
Analytical Composite Performance Models for Big Data

Applications

Soroush Karimian-Aliabadia, Danilo Ardagnab,∗, Reza Entezari-Malekic,
Eugenio Giannitib, Ali Movaghara

aDepartment of Computer Engineering, Sharif University of Technology, Tehran, Iran.
bDipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.

cSchool of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Abstract

In the era of Big Data, whose digital industry is facing the massive growth of data size

and development of data intensive software, more and more companies are moving to use

new frameworks and paradigms capable of handling data at scale. The outstanding MapRe-

duce (MR) paradigm and its implementation framework, Hadoop are among the most re-

ferred ones, and basis for later and more advanced frameworks like Tez and Spark. Accurate

prediction of the execution time of a Big Data application helps improving design time de-

cisions, reduces over allocation charges, and assists budget management. In this regard, we

propose analytical models based on the Stochastic Activity Networks (SANs) to accurately

model the execution of MR, Tez and Spark applications in Hadoop environments governed

by the YARN Capacity scheduler. We evaluate the accuracy of the proposed models over the

TPC-DS industry benchmark across different configurations. Results obtained by numeri-

cally solving analytical SAN models show an average error of 6% in estimating the execution

time of an application compared to the data gathered from experiments and moreover the

model evaluation time is lower than simulation time of state of the art solutions.

Keywords: Big Data, MapReduce, Apache Spark, Performance Evaluation, Stochastic

Activity Network

∗Corresponding author
Email addresses: skarimian@ce.sharif.edu (Soroush Karimian-Aliabadi),

danilo.ardagna@polimi.it (Danilo Ardagna), entezari@iust.ac.ir (Reza Entezari-Maleki),
eugenio.gianniti@polimi.it (Eugenio Gianniti), movaghar@sharif.edu (Ali Movaghar)

Preprint submitted to Journal of Network and Computer Applications November 18, 2018

1. Introduction

Data have become a dominant phenomenon of today’s digital world. Sheer volume of data

produced in high velocity and great variety is one the main challenges of the information

technology nowadays. Companies have to capture, process, store, and manage Big Data

of their customers, suppliers, operations, and transactions, which is beyond the ability of5

typical database systems and conventional programming paradigms [1]. The amount of

digital data is massively increasing in effect of emerging IT services, and especially with the

advent of IoT technologies [2]. The 1.5EB digital world data volume estimation in 1999 has

increased to 16.1ZB in 2016, and is predicted to raise up to 163ZB in 2025 [3]. The Big Data

economy is increasing as well from about $0.7 trillion in 2016 to about $4 trillion in 202510

[3].

From the technical point of view, new applications, frameworks, and platforms are needed

in order to facilitate Big Data processing. In this regard, Google introduced the MapReduce

(MR) paradigm [4], which is capable of processing large amount of data, efficiently. Its open

source implementation, Apache Hadoop became the most popular Big Data framework [5].15

Both the MR paradigm and the Hadoop framework have gone through several improvements.

For example, Apache Tez introduced the concept of Reduce/Reduce stage that significantly

reduced the I/O by storing intermediate results on local disks instead of HDFS allowing the

execution of applications with multiple map and reduce phases within a Directed Acyclic

Graph (DAG) [6]. Also, YARN (Yet Another Resource Negotiator) layer has been dedicated20

to resource management tasks such as dynamic resource allocation and scheduling, with

more sophisticated algorithms like Capacity and Fair scheduling [7]. A significant speedup

in Big Data applications originated from the introduction of the Spark framework [8]. Similar

to Tez, Spark’s workflow is a DAG of stages, but the main advantage of the Spark framework

is in its memory data processing model.25

With the Hadoop framework growing in complexity, one of the main challenges is to

estimate the execution time of a Big Data application [10]. An accurate estimation helps

improving the cluster and application configuration both at design and run-time. It also

2

assists cloud providers to meet Service Level Agreements (SLAs) and facilitates resource

planning for the user. Usually, execution time is empirically measured through costly ex-30

periments and in a time consuming process [11]. Models can help predicting execution time

eliminating the setup and experiment costs.

MR application analytical performance models are mostly focused on the earliest version

of Hadoop, where resource allocation is done statically and scheduling scheme is the simple

FIFO policy [12]. Other more recent models, presented in this area are simulation-based35

models for which analysis is time consuming and less scalable [13, 14]. Methods based

on machine learning are good for interpolation, but suffer from low generality and insight

[15, 16, 17]. Moreover, machine learning needs costly cluster setup to study historical logs

of past executions. Analytical models, on the other hand, can be analyzed faster with

numerical solutions, and are more general and scalable in this context.40

To fulfill this requirement, analytical models based on Stochastic Activity Networks

(SANs) [18] are proposed in this paper to evaluate MR, Tez and Spark applications execution

time. The proposed models are superior than previous approaches, which are mostly based

on simulation [13, 19] or analyzing historical traces [20, 15] and perform accurate enough in

the most widely used Big Data frameworks, from simple MR jobs to Spark applications.45

An initial SAN model is first proposed to estimate the execution of MR applications on

a Hadoop cluster governed by the YARN Capacity scheduler. The model is then extended

to support more complex Tez and Spark applications in two ways. The first extension is a

monolithic model, the second one is a composite model, which exhibits higher scalability.

The execution time of Big Data applications are the target performance metric which is50

computed in the steady-state. While in [13], simulation models were proposed, the mod-

els in this paper are the first analytical contribution which allow to quickly estimate the

execution time of a Big Data application with a good accuracy. We validate the proposed

models through experiments on the CINECA [21], Italian Supercomputing Center, Flexiant

cloud [22], and a private cluster based on Power 8 considering the TPC-DS industry bench-55

mark [23]. Model parameters are first initialized according to the traces from a small pilot

execution of the application, and then model is used to predict the application execution

3

time in the real scale scenario. The results of comparing real system experiments with the

models prediction show that the proposed models can appropriately estimate the application

execution time with 6% average error. The accuracy and execution time of the proposed60

models are then compared to previous work [13], and both an increase in the accuracy and

a decrease in the model evaluation time are achieved.

The remaining parts of this paper are organized as follows. Section 2 is dedicated to

the description of the features of the application frameworks, section 3 overviews the SAN

models, and section 4 presents our proposed SAN models for Hadoop MR, Tez, and Spark65

applications in the both monolithic and composite forms. The results obtained by the

proposed models and their validation against the real systems and the previous work [13]

are reported in section 5. In section 6, we introduce related proposals available in the

literature. Finally, in section 7, we conclude the paper with some directions for future work.

2. System Architecture and Application Structure70

In this section, to provide a background for modeling activities, the architecture of the

Big Data application frameworks considered in this paper are introduced. Hadoop started as

the first industrial implementation of the MR paradigm and, despite the simple architecture,

was effective enough to be widely used. Current Hadoop architecture is however, more

mature and well improved. The resource management is separated from MR thanks to75

the new layer. Decoupling resource management and application logic enables Hadoop to

execute not only MR applications but also any other application framework. As shown in

Figure 1, Spark [8], Flink [24], and Tez are examples of more recent framework that can be

run on top of YARN. Moreover, users can build data flows spanning over multiple stages

whose dependencies can be modeled as a DAG and not limited to the map and reduce80

phases.

