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Abstract

Data centers have been evolved from a passive element of compute infrastructure to become an active, core part of
any ICT solution. In particular, modular data centers (MDCs), which are a promising design approach to improve
resiliency of data centers, can play a key role in deploying ICT infrastructure in remote and inhospitable environments
in order to take advantage of low temperatures and hydro- and wind-electric capabilities. This is because of capability
of the modular data centers to survive even in lack of continuous on-site maintenance and support. The most critical
part of a data center is its network fabric that could impede the whole system even if all other components are
fully functional, assuming that other analyses has been already performed to ensure the reliability of the underlying
infrastructure and support systems. In this work, a complete failure analysis of modular data centers using failure
models of various components including servers, switches, and links is performed using a proposed Monte-Carlo
approach. The proposed Monte-Carlo approach, which is based on the concept of snapshots, allows us to effectively
calculate the performance of a design along its lifespan even up to the terminal stages. To show the capabilities of
the proposed approach, various network topologies, such as FatTree, BCube, MDCube, and their modifications are
considered. The performance and also the lifespan of each topology design in presence of failures of their components

are studied against the topology parameters.

Keywords: Monte-Carlo Analysis, Failure Analysis, Modular Data Centers, Network Topology.

1. Introduction

Traditionally, the data center (DC) term has been used as a reference to the warehouse-scale (up to tens of thou-
sands of high-performance servers as well as the associated networking, storage, cooling, and support equipment)
facilities that centralize a company’s ICT-related operations and equipment. Nowadays, in a networked society [11],
DCs have rather become a vital part of seamless operation of many daily activities. Consequentially, the reliability
and availability (uptime) of DCs and their services have been a top priority for many companies and organizations.

In particular, Virtualization, Everything as a service (XaaS),! and open source paradigms have enabled the DCs and,

For example, Infrastructure-as-a-Service (IaaS).
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more generally, compute/network/content (CNC) delivery solutions to operate at the level of utilities (with the new
responsibilities [15]).

Low levels of reliability and dependability, such as those related to unreachability, traffic choking at link as well as
at component (switches) levels, and also misconfiguration could highly affect the Return on Investment (Rol) of a DC.
In particular, having a reliable DC network fabric with a scalable architecture design is a critical concern. However,
it is worth mentioning that a failure of a data center is not limited only to its ICT-level components including the
network fabric. In particular, a failure in the infrastructure and support system of a data center, including the power
supply system and the cooling system, could result in a failure of the whole operation. From here on we assume
that another analysis has been performed to ensure the reliability of the support systems, and we only focus on the
ICT-level components namely servers, switches and links. It is also worth mentioning that because of aggregated
nature of the output of the support systems, straightforward solutions such as replication of such systems could be
used to increase their resiliency with respect to failures. By definition, in a DC network, reliability is the ability to
perform and deliver the required functions and services for a specified period of time and under some conditions
declared in service level agreements (SLAs). Scalability in terms of expanding hardware and also installing DCs at
unsecured or unmonitored places could be identified as two important challenges for reliability. To address these
challenges, DCs with a scalable architecture are designed using purpose-engineered modules that at the same time
reduces costs of operation and administration. This modular data center (MDC) approach is also becoming more
popular for large-scale DC operations [35]. MDCs can be imagined as set of independent, self-directed compute
modules (such as cabinets or physical containers) that are built in standardized sizes, such as that of overseas shipping
containers, hosting a large number of servers [22].

It is worth noting that software level management of a DC is a big challenge by itself. However, designing an
agile, robust, and scalable DC hardware (at both topology and component levels?) is the fundamental requirement
that affect all high-level management layers. This is more critical for ship-and-deploy (S&D) MDCs that seem to
be promising solutions for fast deployment of resilience compute resources at any place and any time. These self-
contained MDCs could be deployed in remote areas where only the Electricity, Water, and Broadband connectivity
(EWBc) infrastructure is in-place, but there will be no human support/maintenance/intervention available in short-
term periods of time. This is highly interesting, and is especially along with strategic north plans in Canada at both
provincial and national levels [2, 16, 18], which target Canada’s natural resources, especially untouched hydro-electric
and wind-electric sites in the North [23], among other possibilities.

There are a number of work addressing the reliability concern in the DC network, and a few DC network architec-
tures have been investigated in order to provide a better reliability and scalability in the context of MDCs (Please see
the Related Work section, Section 6, for more details). It is worth noting that the reliability analyses provided in these

studies, such as in [7], have been based on removing a few components according to the failure relations in order to

>The disaggregated hardware approach provides flexibility at the level of components (nodes) [12, 27]. The flexibility and resilience at the
topology level is the focus of this work.



evaluate the effect of each component type’s failure on the reliability of the DC network topology. In other words,
although these studies investigate the relative importance of various components, they could not provide the whole

picture of degradation and decrease in reliability of the DC along time. In contrast, the operation of MDCs highly
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Figure 1: a) A schematic stack of components layers. b) The simple case of MDCs in this work, which focuses on the failure of the compute
components. The maintenance, support and management components and layers are excluded in this case.

Second, although we can conclude a sigmoid-like reliability behavior for a system similar to those of its physical
components, the system availability cannot be bounded with only this information. In practice, a system would go
through several unavailability episodes (time intervals) during its lifetime because of repairable failures that happen at
higher levels/layers of the system (above the physical level/layer). A simplified schematic of a typical system is shown
in Figure 1(a). ‘Software Aging’ phenomena in the software levels, such as Virtual Machine Managers (VMM) and
Container Managers (CM) level, would eventually lead the system, and also the individual applications hosted on it,
to fail or degrade to an unacceptable level of Service Level Objectives (SLOs). These episodes could be treated with
manual or automatic interventions that can be easily performed remotely. Analysis of the (sub)-system availability
and the impact of individual components, such as VMMs, is beyond the scope of this work. However, the lifetime
analysis provided herein could be of great interest in planning high availability designs, since the availability of a
system cannot go beyond its reliability lifetime.

In this paper, we propose a new analysis approach based on individual component failure profile described in
terms of cumulative distribution functions (CDFs). The proposed analysis approach, which is based on Monte-Carlo
methodology, calculates the reliability picture of the system under analysis along with several performance indicators.
These indicators are proposed to provide insights in terms of profitability of a solution from various perspectives. The

details are provided in the subsequent sections. In fact, up to our knowledge, there exists no study on comparing DC
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network topologies in terms of failures on DC components, such as servers, switches, physical links and so forth, while
taking into account the operational life-time of the DC. To be precise, we use the proposed Monte-Carlo approach
to conduct a series of experiments in which a fault-free topology is initiated at time t = 0, and then its behavior is
evaluated along the time. The performance profile of the topology is then generated along time with respect to one or
a few parameters of the topology.

The paper is organized as follows. Section 2 provides a short list of notations used in the rest of the paper.
The proposed Monte-Carlo methodology to analyze the failure performance of data centers along their lifespan is
introduced in section 3 along with the experimental setup described in Section 4. Next, the performance metrics are
presented in section 4.2. Then, the performance of the three major topologies and their generalizations are studied in
section 5. This is followed by the related work and some conclusions presented in sections 6 and 7, respectively. In
Appendix A, the proposed Tanh-Log cumulative distribution function is introduced and fitted using the data from a
real system database. Then, in Appendix B and Appendix C, the three main topologies and their modifications that

are considered in this study are presented and discussed.

