanced, else 0

N set of physical nodes comprising the substrate network

E set of physical links (edges) comprising the substrate network

⌦
n

CPU capacity of node n

�
n

memory capacity of node n

pN
n

probability of failure of node n

B
e

bandwidth capacity of link e

pE
e

probability of failure of link e

R
a

required total availability of application a: lower bound on the
probability that at least one of the duplicates for a is available

� maximum allowed number of duplicates

Table 1: Overview of input variables to the Cloud Application Placement Problem (CAPP).

are characterized by a given bandwidth (B). Both links and nodes have a255

known probability of failure, pN and pE respectively. Failures are considered
to be independent.

3.3. The VAR protection method

Availability not only depends on failure in the SN, but also on how the ap-
plication is placed. Non-redundant application placement assigns each service260

and VL at most once, while its redundant counterpart can place those virtual
resources more than once. The survivability method presented in this work,
referred to as VAR, guarantees a minimum availabity by application level repli-
cation, while minimizing the overhead imposed by allocation of those additional
resources. VAR uses a static failure model, i.e. availability only depends on265

the current state of the network. Additionally, it is assumed that upon failure,
switching between multiple application instances takes place without any delay.
These separate application instances will be referred to as duplicates. Imme-
diate switchover yields a good approximation, when the duration of switchover
is small compared to the uptime of individual components. A small switchover270

time is feasible, given that each backup service is preloaded in memory, and
CPU and bandwidth resources have been preallocated. Furthermore, immedi-
ate switchover allows condensation of the exact failure dynamics of each compo-
nent, into its expected availability value, as long as the individual components
fail independently (a more limiting assumption).275

8

applications substrate

a1

services

a|A|

{I}{!,�,�} {⌦,�,pN ,B,pE}

a2

. . .

instan-

network

{�,R}

tiation
application-
placement

Figure 2: Overview of this work: applications {!,�,�}, composed of services {I}, are placed
on a substrate network where node {pN} and link failure {pE} is modeled. By increasing
the redundancy �, a minimum availability R can be guaranteed.

sharing of resources

CPU memory bandwidth

within application yes yes yes

amongst applications no yes no

Table 2: An overview of resource sharing amongst identical services and VLs.

In the VAR model, an application is available if at least one of its dupli-
cates is on-line. A duplicate is on-line if none of the PMs and Physical Links
(PLs), that contribute its placement, fail. Duplicates of the same application
can share physical components. An advantage of this reuse is that a fine-grained
tradeo↵ can be made between increased availability, and decreased resource con-280

sumption. An overview of resources’ reuse is shown in Table 2. In Figure 3

Application

Duplicate 1

Duplicate 2

s
1

s
2

s
3

n
1

n
2

n
3

n
4

n
5

n
1

n
2

n
3

n
4

n
5

(a) 0 replicated services

s
1

s
2

s
3

n
1

n
2

n
3

n
4

n
5

n
1

n
2

n
3

n
4

n
5

(b) 1 replicated VL

s
1

s
2

s
3

n
1

n
2

n
3

n
4

n
5

n
1

n
2

n
3

n
4

n
5

(c) 2 replicated services

Figure 3: Illustration of the VAR protection method.

three possible placement configurations using two duplicates are shown for one
application. In Figure 3a both duplicates are identical, and no redundancy is
introduced. The nodal resource consumption is minimal, as CPU and memory
for s1, s2, and s3 are provisioned only once. Additionally, the total bandwidth285

9

required for (s1, s2), and (s2, s3) is only provisioned once. The bandwidth con-
sumption of this configuration might not be minimal, if consolidation of two or
three services onto one PM is possible. This placement configuration does not
provide any fault-tolerance, as failure of either n1, n2 or n3, or (n1, n2), (n2, n3)
results in downtime.290

When more than one duplicate is placed and the resulting arrangements
of VLs and services di↵er, then the placement is said to introduce redundancy.
However, this increased redundancy results in a higher resource consumption. In
Figure 3b the application survives a singular failure of either (n4, n2), (n2, n3),
(n4, n5), or (n5, n3). The placement configuration depicted in Figure 3c survives295

all singular failures in the SN, except for a failure of n1.
Duplicates can be seen as a generalization of the placement configuration

model defined by Chowdhury et al. [23]. The authors place a primary and
backup VN to guarantee survivability of single node or link failures, which can
be considered two duplicates of the same VN. There are three key di↵erences be-300

tween their model and VAR’s. First, Chowdhury et al. require the placement of
exactly two duplicates, while VAR supports any number of duplicates. Second,
their approach requires all services for one duplicate to be located on di↵erent
nodes. In our approach, services of one duplicate can be consolidated onto one
physical node. Consolidation o↵ers the possibility to increase availability of a305

duplicate, and avoids wasting precious bandwidth resources. Third, their model
does not allow duplicates of the same application to share PMs or PLs. In our
model, duplicates of the same application can either have no parts of the SN in
common, have some parts of the SN in common (and possibly share resources),
or even have completely identical placement configurations (and require no ad-310

ditional resources). Those three di↵erences mean that their model cannot yield
any feasible solution for the problem depicted in Figure 3.

3.4. Availability calculation

In the previous section, an application was defined available, if at least one
of its duplicates is on-line. Hence, the total availability of an application is then
the probability that at least one of its duplicates is available. When at most �
duplicates are considered, then the total availability of application a is given by

Z(a) = P

"
�[

d=1

Da

d

#
,

where Da

d

denotes the event that duplicate d, of application a is available. The
event that this duplicate is not available is denoted by Da

d

.315

4. Formal problem description

In this section, the problem is formulated as a binary ILP. The input vari-
ables to the model were already described throughout Section 3. Given those
input variables, the algorithm finds a value for the decision variables listed in

10

Section 4.1 that minimizes the objective function (Section 4.3). The optimiza-320

tion is subject to the constraints listed in Section 4.2.

Symbol Description

C set of physical components in the SN, i.e. nodes and edges (C =
N [E)

D set of duplicates

M set of minterms

X set of all possible states

X(m) particular state of the substrate network, the state of each com-
ponent follows from m according to Equations 4 and 5

�
c

state of physical component c

b
c

(m) value of �
c

for component c in minterm m

⇣(d, a) availability of duplicate d for application a

Z(a) joint availability of application a

Table 3: Overview of auxiliary symbols used throughout the formulation of the ILP.

4.1. Decision variables

The decision variables are described in Table 4. O indicates which applica-
tion requests are accepted, while G provides detailed information about which
duplicates are actually placed. Information about the assignment of services to325

physical nodes is contained in ⇡, ⇧ and U , while � and ⌥ tell us how the VLs are
routed over the PLs. K, ⌧ and T are directly used for availability calculation.
Auxiliary variables are described in Table 3.

4.2. Constraints

4.2.1. Admission control330

At most, � duplicates can be placed for each application:

|D| = �.

An application can only be accepted if at least one of its duplicates is placed:

8a 2 A : Oa 
X

d2D

Gd,a.

4.2.2. Node-embedding

Nodal resources are only assigned to duplicates if they are considered placed:

8a 2 A, s 2 S, n 2 N, d 2 D : ⇡d,a

s,n

 Gd,a ⇥ I
a,s

.

The number of services hosted for each accepted duplicate equals the total
number of instantiated services. If a duplicate is not placed, no services are

11

Symbol Description

Oa acceptance of application a: 1 i.f.f. accepted

Gd,a placement of duplicate d of application a: 1 i.f.f. placed

⇡d,a

s,n

placement of service s for duplicate d of application a on node n:
1 i.f.f. hosted

⇧a

s,n

use of node n for hosting of service s by application a: 1 i.f.f.
used

U
s,n

hosting of service s on node n: 1 i.f.f. hosted

�d,a

s

1

,s

2

(e) placement of VL between services s1 and s2 on physical link e for
duplicate d of application a: 1 i.f.f. placed

⌥a

s

1

,s

2

(e) use of physical link e by at least one duplicate of application a
for the placement of the VL between s1 and s2: 1 i.f.f. placed

Kd,a

c

use of physical component c by duplicate d of application a: 1
i.f.f. used

⌧d,a
m

coverage of minterm m by duplicate d of application a: 1 i.f.f.
covered m

T a

m

availability of application a when the state of the network equals
X(m): 1 i.f.f. available

Table 4: Overview of decision variables to the binary ILP: variables can only assume 0 or 1.

instantiated:

8a 2 A, d 2 D : Gd,a ⇥
X

s2S

I
a,s

=
X

s2S

X

n2N

⇡d,a

s,n

.

If a service is hosted on a node for any of its duplicates, then ⇧a

s,n

equals 1:

8a 2 A, d 2 D, s 2 S, n 2 N : ⇡d,a

s,n

 ⇧a

s,n

.

For each duplicate a service is hosted on at most one node:

8a 2 A, d 2 D, s 2 S :
X

n2N

⇡d,a

s,n

 1.

Conservation of CPU and memory resources dictates:

8n 2 N :
X

a2A

X

s2S

⇧a

s,n

⇥ !
s

 ⌦
n

and
8n 2 N :

X

s2S

U
s,n

⇥ �
s

 �
n

.

12

A service must be hosted on a node, as soon as it is used by one of the duplicates:

8s 2 S, 8n 2 N :
X

a2A

X

d2D

⇡d,a

s,n

 U
s,n

⇥ |D|⇥
X

a2A

I
a,s

.