Each MR job consists of three phases called map, shuffle, and reduce. In the first phase,

mappers start working on the input data chunks to produce the intermediate data. The

number of the map tasks is proportional to both input data and chunk sizes. The shuffle

phase starts, once the first mapper task is accomplished. There are the same numbers of85

4

YARN

HDFS

TezMR

Hive Pig

Flink

HDFS

Hive Pig

Hadoop

MR

Hadoop 1 Hadoop 2.x

Spark

Figure 1: Hadoop evolution

shuffle and reduce tasks on a same thread. Shuffle tasks sort and partition key-value pairs,

and assign each partition to a reduce task. Afterwards, reduce tasks start working, and the

result of the reduce phase is written to the Hadoop Distributed File System (HDFS). Since

each reduce task follows a shuffle task on a same thread, we decide to aggregate shuffle and

reduce phases as reduce phase, and hereafter, reduce phase stands for the shuffle and reduce90

tasks together.

Individual map, shuffle and reduce tasks run on Data Nodes (DN) while the Master

Node (MN) is responsible for scheduling the application. Although, jobs were scheduled

in earlier versions of the Hadoop framework by FIFO policy, better schemes are available

today. Hadoop 2.x and Hadoop 3 let more complex schedulers (i.e. capacity and fair95

schedulers) to be plugged into the framework. A cluster is a resource pool in YARN enabling

dynamic allocation of resources (containers) to the ready tasks. Once a job is submitted

to the cluster, an Application Master (AM) is assigned to the job and runs on a DN. The

AM schedules tasks of a job, and handles the job execution. YARN layer enables multi-

tenancy by sharing resources among multiple AMs running in a single cluster. Moreover,100

AM negotiates with Resource Manager (RM) to acquire containers. The RM, which is

cluster specific and placed in the MN, is responsible for allocating resources to applications

and scheduling jobs. Monitoring the containers and resources available in a single node is

carried by the Node Manager (NM). The NM sends a heartbeat containing the node status

to RM every once in a while. Tez is an application on top of the YARN, as shown in105

Figure 1, which enables users to execute their queries in the form of a DAG with vertices

representing map or reduce phases. In other words, Tez extends the simple MR paradigm

5

𝑆𝑡𝑎𝑔𝑒4:

Join

𝑆𝑡𝑎𝑔𝑒5:
Reduce

by key

𝑆𝑡𝑎𝑔𝑒3:
Reduce

by key

𝑆𝑡𝑎𝑔𝑒2:

Map

𝑆𝑡𝑎𝑔𝑒1:

Map

𝑃ℎ4:

Reduce

𝑃ℎ1:

Map

𝑃ℎ2:

Map

𝑃ℎ3:
Reduce /

Reduce

(a)

𝑆𝑡𝑎𝑔𝑒4:

Join

𝑆𝑡𝑎𝑔𝑒5:
Reduce

by key

𝑆𝑡𝑎𝑔𝑒3:
Reduce

by key

𝑆𝑡𝑎𝑔𝑒2:

Map

𝑆𝑡𝑎𝑔𝑒1:

Map

(b)

Figure 2: DAG execution model in (a) Tez and (b) Spark applications

by introducing Reduce/Reduce (RR) stages and avoiding in this way to store intermediate

results on HDFS. This is the main advantage of Tez, which reduces the synchronization

delay of the phases. Note that, it is still possible to run the conventional MR jobs on top of110

Tez with a simple two-vertex graph. When a Tez application is submitted, the framework

receives a DAG with each vertex representing a phase. The directed edges of the graph

represent data dependencies between phases. A simple Tez application graph is shown in

Figure 2a.

Nevertheless, the today’s cutting edge Big Data framework is Spark, which was intro-115

duced in 2010. Spark’s programming model is similar to MR/Tez but extends it with a

data-sharing in memory abstraction called Resilient Distributed Datasets (RDD). RDDs

can be cached and can be created from a file, by parallelizing an in-memory collection, or by

mapping an existing RDD. Spark evaluates RDDs lazily, and postpones their creation until

an action needs the actual evaluation of an RDD. Actions return a value after executing120

calculations on datasets.

RDDs achieve fault tolerance through the notion of lineage. Each RDD tracks the graph

of transformations that was used to build it and reruns these operations on base data to

reconstruct any lost partitions [25]. The other key concept in Spark is its DAG execution

engine, which is similar to Tez and is our basis for extending the Tez model to Spark. A125

simple Spark application graph is shown in Figure 2b.

6

In this paper, we consider target Hadoop clusters running on a set of homogenous re-

sources [26], including MR, Spark, and Tez execution engines on top of the YARN Capacity

scheduler [13]. This implies that the cluster capacity is partitioned into multiple queues and

within a queue, multiple applciations are scheduled in a FIFO manner.130

We assume that multiple users can run the same query, which is submitted to a specific

queue. Moreover, after obtaining results, end users can submit the same query again (possi-

bly changing interactively some parameters [16, 27]) after a think time. This implies that the

DAG is constant among different executions of a same Tez or Spark application; therefore,

we do not need to consider changing DAGs. In other words, we consider a multi-class closed135

performance model [28] .

3. Overview of SANs

Stochastic Activity Networks (SANs) [18] are stochastic extensions of Petri Nets (PNs)

mostly used for modeling and analysis of distributed systems [29, 30, 31]. In comparison with

other stochastic generalizations of PNs, e.g. Stochastic Petri Nets (SPNs) and Generalized140

Stochastic Petri Nets (GSPNs), SANs benefit from more flexibility and tool support. In

General, SANs are probabilistic extensions of Activity Networks (ANs) which have been

equipped by a set of activity time distribution functions, reactivation predicates and enabling

rate functions. In the following, informal description of the basic elements of SANs is

presented:145

• Place: Places are similar to the places in PNs and graphically are represented by

circles.

• Timed activity : Timed activities are used for modeling actions of the system whose

duration affects performance of the system under study noticeably. Graphically, timed

activities are represented by thick vertical bars or boxes. Any timed activity can have150

several inputs and outputs. An input of a timed activity can be a place or an input

gate, and similarly an output can be a place or an output gate. An activity distribution

7

function, an enabling rate function, and a computable predicate called the reactivation

predicate are associated to each timed activity.

• Instantaneous activity : Instantaneous activities are used for modeling actions of the155

system which are done in a negligible amount of time compared to the other actions

which can be modeled using timed activities. Graphically, instantaneous activities are

represented by thin vertical bars. An instantaneous activity can have several inputs

and outputs.

• Input gate: Gates provide higher flexibility in defining enabling and completion rules.160

An input gate has a finite set of inputs and one output. A computable predicate called

enabling predicate and a computable function called input function are associated to

each input gate.

• Output gate: An output gate has a finite set of outputs and one input. A computable

function called the output function is associated to each output gate.165

Above a general overview of the SAN formalism is provided, while the detailed presenta-

tion is out of the scope of this paper. A formal definition of SAN formalism, its structure, and

behavior are given in [33, 18, 34]. SAN formalism is widely used in other areas of computer

science such as cloud computing [29, 30, 31] and Computational Grids [32], for performance

evaluation, and is proved to be effective to predict complex IT systems performance.170

4. Proposed Models

In this section, the proposed SAN models for the MR, Tez, and Spark applications are

presented. To help the better understanding of the proposed models, the SAN model of a

MR is presented in subsection 4.1, and then, it is extended to capture a DAG-based Tez

or Spark application in subsection 4.2. In order to further improve the scalability of the175

proposed model for the DAG-based application, the model presented in subsection 4.2 is

changed from the monolithic form to the composite form in subsection 4.3.