2. Notations and Definitions
In this section, some of the graph theory notations used from here on are presented.

Directed Graph G/(V, E, w): A directed graph with vertex set V of n = ||V|| nodes along with the set E of its m = || E]|
active edges and their associated weights w. A vertex is denoted either by v; or by its index i (which is equivalent
to its resource ID): v; € V. We may also causally use i € V as a short notation. A typical directed edge is shown
by effj, where i and j are the the start and end vertexes. Also, wfl_)j (: wA (e,; j) > O) denotes the associated

positive weight of the edge e;"j. We assume w > 0 considering the fact that in this work the weights actually

represent the bandwidth of a link in a data center network.

Undirected Graph (Network) G(V, E,w): Anundirected graph with vertex set V along with the set E. For each edge
e; j there are equivalently two edges: e;.fj and eii, which means a graph G could be equivalently built using a G¢
that has two edges between each pairs of connected nodes. Considering the fact that in the data center networks
and fabrics the links are usually symmetric, we use a single parameter w; ; to represent both equal bandwidth of

a link between nodes i and j.

Node v;: A node v; of a data center network could be a compute node (a server) or a network node (a switch).
The compute nodes focus on the compute intensive functions, while the network nodes perform better for
the non-local data processing (including transport, routing, and switching, among others). Considering the
introduction of white-box hardware and also open hardware, the differentiating factors between compute and

network nodes is counting down to criteria such as design preference, performance, and cost. For example, in a



BCube topology, the compute nodes also participate in the networking functions (please see Section Appendix

O).

State of a node f(r): The state of a node with respect of failure at a specific time 7. In this work, the state values are

binary from a set of {Operational, Failed}.

State of a link f,;_j(t) The state of the link between two nodes i and j with respect of failure at a specific time 7. The

set of possible values is {Operational, Failed}.

State of the graph S, The state S, of a graph G is an instance of G(V, E, w) at a specific time #, in which all vertices

and links have been attributed with their specific state value.

Trajectory 7 A Trajectory 7 is a sequence of states of “a” particular graph G from the initial time t = 7y = 0

1=h

till the current time ¢ = #1: (S), -

For the purpose of simplicity, we omitted the graph in the notation of
the trajectory. It is worth mentioning that if a constant graph G is repeatedly exercised from the same initial
state at time r = 0, it may follow different trajectories in each one of those exercises. This means that the
graph is not allowed to switch between trajectories (although at some points along time, the trajectories may
become nondifferentiable). Considering the fact that we are interested in improving the overall performance of
a large number of similar data centers (an ensemble of data centers), the performance metrics (to be mentioned

in Section 4.2) are statically evaluated on the ensemble of the trajectories at each specific time, and then are

augmented to generate the performance profile.

Snapshot S A snapshot is a particular state S of a graph G at a time : § = (8, 7). It is a tuple of a state S and a time
instance ¢. Implicitly, we assume that the graph has been exercised from ¢# = 0 with the initial state. It could be
argued that a snapshot S is the state at the current time ¢ of its associated trajectory with the assumption that the
trajectory is not retrievable. In terms of the performance of an ensemble of data centers, the statistics could be
evaluated on a large-enough set of snapshots at a specific time. In the case of Modular Data Centers (MDC) of
this paper (to be discussed in Section Appendix B), which do not undergo maintenance and repair operations
during long time intervals, the set of snapshots at a specific time could be directly populated based on the initial
state, the partial differential function (PDF) of individual components of the data center network (nodes and

links), and the target time, without requiring to generate the associated trajectories.

3. The Proposed Snapshot-based Monte-Carlo (MC) Analysis of Data Center Topologies

Let’s consider an MDC with specified topology and components. It is assumed that the system is fully operational
at t = 0. Therefore, there is only one state of the system is possible at time # = 0. For any # > 0, the set of reachable
system’s states is equal to the set of all possible system’s states. However, the probability of having any of those
states could be different depending on ¢ and the degree of failure in the system. In the proposed MC approach, a set
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Figure 2: An illustrative example of the MDCube2D topology. There are four containers per row, each one a BCube (level-1) with 2-port servers
and switches arranged in three BCube (level-0) cubes.

of snapshots for each ¢ is taken from its set of possible system’s states according to their probabilities. These sets of
snapshots along the time provide a statistical picture of the performance of the specific topology of the MDC measured
using the performance metrics aggregated on the snapshots. For each component, the CDF of failure is used along
our in-house random number generator in order to determine its state in terms of being operational or failed. This
process is repeated for all the components, and at the end a snapshot of the system at that specified instance of time
is created. We have used a size of 100 snapshots per time instance in this study. A schematic diagram illustrating the
concepts of paths and snapshots is provide in Figure 3.> Each graph represents a snapshot of a MDC at its associated
time. Only two of many possible trajectories are drawn. At ¢t = 0, all trajectories have the same snapshot, from which
they diverge to their own path. The MDC used is a MDCube2D? topology* with 256 servers and 128 switches. The
servers are represented by blue nodes, while red nodes correspond to the switches. There is a convergence at the end
of life along all trajectories and paths. It is worth noting that in the proposed analysis approach, as mentioned before,
the snapshots of a time instance ¢ are not built based on the snapshots taken from its preceding instance ¢~.° In other

words, each snapshot should have its own associated trajectory.

3A sample video of the evolution of a MDCube2D? topology along one of its trajectories can be viewed at this link:
|http://youtu.be/YOG7XEiY4£k|

“#For the detailed description of the topology, please see Appendix C.

3¢ is any indistinguishable time instance before 7.
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Figure 3: A typical and illustrative example of evolution of an MDC topology along the time in presence of failure. The MDC topology is an
MDCube2D? with 256 servers and 128 switches, which are shown in blue and red nodes, respectively. The system can fall in one of many possible
trajectories two of them are shown in the figure. From each trajectory only one snapshot would be eligible to be considered. At ¢ = oo, all
trajectories reach to a common state in which all nodes and links have failed (denoted by the empty set ¢ in the figure).

The snapshots are assumed to be trajectory-independent, i.e., a snapshot is created by populating the state of every
component (server, switch, and link) using their distribution functions, random generators, and the time. When we
move from one time-instance to the next one, the new snapshots are generated independently from the previous time
instance. In a complex system with many components and over long periods of time, th number of possible system-
level states would be enormous at any time instance, and therefore the number of possible trajectories would be high.
The nature of modular data centers, in which a component state only depends on its distribution function and the
period of time passed, allows us to perform the snapshot-based analysis and ignore the trajectories. Hypothetically,
we can assume that every snapshot belongs to at least one trajectory. This fact has been shown in Figure 3. However,
it should not be interpreted that in the proposed analysis the snapshots are calculated using trajectory.