4.2.3. Link-embedding

Multi Commodity Flow (MCF) constraints on each node can be expressed
as: 8a 2 A, s1, s2 2 S, d 2 D, n1 2 N :

X

(n
1

,n

2

)2E

�d,a

s

1

,s

2

(n1, n2)�
X

(n
2

,n

1

)2E

�d,a

s

1

,s

2

(n2, n1) = ⇡d,a

s

1

,n

1

� ⇡d,a

s

2

,n

1

.

⌥a

s

1

,s

2

(e) indicates if at least one of an application’s duplicates uses e for this
VL: 8a 2 A,s1 2S,s2 2S,e 2E,d 2D :

�d,a

s

1

,s

2

(e)  ⌥a

s

1

,s

2

(e).

The total bandwidth used per link cannot exceed the total link capacity:

8e 2 E :
X

s

1

2S

X

s

2

2S

X

a2A

⌥a

s

1

,s

2

(e)⇥ �
s

1

,s

2

 B
e

.

4.2.4. Availability-awareness

For a duplicate to be available, each of the individual components it uses
must be available. A component is used by a duplicate if it hosts any of the335

duplicate’s services or VLs: 8a 2 A, d 2 D, c 2 C, s1, s2 2 S :

Kd,a

c

�
(
⇡d,a

s

1

,c

if c 2 N

⌥d,a

s

1

,s

2

(c) if c 2 E
. (1)

The state of an individual component is described as:

8c 2 C : �
c

=

(
0 if c fails

1 if c does not fail
. (2)

The probability that a component fails is given by:

8c 2 C : P [�
c

= 0] =

(
pN
c

if c 2 N

pN
e

if c 2 E
. (3)

The state of the substrate network can then be described as:

X = (�1,�2, . . . ,�|C|).

13

To facilitate systematical description of all possible SN states, which will be
further referred to as minterms, the following notation is introduced:

M = {0, 1, . . . , 2|C| � 1}

and
8m 2 M : X(m) = X|8c 2 C : �

c

= b
c

(m), (4)

where b
c

(m) 2 {0, 1} is defined by:

8m 2 M : m =
X

c2{0,1,...,|C|�1}

b
c

(m)⇥ 2c. (5)

As component failures are assumed independent, the probability of each minterm
is given by:

8m 2 M : P [X = X(m)]

=
Y

c2C|bc(m)=0

P [�
c

= 0]⇥
Y

c2C|bc(m)=1

P [�
c

= 1].

As stated earlier, a duplicate is available, if all physical components that con-
tribute to its placement are on-line:

8a 2A, d 2D : ⇣(a, d) = P

"
\

c2C
(�

c

=1) [(Kd,a

c

= 0)

#

=
X

m2M

⌧d,a
m

P [X=X(m)],

where the law of total probability was used:

⌧d,a
m

= P

"
\

c2C

(�
c

=1) [(Kd,a

c

=0)|X=X(m)

#
.

For the ILP this is reformulated as Equation 6. An additional Gd,a term ensures
that no minterm is covered when a duplicate is not placed (Gd,a=0): 8m 2
M, d 2 D, c 2 C, a 2 A :

⌧d,a
m

 Gd,a + (b
c

(m)� 1)Kd,a

c

. (6)

Finally, an application is available if at least one of its duplicates is available:

8a 2 A,m 2 M : T a

m

= P

"
[

d2D

⌧d,a
m

#
,

14

which can be formulated as:

8m 2 M, a 2 A : T a

m


X

d2D

⌧d,a
m

.

The total availability of an application is then given by:

8a 2 A : Z(a) =
X

m2M

T a

m

P [X=X(m)].

Finally the condition that an application is only placed if the joint availability
exceeds R

a

can be written as:

8a 2 A : 1�Oa +
X

m2M

T a

m

P [X=X(m)] � R
a

.

4.3. Objective function

The placement is sequentially optimized in multiple steps. In each step340

an objective function is minimized and results of previous steps are added as
equality constraints. The objective functions are listed in the order in which
they are used by the algorithm.

Maximize acceptance:

f1(A) = �
X

a2A

Oa.

Minimize bandwidth usage:

f2(A,E,S,�) =
X

a2A

X

e2E

X

s

1

,s

2

2S

⌥a

s

1

,s

2

(e)⇥ �
s

1

,s

2

.

Minimize CPU resources usage:

f3(A,N,S,!) =
X

n2N

X

a2A

X

s2S

⇧a

s,n

⇥ !
s

.

Minimize the number of duplicates used:

f4(A,D) =
X

a2A

X

d2D

Gd,a.

The last objective function ensures that multiple duplicates of the same applica-
tion are only placed if beneficial to maximize the placement ratio, or minimize345

resource usage.

5. Heuristic approaches for real-time calculation

The ILP formulation presented in the previous chapter can be used to find
exact solutions to the problem. In Section 6, it will be shown that when the

15

dimensions of the problem increase, even for small instances finding an exact350

solution to the problem quickly becomes computationally intractable. There-
fore two heuristic algorithms, which can find ”good-enough” solutions within a
reasonable time-frame, were developed.

5.1. GRECO: Genetic Reliable ClOuds application placement algorithm

A scalable algorithm to search for a good placement solution, by using a355

distributed Genetic Algorithm (GA), is defined. This algorithm is validated in
a pool-based framework, which allows a completely decentralized computation
of the solution and can even survive when the nodes that calculate the solution
fail. In this section, a Genetic Reliable ClOuds application placement algorithm
(GRECO) is described. Firstly, Section 5.1.1 explains the foundations of a GA.360

Secondly, the chromosome and its decoding, are explained in 5.1.2 and 5.1.3,
respectively. Finally, Section 5.1.4 describes the pool model.

5.1.1. Genetic Algorithm

GAs are a common tool to solve hard optimization problems. A GA uses
a chromosome representation to represent solutions in the solution space. A365

chromosome representation of one particular solution is referred to as an indi-
vidual. In a population-based GA multiple individuals are maintained at each
time during execution of the algorithm. The GA starts by creating a random set
of individuals, referred to as the seed population. Additionally, through several
iterations, the GA selects the best individuals (based on a selection operator).370

New solutions are generated in each iteration by combining chromosomes two
by two, producing (hopefully better) children. With a small probability there
can be a small mutation on one of the chromosomes. The last iteration step
is to check the end condition, which is highly problem-specific. The key idea
behind a GA is the use of the laws of natural selection and survival of the fittest375

to generate the solution [30].

5.1.2. Chromosome definition

The key challenge in creating a GA is finding a suitable chromosome repre-
sentation, because this representation will largely determine its performance. A
Biased-Random-key chromosome is proposed, which is an array of floating point380

values between 0 and 1, and is used to make decisions in the decoding phase
of the chromosome [31]. A biased-random-key allows definition of a decoder,
which can’t possibly create invalid solutions. Hence, one can be sure that the
o↵spring of two valid parent solutions, will also be valid solutions.

16

C =
⇥

A1, A2, · · · , A|A|| {z }
Order of the applications

,

S1,1
1 , S1,1

2 , · · · , S1,1
|S

1

|, S
1,2
1 , · · · , S1,�

1

|S
1

| , · · · , S
|A|,�|A|
|S|A||| {z }

Order of the services for each duplicate

,

N1,1
1 , N1,1

2 , · · · , N1,1
|S

1

|, N
1,2
1 , · · · , N1,�

1

|S
1

| , · · · , N
|A|,�|A|
|S|A||| {z }

PM number for each service in each duplicate

⇤
(7)

The chromosome described in Equation 7 consists of three main parts:385

1. A1, · · · , A|A|, describes the order in which the applications are placed.

2. S1,1
1 , · · · , S|A|,�|A|

|S|A|| describes the order in which the services are placed

within each duplicate.

3. N1,1
1 , · · · , N |A|,�|A|

|S|A|| determine which PM hosts which service for which

duplicate.390

5.1.3. Deterministic Decoding

When using a biased-random-key, there is no straight-forward way to inter-
pret the chromosome. Therefore, a decoding algorithm is used to translate the
chromosome into a solution in the solution space.

Within GRECO, the approach shown in Algorithm 1, is taken. First, the ap-395

plications are ordered by the value of the chromosome’s first part (A1, · · · , A|A|),
as this will define the order in which applications are prioritized in the actual
placement, the first step of Algorithm 1. Placement of an application, starts
by allocating its first duplicate. If that duplicate is allocated, then the real-
ized availability is calculated (line 6). If the realized availability exceeds the400

requested availability, then the application has succesfully been allocated, and
the decoder proceeds to the next application. On the other hand, if the realized
availability is lower than the requested availability, and the maximum number
of duplicates for this application has not been exceeded, then the decoder tries
to place an additional duplicate. If the required availability level is not met405

and the maximum number of duplicates has been placed, then the application
request is declined and its placement removed.