8

𝑃𝑊𝐽

𝑇𝐴𝑇

(#𝑃𝐽). 𝜇𝑇

𝑁 𝑃𝐽

 𝑃𝑅𝑀 𝑃𝑊𝑀

𝑘𝑀, (#𝑃𝑅𝑀). 𝜇𝑀

 𝑇𝐴𝑀 𝑃𝐹𝑀

 𝑃𝑊𝑅 𝑃𝑅𝑅

 𝑇𝐴𝑅
 (#𝑃𝑅𝑅). 𝜇𝑅

𝑃𝐹𝑅

C 𝑃𝐶

𝑃𝐽𝑖𝑅

 1
𝑃𝐸𝐽

𝐼𝐴𝑆𝑀 𝐼𝐴𝐺𝑅𝑀

𝐼𝐴𝑆𝑅 𝐼𝐴𝐺𝑅𝑅 𝐼𝐴𝐹𝑅

𝐼𝐴𝐸𝐽

Map phase

Reduce phase

Figure 3: The SAN model proposed for MR applications

4.1. MR Model

The SAN model proposed for MR application is shown in Figure 3. The model includes

map and reduce phases, shared resources, think time and the scheduling mechanism. Re-180

calling from section 2 hereafter reduce phase stands for an aggregate of both shuffle and

reduce tasks. The detailed description of the places and activities of Figure 3 is provided in

Table 1.

Initially, there are N tokens in place PJ showing the jobs waiting to start execution.

The timed activity TAT models the think time of a waiting job. Upon completion of this185

activity, a token from place PJ is moved to place PWJ with rate (#PJ).µT , where #PJ

is the number of tokens in place PJ showing the waiting jobs, and µT is the rate of the

exponential distribution considered for activity TAT . Activity TAT models the think time

and is assumed to be exponentially distributed according to our experiments. Existence of

a token in place PWJ triggers instantaneous activity IASM to start the job if the place PEJ190

has a token to consume. The place PEJ initially contains a token modeling the possibility of

starting a waiting job according to the Capacity scheduler policy. At the start of a job, the

output gate OGSM will produce M tokens in place PWM , each one representing a map task.

The output function of gate OGSM is given in Table 2. Allocating an available resource

9

Table 1: Gate predicates/functions of the SAN model represented in Figure 3

Gate Predicate Function

OGSM #PWM = #PWM + M;

IGFM #PFM >= M #PFM = #PFM - M;

OGSR #PWR = #PWR + R;

#PJiR = #PJiR + 1;

IGFR #PFR >= R #PFR = #PFR - R;

IGEJ (#PJiR > 0) && #PJiR = #PJiR - 1;

(#PWR == 0)

to a map task is done by instantaneous activity IAGRM , which removes one token from195

place PC and one from PWM , and adds a token to place PRM . Place PC is modeling the

pool of containers, which is initially set to contain C tokens representing the total number

of containers. The execution of a map task is modeled by the timed activity TAM , which

returns the resource to the pool of available resources whenever a map is done. This activity

is characterized by the Erlang distribution with shape kM and a marking dependent rate200

(#PRM).µM , where #PRM is the number of running map tasks and µM denotes the execution

rate of a single map task. According to our experiments, the exponential distribution is not

the case for the map task execution time, and map task execution time fits better with more

general distributions like Erlang. On the other hand, for the SAN model to be analytically

solvable, all timed activities have to be exponentially distributed [18]. Fortunately, an Erlang205

distribution can be simulated with a set of continuous exponential activities [35] helping us

to use the analytically solvable SAN models, when some actions of the system follow Erlang

distribution. Parameters of the distributions are being calculated from the experiment logs.

Once the number of tokens in place PFM reaches the total number of the map tasks, the

map phase is finished and the instantaneous activity IASR starts the reduce phase. The210

10

input gate IGFM consumes M tokens from place PFM , and the output gate OGSR produces

R tokens in place PWR representing reduce tasks, whose M and R denote the number of

map and reduce tasks, respectively. The input predicate and input function of gate IGFM

together with the output function of gate OGSR are shown in Table 2. The completion of

this activity IASR also results in adding a token to place PJiR, which indicates that a job215

is performing its reduce phase. To the map phase, instantaneous activity IAGRR allocates

a free resource to a ready reduce task by removing a token from place PC and another one

from place PWR, and depositing a token into place PPR. The timed activity TAR models

the execution of a reduce task, which moves a token from place PRR to PFR to show that a

reduce task is finished. Moreover, a resource is returned to the pool of available resources by220

completing activity TAR. The time assigned to the timed activity TAR modeling the reduce

action in the system is assumed to be exponentially distributed with the marking dependent

rate (#PRR).µR, where #PRR and µR denote the number of running reduce tasks and the

rate of executing a reduce task, respectively. Recalling from section 2, the capacity scheduler

implies that the next job can start executing only when the previous job has received all of225

the necessary resources for completing the reduce phase. Similarly, in our model, the input

gate IGEJ enables the instantaneous activity IAEJ , whenever there is a token in place PJiR

and there is no token left in place PWR. This condition is checked by the input gate IGEJ .

Afterwards, activity IAEJ removes a token from place PJiR, and puts a token into place PEJ

enabling instantaneous activity IASM to start the next job.230

4.1.1. Performance Measure

The performance measure we wish to assess by the proposed model of Figure 3 is the

steady-state mean execution time of jobs, which is the average time a token needs to move

from place PWJ to place PJ . In order to compute the mean execution time, the reward

shown in Equation 1 is defined.235

r =
N

throughputIAFR

− 1

µT

(1)

11

Table 2: Elements of the SAN model represented in Figure 3

Name Description Rate/Initial no. of tokens Name Description Rate/Initial no. of tokens

PJ Initial jobs N PFR Finished reduce tasks 0

PWJ Waiting jobs 0 PC Available containers C

PWM Waiting map tasks 0 PJiR Job in reduce phase 0

PRM Running map tasks 0 PEJ Enabled subsequent jobs 1

PFM Finished maps tasks 0 TAT Think (#PJ).µT

PWR Waiting reduce tasks 0 TAM Map [kM , (#PRM).µM]

PRR Running reduce tasks 0 TAR Reduce (#PRR).µR

where throughputIAFR
is the throughput of the instantaneous activity IAFR and can be

calculated by Equation 2.

throughputIAFR
= P(#PFR = R− 1) · µR (2)

where P(#PFR = R−1) is the probability of being in a state where all but one reduce tasks

are finished, so there are R − 1 tokens in place PFR and one token left to finish the entire

job. This probability is multiplied by µR, which is the rate of executing a reduce task.240

4.2. Monolithic DAG Model

Both Tez and Spark applications consist of multiple phases/stages ordered in a DAG.

Therefore, the SAN model of a Tez or Spark application can be achieved by introducing

new intermidiate stages to the MR model of Figure 3. Since the DAG differs from one

application to another, the DAG model would be application specific. In this paper, for the245

sake of simplicity, we study the sample DAG represented in Figure 2 (a), and propose a

SAN model to evaluate it. The model can be easily extended. The proposed SAN model is

shown in Figure 4.