Although it may be argued that considering the limited number of samples considered in each analysis, a trajectory-
based analysis would perform better or the same as the proposed snapshot-based analysis, we argue that considering
the large number of possibilities, the sampling is always a sub-sampling, and the proposed snapshot-based analysis
would give a better-distributed and “objective” sampling because, in contrast, any trajectory-based analysis would
suffer from its high dependency on the actual numbers that are used for the few first time instances (these few first
samplings would limit the trajectory “cone” regardless of the quality of the random numbers that are used for the rest
of the time instances). In other words, engineering efficient trajectories that traverse the long life time of a modular
data center would be a great mathematical challenge by itself, while the snapshots’ performance is mainly limited by
the number of snapshots used. Figure 4 schematically illustrates this fact. At the time instance ¢ = f,, the sub-space
of the possible states is shown in the form of a hyper-circle, and also only two trajectories are shown for the purpose
of clarity of the graph. It is straightforward to see that the possible states at ¢ = 3 that can be reached from the two
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Figure 4: A illustration of evolution of state space along the life time of an MDC topology. At each time instance, the sub-space of the possible
states is shown by a circle. The proposed snapshot-based approach would outperform the trajectory-based approaches in terms of uniformity of
sampling at each time instance becuase of its independence from the performance at the preceding time instances.

trajectories’ landing state in the sub-space at ¢t = f, are highly limited to the “cones” that start from those landing
points (illustrated by two small circles in the sub-space of t = t3). The inaccessible part of the sub-space in the
t = t3 is marked by crossed hashed pattern. In contrast, the proposed snapshot-based approach is expected to perform
a uniform sampling in each of the sub-spaces, and therefore its outcome is not affected by the previous samplings
performed in the preceding time intervals. For example, in Figure 4, the snapshot S 4 is placed in the crossed-hashed
part at ¢ = #3 which would be impossible for trajectory-based approaches to reach it.

The Algorithm 1 provides the summary of the proposed Monte-Carlo approach. The algorithm receives an input
which includes the topology family and its parameter values in addition the time interval and the distributions. Then,
it continues with generating snapshots at a series of time instances selected along the time interval. After generating
the snapshots at a specific time instance, the statistics and then the associated performance metrics are calculated. The
performance metrics along the time series is collected in order to perform statistical post-analyses, such as that of
confident interval analysis. It is worth mentioning that the proposed Monte-Carlo algorithm is of a linear complexity

with respect to the time interval thanks to using snapshots because of no-repair specifications of the MDCs.

4. Experimental Setup

In this section, the experimental setup including the performance metrics are presented and listed. The results of

the experiments are then provided in the next section, Section 5, along with the discussions.

4.1. Setup

To show the capability of the proposed Monte-Carlo approach, a series of experiments are considered. In each

experiment, a fault-free topology is initiated at time ¢ = 0, and then its behavior is evaluated along the time. In order



Algorithm 1 A Snapshot-based Monte-Carlo algorithm for MDCs.
1: procedure PERFORMANCEPROFILE = SnapshotMC(TopologyName, TopologyParameters, f4,,, DeviceDistributions, Perfor-

manceMetrics)
2: > Initialize the network G at ¢ = 0 (All nodes and links are set to ‘up’ state).
3: G « Gy,
4: > The algorithm marches the network G along the time from 7 = 0 till # = #5,,-
5: t 0
6: S 0 < (G(), l);
7: Performance « PerformanceMetrics(S);
8: repeat
9: > For each new time instance:
10: t— 1+t
11: > Each snapshot at ¢ is preferably analyzed independent from the others.
12: parfor s = 0, -+ , ngapehor dO
13: > Generate the snapshot S, ;.
14: S5 < Using the DeviceDistributions and Gy;
15: > Calculate the statistics and also the performance metrics of the snapshot.
16: Performance, ;, < PerformanceMetrics(S ,);
17: > Store the time, the performance metrics and statistics of the snapshot.
18: end parfor
19: > Calculate the statistics of the performance metrics at ¢ across all snapshot data.
20: PerformanceProfile < PerformanceProfile @ Performance;;
21: until 7 > #5,,.
22: > Return the calculated performance metrics and statistics.
23: Return PerformanceProfile

to have a statistically meaningful result at each time instance, the state of the evolving topology is populated many
time (Mgnapshot = 100, in this setup) by generating snapshots of the topology at that time instance with respect to the
initial topology at t = 0. Having the (mgnapshot SNapshots generated for a time instance, the associated statistical data is
calculated and then is used to calculate the performance metrics of that time instance. The performance profile of the
topology is then generated concatenating the calculated matrices along time. Considering the characteristics of the
topology, the performance metrics and profiles are analyzed with respect to one or a few parameters of the topology.
In the same way, the families of topologies (such as FatTree family or BCube family) are compared against each other
while we try to keep the comparison fair (by enforcing the same number of server nodes for each one).

At the component level, we have three types of devices: Servers, switches, and basic links. The failure profile of
the servers has been observed to resemble the the well-known Weibull distribution [25]. we have fit this distribution

on the empirical lanl05 database [36] to have the actual failure distribution model for the servers. Also, we have used

a proposed Tanh-Log distribution for the purpose of fitting on the same data. The details of the failure models and
the fitted coefficient are provided in Appendix A. The proposed Tanh-Log distribution provided a better goodness
of fit (GOF). Therefore, we use the latter distribution in our experiments. It is worth mentioning that regardless of
what distribution is used in the failure models, the proposed Monte-Carlo approach provide us with the performance
metrics in the validity range of the distribution used. Therefore, for the other two types of devices, i.e., the switches
and links, we used the same dataset and scale the time values with a factor of 5 and 10, respectively, before applying

the fit function. Although this approximation may not regenerate an accurate picture of a real data center, it allows us
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to show the capability of the proposed Monte-Carlo approach in calculating the performance metrics. In the future,
we will study the differentiating impact of the Tanh-Log distribution versus the Weibull distribution on various dataset
in order to highlight potentials of the proposed distribution.

Although in this work we assume that all components behave independently from each other, it is worth mention-
ing that some components such as switches may correlatively fail in highly tight time intervals because of software
faults of their identical firmware [8, 38]. We will address such cases in a future work in which highly correlated fail-
ures at the component level are modeled by introducing subgroups in the main three groups of components (servers,
switches, and links). For each subgroup a different time-dependent distribution function of failure is assigned.

At the level of topology selection, we consider three well-known topologies in our setup: FatTree [29, 31], BCube
[20], and MDCube [41]°. In addition, in a specific use case of 3072 servers, a series of modified version of these
topologies are considered. The modified version, denoted as FatTreef, BCubef, and MDCube2DE, are introduced in
Appendix C. These modified topologies are intended to allow utilization of high-port-number switch while relaxing
the relation between the number of port of the actual switches and the number of servers placed in each unit of
the topology architecture. The details of these modified topologies could be found in the appendix. Again, the
proposed Monte-Carlo approach calculates the performance metrics regardless of the actual topology selected in each

experiment.

4.2. Performance Metrics

All metrics in this section are defined on a single system snapshot, i.e., an instance of the system with some of
components failed. The process to generate the snapshots and also the procedure to aggregate the metrics calculated
on the set of snapshots have been discussed in Section 3.