To place duplicate d of application a, first its services are ordered by the
value of the second part of the chromosome Sa,d

1 , Sa,d

2 , · · ·Sa,d

|Sa|, (line 8). For

each service s a list (L) is created, containing only the PMs that can run service410

s, while satisfying all necessary constraints (line 10). For each PM it must
be verified if the remaining CPU and memory capacity su�ce, and if there is
su�cient bandwidth to the PMs, that were added to the placement configuration
previously. Only PMs that satisfy those three constraints are included in L. If
list L is empty, then application a is removed from the placement because there415

is no valid way to place a (line 12). Else, if |L| > 0, then L is ordered and the

17

nth PM is selected (line 15). This PM will host service s for duplicate d and the
required bandwidth for the VLs between s and the previously handled services
is allocated. The VLs is routed over the shortest path with su�cient remaining
bandwidth.420

It is mandatory that a certain genome maps to one and only one place-
ment configuration. Therefore the PMs must have a total deterministic order,
independent of the use of the PMs. The PMs are sorted by id, this is easy,
deterministic and generally results in a good random order for the last step.
The decoding algorithm is illustrated in Algorithm 1.425

Algorithm 1 Decoding algorithm

1: procedure Decoding(A1.., S
1,1
1 .., N1,1

1 ..)
2: sortByChromosome(A, A1..A|A|)
3: for each a 2 A do

4: � = 0
5: r = 0
6: while d  �

a

^ r < R
a

do

7: d+ = 1
8: sortByChromosome(S

a

, Sa,d

1 ..Sa,d

|Sa|)

9: for each s 2 S

a

do

10: L = allPossiblePM(s)
11: if |L| == 0 then

12: break

13: end if

14: sortByID(L)

15: n = dNa,d

s

|L|e
16: placeService(s, n)
17: end for

18: r = calculateAvailability(a)
19: end while

20: if r < R
a

then removeApplication(a)
21: end if

22: end for

23: end procedure

5.1.4. Framework: Pool model

There exist various models to distribute the population amongst the comput-
ing nodes. Amongst those distribution models for population-distributed GAs,
the pool-model o↵ers the best combination of scalability and fault-tolerance.
While in other distribution models, worker nodes (called workers) are respon-430

sible of both executing GA operations, and storing part of the population
database, the pool-model maintains the population in a separate DB. A pool
model deploys a set of autonomous processors working on a shared resource
pool. The processors are loosely coupled, do not know of each other’s existence
and interact with only the pool.435

The workflow of a GRECO worker is shown in Figure 4. First, the worker
loads a configuration file from the DB, which describes the application requests,
and the SN. Subsequently, the worker contacts the DB and requests a bucket,

18

Start

Load configuration

Request bucket

Acquired?Sleep

Retrieve bucket

Genetic operations

Request write

Acquired?

Update bucket

Check end condition

Fulfilled?

Stop

no

yes

yes

no

no

yes

Figure 4: Workflow of a GRECO worker

which holds a random partition of the population. If a bucket cannot be ac-
quired, because all buckets have already been assigned, then the worker sleeps,440

and checks the end-condition of the GA. If a bucket can be acquired, then the
worker retrieves it and performs the evolutionary operators (selection, crossover,
mutation, elite conservation). Next, the worker requests permission to update
the bucket in the DB. When the worker cannot update the bucket, e.g. because
it took too long to process it, then the worker will try to continue processing445

other buckets. If the worker gets write permission then it will proceed to up-
date the bucket, and check the end-condition. If the end-condition is met (e.g.
certain number of generations exceeded), then there is no more work to do, and
the worker stops, else the worker proceeds to request new work.

5.2. Subgraph isomorphism450

The APP algorithm presented in this section is based on subgraph isomor-
phism detection: it maps nodes and links during the same stage.

Lischka et al. show that this method results in better mappings and is
faster than the two stage approach, especially for large virtual networks with

19

high resource consumption which are hard to map [32]. The advantage of this455

single stage approach is that link mapping constraints are taken into account
at each step of the mapping. When a bad mapping decision is detected it can
be revised by simply backtracking to the last valid mapping decision, whereas
the two stage approach has to remap all links which is very expensive in terms
of run-time. vnmFlib, the backtracking algorithm presented by Lischka et al.460

allows the mapping of links to paths shorter than a predefined distance value ✏
(in terms of hops).

A modified version of vnmFlib, referred to as vnmFlibm, which is represented
in pseudo-code in Algorithm 2, is used in this paper.

An overview of the variables used in vnmFlibm is shown in Table 5.

variable definition
GV graph representing application requests, comprising services and

VLs that need to be placed
GV

sub

subgraph of GV , containing the services and VLs that have been
added to the placement

GP the graph, representing the SN, comprising PMs and PLs
C list of (service-PM) pairs

M(·) mapping of its argument to GP

M(GV

max

) mapping for which most applications are placed
w total number of mappings that have been tried
W upper-limit to the number of mappings

Table 5: An overview of the variables used in the vnmFlibm routine.

465

The algorithm tries to build a valid VNE solution by successively adding
nodes and links of GV to an initially empty subgraph GV

sub

of GV . During
the mapping process the algorithm ensures that M(GV

sub

) is a valid mapping of
GV

sub

onto GP . In each step of the algorithm, a list of possible (service, PM)-
pairs is generated by the function Genneigh (line 5). The pairs are ordered470

by Genneigh as follows. First, the (service, PM)-pairs are ordered application-
wise, which assures that at most one partially placed application is present in
M(GV

sub

). The application order is determined subsequently by total increasing
CPU requirements, memory requirements, and finally by application number.
Second, the (service, PM)-pairs are ordered by service index. Third, they are475

ordered by duplicate number. Finally, they are ordered by the id of the PM.
The algorithm loops over this sorted list, and when a valid mapping is en-

countered, a new subgraph GV

sub

and a corresponding mapping are generated
(line 9). The validity of the mapping is checked by the valid function. The
valid function (line 7) checks if PM nP has su�cient remaining nodal resources480

to host service nV , and if su�cient bandwidth remains in the SN to route all
VLs to and from the services already included in M(GV

sub

). The VLs are routed
using a shortest path algorithm.

Additionally, the valid function verifies if, the availability requirement can be
met. During availability calculation, the placement of an application is most of485

20

the time incomplete. The availability of those unplaced components is assumed
100%. If the potential availability increments, brought by future placement of
an additional replica were not taken into account, then the algorithm would not
be able to place applications which require multiple duplicates to reach their
availability goal. The (intermediate) availability of a mapping will be referred490

to as f(M(GV

sub

)) in the example at the end of this section.
The algorithm can terminate in one of two ways. On the one hand, if the

maximum number of mappings W has been exceeded (line 3), or if all (service,
PM)-pairs have been exhausted (line 22), then the algorithm returns null. In the
calling procedure, the best intermediate result can be used, which was stored in495

M(GV

max

). M(GV

max

) is updated each time a placement is found which holds a
higher number of completely placed applications (line 11). On the other hand,
when GV

sub

fully covers GV (line 18), the algorithm returns M(GV

sub

) (line 19),
which is a valid mapping of GV on GP .

Algorithm 2 vnmFlibm procedure.
1: procedure vnmFlib(GV

sub

,M(GV

sub

), GV , GP ,M(GV

sub

),M(GV

max

), w,W)
2: if w �W then

3: return null
4: end if

5: C genneigh(GV

sub

, GV , GP)

6: for each (nV , nP) 2 C do

7: if valid(M(GV

sub

), (nV , nP), GV) then

8: w w + 1
9: create GV

sub

and M(GV

sub

) by adding (nV , nP)

10: if Placed(M(GV

sub

)) >Placed(M(GV

max

)) then

11: M(GV

max

) M(GV

sub

)
12: end if

13: M
T

 vnmFlib(GV

sub

,M(GV

sub

), GV , GP)
14: if M

T

!=null then
15: return M

T

16: end if

17: end if

18: if GV

sub

== GV

then

19: return M(GV

sub

)
20: end if

21: end for

22: return null
23: end procedure

The algorithm’s operation is illustrated using the problem shown in Figure500

3. An availability A, equal to 0.9853, is assumed for each SN component. For
the sake of clarity, the bandwidth in the SN is considered not to be a critical
constraint, this condition holds if each VL requires 1 unit of bandwidth, and
each PL has a bandwidth capability of at least 1 unit. The required availability
is 97%. It is assumed that the memory constraints limit the number of services505

hosted per PM to 1. In Figure 5 the di↵erent steps of the algorithm are shown.
Note that only the mapped (service, PM) pairs are explicitly indicated, to ease
notation. The routing is performed using a shortest path algorithm. For the
availability calculation, these paths must be taken into account. Distinction

21

is made between the services of the two duplicates, by adding a tilde to the510

services corresponding to the second duplicate.
The inputs to vnmFlibm take following values: GV

sub

= (;, ;), G
V

= (V V , EV),
where V V = {s1, s̃1, s2, s̃2, s3, s̃3}, and EV = {(s1, s2), (s̃1, s̃2), (s2, s3), (s̃2, s̃3))}.
GP = (V P , EP), where V P = {n1, n2, n3, n4, n5}, and

EP = {(n1, n2), (n1, n4), (n2, n3), (n2, n4), (n3, n5), (n4, n5)}515

M(GV

sub

) = ;, M(GV

max

) = ;, w = 1, W = 4⇥ 6 = 24.
Now the execution commences. In step 1, GV

sub

is empty and the algorithm
tries to place the first service, namely s1, on n1, which is a valid placement. In
step 2, (s1, n1) is added to the mapping, and the algorithm attempts to place s̃1
on n1, which is also a valid placement. In step 3, c = (s2, n1) is not valid because520

n1 does not have enough resources. Therefore the first valid option is (s2, n2).
In step 4, c = (s̃2, n1