Similar to the SAN modeling a MR application shown in Figure 3, the SAN model of

a DAG is also composed of map, reduce and reduce/reduce phases, scheduling mechanism,250

shared resources, and the think time. Model elements (places, gates, and activities) are

12

𝑃௃

N

𝑇𝐴்

(#𝑃௃). 𝜇்

𝐼𝐴ௌெଵ
𝐼𝐴ீோெଵ 𝐼𝐴ிெଵ𝑃ௌெଵ 𝑇𝐴ெଵ

[𝑘ெଵ,
(#𝑃ோெଵ). 𝜇ெଵ]

𝑃ௐெଵ 𝑃ோெ 𝑃ிெଵ 𝑃ாெଵ

Phase1:
Map

𝐼𝐴ௌெଶ
𝐼𝐴ீோெଶ 𝐼𝐴ிெ𝑃ௌெଶ

[𝑘ெଶ,
(#𝑃ோெଶ). 𝜇ெଶ]

𝑇𝐴ெଶ

𝑃ௐெଶ 𝑃ோெଶ 𝑃ிெଶ 𝑃ாெଶ

Phase2:
Map

𝑃ௐோଵ

𝑃ோோଵ

(#𝑃ோோଵ). 𝜇ோଵ 𝑇𝐴ோଵ

𝑃ிோଵ

𝑃ாோଵ

𝑃ௌோଵ

𝐼𝐴ௌோଵ

𝐼𝐴ீோோଵ

𝐼𝐴ிோଵ

Phase3:
Reduce/Reduce

(#𝑃ோோଶ). 𝜇ோଶ

𝑇𝐴ோଶ 𝑃ௐோଶ
𝑃ோோଶ𝑃ிோଶ 𝐼𝐴ௌோ𝐼𝐴ீோோଶ

𝐼𝐴ிோଶ

Phase4:
Reduce

𝑃ௐ௃

𝐼𝐴ௌ௃

𝑃஼ C

𝑃௃௜ோ

𝐼𝐴ா௃

𝑃ா௃ 1

𝐼𝐴௃

Figure 4: The SAN model proposed for a sample DAG

further numbered in Figure 4 to distinguish between multiple phases. Here, we introduce

new instantaneous activities IASJ and IAJ , which respectively enable parallelism and syn-

chronization among phases. More precisely, the instantaneous activity IASJ takes a token

from each of places PWJ and PEJ and puts a token into both places PSM1 and PSM2, which255

triggers the execution of two map phases in parallel. On the other hand, the instantaneous

activity IAJ enables when the previous two parallel map phases are finished and a token is

available in each of places PEM1 and PEM2. It consumes these two tokens, and puts a token

into place PSR1, which starts the execution of the subsequent reduce phase.

Since the model depends on the query graph, a specific model should be built for each260

query which can cause difficulties especially in modeling complex queries with large graphs

tending to be error prone and time consuming. To overcome this difficulty, the composite

model is proposed in the next section where similar sub-models are extracted as a single

general building block, which can be instantiated multiple times and capture a complete

model of a query. With the composite approach, modeling can be automated and gain more265

13

𝑃𝑆 𝑃𝑅 𝑃𝑊 𝑇𝐴𝑅
𝑘𝑅, (#𝑃𝑅). 𝜇𝑅

𝑃𝐹 𝑃𝐸

C

𝑃𝐶

𝐼𝐴𝑆 𝐼𝐴𝐺𝑅 𝐼𝐴𝐹

𝑃𝐽𝑖𝑅
𝑃𝐸𝐽

1

𝐼𝐴𝐸𝐽

(a)
𝑃𝑊𝐽𝑇𝐴𝑇

(#𝑃𝐽). 𝜇𝑇

𝑁

𝑃𝐽

𝑃0

𝐼𝐴0

𝑃1

𝑃2

𝑃𝑛1 𝑃𝐸𝐽

𝑃0𝐼𝐴0

𝑃1

𝑃2

𝑃𝑛

(b)

𝑃𝑊𝐽𝑇𝐴𝑇

(#𝑃𝐽). 𝜇𝑇

𝑁

𝑃𝐽

𝑃0

𝐼𝐴0

𝑃1

𝑃2

𝑃𝑛1 𝑃𝐸𝐽

𝑃0𝐼𝐴0

𝑃1

𝑃2

𝑃𝑛

(c)

𝑃𝑊𝐽 𝑇𝐴𝑇
(#𝑃𝐽). 𝜇𝑇

𝑁

𝑃𝐽

𝑃0

𝐼𝐴0

𝑃1

𝑃2

𝑃𝑛 1 𝑃𝐸𝐽

𝑃0 𝐼𝐴0

𝑃1

𝑃2

𝑃𝑛

(d)

Figure 5: The SAN sub-model for (a) map/reduce phases, (b) parallel fork, (c) synchronization join, and

(d) thinking

scalability when the complexity of the query graph grows.

4.3. Composite DAG Model

Looking at the previous models, a structural similarity can be identified among different

phases of a MR, or more generally a DAG. For each phase, the model is taking same steps in

the same order: generating tasks, allocating resources to them, running tasks, and collecting270

them at the end. The differences among the phases are in the number of the tasks, and the

distribution of the task duration, which are captured as parameters of the model. Therefore,

different phases of a DAG model can be regarded as different instances of a general phase

sub-model which is represented in Figure 5a, and can be used as a subset of a DAG model.

The general phase sub-model of Figure 5a represents the behavior of both map and reduce275

phases.

In the sub-model shown in Figure 5a, a general phase is modeled, which starts whenever

a token is available in PS, the starting place of the phase. Similar to previous models,

instantaneous activity IAS generates as much token in place PW as the number of tasks of

the current phase. Tokens in place PW represent the number of tasks waiting for a container280

14

to run, and activity IAGR models the resource allocation from the pool of available containers

in place PC . Running tasks are in place PR, and the activity TAR runs tasks with parameters

specified for this specific phase. Unlike the MR model described in subsection 4.1, where two

different timed activities are considered for map and reduce phases, herein, they are unified

in one phase timed activity named TAR. Since exponential distribution is a specific form285

of the Erlang distribution, the distribution of activity TAR is chosen to be Erlang with two

parameters shape and rate. For the phases with exponential task execution time, we can

simply set the shape parameter to 1. Finished tasks are stored in PF and whenever all of

the phase tasks are finished, activity IAF removes them from place PF and inserts a token

in place PE, which indicates that the phase is completed. The scheduling mechanism on290

top of the model is similar to the previous models and is necessary only for the last phase.

Recalling from YARN’s Capacity scheduling mechanism, execution of the next job should

be informed when the last phase has acquired enough resources to accomplish. A token in

place PJiR indicates that a job is performing this phase and activity IAEJ enables whenever

a token is in place PJiR and place PW is empty, which means that all tasks of the current295

phase have received their containers. After firing IAEJ , a token is put in place PEJ , which

triggers the execution of the next job. Gates perform similar to the model of Figure 3.

Sub-models can be connected with sharing places or activities among them [36]. Since

sub-models of Figure 5 are asynchronously operating on common resources, we use to share

places as the method for connecting sub-models. For example, in order to have a map phase300

followed by a reduce phase, place PE of the map sub-model have to be shared with place PS

of the reduce sub-model. Furthermore, place PC representing available containers is shared

between all phases.

For a complete composite model of a DAG, we need a few more sub-models, other than

the phase model. A parallel fork is a sub-model that enables the execution of one or more305

parallel phases as done by instantaneous activity IASJ in Figure 4. This sub-model is also

generalized in Figure 5b, with optional parts drawn with dashed lines. The place P0 is the

start point of the sub-model shown in Figure 5b, which activates instantaneous activity

IA0 when it contains a token. Upon completion of activity IA0, output places P1 to Pn,

15

each will receive a token. Output places are shared with the start places of the subsequent310

phases. Also, the place PEJ is necessary for the first fork, which is right after the think time,

to enable the scheduling mechanism. This happens with sharing PEJ with the same place

of the last phase to enable the capacity scheduling to work appropriately.

Another sub-model is a synchronization join shown in Figure 5c., which continues the

job execution if the previous phases are accomplished. Again, the input places P1 to Pn315

are shared with the output places of the previous phases, and whenever previous phases are

accomplished, i.e. a token is available in each of places P1 to Pn, activity IA0 is enabled and

along with removing a token from each of input places, inserts a token in place P0. This

sub-model is actually modeling a synchronization point where ensures that execution of the

next phase starts after finishing all of the previous phases.320

The final sub-model is the think time shown in Figure 5d, which is a simple sub-model

with places PJ and PWJ shared with PE of the last phase and P0 of the Figure 5b sub-

model, respectively. Similar to the model of Figure 3, the think activity TAT is assumed

to be exponentially distributed, and moves a token from place PJ to place PWJ upon firing.