Assuming that there is no software-related constraint, the maximum pool of resources of a modular data center is
the maximum number of connected servers, which we call it the largest pool of the data center. At the time ¢ = 0, the
largest pool includes all the servers. We consider two performance metrics with respect to pool size: These metrics,

defined for each snapshot, are the maximum and average relative sizes of the connected components after failures in

DC devices, which are defined in analogy to the metrics used in the studies on reliability in complex networks [1, 17].
The relative size of the largest connected component to the total number of servers in all pools, called Maximum
relative size, is denoted RS,ax:

max {nsrv,i (tl)}

. i€l
RS max (1) = max (RS (11,i)} = ————— !
S (1) = max (RS (1.) = s @)

where ngy ;(f1) denotes the number of servers available in the i connected components at time #;. It is worth men-
tioning that although various snapshots are possible for any time instance #;, we use the same time value to index the

snapshots in the metrics for the purpose of simplicity of notation.

OWe particularly consider the two-dimensional version, i.e., MDCube2D.
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4.2.1. Maximum absolute relative size (ARSmax)

Absolute relative size (ARS) of a connected component is defined as the ratio of the number of servers in that
connected component to the total number of servers of initial state. The Maximum absolute relative size, ARSax, 1S
defined as the maximum of all individual ARS values of all system’s connected components at time 7;:

max {nsrv,i (t1 )}

ARSay (1) = max {ARS (1, i)} = ————— )
iel Nﬂrv

where Ny, denotes the total number of servers in all the connected components at time fo, i.€., Ngv = X ics Rav.i (10),

where f( denotes the starting time of the MDC utilization. In this work, 7y = 0.

4.2.2. Total absolute relative size (ARS p1a1)

For a single leaser (tenant) of the MDC, the maximum absolute relative size (ARS.x) provides the maximum
service level that can be provided to that leaser (for example, an enterprise). However, DCs are most likely operated
in multi-enterprise’ configurations, and therefore, the total profitability and revenue of the DC cannot be estimated
from ARS,.x. To address this need, we introduce the Total absolute relative size metric, ARS1, that counts the total
number of surviving servers in the big-enough pools to the initial number of servers. To define the profitable pools,
a minimum threshold for the the number of servers of a pool is considered, and all pools with less that this threshold
size are ignored in the calculations of ARSo,1. The minimum threshold is denoted 7y, req:

Ngry,i(11)
Z [SW_] X nsrv,req
i€l

Msrv,req

ARSotal (tl P nsrv,req) = N . 3)
stV

4.2.3. Maximum network flow (Flow,.)

Considering increasing demand to process bigger volumes of data and also physical limits of maximum data
transfer rate on copper or optical links, multi-path data transfer has attracted a considerable attention, and with ongoing
efforts on SDNs and other initiatives to ease the restrictions of software components, the multi-path data transfer in
DCs would reach the hardware upper limit of multi-path transferring in near future. Here, we introduce a metric
to evaluate the quality of a topology in terms of multi-path data transfer considering failure in its components. The

maximum network flow, Flow,,,x, of the i connected components at the time ¢, is defined as follows:
Flowmax (f1,1) = mean ({Flow (srvy, srv,,) ‘ Yime z}) @

where Flow (srv;, srv,,) denotes the flow capacity between two of the available servers in the i connected components.

In the experimental results, we will study the Flow,x of the largest and second-largest pools. In the next section, the

7 Also, it is informally spelled as multi-tenant.
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proposed analysis method that generates, evaluates, and aggregates snapshots to create the performance picture of a
DC and its associated topology is discussed.

Another important factor to be considered in the performance metrics is the latency between nodes and also
effective latency of workflows. We will address the latency performance in a future work in which a latency penalty
is added to every component including servers and switches. The reason for considering explicit latency penalty
for the servers and switches is the ongoing shift from application-specific integrated circuit (ASICs) to white-box
and Linux-based software-defined components that makes their performance highly deponent on their actual stack of

hardware/software inside the box.

5. Experimental Results and Discussions

In this section, the capability of the proposed Monte-Carlo approach is provided in the form of calculating the
performance metrics of each topology against its parameters. This analysis is provided in the following three subsec-

tions.

5.1. BCube topology

As mentioned in section Appendix B.2, the BCube topology has two parameters, N = pSrv and K = pSwc.
By definition, N is also the number of switches in each level of the BCube, and the number of levels, and K is the
number servers in each BCube (level-0), and the number of the BCube (level-0)s in the zeroth level. The performance
of BCubes against these two parameters is provided in Figures 5. In Figure 5(a), the performance of the ARSax
against the number of switches’ port is illustrated. The number of servers’ port is set fixed to 5. As can be seen with
the increase in the number of ports, the behavior converge to a smooth and saturated form. The gain achieved at the
inflection time, i.e., the time the performance curve changes its curvature behavior,? is almost %100 in this figure. In
the rest of plots in Figure 5, the inflection time is only provided in order to avoid plotting many curves. As can be seen,
most of the performance parameters have improved behavior when the number of ports is increased. A comparison
with other topologies and with higher and more practical number of servers and switches is provided in subsection

54.

5.2. FatTree topology

The FatTree topology is considered as the baseline in this work. The performance metrics behavior against param-
eters of this topology is provided in Figure 6. The main parameters of FatTree topology, defined in section Appendix
B.1, are the number of servers’ port (pSrv), the number of pods (nPod), and the number of servers per pod (nSer-
Pod). When comparing Figure 6(a) and 5(a), it can be seen that the saturated performance of the FatTree topology is
achieved by the BCube topology. The main cost associated with the BCube topology is bi-functional role of servers

in this topology where they participate in data transmission among other nodes.

8The inflection time is calculated using the Extremum Distance Estimator (EDE) method [5].
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Figure 5: a) The profile of the ARS,x metric for the BCube topology. b)-d) The variation of Flowmax, ARSmax, and Neomp metrics versus the
BCube topology’s parameters.

5.3. MDCube?2D topology

The same process of evaluating performance metrics against the parameters of the MDCube2D topology were
carried out and is provided in Figure 7. Obviously, the MDCube2D topology has less performance in terms of
ARSix as can be seen from Figure 7(a). This can be associated with the bottlenecks created by the interconnecting
links among the containers. However, the behavior of this topology is more stable across the parameter values, which
can be seen from Figure 7(c). The other advantage of the MDCube2D topology is its by-definition scalability. When
the BCube topology’s number of servers is increased, the number of level-0 cubes and also the complexity of the
connections rapidly increase. In contrast, MDCube2D topology is highly scalable in a 2D manner, which fits well
with the spatial organization of the traditional DC rooms.

The compromise between scalability and performance can be decided on depending on the application context.
For example, for a central data center, which requires adding new modules and hardware along the operating in order

to address the needs of new customers, it can be suggested that the MDCube2D topology is a better choice in terms
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Figure 6: a) The profile of the ARSy.x metric for the FatTree topology. b)-d) The variation of Flowmax, ARSyax, and Neomp metrics versus the
FatTree topology’s parameters.

of scalability. In contrast, for example, in a small edge data center used by a Telco operator to service its customers
in a small area, the BCube topology seems to be the better choice. In the next section, section 5.4, we compare
the performance of the extended topologies proposed in this paper against each other in a practical scale of a few

thousands of servers.