�
is not valid because n2 does not have enough resources.

c = (s̃2, n2

�
is not valid because f(M(GV

sub

)) would become A3 = 0.9565, which
is lower than 97%. n3 is a valid option. In step 5, n1 through n3 do not have
enough resources to host s3. The availability when using either s4, or s5 would525

be too low, as f(M(GV

sub

)) would be respectively A5 + A4 � A7 = 0.9696, and
A6+A4�A7 = 0.9559. Hence, there is no valid (service, PM)-pair in C, and the
algorithm backtracks (rip up (s̃2, n3)). In step 6, the algorithm continues where
it left o↵ in step 4, and tries (s2, n4), which is a valid combination. In step 7, n1

and n2 do not have su�cient resources to host s3, but n3 does. In step 8, n1 and530

n2 cannot host s̃3. n3 is also not a valid candidate, as the resulting f(M(GV

sub

))
would be A5 +A6 �A7 = 0.9421. n4 is also not a valid option, because it does
not have su�cient remaining resources. n5 is a valid option. In step 9, M(GV

sub

)
contains one fully placed application, therefore M(GV

max

) is overwritten. GV

equals GV

sub

and the algorithm terminates. The resulting placement is the one535

depicted in Figure 3c.

6. Performance evaluation

In this section the performance of the proposed heuristics is compared against
the ILP formulation presented in Section 4, and two other placement methods
found in literature. For this evaluation a custom simulation platform is devel-540

oped in Java. First, this software platform simulates the selected type of ap-
plication requests and SN configurations. The result is a json file per problem
description, holding the input parameters shown in Table 1. Subsequently, the
selected application placement algorithm is applied to these input json files and
a placement configuration is generated and stored in an output json file. These545

output files are then further analysed to compile the graphs shown throughout
this section.

This section is structured as follows. First, the evaluated algorithms are dis-
cussed. Second, the models for workload and cloud environments are presented.
Then, the e↵ect of multiple parameters is analyzed. For each input parameter,550

the types of simulated workload and cloud environment are described and an
analysis is provided.

22

w GV GP C, f(M(GV

sub

))

1

C = [(s
1

, n
1

), (s
1

, n
2

), (s
1

, n
3

), (s
1

, n
4

), (s
1

, n
5

)]

f(M(GV
sub)) = 1

n
1

n
2

n
5

n
3

n
4

2

C = [(s̃
1

, n
1

), (s̃
1

, n
2

), (s̃
1

, n
3

), (s̃
1

, n
4

), (s̃
1

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

n
2

n
3

n
4

n
5

n
1

s
1

3

C = [(s
2

, n
1

), (s
2

, n
2

), (s
2

, n
3

), (s
2

, n
4

), (s
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s̃
1

n
2

n
3

n
4

n
5

n
1

s
1

, s̃
1

4

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

5

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = A3

+ A4 � A5

= 0.9704

s
1

s
2

s̃
1

s̃
2

n
4

n
5

n
3

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

6

C = [(s̃
2

, n
1

), (s̃
2

, n
2

), (s̃
2

, n
3

), (s̃
2

, n
4

), (s̃
2

, n
5

)]

f(M(GV
sub)) = A = 0.9853

s
1

s
2

s̃
1

n
3

n
4

n
5

n
2

n
1

s
1

, s̃
1

s
2

7

C = [(s
3

, n
1

), (s
3

, n
2

), (s
3

, n
3

), (s
3

, n
4

), (s
3

, n
5

)]

f(M(GV
sub)) = 2A3 � A5

= 0.9845

s
1

s
2

s̃
1

s̃
2

n
3

n
5

n
4

n
2

n
1

s
1

, s̃
1

s
2

s̃
2

8

C = [(s̃
3

, n
1

), (s̃
3

, n
2

), (s̃
3

, n
3

), (s̃
3

, n
4

), (s̃
3

, n
5

)]

f(M(GV
sub)) = A3

+ A5 � A7

= 0.9836

s
1

s
2

s
3

s̃
1

s̃
2

n
5

n
4

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

9

C = ;

f(M(GV
sub)) = 2A5 � A9

= 0.9820

s
1

s
2

s
3

s̃
1

s̃
2

s̃
3

n
4

n
5

n
2

n
3

n
1

s
1

, s̃
1

s
2

s
3

s̃
2

s̃
3

Figure 5: Steps taken by vnmFlibm when solving the problem depicted in Figure 3.

23

6.1. Evaluated algorithms

In this section the su�xes OPT, SUB, and GA indicate an exact algorithm
based on an ILP-formulation, a heuristic based on subgraph isomorphism de-555

tection, and a genetic algorithm respectively. An overview of the compared
placement methods is given in Table 6. VAR refers to the protection method

Method Duplicates
per accepted
application

Consolidation
onto one PM

Availability

VAR (this work) at least 1, and at
most �

any two services
can be consoli-
dated

checked before
each mapping

MOENS [16] exactly 1 any two services
can be consoli-
dated

checked after ex-
ecution has fin-
ished

DRONE [23] exactly 2 only services of
di↵ererent appli-
cations can be
consolidated

checked after ex-
ecution has fin-
ished

Table 6: Overview of the evaluated placement methods.

described in Section 3.3, which can vary the amount of redundancy introduced.
The ILP-formulation presented in Section 4, is referred to as VAR-OPT, the
GRECO algorithm (Section 5.1.1) as VAR-GA, and the heuristic based on sug-560

raph isomorphism detection (5.2) as VAR-SUB. To the best of our knowledge,
there exist no other placement algorithms, introducing a model for availability
which considers both node and link failures. Therefore, a comparison is made to
methods which do not have a model for availability. After these placement algo-
rithms have finished execution, the applications whose availability requirements565

have not been met, are removed. Two other placement methods are consid-
ered. On the one hand Moens et al. place each application at most once [16].
MOENS-OPT is an exact algorithm based on ILP. MOENS-SUB is a self-defined
heuristic based on subgraph isomorphism detection for MOENS-OPT. The only
di↵erences between MOENS-SUB and VAR-SUB, are that MOENS-SUB does570

not have an availability requirement, and that it places at most 1 duplicate. On
the other hand, DRONE-OPT is based on the ILP-formulation from Chowdhury
et al [23]. In their approach, each accepted application request must be placed
exactly twice and services belonging to the same application cannot be consoli-
tated onto one PM. The embeddings of the primary and backup VN must be575

fully disjoint (i.e. they cannot have any PM orPL in common), which guaran-
tees survivability against single node or link failure. For comparison sake, their
model is modified so that memory resources can be shared amongst applications
which use the same service. DRONE-SUB is a self-defined algorithm based on
subgraph isomorphism detection for DRONE-OPT. Compared to VAR-SUB,580

24

this algorithm does not check availability during placement, and it always tries
to place two duplicates. Additionally, DRONE-SUB allows an application to
make use of each PM and PL at most once, while VAR-SUB has no such re-
strictions.

6.2. Application model585

The SOA model described in Section 3.1 can be used to represent a wide
range of applications. In the following, three application types are presented:
one with a flat hierarchy, and two with a special structure, which are commonly
used in software engineering. These application types are used throughout the
performance evaluation.

(a) Random

map

reduce

in

out

(b) MapReduce

layer 1 layer 2 layer 3

(c) 3 Tier

Figure 6: An illustration of multiple application models.

590

Random. This application type is similar to the simulation setup used by Moens
et al. [16]. In this model, application requests are generated as follows. First,
a certain number of services is generated, which have a certain probability to
be interconnected pairwise by a VL. Then, each application randomly picks
services out of those services. In this model, multiple applications can share the595

same service. The application model is illustrated in Figure 6a.

MapReduce. MapReduce is a programming model and an associated implemen-
tation for processing and generating large data sets. Users specify a map func-
tion that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with600

the same intermediate key [33]. The application model shown in Figure 6b
comprises 1 mapper and 1 reducer stage, and assumes the input files and out-
put files to be located on one input, and one output node respectively. It is
assumed that resources cannot be reused between services of multiple applica-
tions. Each mapper communicates with the input node and exactly one reducer605

node. The reducer nodes communicate with the output node, and exactly one
mapper node. When there are m mappers in the mapper stage, then there are
also m reducers, which totals 2 + 2⇥m services per application.

3 Tier. A Multi-tier Architecture is a software architecture in which di↵erent
software components, organized in tiers (layers), provide dedicated functional-610

ity. The most common occurrence of a multi-tier architecture is a three-tier sys-
tem consisting of a data management tier (mostly encompassing one or several
database servers), an application tier (business logic) and a client tier (interface

25

functionality). Conceptually, a multi-tier architecture results from a repeated
application of the client/server paradigm. A component in one of the middle615

tiers is client to the next lower tier and at the same time acts as server to the
next higher tier [34]. The simulations assume a VL between any pair of services
in two subsequent layers, and an equal amount of services per layer.