Place PWJ models the jobs that are ready to start their execution.325

Instantiating the same sub-model for different phases and building a composite model

using few sub-models, the complexity of the model building is moved to the model instan-

tiation, and thus, the autonomous modeling is facilitated. Figure 6 presents a composite

SAN model for the DAG given in Figure 2. In Figure 6, phase instances are drawn in rect-

angles, and think sub-model is shown by a circle. Moreover, fork and join sub-models are330

represented by triangles. Sub-models Ph1 to Ph4 are different instances of the model repre-

sented in Figure 5a named phase model, which are connected directly or through parallel

fork and synchronization join, named PJ and SJ , respectively. The think sub-model is also

placed at the start of the model. In order to compute the performance measure mentioned

in subsubsection 4.1.1, we need to apply Equation 1 and Equation 2 to the last phase of the335

DAG.

Since Spark’s DAG execution engine is similar to Tez from the modeling perspective, we

can extend our Tez models to the Spark applications with no specific changes. The phases

16

𝑃ℎ2: Map

𝑃ℎ3: Reduce

𝑃ℎ1: Map

𝑃ℎ4: Reduce

Think

PJ

SJ

Think

Figure 6: Composite model of the DAG represented in Figure 2

in our Tez model represent the stages in a Spark application and starting tokens represent

Spark drivers.340

5. Numerical Results

In order to evaluate the accuracy of the proposed models, we have conducted several

experiments on different environments ranging from a private cluster to public clouds. More

specifically CINECA [21], Flexiant [22], and a private cluster are examined as our test

environment. PICO, the Big Data cluster available at CINECA, is composed of 74 nodes,345

each of them boasting two Intel Xeon 2670v2 2.5GHz 10-core processors, with 128 GB RAM

per node. Out of this 74 nodes, up to 66 are available for computation. In our experiments on

PICO, we used several configurations ranging from 40 to 120 cores and set up the scheduler

to provide one container per core. The Flexiant cluster contains two master nodes and five

slave nodes each equipped with four cores and 8GB of memory. Our IBM Power8 (P8)350

private cluster includes four VMs with 11 cores and 60GB of RAM. Fiber channel disks up

to 12TB of storage are available. Spark executors are configured with two cores and four

GB of RAM while 8GBof memory are allocated to the driver. The numbers of cores and

executors are varied between 6 and 44 and between 3 and 22, respectively.

The dataset used for running the experiments was generated with the TPC-DS bench-355

mark data generator [23], which is the industry standard for benchmarking data warehouses.

17

𝑆𝑡𝑎𝑔𝑒3

𝑆𝑡𝑎𝑔𝑒4

𝑆𝑡𝑎𝑔𝑒2

𝑆𝑡𝑎𝑔𝑒1

𝑆𝑡𝑎𝑔𝑒6

𝑆𝑡𝑎𝑔𝑒5 𝑆𝑡𝑎𝑔𝑒7 𝑆𝑡𝑎𝑔𝑒8

𝑆𝑡𝑎𝑔𝑒4 𝑆𝑡𝑎𝑔𝑒5

𝑆𝑡𝑎𝑔𝑒3

𝑆𝑡𝑎𝑔𝑒2

𝑆𝑡𝑎𝑔𝑒1

(a) SQ1

𝑆𝑡𝑎𝑔𝑒3

𝑆𝑡𝑎𝑔𝑒4

𝑆𝑡𝑎𝑔𝑒2

𝑆𝑡𝑎𝑔𝑒1

𝑆𝑡𝑎𝑔𝑒6

𝑆𝑡𝑎𝑔𝑒5 𝑆𝑡𝑎𝑔𝑒7 𝑆𝑡𝑎𝑔𝑒8

𝑆𝑡𝑎𝑔𝑒4 𝑆𝑡𝑎𝑔𝑒5

𝑆𝑡𝑎𝑔𝑒3

𝑆𝑡𝑎𝑔𝑒2

𝑆𝑡𝑎𝑔𝑒1

(b) SQ2

Figure 7: Graphs of Spark queries (SQ1 and SQ2)

Datasets are in the form of external tables for the Hive [37] queries and their size varies from

250GB to 1TB. Different queries are considered to be executed on datasets as shown in Fig-

ure 7 to Figure 9. Queries MQ1 to MQ5 represented in Figure 8 are run using MR as Hive

underlying engine, while queries TQ1 to TQ3 and queries SQ1 to SQ2 shown in Figure 9 and360

Figure 7 are run on Tez and Spark, respectively. Spark queries SQ1 to SQ2 are the queries

26 and 52 of the TPC-DS benchmark, respectively; therefore, only their graphs are shown

herein for the sake of space limitation. Queries are performed on different dataset sizes to

cover a wide range of configurations. For example, in the case of MR queries, the number

of map tasks varies between 4 and 1560, while the reduce tasks number varies between 1365

and 1009. Moreover, Tez and Spark queries are based on different DAGs, and the number

of phases/stages varies from 2 to 8.

For what concerns queries profiling, a pilot execution of the query on a small cluster con-

figuration is considered to properly estimate the parameters of the fitted Erlang distribution

for tasks execution time. In particular, the parameters obtained from two configurations (the370

one corresponding to fewest cores in the considered experiments for each data size) are then

used as the model input for all executions of that query across the remaining configurations.

This idea of profiling is also used in [16, 17]. Task durations are obtained from execution

logs, and on average, each query runs 20 times. According to the information obtained from

the above-mentioned experiments, a profile can be created for each query containing the375

task execution rate for each of its phases, which can be used as input parameters of the

proposed SAN models.

18

select avg(ws_quantity), avg(ws_ext_sales_price),

avg(ws_ext_wholesale_cost), sum(ws_ext_wholesale_cost)

from web_sales

where (web_sales.ws_sales_price between 100.00 and 150.00) or

(web_sales.ws_net_profit between 100 and 200)

group by ws_web_page_sk

limit 100;

(a) MQ1

select inv_item_sk , inv_warehouse_sk

from inventory

where inv_quantity_on_hand > 10

group by inv_item_sk , inv_warehouse_sk

having sum(inv_quantity_on_hand)>20

limit 100;

(b) MQ2

select avg(ss_quantity), avg(ss_net_profit)

from store_sales

where ss_quantity > 10 and ss_net_profit > 0

group by ss_store_sk

having avg(ss_quantity) > 20

limit 100;

(c) MQ3

select cs_item_sk ,

avg(cs_quantity) as aq

from catalog_sales

where cs_quantity > 2

group by cs_item_sk;

(d) MQ4

select inv_warehouse_sk ,

sum(inv_quantity_on_hand)

from inventory

group by inv_warehouse_sk

having sum(inv_quantity_on_hand) > 5

limit 100;

(e) MQ5

Figure 8: MR queries (MQ1 to MQ5)

19

𝑃ℎ2:

Reduce

𝑃ℎ3:

Reduce
𝑃ℎ1:

Map

𝑃ℎ4:

Map

𝑃ℎ2:

Reduce

𝑃ℎ3:

Reduce
𝑃ℎ1:

Map

𝑃ℎ5:

Reduce

𝑃ℎ4:

Map

𝑃ℎ1:

Map

𝑃ℎ2:

Reduce

𝑃ℎ3:

Reduce

select avg(ss_quantity),

avg(ss_net_profit)

from store_sales ,

catalog_sales

where cs_bill_customer_sk =

ss_customer_sk and

ss_quantity > 10 and

ss_net_profit > 0

limit 100;

(a) TQ1

select a.aq

from (select cs_item_sk ,

avg(cs_quantity) as aq

from catalog_sales

where cs_quantity > 2

group by cs_item_sk) a

join

(select i_item_sk ,

i_current_price

from item

where

i_current_price > 2

order by

i_current_price) b

on a.cs_item_sk =

b.i_item_sk

order by a.aq

limit 100;

(b) TQ2

select inv_item_sk ,

inv_warehouse_sk

from inventory

where

inv_quantity_on_hand > 10

group by inv_item_sk ,

inv_warehouse_sk

having

sum(inv_quantity_on_hand)>20

order by inv_warehouse_sk

limit 100;

(c) TQ3

Figure 9: Tez queries (TQ1 to TQ3)

The Mobius tool [36] is used to analytically solve proposed SAN models with iterative

steady-state solver. Composite modeling is provided in Mobius tool under hierarchical mod-

els. The formalism for composite modeling in Mobius allows modelers to connect sub-models380

via shared places, which is also used in our proposed model as mentioned in subsection 4.3

for building composite Tez and Spark models.