5.4. A Use Case of 3072-server MDC: An Application of BCube®, MDCube2DF, and FatTree® Architectures

All three considered topologies show a considerable resilience to failure of their components along time. However,
as observed in the previous sections, the degree of these residencies varies among the topologies. Also, the comparison
at the scales similar to real word DCs should be performed. In this section, the performance comparison is performed
for the same number of 3,072 servers in each topologies. Using 48-port switches, a 2304-server BCube (level-
1) architecture can be achieved. The next DC size would be 2704 using 52-port switches. Similarly, the FatTree
topology could achieve the same number of servers using these switches. In contrast, our proposed BCube’ topology

can provide an level-1 architecture using 64 BCube (level-0) cubes each one containing 48 servers to easily archive
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Figure 7: a) The profile of the ARS,x metric for the MDCube2D topology. b)-d) The variation of Flowmax, ARSmax, and Neomp metrics versus
the MDCube2D topology’s parameters.

the target 3072-server size.

A comparison table of the required number of servers and switches of the three extended topologies is provided
in Table 1. In particular, the MDCube2D® architecture composed of four BCube® architectures each containing 768
servers. The FatTree” architecture composed of 64 pods, and the BCube” architecture has 64 level-0 cubes.

First, the comparative performance of the three designs is analyzed in Figure 8. Five metrics are considered. The
ARST closely follows the ARS .« that is a good performance for the BCube topologies in profitability of the solution
by providing service to multiple customer or tenants along the time. The resilience to breakdown to multiple pools
can be seen from the MaxF; and MaxF, performance. Considering the 2-port servers included in the design, the upper
limit of the MaxF is 2, and it degrades along the time toward 1. The MaxF; does not go below one because of its
definition that calculates the flow within a pool and island. Interestingly, the breakdown time period of the FatTree”
architecture does not match the period of degradation associated with the biggest pool. The breakdown is around

time equal to 80, while the biggest pool degrades to a flow of one around time equal to 700. This can be explained
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H Topology H pSrv \ pSwe \ # servers | # switches H

BCube” 2 48 3072 128
FatTree? 2 48 3072 134
MDCube2D* 2 48 3072 128

Table 1: The parameters and specifications of the three MDC topologies used for the 3072-server use case.

by multiple partitioning events that happen at the breakdown time and result in several small pools. In contrast, the
BCube” and the MDCube2D? topologies, observe a partitioning into a big and small pool at the breakdown.

The BCube” topology performs the best in terms of three measure: ARS,.x, ARSty, and MaxF;. On the sec-
ond rand, the MDCube2D* topology stands with an exception with respect to the MaxF;. The bottleneck of the
MDCube2D* topology can be spotted in its inter-container links that can easily downgrade its overall flow perfor-
mance.

It is worth mentioning that the default use case of the proposed analysis is in the design stage in order to select or
determine the optimal network topology for the data center. However, the proposed analysis could be used as a “live”
optimization tool in an in-operation data center in order to locally optimize the current “brown” topology. By brown
topology we mean having components aged and even some failed in the system. This live optimization could help
the data center operator to postpone the maintenance events as far as possible which is a key factor in operation of
modular data centers that are deployed in remote areas.

In terms of the overhead of analysis in the live-optimization use cases, it is worth mentioning that the snapshot
concept itself is highly parallelizable, and therefore the required time to perform the live analysis could be arbitrary

reduced by increasing the amount of its allocated parallel computation.

6. Related Work

There are several work addressing the reliability concern in DC networks [7, 20, 21, 34, 43]. In these studies, a few
DC network architectures were investigated in order to provide a better reliability and scalability with MDCs. In this
regard, a comparison study on the reliability of DC topologies such as FatTree, BCube and DCell, were investigated
in [20, 21] subject to a specific traffic pattern and routing algorithm, respectively. In particular, it has been shown that
BCube topology that is specifically designed for MDCs using shipping-containers, shows a better performance than
FatTree and DCell topologies for MDCs. Moreover, there are number of studies those taken into account comparisons
based on the energy conservation and cost of different DC network architectures [34, 43]. For instance, the authors
in [34] have taken one step to understand the trade-offs in the design of DC network architectures. In particular,
they proposed a methodology to estimate the cost of various DC architectures based on a predetermined performance
requirement.

Recently, independent of any network applications, the authors in [7] investigated the reliability of different DC

network topologies in terms of the network components’ failure ratios. In these analysis, the DC network topologies
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were modeled as a graph with servers and switches as nodes and network links that connecting the nodes. The
results has shown a degradation at the DC network performance because of the removal of connected components
with a small number of servers as the failure ratio increases. However, please note that the reliability comparisons
analysis provided in studies like [7] were utilized the removal of different network components to evaluate the effect
of each component’s failure on the reliability of different DC network topologies. It is worth noting that though such
a comparison is common and used in many contributions, it is also challengeable since it does not consider the failure
behavior of each component over time. In fact, up to our knowledge, there exists no study on comparing different DC
network topologies in terms of failures on DC network components while taking into account the operational life-time

(lifespan) of the network.

7. Conclusion and future prospects

In this work, a novel statistical approach, based on the Monte-Carlo methodology, has been proposed to estimate
the performance metrics of modular data centers along their operating lifespan. To our knowledge, this is the first
time such an analysis is provided. The proposed approach breaks down the trajectory dependency of the system in
order to develop an unbiased statistical picture of a design’s performance along its utilization. The approach uses the
components probability distributions of failure along their utilization time in order to calculate the failure penetration
at the components level, referred to as a snapshot. At the same time, to have a better fit on the real system failure data,
a generalization in the form of a Tanh-Log cumulative probability distribution has been proposed. Using the proposed
distribution and the analysis approach, the performance of three well-known topologies in the context of modular
data centers, i.e., FatTree, BCube, and MDCube2D, has been studied. In addition, in order to make these topologies
more flexible and agnostic with respect to hardware, and increase their resilience to failures, some extended versions of
these topologies have been introduced and denoted as FatTree®, BCubeF, and MDCube2DE. It has been concluded that
the extended BCube topology, BCubeF, could deliver more resiliency performance in terms of various performance
metrics (subject to the validity range of the distributions used). On the other end, with respect to scalability, the
extended MDCube2D, i.e., MDCube2DE, provides a higher performance.

Study of the impact of other layers and components, such as virtual machine managers, virtual machines, contain-
ers, and in general the software part on the reliability, availability, and management of the modular data centers will be
considered in the future. Also, possible advantages of the Tanh-Log distribution on various dataset will be examined.

Moreover, other potentials of the proposed extended topologies and also their possible drawbacks will be studied.
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Appendix A. Tanh-Log and c-Tanh-Log Failure Probability Distributions

In our approach to failure analysis, each component is assumed to follow a specific type of failure profile specific for its
type of components. Also, we assumed that the system would be under full utilization, and therefore utilization time (age) of
every surviving component is equal to each other This implicitly implies that the system has just one cold start and there will no
(hardware) repair in the life-time of the system before major maintenance cycles. This is compatible with our MDC use cases in
which the systems are shipped, deployed, and remotely controlled until their Rol goes beyond a specific value that triggers a major
maintenance cycle.

In Figure A.1, a typical failure profile, which is actually the associated failure CDF of a typical component, is shown. The
key behaviors to highlight are burn-in period at the beginning of utilization followed by a sigmoid-like convergence to most-likely
failed state. The burn-in period is illustrated as the time interval between the blue and green vertical lines. Although detailed
analysis of burn-in tests is not the focus of this paper, they could have major impacts and consequences on the nature (environment)
and society when their Life-Cycle Assessments (LCA) is considered [32, 39].
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Figure A.1: A typical failure profile of a component or system considering the burn-in period. The blue vertical line marks the manufacturing time
of the component, while the green vertical line stands for the beginning of its utilization by the user.