6.3. Cloud infrastructure

In this section, two SN models are presented.620

Random SN. In this model a random graph, with a predefined number of PLs
and VLs, is generated. The procedure by Broder et al. is used to generate
a minimal spanning tree [35], subsequently non-neighbouring PMs are inter-
connected at random, until the desired number of PLs has been reached. An
illustration of such a topology is shown in Figure 7a.625

Trans-stub model SN. Transit-stub network topologies are generated using the
GT-ITM topology generator [36]. An illustration of this SN model, using 4
transit nodes, is shown in Figure 7b. Any two nodes in the transit network
are connected by a PL with a probability of 80%. Within a cluster in the
stub-network this probability equals 40%. Each PM in the transit network is630

connected to 2 clusters, each comprising 6 PMs. The total number of nodes in
the substrate graph is then equal to thirteen (=transit node + 2⇥6 stub nodes)
times the number of transit nodes. For 1, 2, 3, and 4 transit nodes, the SN
comprises 13, 26, 52 and 104 PMs respectively.

(a) Random

6

6

Stub

Trans

6

6

6

6

6

6

(b) Trans-stub

Figure 7: An illustration of SN types.

6.4. Algorithmic parameters635

The VAR-GA stops after it has computed 100 generations or it has the same
best solution for 20 generations. The algorithms based on subgraph isomorphism
detection attempt at most 4 placements per virtual node in GV , as proposed
by Lischka et al. The ILP models are solved by Gurobi 6.5.1. All tests were
executed on the High Performance Cluster (HPC) core facility CalcUA at the640

University of Antwerp. Each test used one machine with 20 cores. For the GA
the MongoDB database was allocated at a server at the university and not at
the HPC. The latency between HPC and the MongoDB server is about 1.740
milliseconds.

26

6.5. Key observations645

Before analysing the performance of the algorithms, two metrics must be
introduced. First, the placement ratio is the ratio of applications that meet
the availability requirement to the total of application requests. Second, the
execution time is the time it takes to execute the placement algorithm. While
also an important perforamance metric, the application response time, has not
been simulated. One could incorporate response time requirements by appro-
priately dimensioning the CPU and bandwidth requirements according to the
expected user workload. Additionally, VL latency requirements could easy be
added as an additional constraint to the model. Third, the CPU Load Factor
(CLF) expresses the loading on the cloud environment, i.e. the ratio of total
CPU demand of all application requests, to the total amount of available CPU
resources:

CLF =

P
s2S

P
a2A

I
a,s

⇥ !
s

P
n2N

⌦
n

.

In the following, a wide range of parameters is swept. Unless explicitly stated
otherwise, for each parameter setting, the CLF is varied from 0.1 to 1, in incre-
ments of 0.1. For each CLF level 100 input files are generated, each containing
a certain workload and SN. The simulation results are shown in Figures 8 - 11,
where markers indicate averages and errorbars represent the standard error of650

the mean.

6.5.1. Influence of required availability

Generated workload. In this experiment, the workload consists of 10 random
applications. The services of each application are chosen (at random) out of
a set of three services with a probability of 60%. For each service s : !

s

is655

uniformly distributed in the interval [0.2; 1], and �
s

is uniformly distributed in
the interval [0.75; 1]. Any two services of the same application are interconnected
by a VL, requiring a bandwidth which is uniformly distributed in the interval
[0.02; 0.04].

Used substrate network. A random SN is generated, consisting of 5 PMs and 8660

PLs. Each PL has a bandwidth of 1. For each PM n : ⌦
n

2 {0.5, 2, 10, 50}, and
�
n

2 {1, 1.5, 2}. For each PL and PM the failure rate is a uniformly distributed
random choice out of the {0%, 2.5%, 5%}.

Results. It can be seen in Figure 8 that for a required availability level of 0% the
placement ratio of MOENS-OPT and VAR-GA are very close to optimal (VAR-665

OPT). The placement ratios for VAR-SUB and MOENS-SUB are about 6%
lower, which can be attributed to di↵erences in routing. While the GA and the
ILP formulation can select the best path (for bandwidth or availability) between
any two PMs, the algorithms based on subgraph isomorphism detection always
use shortest path routing. The placement ratios for DRONE-OPT and DRONE-670

SUB, are very low because these algorithms must always find two completely

27

disjoint mappings while there are only 5 PMs in total. As the required availabil-
ity level increases from 0% to 90%, the placement ratios for the algorithms which
are availability-aware (VAR-OPT, VAR-SUB, VAR-GA) remain relatively con-
stant. Additionally, the placement ratios for DRONE-OPT and DRONE-SUB675

remain constant, as the backup VN embedding protects against single node and
link failures. In contrast to that, the placement ratio for MOENS-SUB decreases
by 4%, and the placement ratio for MOENS-OPT even decreases by 33%. The
di↵erences between MOENS-SUB and MOENS-OPT, can be attributed to the
fact that MOENS-SUB generally uses less PLs and PMs per application, yield-680

ing a higher availability. When the required availability level increases further
from 90% to 99% the placement ratios drop significantly for most algorithms.
Only for DRONE-OPT and DRONE-SUB the drop is less than 1%, as almost all
of the placed applications fulfil the availability requirement. For an availability
requirement of 99% there is a huge benefit associated to considering 2 duplicates685

instead of 1 (for VAR-SUB an increase of 81% in placement ratio), at the cost
of an increase of 128% in computation time. Given the drastically improved
placement ratio, 2 duplicates will be used in the following experiments, unless
explicitely stated otherwise.

While the computation time of DRONE-OPT and MOENS-OPT is below690

100ms, for VAR-OPT it increases dramatically when the required availability
goes from 0% to 90%. Most of the configurations with a required availability
level of 99% did not finish and were therefore excluded from the graph. It can be
seen that, while the GA provides a dramatic speedup compared to VAR-OPT
for non-zero required availability levels (741x at 90% required availability), the695

subgraph algorithm is up to 169x faster than the GA. However, the placement
ratio of VAR-SUB is up to 14% lower than for VAR-GA. Because finding the
exact solution takes too much time for moderate scale problems, VAR-OPT will
be excluded from the remaining experiments.

6.5.2. Influence of CLF700

Generated workload. In this setup, 10 random applications are generated, com-
prising 24 services in total. Each application is assigned 12 out of those 24
services at random. For each service s : !

s

is uniformly distributed in the in-
terval [0;!

max

], and �
s

is uniformly distributed in the interval [0; �
max

], where

!
max

=
CLF

target

.|N|.2.⌦P
a2A

P
s2S I

a,s

(8)

and
�
max

= �
max

⇥ !
max

⌦
max

. (9)

Equation 8 ensures that the expected CLF equals CLF
target

. Equation 9 scales
the memory requirements proportionally with the CLF.

Used substrate network. A trans-stub network comprising 13 PMs, is generated.
The PM capabilities are a uniformly distributed random choice of t2, m3, and
m4, Amazon EC2 instance specifications [37]. The PL bandwidth is uniformly705

28

Figure 8: Influence of the required availability level.

distributed in [0; 100]. Both PM and PL failure rates are uniformly distributed
in [0%; 1%].

Results. The results in Figure 9 show that the placement ratio decreases, for
all algorithms, as the CLF increases from 0.1 to 1.0. Again, the placement ra-
tio of MOENS-OPT and MOENS-SUB is very low (up to 89% and 71% lower710

than VAR-SUB) as these algorithms do not introduce any redundancy. For low
CLF values the performance of DRONE-OPT and DRONE-SUB is compara-
ble to that of VAR-SUB (less than 1% di↵erence) . However, when the CLF
increases, then insu�cient resources remain to place each VN twice and the
placement ratios of DRONE-OPT and DRONE-SUB are up to 27% and 41%715

lower than for VAR-SUB. While VAR-SUB performs about 1% better for CLFs
up to 0.6, the GA performs 28% better for a CLF of 1.0. This di↵erence can
be explained by how the algorithms handle the application requests. While the
subgraph isomorphism algorithm tries to place the applications in a predeter-
mined order, and backtracks as soon as an application cannot be placed, the720

GA tries di↵erent orderings of the applications, and when an application cannot
be placed, it proceeds to the next one. A similar reasoning can be applied to
the di↵erences between DRONE-OPT and DRONE-SUB. For CLF values up
to 0.3 DRONE-SUB achieves a higher placement ratio than DRONE-OPT, as
typically its embeddings are more compact, realizing a higher availability and725

dito placement ratio. However, for CLF values higher than 0.3, DRONE-OPT
realizes up to 23% higher placement ratios, as the ILP solver can try di↵erent

29

orderings of applications, while DRONE-SUB backtracks as soon as an applica-
tion cannot be placed.

While the influence of CLF on execution time is not so clear, it is clear730

that VAR-SUB is much faster than VAR-GA: a speed-up of 400x, up to even
900x is observed. The GA is much slower in our experiments, because of the
large overhead in communicating with the database. A detailed breakdown of
the computation time of the GRECO algorithm shows that up to 93% of the
time is spent communicating with the remote DB, even though the workers for735

one optimization are all running on one and the same PM [28]. Because of
administrative limitations it was not possible to host the DB within the HPC
network. Given the dramatic di↵erences in execution time, compared to the
other algorithms, only the heuristics based on subgraph isomorphism detection
(VAR-SUB, MOENS-SUB, and DRONE-SUB) are included in the remaining740

experiments.

Figure 9: Influence of the CLF, for a required availability of 99.0%.