Results of the proposed models are compared to the SWN model proposed in [13]. This

model has been proposed to evaluate the execution time of a MR job via simulation. The

GreatSPN 2.0 [38] tool was used to evaluate the SWN model with the same values of accuracy385

and confidence interval as the SAN model. The results obtained from the experiments,

proposed SAN model, and the SWN model in [13] are shown in Table 3 for MR applications.

20

0 2 4 6 8 10 12 14 16 18

Configuration

0

2

4

6

8

10

12

14

16

18

C
om

pl
et

io
n

tim
e

(m
s)

#105

Experiment
SAN Model
SWN Model

(a)

1 2 3 4 5 6 7 8 9

Configuration

0

2

4

6

8

10

12

14

16

C
om

pl
et

io
n

tim
e

(m
s)

#105

Experiment
SAN Model
SWN Model

(b)

1 2 3 4 5 6 7 8 9 10

Configuration

0

0.5

1

1.5

2

2.5

3

C
om

pl
et

io
n

tim
e

(m
s)

#106

Experiment
SAN Model
SWN Model

(c)

Figure 10: Model validation against experiments and the state of the art model [13] for (a) MR, (b) Tez,

and (c) Spark

T denotes the execution time of a MR job measured from the experiment on the system

under test, nM and nR represent the number of map and reduce tasks respectively, and τSAN

and τSWN denote the execution times obtained by the proposed SAN model and the SWN390

model, respectively. The relative error between the SAN model and experiments called θSAN

is computed by Equation 3.

θSAN = |τSAN − T
T

| (3)

Similarly, the relative error of the SWN model, θSWN , can be computed by Equation 3

by replacing τSAN with τSWN . As can be concluded from Table 3, the average error of the395

SAN model for estimating MR execution time is 7.1% where this error for the SWN model

proposed in [13] is about 12.4% which shows the superiority of our proposed model.

The SAN model accuracy evaluation for Tez applications is reported in Table 4. Here,

the SWN model is extended with extra phases in a monolithic way for each of the Tez

queries to simulate the graph of that query, and then, the results from the SWN model400

are compared with the results from analytically solving the proposed SAN model. Column

nTasks denotes the the number of tasks in the successive phases of the reference queries

represented in Figure 9.

21

Table 3: Results obtained from the proposed SAN model represented in Figure 3 and their comparison with

the results of SWN model for CINECA system

Query Users Cores Scale [GB] nM nR T [ms] τSAN [ms] ϑSAN [%] τSWN [ms] ϑSWN [%]

MQ2 1 240 250 65 5 36 881 35 837 2.83 37 976 2.97

MQ5 1 80 1 000 64 68 39 206 39 605 1.02 38 796 1.04

MQ1 1 240 250 500 1 55 410 52 032 6.09 50 629 8.63

MQ3 1 240 250 750 1 76 806 71 852 6.44 83 317 8.48

MQ2 3 40 250 4 4 86 023 89 048 3.52 119 712 17.81

MQ2 5 40 250 4 4 90 674 98 916 9.09 117 582 29.68

MQ4 1 240 250 524 384 92 141 91 360 0.84 89 426 3.01

MQ2 3 20 250 4 4 95 403 97 259 1.95 99 219 4.00

MQ2 5 20 250 4 4 145 646 149 665 2.76 88 683 3.09

MQ1 1 60 500 287 300 378 127 360 603 4.63 330 149 12.69

MQ3 1 100 500 757 793 401 827 482 473 20.07 507 758 26.36

MQ1 5 40 250 144 151 636 694 655 985 3.03 613 577 3.63

MQ3 1 120 750 1 148 1 009 661 214 652 368 1.33 698 276 5.61

MQ4 1 60 750 868 910 808 490 811 238 0.34 806 366 0.26

MQ1 3 20 250 144 151 1 002 160 938 748 6.33 909 217 9.27

MQ3 1 80 1 000 1 560 1 009 1 019 973 1 018 749 0.12 1 020 294 0.03

MQ1 5 20 250 144 151 1 736 949 1 620 820 6.69 1 428 894 17.74

22

Table 4: Results obtained from the proposed composite SAN model for Tez applications and their comparison

with the results of SWN model for Flexiant system

Query Users Cores Scale [GB] nTasks T [ms] τSAN [ms] ϑSAN [%] τSWN [ms] ϑSWN [%]

TQ2 1 10 30 <40,6,1,1,1> 137 502 135 192 1.68 134 246 2.37

TQ3 1 10 30 <30,8,1> 142 071 135 018 4.96 126 154 11.20

TQ3 1 5 30 <15,8,1> 186 111 168 658 9.38 166 217 10.69

TQ2 1 5 30 <16,6,1,1,1> 187 628 165 775 11.65 159 383 15.05

TQ2 1 16 50 <25,10,1,1,1> 340 759 312 276 8.36 244 603 28.22

TQ3 1 16 50 <25,12,1> 369 215 363 861 1.45 325 938 11.72

TQ1 1 15 30 <90,20,1,62> 692 141 764 262 10.42 907 535 31.12

TQ1 1 10 30 <41,20,1,40> 808 359 815 808 0.92 861 997 6.64

TQ1 1 5 30 <15,20,1,16> 1 439 656 1 495 071 3.85 1 505 288 4.56

According to Table 4, the proposed composite SAN can predict the execution time of

Tez applications with an average 6.4% error, which improves the 16.8% average error of the405

SWN model. Furthermore, there is a significant reduction in Tez modeling time, moving

from the monolithic model to the composite model. For example, solving the SAN model for

a configuration with 50 users, 1000 tasks, and 300 containers, takes 16s, while the runtime

for the SWN model exceeds 350s.

Finally, the accuracy of the proposed model for Spark applications is evaluated in Table 5.410

Similarly, SWN model is extended with extra stages and its result is compared to the

proposed composite SAN model. The average error of 2.7% for the SAN model compared

to the 14.4% error of SWN model implies the superior accuracy of the former.