First, as can be seen from the figure, by adjusting the end of the burn-in period, it is possible to deliver a component at its lowest
likely-to-fail state. Although this is of great interest to high performance computing (HPC) applications and is actually practiced,
it implicitly implies that a large number of manufactured, working components would not be delivered and are aborted within the
burn-in phase [4, 39, 40, 42]. Despite the fact that this practice increases the reliability of the target HPC applications, it avoids the
aborted components from entering into the market while otherwise they could well serve in other applications with low-sensitivity
to reliability. This aspect will get more attention in future because it is being argued that the sustainability audit of a system should
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not only include its immediate action but also the consequences of its indirect actions, such as its influence in the manufacturing
and recycling (end of the life) of even those components that have not been used within that system boundary. This approach to
the life cycle assessment (LCA) is getting more and more attention in recent years [10, 32], and it requires proper consideration
in system design and operation [13]. In particular, non-invasive approaches to separate high-performance and low-performance
manufactured components could be an essential replacement of the brute-force burn-in tests, which also would being a new stream
of revenue and creditably for the ‘responsible’ manufacturers.

In failure analysis of systems with aging and history phenomena, proper selection of failure probability distribution is a critical
step. A new Tanh-Log cumulative distribution function was introduced in [14] with better fitting features. It provides flexibility to
absorb various behaviors thanks to its Tanh shape and also nonlinear transformation of the time. In order to remove the limitation
of having a zero CDF value at t = 0, we use a modified version, called the c-Tanh-Log distribution:

CDFs xX) =co+ 1_—601 {tanh( e ) + tanh(w)}, (A1)
+
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where C* = CDF**(x*) at a typical time interval x*, and DDF stands for the Differential Distribution Function, defined as follows,
and provides a mean to compare even those CDFs defined on different time intervals [14]:
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where s is a scaling factor. The term ¢, is a constant to absorb the non-zero behavior at the beginning of the utilization phase.
To show the performance of the new distribution, the fit of the two distributions on the empirical lanl05 database [36] is shown in
Figure A.2. The time interval of the lanl05 database is considered to be generic, and therefore it is considered with an arbitrary unit
(a.u.) of time. The biggest interval in this database is 34,480 a.u. of time, which determines the interval on all the best fit figures.
The empirical CDF of the (union-interpreted) lanl05 database was retrieved from the Failure Trace Archive (FTA) [25]. As can be
seen from the figure, the c-Tanh-Log distribution provides a better fit at the beginning. The fitted parameters of the two distributions
are x, = 5.564(+0.0035) and x; = 1.577(+0.0030), and x. = 5.643(x+0.0019), x, = 1.536(+0.0012), and ¢, = 0.01755(+0.0004)
respectively. For each parameter value, the %95 interval is shown using (+-) notation. The best fits of both distributions and also
that of the well-known Weibull distribution [25] are shown in Figures A.2(a) and A.2(b). The empirical CDF is shown in black,
while the Tanh-Log and the Weibull distributions are shown in solid blue and dashed red lines respectively. The p-values of fit
(compared to the traditional significance level of 0.05) with respect to the Kolmogorov-Smirnov [24, 28] and also the Anderson-
Darling [37] goodness of fit (GOF) tests are 0.4765 and 0.5659, and 0.4969 and 0.5898 for the two distributions respectively. In
this work, we use this empirical distribution as our model for the servers. For the switches and network links, no data was available
from the database. Therefore, we assume the same empirical data but with higher performance: Availability intervals of the same
empirical data multiplied by arbitrary factors of 2 and 5, respectively, were considered and then used to calculate the associated
distributions. It is worth noting that the proposed failure analysis, described in section 3, is completely independent from the
distributions considered for the components, and therefore the results can be recalculated when the empirical data or distribution
for any specific component become available.

It is worth mentioning that direct statistical methods can be used to model the empirical CDF data without assuming any
predefined empirical fitting function. As an example, we use the Support Vector Machine (SVM) and in particular the Support
Vector Regression (SVR) [3, 30]. In SVM machines, a regression fit is built while the number of samples used from the training
data is limited in order to avoid overfitting. The SVR machines are a generalization to the SVM machines in order to extend their
scope from classification to regression. The SVR method has been applied to the empirical CDF data obtained from [25], and then
an optimization on the SVR parameters has been performed. The optimized SVR model achieved a high degree of fitting with as
low as an L error of 0.011. The optimized model is shown in Figure A.3. However, considering that the main focus of this paper
is on the proposed snapshot-based Monte Carlo method, and also considering that there is only one empirical database currently
available, we will perform the validation of the optimized SVR fit in another work in the future with a focus on the statistical
modeling of the failure phenomena.
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Figure A.2: a) The empirical CDF of the lanl05 database compared with its best Weibull and Tanh-Log fits. b) The same as (a) but with the
c-Tanh-Log distribution. The relative difference percentage between the empirical distribution and the best fits are also shown in each figure.
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Figure A.3: An optimized SVR model fitted on the empirical CDF values associated with the lanl05 database. Red dots are the empirical data and
the SVR fit is shown as a continuous curve.

Appendix B. Modular Data Centers (MDCs)

In this paper, we consider three typical DC network topologies found frequently in the literature, namely, FatTree [29, 31],
BCube [20], and MDCube [41].° It is important to note that herein we do not claim that these topologies are the best, instead, we
have chosen these topologies as they are popular network topologies in modular DCs. The detailed characteristics and design of
the mentioned topologies is provided in the following subsections.

9MDCube stands for Modularized Data center Cube [41].
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Figure B.4: Two illustrative samples of a) FatTree and b) BCube topologies.

Appendix B.1. Fat-Tree Topology

The FatTree network topology is a special example of the Clos network [6], and it has been widely used as a topology for DC
networks [26, 31, 33]. Herein, we refer to FatTree as the cut-down version of the classic FatTree topology proposed by Navaridas
et al. in [29]. In this topology, the authors utilized the concept of FatTree, to define a DC network topology organized by reducing
the number of upward ports of all switches.!” As shown in Figure B.4(a), the considered FatTree topology has two main levels,
i.e., the core and the pods. The core level is composed of switches that interconnect the pods in such a way that each switch in the
core is connected to at least to one switch in each pod. Each pod is composed of servers and aggregation switches. In fact, core
switches are connected to the servers in each pod through the aggregation switches. Finally, each aggregation switch is connected
to a different set of servers in a pod.

We follow the K:P-ary 3-tree FatTree topology with L pods [29], which means we assume that there are L number of pods
(nPod), and each pod contains K number of servers per pod (nSrvPod) with P ports on each (pSrv). Consequently, the network has
L x K number of servers (nSrv), and each pod has P number of aggregation switches each with K + P number of ports (pSwc).
In core level, there are 2 X P number of core switches each with L number of ports. Figure B.4(a) shows an example of FatTree
topology with L = nPod = 3, K = nSrvPod = 3 and P = pSrv = 2.