6.5.3. Influence of application requests and SN dimensions

Generated workload. For this setup, separate test runs are generated, each con-
sidering only random, MapReduce, or 3 Tier applications requests. The number
of services per application is 12, resulting in 5 mappers and 5 reducers, and 4745

services per layer, in the MapReduce and 3 Tier model respectively. In Section
6.5.2 the number of applications was fixed to 10, and the CLF was increased
by generating increasingly CPU heavy applications. However, in this setup the
CLF is varied by changing the number of application requests, while keeping
the service requirements constant. For a CLF

target

of 0.1, 0.2, and 0.3, the750

simulation platform generates 10, 20, and 30 applications respectively. Again
for each service the CPU and memory requirements are uniformly distributed,
with maximum values dictated by Equation 8, and 9. Also, VL bandwidth
requirements are uniformly distributed in [0; 1].

30

Used substrate network. A trans-sub model is used with the same specifications755

as in Section 6.5.2, only now the SN comprises 1, 2, 3, or 4 transit nodes.

Results. Figure 10 shows that the placement ratio decreases as the SN size in-
creases. Again, the placement ratio for MOENS-SUB is the lowest of all three
algorithms. The placement ratio for 13 and 26 nodes is roughly the same for
DRONE-SUB and VAR-SUB. However, when the SN grows further, then the760

performance for VAR-SUB is up to 2x better than for DRONE-SUB. An expla-
nation is that as the number of nodes increases, the CPU resources get more
fragmented (constant CLF), which makes it harder to always place 2 disjoint
duplicates. Additionally, an increased SN size brings a higher number of reliable
nodes. Hence, there is a higher probability that a combination of high avail-765

able PLs and PMs can be made, avoiding the need for a second duplicate. The
execution time for DRONE-SUB is clearly smaller than for VAR-SUB, as the
number of possible mappings is smaller (no consolidation possible within appli-
cation) and as the availability conditions are only checked once (versus before
each mapping step). Figure 11 shows that the performance of the algorithm

Figure 10: Influence of the SN dimensions for a required availability of 99.9% and application
type ”random”.

770

is strongly dependent on the type of application considered. While the three
application types require the same number of services, and have the same ser-
vice requirements, the performance for the random and structured applications
(MapReduce and 3Tier) di↵ers significantly. The random application type takes
significantly longer to place. Additionally, structured applications can benefit775

more from using more than one duplicate. For the random application type, the
placement ratio even decreases slightly when the number of duplicates increases
from 2 to 3. Intuitively these observations can be explained by the fact that the
services of structured applications are easier to consolidate. This e↵ect becomes
more pronounced when redundancy levels go up, causing increased competition780

for CPU resources.

31

Figure 11: Influence of application type for 26 nodes, for a required availability of 99.9%,
using VAR-SUB.

Figure 12 shows that the placement ratio decreases and the execution time
increases, when the number of application requests goes up. Increasing the

Figure 12: Influence of the number of application requests for 26 PMs, a required availability
of 99.9%, using VAR-SUB.

number of applications requests causes the memory usage of the subgraph algo-
rithm to increase, as the recursion depth goes up. Therefore it is good practice785

to limit the number of mappings to be considered.
Figure 13 shows that the placement ratio increases for the structured applica-

tions (MapReduce, 3Tier) as the number of nodes increases, while the placement
ratio decreases for the random application. This can be explained as follows.
On the one hand, when the number of nodes increases, the nodal capabilities790

get more fragmented, as the CLF is kept constant. On the other hand, as the

32

SN dimensions increase it become easier to meet the availability requirements,
as long as the nodal capabilities are not too fragmented to fit the services. It is
clear that the computation time increases when the number of nodes increases.
Additionally the computation time for the random application is higher than795

for the structured applications.

Figure 13: Influence of the SN dimensions for for a required availability of 99.9%, using
VAR-SUB.

7. Results discussion

In the previous section, it was shown that in heterogeneous cloud networks,
VAR can bring a dramatic increase in placement placement ratio, relative to the
state-of-the-art, currently lacking an availability model. While exact solution800

of the ILP formulation scales badly [27], the GA [28] can place 10 applications
on a SN comprising 13 nodes within 100 seconds. The newly proposed heuristic
based on subgraph isomorphism detection can even place up to 30 applications
on a SN comprising 104 nodes, all within 20 seconds. When the placement
algorithm can be o✏oaded to a (remote) reliable server, then VAR-SUB can805

be used. If this o✏oading is not possible, requiring execution of the placement
algorithm within the heterogeneous cloud network, then either the fault-tolerant
distributed GA must be used, or alternatively the protection methods laid out
throughout this work can be applied to VAR-SUB, to make it survive failure of
the management nodes.810

In reliable cloud environments (or equivalently, under low availability re-
quirements) it is often acceptable to place each VN only once, and not bother
about availability [16]. However, when the frequency of failures is higher (or if
availability requirements increase), then one of the following measures should
be taken. First, one can improve the availability by placing additional backups,815

which fail independently of one another. However, this approach works best
in homogeneous cloud environments, where one can use the same number of

33

backup VN embeddings, regardless of the exact placement configuration. In
heterogeneous environments a fixed redundancy level for each application ei-
ther results in wasted SN resources, or a reduced placement ratio. The same820

reasoning can be made for applications, having heterogeneous availability re-
quirements. Second, one can already achieve an increased placement ratio by
considering the realized availability during placement (VAR-SUB, � = 1). In
this case, the placement algorithm can place applications with higher availability
requirements on more reliable parts of the infrastructure, and at the same time825

avoid wasting resources on applications whose availability requirements cannot
be fulfilled. Third, one can consider the realized availability during placement
and decide on the appropriate redundancy level. This decision depends on both
the precise availability requirements and the actual placement configuration.

For example in an Amazon cloud environment, where heterogeneity is lim-830

ited to multiple generations of servers being used, and resources are virtually
infinite, it makes sense to disperse a predefined number of copies across multiple
availability zones. Now, consider again the distributed MPC example shown in
Figure 1, where computation tasks must be deployed close to the edge of the
network. In a such a heterogeneous, unreliable computational environment,835

one cannot a↵ord to waste precious resources. While previously intractable,
now VAR-SUB can find an intelligent placement configuration, tailored to the
specific availability requirements of each application, in a matter of seconds.

When focussing on the placement ratio obtained by VAR-SUB, following ob-
servations can be made. First, when the required availability level increases, the840

placement ratio goes down and the computation time increases. Additionally,
more stringent availability requirements require a higher number of duplicates
to be used. Second, increased loading of the SN, either caused by resource-
heavier applications, or an increased number of application requests, decreases
the fraction of application requests that can be accepted. While the resource845

requirements of individual applications has little e↵ect on the execution time,
increasing the number of application requests significantly a↵ects computation
time. Third, the fraction of application requests that can be accepted largely
depends on the type of application requests. Applications that can be consoli-
dated more easily achieve better placement ratios.850

8. Conclusion

Cloud environments are becoming increasingly decentralized, leading to a
heterogeneous network of micro-clouds which are positioned on the edge of the
network and possibly interconnected by best-e↵ort links. This heterogeneous en-
vironment introduces important challenges for the management of these clouds855

as the heterogeneity results in an increased failure probability. In this paper,
we study the problem of simultaneous placement of a set of mission-critical
applications on such an unreliable network, while guaranteeing a certain level
of availability for each application. Three algorithms are presented that make
use of intelligent application level replication: an optimal algorithm using an860

ILP solver (VAR-OPT), and two heuristics. The first heuristic (VAR-GA) is a

34

fault-tolerant distributed GA which uses a distributed pool-model to distribute
the population. The second (VAR-SUB) is a fast centralized algorithm, based
on subgraph isomorphism detection. VAR-GA performs near optimal for small
problem instances, and outperforms the subgraph algorithm up to 28% when865

its placement ratio drops below 0.7. However, when the problem size grows,
the VAR-SUB algorithm scales better and becomes the algorithm of choice.
While previous solutions were computationally too complex to allow a timely
calculation in real-life large-scale environments, the newly presented algorithm
based on subgraph isomorphism detection (VAR-SUB), e↵ectively removes this870

barrier. A detailed performance evaluation shows that, in comparison to algo-
rithms that protect against single node or link failure, VAR-SUB can doubles
the placement ratio in cloud environments comprising over 100 nodes, while
keeping the time required to calculate the solution under 20 seconds.

Acknowledgments875

This work was supported by VLAIO and iMinds [iFEST and EMD project];
and the University of Antioquia [CODI sustainability strategy 2014-2015].

References

[1] A. O. Marzio Puleri Roberto Sabella, Cloud robotics: 5G paves the way for
mass-market autmation, in: Charting the future of innovation, 5th Edition,880

Vol. 93, Ericsson, The address of the publisher, 2016.

[2] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing and Its
Role in the Internet of Things, in: Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, ACM, 2012, pp. 13–16.
doi:10.1145/2342509.2342513.885

URL http://doi.acm.org/10.1145/2342509.2342513$\

delimiter"026E30F$npapers2://publication/doi/10.1145/2342509.