Comparing error values obtained from our proposed models against those obtained from

the state-of-the-art machine learning (ML) methods, we can conclude that SAN models415

perform better than ML-based methods. For example, the error values reported for the ML-

based methods proposed in [15] and [16] are 11% and 12%, on average respectively, while it

is 6% for the proposed models. SAN and SWN models accuracy across all experiments is

summarized in Figure 10, which report the completion time measured on the real systems and

estimated by the SAN and SWN models, for different configurations. It is worth mentioning420

23

Table 5: Results obtained from the proposed composite SAN model for Spark applications and their com-

parison with the results of monolithic SWN model for P8 system

Query Users Cores Scale [GB] nTasks T [ms] τSAN [ms] ϑSAN [%] τSWN [ms] ϑSWN [%]

SQ2 1 32 250 <2,250,2,200,200> 162 232 163 223 0.61 140 180 13.59

SQ1 1 32 250 <2,2,250,250,200,2,200,200> 168 041 156 211 7.04 136 512 18.76

SQ1 1 24 250 <2,2,250,250,200,2,200,200> 178 714 170 372 4.67 138 891 22.28

SQ2 1 24 250 <2,250,2,200,200> 181 496 173 584 4.36 135 536 25.32

SQ1 1 52 500 <2,2,500,500,500,2,200,200> 220 247 227 526 3.30 258 849 17.53

SQ2 1 48 750 <2,750,2,200,200> 279 243 279 363 0.04 261 540 6.34

SQ2 1 48 1000 <2,1000,2,200,200> 359 987 360 096 0.03 354 217 1.60

SQ1 1 20 500 <2,2,500,500,500,2,200,200> 1 093 593 1 144 559 4.66 1 262 163 15.41

SQ2 1 10 500 <2,500,2,200,200> 1 327 441 1 298 755 2.16 1 142 832 13.91

SQ1 1 6 500 <2,2,500,500,500,2,200,200> 2 532 250 2 521 542 0.42 2 757 520 8.90

that configurations in Figures 10a, 10b, and 10c are ordered same as the Table 3, Table 4,

and Table 5, respectively.

6. Related Work

In order to evaluate the performance of the MR paradigm and its implementation frame-

work, Hadoop, different approaches have been employed. Some approaches have performed425

experiments, and then studied historical traces and logs of MR jobs execution in order to

assess performance measures and use the insight to predict MR job execution time in future

runs [39]. Hadoop execution monitoring is also useful to help the administrator to decide

on the configuration parameters and to fine-tune the cluster as proposed in [10]. In [20] for

example, authors have proposed the Starfish framework which collects run-time monitoring430

traces in fine granularity, and uses this detailed job profile to further enhance the configu-

ration and predict job completion time. A sophisticated synthetic workload generator for

MR applications over cloud architectures is introduced in [40], which is used to evaluate

performance trade-offs. Similarly, the work in [11] used eight benchmarks to evaluate MR

performance. The configuration parameters of Hadoop cluster are investigated in [41] and435

[9] to find the optimal configuration for different types of jobs. In particular, [9] focuses

24

on optimizing Hadoop parameters by running two copies of the same task with different

parameter configurations to empirically identify the best configuration.

Machine learning is another tool used in literature to predict MR performance. Learning

techniques from regression [42] to more sophisticated methods, e.g. SVR [15] and KCCA440

[43], have been used for this regard. Authors in [16] proposed Ernest, to predict Spark

job execution time in large scale based on the behavior of the job on small samples of

data. Ernest identifies a small set of experiments by relying on optimal experiment design

[44] and then applies Non-negative Least Squares (NNLS) to fit the model. The idea of

learning a model with small representive experiments has also been used in [17] where445

multiple polinomial regression models are applied on Spark stages. Stage predictions are

then aggregated through the critical path of the execution DAG to estimate the whole job

runtime. Combining models with learning methods may improve accuracy. For example, In

[43], authors considered static models along with classification techniques to classify current

job and estimate its completion time. The authors also compared some clustering and450

feature elimination techniques, then proposed to use Kernel Canonical Correlation Analysis

(KCCA) statistic model to find out the correlation between the features and job execution

times. Ataie et al. [15] have combined queueing network model with SVR technique to

further increase the accuracy and reduce the number of experiments to be performed on the

operational system to train the model.455

Simulation as another approach for performance evaluation has been used in several

research work [19, 26, 45]. In this regard, great efforts have been made to build a compre-

hensive simulator for MR and Hadoop [19, 26]. In [26], authors analyzed the application

performance on MR cluster through studying the language syntax, logical dataflow, data

storage and MR implementations. This simulation is not light weight and may take long460

time to complete. Ardagna et al. [45] have proposed DAGSim, a novel ad-hoc and fast

discrete event simulator, to model the execution of complex DAGs, which can be used to

predict Spark application runtime.

In line with simulation approaches, and instead of building simulators, some have intro-

duced simulation models. Petri Nets have been used to study the fault tolerance mecha-465

25

nisms in [46]. Another approach, presented by Barbierato et al. [14], exploits Generalized

Stochastic Petri Nets (GSPNs) alongside other formalisms such as process algebras and

Markov chains to develop multi-formalism models and capture Hive queries performance

behavior. More recently, Ruiz et al. [47] formalized the MR paradigm using Prioritized

Timed Colored Petri Nets (PTCPNs). They validated the model and carried out a perfor-470

mance cost trade-off analysis. In [13], queueing network and Stochastic Well-formed Nets

(SWN) simulation models have been proposed and validated for MR applications, consider-

ing YARN as resource manager. Requeno et al. [48] have proposed a UML profile for Apache

Tez and transformed the stereotypes of the profile into Stochastic Petri Nets (SPNs) which

can be used as a simulation model. Stochastic Time Petri Nets (STPN) are also among475

multiple PN-based formalisms which are used to model performance of parallel computing

environments [49].

Analytical approaches have also been applied to evaluate the performance of MR paradigm.

Analytical models were proposed in [50], for representing a MR system and quantifying the

throughput of a particular resource (i.e., network, hardware disk, or CPU). Bardhan and480

Menascé [51] applied QN models for predicting the completion time of the map phase of

MR jobs. Upper and lower bounds were analyticaly derived for MR job execution time in

shared Hadoop clusters by authors in [52] SPNs have been used by [12] for performance pre-

diction of adaptive Big Data architecture. Mean Field Analysis was applied by authors in

[12] to obtain average performance metrics. In order to cope with the state space explosion485

problem, authors in [53] used Fluid Petri Nets to simplify the actual model. They proposed

fluid models to predict the execution time of the MR and Spark application.

7. Conclusion and Future Work

In this paper, we studied the performance of the main open source Big Data frameworks,

i.e., Hadoop, Tez, and Spark. Such frameworks have been widely adopted by the industry490

and introduce complex software stacks that burden the performance prediction and capacity

planning.

26

Since performance evaluation through experiments is costly and simulation is time-

consuming, we have proposed analytical models, which can be generated and solved in a

reasonable time, and at the same time, conforms with the real experiments by an acceptable495

accuracy.

In this paper, we proposed SAN models to analytically evaluate the execution time of MR,

Tez, and Spark applications. We cross-validated the accuracy of models, comparing their

predictions to the measurements gained from running TPC-DS benchmark over different

query and cluster configurations, obtaining across all the experiments an average error of500

6%, which is adequate to support capacity planning decisions and what-if analyses [28]. Our

proposed models in this paper improve previously presented methods [13] in supporting Tez

and Spark frameworks, providing higher accuracy, decreasing model runtime, and supporting

larger DAG models.

Future work will extend the models to support multiple simultaneous jobs running dif-505

ferent queries on a shared cluster. By considering multiplicity in the query level, scalability

problems due to increase in the number of model states arises. Moreover, additional scenar-

ios of interest like execution with faulty nodes, data placement, and speculative execution

will be analyzed.

Acknowledgments510

The results of this work have been partially funded by the European DICE H2020 re-

search project (grant agreement no. 644869).

[1] M. A. Beyer, D. Laney, The Importance of ’Big Data’: A Definition, Tech. rep., Gartner, [Online].

Available: https://www.gartner.com/doc/2057415/importance-big-data-definition. [Accessed

on Jul. 2018] (2012). doi:G00235055.515

[2] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. Hung Byers, Big Data: The

next frontier for innovation, competition, and Productivity, 1st Edition, McKinsey Global Institute,

2011.

[3] D. Reinsel, J. Gantz, J. Rydning, Data Age 2025: The Evolution of Data to Life-Critical, [Online].