Appendix B.2. BCube Topology

The BCube topology was proposed as a high-performance and robust network architecture to be used to build MDCs [20].
BCube has a server-centric topology, and it provides high network capacity for various typical DC applications such as MapReduce
[9]. Basically, the BCube topology is recursive and has a level-based structure. BCube topology is composed of two types of
components, i.e., servers with multiple number of ports, and switches connecting a constant number of servers. In the BCube
structure, multiple layers of cheap and mini Commercial-off-the-Shelf (CotS) switches could be used to connect the servers. In
this topology, multiple parallel short paths are provided between any pair of servers. This not only provides high network capacity
for all types of traffic, but also greatly improves redundancy, fault tolerance, and load balancing. Finally, in the BCube topology,
all networking components in each level are identical, and therefore it would avoid expensive switches with high port density in
higher topology levels.

A BCube topology is denoted as BCube (level-i), where i is its number of levels. A BCube (level-0) is composed of simply a
single switch with K (= pSwc = nSrvPod) ports connected to K P-port (= pSrv) servers. A BCube (level-1) is constructed from
N (= nPod) number of level-0 cubes and N number of switches with K ports.!" Each switch is connected to all N BCubes (level-
0) networks through its connection with one server of each BCube (level-0). Similarly, the general design of a BCube (level-L)
topology is composed of N number of BCubes (level-L — 1) and N number of switches with K ports. Again, each switch of BCube
(level-L) is connected with one server of each BCube (level-0). It is worth to mention that each server in a BCube (level-L) has
L + 1 ports, which are connected to all levels from level-0 to level-L. Moreover, a BCube (level-L) has N x K total number of
servers (nSrv), and N X (L + 1) number of switches (nSwc). Figure B.4(b) shows a BCube (level-1) with K =3, N =3, P = 2.

Appendix B.3. MDCube Topology

Due to the special potentials of the BCube topology, such as high network capacity and directly built from CotS switches), it is
anatural step to use the BCube topology as the building block for mega-size DCs [41]. However, the BCube topology does not have

101¢ s worth noting that we do not separately consider the VL2 topology proposed in [19] because of its similarity to the FatTree topology.
Note that K is also the number of servers in each level-0 cube (nSrvPod).
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enough agility, and cannot directly scaled to millions of servers just by adding more number of ports to servers and considering
more number of CotS switches to the network topology. The major limitation within the design of BCubes is that the number of
inter-cube cables required by BCube topology increases linearly with the increasing of the total number of servers.'?> Accordingly,
the MDCube network topology has been proposed as an extension to the BCube topology by utilizing the high-speed interfaces
of CotS switches to interconnect multiple containers, each container is a BCube topology by itself. From the engineering point of
view, the MDCube topology design is interesting from at least two important aspects. First, it interconnects BCube containers using
high-speed interfaces (10 Gbps) on the BCube’s CotS switches. Note that such switches are considered commercial switches today,
and having for example 48 number of 1-Gbps ports and a number of 4 10-Gbps ports is the norm. The MDCube topology uses the
10 Gbps ports for its hypercube connections. Second, the MDCube topology design can be used to create containers (clusters) of
1000-3000 servers with a high intra-connect capacity, and then interconnect them by a lower bandwidth network.'? Note that such
a designed feature is practical because various application cases usually require not more than a few thousands servers in the same
pool.

The MDCube topology can be 1-dimensional (MDCube1D) or 2-dimensional (MDCube2D). The design of MDCube topology
is based on treating each BCube as a hypernode and each switch in the BCube as a hyperport. Then, a hyperport from each BCube is
connected to a hyperport from another BCube in the same dimension. An example of a 2-dimensional MDCube network topology
is shown in Figure 2 built from 16 BCube (level-1) containers each one with K = pSwc = 2 and N = nPod = 3 (see Appendix B
for details).

Appendix C. The proposed modified MDC topologies: FatTree?, BCubef, and MDCube2D?

The three topologies considered suffer from limitations in terms of the number of servers and also on the switches in terms
of their number of ports. In particular, these topologies require various switches types with different number of ports for their
different levels. At the same time, and for example for the BCube topology, the number of pods, i.e., the BCubes at level-0, are
restricted to the number of ports of switches. Although these constraints are bearable in small-size data centers, they can pose
considerable restrictions when several thousands of servers and switches with high number of ports are targeted. To remove these
constraints, we propose extended and modified forms of these topologies in which “imaginary” switches are built using single-size
actual switches. This not only reduces the complexity of the design in terms of switch port numbers, it is also helpful in making the
designs more flexible in terms of the total number of servers. In the following subsections, the details of these modified topologies,
which we consider then as starred version of the original topologies, are provided.

Appendix C.1. FatTree® Topology

The main restriction of the FatTree topology defined in section Appendix B.1 is requiring high-port number switches at the
level 1 and higher. This not only can impose additional requirements in the design, it also can increase the probability of large
scale failure in the case of the failure of one of main switches. In our proposed FatTree? topology, we use the same switch types
across all levels. The switches’ port is assigned to the underlying level in a sequential order. That means that one or more of
actual switches collectively participate to create the effect of the required high port number imaginary switch compatible with the
original FatTree topology. A switch may participate in one or two imaginary switches. The requirement would be to have more
number of ports on the actual switches compared to the number of ports of imaginary switches. For example, consider an original
FatTree topology with L pods, and K P-port servers per pod, which requires P aggregated Kp-port switches in each pod, and 2P
core switches with L ports. The equivalent FatTree? topology would have the same configuration inside pods (K servers and 2
K + P-port aggregated switches). However, at the core level, we would have a [2PL/(K + P)] number of K + P-port switches
that emulate the functionality of the original high-port 2P switches.'* The FatTree? topology has the advantage of using the same
switching equipment in all levels. An example for L = nPod = 3, K = nSrvPod = 4, and P = pSrv = 2 is shown in Figure C.5(a).
The imaginary core switches are shown in hashed boxes. It is worth noting that the FatTree topology is not completely equivalent
to its FatTree counterpart. Especially, the fact that imaginary switches are broken on the borders of the actual switches should be
mentioned. We will analyze and also propose other modified FatTree? topologies in future to address these aspects, particularly
using intra-level connectivity among switches using possibly their extra high-throughput ports.

121t is worth to mention that we can find similar argument for the FatTree network topology.
13By low bandwidth we mean 10 Gbps.
14The [-] gives the maximum integer less than or equal to its argument.

24



Equivalent - - _____________________. Equivalent - - ——— -~~~ ___________

j imaginary | BB G BB W
!

switches

Imaginary |

e e
switches SNSRI

CRNIAN AN AT NS AN Y

Figure C.5: a) A typical FatTree® topology with L = 3, K = 4, and P = 2. The imaginary switches in the level-1 are shown in the dashed area.
The connections shown in this area would be those if we considered the FatTree topology. b) A typical BCube? topology with K = 4, N = 3, and
P=2.