2342513

[3] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. D. Mickunas, S. Yi,
Routing through the mist: privacy preserving communication in ubiq-890

uitous computing environments, in: Proceedings 22nd International
Conference on Distributed Computing Systems, 2002, pp. 74–83.
doi:10.1109/ICDCS.2002.1022244.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1022244895

[4] G. Hu, W. P. Tay, Y. Wen, Cloud Robotics: Architecture, Challenges and
Applications, IEEE Network 26 (June) (2012) 21–28. doi:10.1109/MNET.
2012.6201212.

35

http://dx.doi.org/10.1145/2342509.2342513
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
http://dx.doi.org/10.1109/ICDCS.2002.1022244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/MNET.2012.6201212

[5] ISO/IEC-25010, Systems and software engineering Systems and software
Quality Requirements and Evaluation (SQuaRE) System and software900

quality models., Standard, International Organization for Standardization,
Geneva, CH (mar 2010).

[6] B. Spinnewyn, S. Latré, Towards a fluid Cloud: An extension of the
Cloud into the local Network, in: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture905

Notes in Bioinformatics), Vol. 9122, Ghent, Belgium, 2015, pp. 61–65.
doi:10.1007/978-3-319-20034-7_7.

[7] M. Saska, Z. Kasl, L. Peucil, Motion planning and control of formations of
micro aerial vehicles, IFAC Proceedings Volumes 47 (3) (2014) 1228–1233.
doi:10.3182/20140824-6-ZA-1003.02295.910

[8] E. Camponogara, D. Jia, B. Krogh, S. Talukdar, Distributed model
predictive control, in: IEEE Control Systems Magazine, Vol. 22, IEEE,
2002, pp. 44–52. doi:10.1109/37.980246.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=980246915

[9] B. Jennings, R. Stadler, Resource management in clouds: Survey and
research challenges, Journal of Network and Systems Management 23 (3)
(2014) 567–619.
URL http://link.springer.com/article/10.1007/

s10922-014-9307-7920

[10] M. R. Rahman, R. Boutaba, SVNE: Survivable virtual network embedding
algorithms for network virtualization, IEEE Transactions on Network and
Service Management 10 (2) (2013) 105–118. doi:10.1109/TNSM.2013.

013013.110202.

[11] R. Camati, A. Calsavara, L. L. Jr, Solving the Virtual Machine Placement925

Problem as a Multiple Multidimensional Knapsack Problem, in: ICN 2014,
The Thirteenth . . . , no. c, 2014, pp. 253–260.
URL http://www.thinkmind.org/index.php?view=

article{&}articleid=icn{_}2014{_}11{_}10{_}30065

[12] J. Xu, J. a. B. Fortes, Multi-objective Virtual Machine Placementin Virtu-930

alized Data Center Environments, in: 2010 IEEE/ACM Int’l Conference on
\& Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
GREENCOM-CPSCOM ’10, IEEE Computer Society, Washington, DC,
USA, 2010, pp. 179—-188. doi:10.1109/GreenCom-CPSCom.2010.137.

[13] Y. Ren, J. Suzuki, A. Vasilakos, S. Omura, K. Oba, Cielo: An evolution-935

ary game theoretic framework for virtual machine placement in clouds, in:
Proceedings - 2014 International Conference on Future Internet of Things
and Cloud, FiCloud 2014, 2014, pp. 1–8. doi:10.1109/FiCloud.2014.11.

36

http://dx.doi.org/10.1007/978-3-319-20034-7_7
http://dx.doi.org/10.3182/20140824-6-ZA-1003.02295
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980246
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980246
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980246
http://dx.doi.org/10.1109/37.980246
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980246
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980246
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=980246
http://link.springer.com/article/10.1007/s10922-014-9307-7
http://link.springer.com/article/10.1007/s10922-014-9307-7
http://link.springer.com/article/10.1007/s10922-014-9307-7
http://link.springer.com/article/10.1007/s10922-014-9307-7
http://link.springer.com/article/10.1007/s10922-014-9307-7
http://link.springer.com/article/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1109/TNSM.2013.013013.110202
http://dx.doi.org/10.1109/TNSM.2013.013013.110202
http://dx.doi.org/10.1109/TNSM.2013.013013.110202
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.137
http://dx.doi.org/10.1109/FiCloud.2014.11

[14] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, F. De Turck,
Cost-E↵ective feature placement of customizable multi-tenant applications940

in the cloud, Journal of Network and Systems Management 22 (4) (2014)
517–558. doi:10.1007/s10922-013-9265-5.

[15] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, X. Hesselbach, Virtual
network embedding: A survey, IEEE Communications Surveys and Tuto-
rials 15 (4) (2013) 1888–1906. doi:10.1109/SURV.2013.013013.00155.945

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6463372

[16] H. Moens, B. Hanssens, B. Dhoedt, F. De Turck, Hierarchical network-
aware placement of service oriented applications in clouds, in: IEEE/IFIP
NOMS 2014 - IEEE/IFIP Network Operations and Management Sympo-950

sium: Management in a Software Defined World, 2014, pp. 1–8. doi:

10.1109/NOMS.2014.6838230.

[17] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, J. Wang, Vir-
tual network embedding through topology-aware node ranking, ACM SIG-
COMM Computer Communication Review 41 (2) (2011) 38. doi:10.1145/955

1971162.1971168.

[18] Y. Zhu, M. Ammar, Algorithms for assigning substrate network resources
to virtual network components, in: Proceedings - IEEE INFOCOM, 2006,
pp. 1–12. doi:10.1109/INFOCOM.2006.322.

[19] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. Ho, M. Naor, E. Szemeredi,960

Fault tolerant graphs, perfect hash functions and disjoint paths, in:
Proceedings., 33rd Annual Symposium on Foundations of Computer
Science, 1992, pp. 693–702. doi:10.1109/SFCS.1992.267781.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=267781965

[20] M. Mihailescu, S. Sharify, C. Amza, Optimized application placement for
network congestion and failure resiliency in clouds, in: 2015 IEEE 4th
International Conference on Cloud Networking, CloudNet 2015, 2015, pp.
7–13. doi:10.1109/CloudNet.2015.7335272.

[21] M. J. Csorba, H. Meling, P. E. Heegaard, Ant system for service deployment970

in private and public clouds, in: Proceeding of the 2nd workshop on Bio-
inspired algorithms for distributed systems - BADS ’10, ACM, 2010, p. 19.
doi:10.1145/1809018.1809024.
URL http://portal.acm.org/citation.cfm?doid=1809018.1809024

[22] M. M. A. Khan, N. Shahriar, R. Ahmed, R. Boutaba, SiMPLE: Survivabil-975

ity in multi-path link embedding, in: Proceedings of the 11th International
Conference on Network and Service Management, CNSM 2015, 2015, pp.
210–218. doi:10.1109/CNSM.2015.7367361.

37

http://dx.doi.org/10.1007/s10922-013-9265-5
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
http://dx.doi.org/10.1109/SURV.2013.013013.00155
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
http://dx.doi.org/10.1109/NOMS.2014.6838230
http://dx.doi.org/10.1109/NOMS.2014.6838230
http://dx.doi.org/10.1109/NOMS.2014.6838230
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1145/1971162.1971168
http://dx.doi.org/10.1109/INFOCOM.2006.322
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781
http://dx.doi.org/10.1109/SFCS.1992.267781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781
http://dx.doi.org/10.1109/CloudNet.2015.7335272
http://portal.acm.org/citation.cfm?doid=1809018.1809024
http://portal.acm.org/citation.cfm?doid=1809018.1809024
http://portal.acm.org/citation.cfm?doid=1809018.1809024
http://dx.doi.org/10.1145/1809018.1809024
http://portal.acm.org/citation.cfm?doid=1809018.1809024
http://dx.doi.org/10.1109/CNSM.2015.7367361

[23] S. Chowdhury, R. Ahmed, M. M. ALAM KHAN, N. Shahriar, R. Boutaba,
J. Mitra, F. Zeng, Dedicated Protection for Survivable Virtual Network980

Embedding, in: IEEE Transactions on Network and Service Management,
2016, pp. 1–1. doi:10.1109/TNSM.2016.2574239.
URL http://ieeexplore.ieee.org/document/7480798/

[24] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whalley, E. Snible, Im-
proving performance and availability of services hosted on IaaS clouds with985

structural constraint-aware virtual machine placement, in: Proceedings -
2011 IEEE International Conference on Services Computing, SCC 2011,
IEEE, 2011, pp. 72–79. doi:10.1109/SCC.2011.28.

[25] W. Wang, H. Chen, X. Chen, An availability-aware virtual machine place-
ment approach for dynamic scaling of cloud applications, in: Proceedings990

- IEEE 9th International Conference on Ubiquitous Intelligence and Com-
puting and IEEE 9th International Conference on Autonomic and Trusted
Computing, UIC-ATC 2012, 2012, pp. 509–516. doi:10.1109/UIC-ATC.

2012.31.

[26] W.-L. Yeow, C. Westphal, U. Kozat, Designing and embedding reliable vir-995

tual infrastructures, Proceedings of the second ACM SIGCOMM workshop
on Virtualized infrastructure systems and architectures - VISA ’10 41 (2)
(2010) 33. arXiv:1005.5367, doi:10.1145/1851399.1851406.
URL http://portal.acm.org/citation.cfm?doid=1851399.1851406

[27] B. Spinnewyn, B. Braem, S. Latre, Fault-tolerant application placement1000

in heterogeneous cloud environments, in: Proceedings of the 11th Inter-
national Conference on Network and Service Management, CNSM 2015,
IEEE, 2015, pp. 192–200. doi:10.1109/CNSM.2015.7367359.