Appendix C.2. BCube® Topology

The same strategy, as that used to define the FatTreef topology, is used to generalize BCube to BCube®. In the proposed
topology, the Level-1 switches are built using the same switch type used in the level-O cubes. Especially, in the original BCube
design, when high-port switches are used in level-0 cubes in order to scale the design, the number of these cubes is required to set
to the same number of ports that is a strict restriction on the design. In contrast, in the BCube” design, we propose to choose the
number of level-0 cubes independent from the number of ports of switches. Then, the level-1 switches are built using the same
switch type of the level-0 cubes with an additional condition that the sum of the number of their ports should be equal to the number
of servers in all level-0 cubes. The result of this condition is that we use the same number of switches as that of the level-0 in the
level-1 (and higher levels if considered). Compared to the original BCube topology, we consider imaginary switches at the level-1
that would have the same number of ports equal to the number of cubes. Similar to the FatTree? topology, the imaginary switches
of the BCube® topology are built of parts of consequential switches that are actually used in a level. An example of a BCube”
topology with K = pSwc = 4, N = nPod = 3, and P = pSrv = 2 is shown in Figure C.5(b), where K is the number of ports of
switches (which is also equal to the number of servers in each level-0 cube), N is the number of level-0 cubes, and P is the number
of server ports. It is worth mentioning that if original BCube topology was considered, in this example, possible configurations
would be 9 (using 3-port switches) and 16 (using 4-port switches) servers. This is because of restriction to have the number of
level-0 cubes equal to the port number of a level-1 switch. When, using the BCube” topology, we were able to design a network
with 12 servers. This shows the flexibility of the proposed topology in terms of scale and the total number of servers. This effect is
more noticeable when switches with high number of ports are considered (for example, in the use case of 3072-server topologies
of Section 5.4).

Appendix C.3. MDCube2D* Topology

The MDCube2D* topology is simply defined by using the BCube” topology as the building block of the original MDCube2D
topology. However, the secondary impact of this change in design would be that of high port-number switches that can be easily
used to interconnect the BCube® containers (each container is an individual BCubef). If K(= pSwc) < N(= nPod) is considered
for the MDCube2D? containers, the ratio of the number of containers decreases, and therefore interconnect wiring complexity is
improved. In this case, a higher number of links (wiring) among the containers would be expected. To assign the links among
containers, we follow the same cyclic procedure as the original MDCube2D topology, i.e., horizontally (vertically) connecting the
next available port of a container to the next to previously-connected container. Because of high number of switches per container
(when K < N), this process should be repeated until all available ports are connected. This would lead to multiple links (multi-path
possibility) between each pair of horizontal (vertical) containers. Furthermore, this redundancy in the number of links among the
containers enables us to consider different degree of connectivity along horizontal or vertical directions. In other words, if we
choose a less number of links per pair along the horizontal direction, for example, we would have a higher number of columns of
containers along that direction. Therefore, there is more flexibility by the possibility to have different number of columns and rows
in the arrangement of the MDCube2DF topology. In contrast, we can select K > N that would result in more number of containers
because there will be a less number of servers per container. A single link between each pair of containers, along horizontal and
vertical directions, could be expected.
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Supplementary Material S.

Supplementary Material S.A. Importance of Modular Data Centers (MDCs) for Deployment of Data Centers in
Canada’s North

The modular data centers are highly interesting, especially along with strategic north plans in Canada at both provincial and
national levels [2, 16, 18], which target Canada’s natural resources, especially untouched hydro-electric and wind-electric sites in
the North [23], among other technologies. The profitability of modular data centers highly depends on survivability of the modules
along time, and also on the quality of that survival, especially at the last mile of their terminal stage. The study of such a behavior
has been one of this paper’s focuses. Figure S-1(a)-(c) shows some considerable potentials in the Canada’s North in terms of
natural resources and low temperature.'> The proposed DC sites shown in Figure S-1(d) reflect a potential schematic configuration
in terms of hydro- or wind-electricity from the perspective of the authors. However, a detailed site analysis and feasibility study
should be performed to determine the optimal number of sites and their optimal locations which is beyond the scope of this work.

Another motivation toward MDCs is their high potential in reducing energy (resource) consumption and also environmental
footprint [6]. In particular, absence of frequent human access to equipment provides an opportunity in design to effectively contain
and handle the heat generated in a DC, especially using non-air (liquid) cooling system designs [3]. It is supported by the observa-
tion that the most of electricity consumption in the traditional cooling systems is wasted to extract the heat from the hard-to-reach
hot spots [1, 4, 9]. Therefore, MDCs arranged as a distributed network of data centers [5, 6] and empowered with intelligent sensing
(for example, using intelligent platform management interface, IPMI) could drastically reduce costs, and in turn can be leveraged
toward higher profit or better quality of service (QoS). That said, because of requirement to operate in long term, unreliability at
the system level could jeopardize the whole benefit of MDCs. In particular, reliability and scalability of DC network topology is
of great importance.

The performance of network switches at their upper-bound is of great importance for these designs that rely on reliability
of components at their nominal ratings. If a component is designed to handle a specific performance subject to assumption of a
“probable” statistics, it can result in the partial failure of system when the system pushes to achieve higher performance that may
violate the assumed statistics. For switching components, this can be observed as choking phenomenon when all their ports are
used.

Traditionally, switching components have been designed as application-specific integrated circuit (ASICs) that guarantees a
designated performance independent from peripheral factors, and also makes them proprietary equipment. However, this vision
has been gradually shifted toward more open architectures. One motivation has been the move toward software defined networks
(SDNs) whose OpenFlow [2] is a well-known implementation for layers 2 and 3. Other approaches to SDNs have been Pro-
grammable switches via API, virtual network overlays and even other open vswitch approaches. In addition, routing-optimized
Linux servers in the form of Open Network Installer Environment (ONIE) have been considered to separate completely hardware
and software parts of switching components that in turn provides opportunities to build smart and customized switching software
and behaviors to enable maximum utilization of physical connectivity in the data center [8]. All these approaches are in answer
to high level of under utilization of connectivity in DCs, which is problem especially for deadline-sensitive communications and
flows [10, 11].

Although these flow-control mechanism are by definition topology-insensitive, the topology of the DC network could affect the
performance especially when multi-path protocols are considered. In this work, we assume that ideal deadline-aware mechanisms
are in-place at a higher level, and therefore the associated deadline failure is ignored. The effect of topology on the performance of
these mechanisms will be studied in future work. In terms of impact of failure on the multi-path capacity of a design, average max

flow among surviving nodes will be studied in this work.

15 A link to the temperature map: |http://aurora.uwaterloo.ca/home/ccw/permafrost/current}
A link to the Hydro map: http://atlas.nrcan.gc.ca/data/english/maps/energy/hydropower_resources_map.pdi|
A link to the wind map: |http://www.windatlas.ca/en/maps.php?field=EU&height=50&season=ANU
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Figure S-1: The potential of Canada’s North in terms of low temperature, hydro-electricity, and wind-electricity. a) The mean annual near surface
ground temperature in Permafrost of Canada’s North (Source: The Canadian Cryospheric Information Network (CCIN)). b) The annually-averaged
wind speed at 50m above ground of the Canadian territory (Source: Canadian Wind Energy Atlas). c¢) Canada’s major drainage areas. There are
632 large dams and 6 major dams operational with many other in planning/deployment phases (Source: Natural Resources Canada; Earth Sciences
Sector; Canada Centre for Mapping and Earth Observation). d) A proposed schematic configuration of modular, off-grid, highly efficient, and green
network of DCs.
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