[28] R. Mennes, B. Spinnewyn, S. Latré, J. F. Botero, {GRECO:} A Distributed
Genetic Algorithm for Reliable Application Placement in Hybrid Clouds,1005

in: 2016 IEEE 5th International Conference on Cloud Networking (Cloud-
Net) (CLOUDNET’16), IEEE, 2016.

[29] K. B. Laskey, K. Laskey, Service oriented architecture, Wiley Interdisci-
plinary Reviews: Computational Statistics 1 (1) (2009) 101–105. doi:

10.1002/wics.8.1010

URL http://dx.doi.org/10.1002/wics.8

[30] P. D. Justesen, Multi-objective Optimization using Evolutionary Algo-
rithms, Vol. Confirmati, John Wiley & Sons, 2009.

[31] J. F. Gonçalves, M. G. C. Resende, Biased random-key genetic algorithms
for combinatorial optimization, Journal of Heuristics 17 (5) (2011) 487–525.1015

doi:10.1007/s10732-010-9143-1.
URL http://link.springer.com/10.1007/s10732-010-9143-1

38

http://ieeexplore.ieee.org/document/7480798/
http://ieeexplore.ieee.org/document/7480798/
http://ieeexplore.ieee.org/document/7480798/
http://dx.doi.org/10.1109/TNSM.2016.2574239
http://ieeexplore.ieee.org/document/7480798/
http://dx.doi.org/10.1109/SCC.2011.28
http://dx.doi.org/10.1109/UIC-ATC.2012.31
http://dx.doi.org/10.1109/UIC-ATC.2012.31
http://dx.doi.org/10.1109/UIC-ATC.2012.31
http://portal.acm.org/citation.cfm?doid=1851399.1851406
http://portal.acm.org/citation.cfm?doid=1851399.1851406
http://portal.acm.org/citation.cfm?doid=1851399.1851406
http://arxiv.org/abs/1005.5367
http://dx.doi.org/10.1145/1851399.1851406
http://portal.acm.org/citation.cfm?doid=1851399.1851406
http://dx.doi.org/10.1109/CNSM.2015.7367359
http://dx.doi.org/10.1002/wics.8
http://dx.doi.org/10.1002/wics.8
http://dx.doi.org/10.1002/wics.8
http://dx.doi.org/10.1002/wics.8
http://dx.doi.org/10.1002/wics.8
http://link.springer.com/10.1007/s10732-010-9143-1
http://link.springer.com/10.1007/s10732-010-9143-1
http://link.springer.com/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1007/s10732-010-9143-1
http://link.springer.com/10.1007/s10732-010-9143-1

[32] J. Lischka, H. Karl, A virtual network mapping algorithm based on sub-
graph isomorphism detection, in: Proceedings of the 1st ACM workshop on
Virtualized infrastructure systems and architectures VISA 09, ACM, 2009,1020

p. 81. doi:10.1145/1592648.1592662.
URL http://portal.acm.org/citation.cfm?doid=1592648.1592662

[33] J. Dean, S. Ghemawat, Simplified data processing on large clusters, Sixth
Symp. Oper. Syst. Des. Implement. 51 (1) (2004) 107–113. arXiv:10.1.

1.163.5292, doi:10.1145/1327452.1327492.1025

[34] C. Caragea, V. Honavar, P. Boncz, P. Boncz, P.-Å. Larson, S. W. Dietrich,
G. Navarro, B. Thuraisingham, Y. Luo, O. Wolfson, S. M. Beitzel, E. C.
Jensen, O. Frieder, C. S. Jensen, N. Tradǐsauskas, E. V. Munson, A. Wun,
K. Goda, S. E. Fienberg, J. Jin, G. Liu, N. Craswell, T. B. Pedersen,
C. Pautasso, M. M. Moro, S. Manegold, S. Manegold, B. Carminati,1030

M. Blanton, S. Bouchenak, N. de Palma, W. Tang, C. Quix, W. Tang,
M. A. Jeusfeld, R. K. Pon, D. J. Buttler, M. A. Jeusfeld, W. Meng,
P. Zezula, M. Batko, V. Dohnal, J. Domingo-Ferrer, J. Domingo-Ferrer,
D. Barbosa, I. Manolescu, J. Xu Yu, J. Domingo-Ferrer, E. Cecchet,
V. Quéma, X. Yan, O. Wolfson, G. Santucci, D. Zeinalipour-Yazti, P. K.1035

Chrysanthis, C. Quix, A. Deshpande, C. Guestrin, S. Madden, C. K.-S.
Leung, R. H. Güting, R. H. Güting, A. Gupta, T. B. Pedersen, H. Tao
Shen, G. Weikum, B. Thuraisingham, G. Weikum, R. Jain, J. X. Yu,
P. Ciaccia, K. S. Candan, M. L. Sapino, J. X. Yu, R. Jain, C. Meghini,
F. Sebastiani, U. Straccia, F. Nack, V. S. Subrahmanian, M. V. Martinez,1040

D. Reforgiato, J. X. Yu, T. Westerveld, M. Sebillo, G. Vitiello, M. De Mar-
sico, K. Voruganti, C. Parent, S. Spaccapietra, C. Vangenot, E. Zimányi,
P. Roy, S. Sudarshan, E. Puppo, P. Kröger, M. Renz, H. Schuldt, S. Kolahi,
A. Unwin, W. Cellary, Multi-Tier Architecture, Springer US, Boston, MA,
2009, pp. 1862–1865. doi:10.1007/978-0-387-39940-9_652.1045

URL http://www.springerlink.com/index/10.1007/

978-0-387-39940-9{_}652

[35] A. Broder, Generating random spanning trees, in: 30th Annual Symposium
on Foundations of Computer Science, 1989, pp. 442–447. doi:10.1109/

SFCS.1989.63516.1050

URL http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.

1989.63516

[36] E. Zegura, K. Calvert, S. Bhattacharjee, How to model an internetwork,
in: Proceedings of IEEE INFOCOM ’96. Conference on Computer Commu-
nications, Vol. 2 of INFOCOM’96, IEEE Computer Society, Washington,1055

DC, USA, 1996, pp. 594–602. doi:10.1109/INFCOM.1996.493353.
URL http://dl.acm.org/citation.cfm?id=1895868.1895900

[37] Amazon EC2 Instance Comparison, \url{https://aws.amazon.com/ec2/instance-
types}.
URL http://www.ec2instances.info1060

39

http://portal.acm.org/citation.cfm?doid=1592648.1592662
http://portal.acm.org/citation.cfm?doid=1592648.1592662
http://portal.acm.org/citation.cfm?doid=1592648.1592662
http://dx.doi.org/10.1145/1592648.1592662
http://portal.acm.org/citation.cfm?doid=1592648.1592662
http://arxiv.org/abs/10.1.1.163.5292
http://arxiv.org/abs/10.1.1.163.5292
http://arxiv.org/abs/10.1.1.163.5292
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/978-0-387-39940-9_652
http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.1989.63516
http://dx.doi.org/10.1109/SFCS.1989.63516
http://dx.doi.org/10.1109/SFCS.1989.63516
http://dx.doi.org/10.1109/SFCS.1989.63516
http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.1989.63516
http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.1989.63516
http://www.computer.org/portal/web/csdl/doi/10.1109/SFCS.1989.63516
http://dl.acm.org/citation.cfm?id=1895868.1895900
http://dx.doi.org/10.1109/INFCOM.1996.493353
http://dl.acm.org/citation.cfm?id=1895868.1895900
http://www.ec2instances.info
http://www.ec2instances.info

Appendix

Acronyms

APP Application Placement Problem.

CAPP Cloud Application Placement Problem.

CLF CPU Load Factor.1065

CPU Central Processing Unit.

DB database.

GA Genetic Algorithm.

ILP Integer Linear Program.

M2C machine-to-cloud.1070

M2M machine-to-machine.

MAV Micro Air Vehicle.

MCF Multi Commodity Flow.

MKP Multiple Knapsack Problem.

MPC Model Predictive Control.1075

NIC Network Interface Card.

PL Physical Link.

PM Physical Machine.

SN Substrate Network.

SOA Service Oriented Architecture.1080

SVNE Survivable Virtual Network Embedding.

VL Virtual Link.

VM Virtual Machine.

VMs Virtual Machines.

VN Virtual Network.1085

VNE Virtual Network Embedding.

40

	Introduction
	Related work
	Resilient cloud placement model
	Application requests
	Cloud infrastructure
	The VAR protection method
	Availability calculation

	Formal problem description
	Decision variables
	Constraints
	Admission control
	Node-embedding
	Link-embedding
	Availability-awareness

	Objective function

	Heuristic approaches for real-time calculation
	GRECO: Genetic Reliable ClOuds application placement algorithm
	Genetic Algorithm
	Chromosome definition
	Deterministic Decoding
	Framework: Pool model

	Subgraph isomorphism

	Performance evaluation
	Evaluated algorithms
	Application model
	Cloud infrastructure
	Algorithmic parameters
	Key observations
	Influence of required availability
	Influence of clf
	Influence of application requests and SN dimensions

	Results discussion
	Conclusion