Available: https://www.seagate.com/de/de/our-story/data-age-2025/. [Accessed on Jul. 2018]520

(2017).

27

https://www.gartner.com/doc/2057415/importance-big-data-definition
http://dx.doi.org/G00235055
https://www.seagate.com/de/de/our-story/data-age-2025/

[4] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Communications

of the ACM 51 (1) (2008) 107–113. doi:10.1145/1327452.1327492.

[5] IDC, Worldwide semiannual Big Data and analytics spending guide, [Online]. Available: https://www.

idc.com/getdoc.jsp?containerId=IDC_P33195. [Accessed on Jul. 2018].525

[6] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, C. Curino, Apache Tez: A Unifying Frame-

work for Modeling and Building Data Processing Applications, in: Proceedings of the 2015 ACM

International Conference on Management of Data, SIGMOD 2015, ACM Press, Melbourne, Victoria,

Australia, 2015, pp. 1357–1369. doi:10.1145/2723372.2742790.

[7] V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, E. Baldeschwieler,530

A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, Apache

Hadoop YARN: Yet Another Resource Negotiator, in: Proceedings of the 4th annual Symposium on

Cloud Computing, SOCC 2013, ACM Press, Santa Clara, California, USA, 2013, pp. 1–16. doi:

10.1145/2523616.2523633.

[8] Spark, Apache Spark, [Online]. Available: http://spark.apache.org/. [Accessed on Jul. 2018].535

[9] S. Babu, Shivnath, Towards automatic optimization of MapReduce programs, in: Proceedings of the

1st ACM symposium on Cloud computing, SoCC 2010, ACM Press, Indianapolis, Indiana, USA, 2010,

pp. 137–142. doi:10.1145/1807128.1807150.

[10] J. Dai, J. Huang, S. Huang, B. Huang, Y. Liu, HiTune: dataflow-based performance analysis for

big data cloud, in: Proceedings of the USENIX annual technical conference, USENIX Association,540

Portland, OR, USA, 2011, pp. 87–100.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis, Evaluating MapReduce for Multi-

core and Multiprocessor Systems, in: Proceedings of the IEEE 13th International Symposium on High

Performance Computer Architecture, IEEE, Scottsdale, AZ, USA, 2007, pp. 13–24. doi:10.1109/

HPCA.2007.346181.545

[12] A. Castiglione, M. Gribaudo, M. Iacono, F. Palmieri, Exploiting Mean Field Analysis to Model

Performances of Big Data Architectures, Future Generation Computer Systems 37 (2014) 203–211.

doi:10.1016/j.future.2013.07.016.

[13] D. Ardagna, S. Bernardi, E. Gianniti, S. Karimian Aliabadi, D. Perez-Palacin, J. I. Requeno, Modeling

Performance of Hadoop Applications: A Journey from Queueing Networks to Stochastic Well Formed550

Nets, in: Proceedings of the 16th International Conference on Algorithms and Architectures for Parallel

Processing, ICA3PP 2016, Springer International Publishing, Granada, Spain, 2016, pp. 599–613. doi:

10.1007/978-3-319-49583-5_47.

[14] M. Gribaudo, E. Barbierato, M. Iacono, Modeling Apache Hive Based Applications in Big Data Archi-

tectures, in: Proceedings of the 7th International Conference on Performance Evaluation Methodologies555

28

http://dx.doi.org/10.1145/1327452.1327492
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
https://www.idc.com/getdoc.jsp?containerId=IDC_P33195
http://dx.doi.org/10.1145/2723372.2742790
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://dx.doi.org/10.1145/2523616.2523633
http://spark.apache.org/
http://dx.doi.org/10.1145/1807128.1807150
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1016/j.future.2013.07.016
http://dx.doi.org/10.1007/978-3-319-49583-5_47
http://dx.doi.org/10.1007/978-3-319-49583-5_47
http://dx.doi.org/10.1007/978-3-319-49583-5_47

and Tools, ValueTools 2013, ICST, Torino, Italy, 2013, pp. 30–38. doi:10.4108/icst.valuetools.

2013.254398.

[15] E. Ataie, E. Gianniti, D. Ardagna, A. Movaghar, A Combined Analytical Modeling Machine Learning

Approach for Performance Prediction of MapReduce Jobs in Cloud Environment, in: Proceedings of

the 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,560

SYNASC 2016, IEEE, Timisoara, Romania, 2016, pp. 431–439. doi:10.1109/SYNASC.2016.072.

[16] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, I. Stoica, Ernest: Efficient Performance Prediction

for Large-scale Advanced Analytics, in: Proceedings of the 13th Usenix Conference on Networked

Systems Design and Implementation, USENIX Association, Santa Clara, CA, USA, 2016, pp. 363–378.

[17] G. P. Gibilisco, M. Li, L. Zhang, D. Ardagna, Stage Aware Performance Modeling of DAG Based in565

Memory Analytic Platforms, in: Proceedings of the 9th International Conference on Cloud Computing,

CLOUD 2016, IEEE, San Francisco, CA, USA, 2016, pp. 188–195. doi:10.1109/CLOUD.2016.0034.

[18] J. F. Meyer, A. Movaghar, W. H. Sanders, Stochastic Activity Networks: Structure, Behavior, and

Application, in: Proceedings of the International Workshop on Timed Petri Nets, Torino, Italy, 1985,

pp. 106–115.570

[19] Y. Liu, M. Li, N. K. Alham, S. Hammoud, HSim: A MapReduce simulator in enabling Cloud Comput-

ing, Future Generation Computer Systems 29 (1) (2013) 300–308. doi:10.1016/j.future.2011.05.

007.

[20] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, S. Babu, Starfish: A Self-tuning

System for Big Data Analytics, in: Proceedings of the 5th Biennial Conference on Innovative Data575

Systems Research, CIDR 2011, Vol. 11, Asilomar, California, USA, 2011, pp. 261–272.

[21] Cineca, Cineca computing center, [Online]. Available: http://www.cineca.it/. [Accessed on Jul.

2018].

[22] Flexiant, Flexiant Cloud Management Software & Cloud Orchestration, [Online]. Available: https:

//www.flexiant.com/. [Accessed on Jul. 2018].580

[23] M. Poess, B. Smith, L. Kollar, P. Larson, TPC-DS, Taking Decision Support Benchmarking to the Next

Level, in: Proceedings of the 2002 ACM international conference on Management of data, SIGMOD

2002, ACM Press, Madison, Wisconsin, 2002, pp. 582–587. doi:10.1145/564691.564759.

[24] Flink, Apache Flink, [Online]. Available: https://flink.apache.org/. [Accessed on Jul. 2018].

[25] R. Nachiappan, B. Javadi, R. N. Calheiros, K. M. Matawie, Cloud storage reliability for Big Data585

applications: A state of the art survey, Network and Computer Applications 97 (2017) 35–47. doi:

10.1016/J.JNCA.2017.08.011.

[26] F. Teng, L. Yu, F. Magoulès, SimMapReduce: A Simulator for Modeling MapReduce Framework, in:

Proceedings of the Fifth FTRA International Conference on Multimedia and Ubiquitous Engineering,

29

http://dx.doi.org/10.4108/icst.valuetools.2013.254398
http://dx.doi.org/10.4108/icst.valuetools.2013.254398
http://dx.doi.org/10.4108/icst.valuetools.2013.254398
http://dx.doi.org/10.1109/SYNASC.2016.072
http://dx.doi.org/10.1109/CLOUD.2016.0034
http://dx.doi.org/10.1016/j.future.2011.05.007
http://dx.doi.org/10.1016/j.future.2011.05.007
http://dx.doi.org/10.1016/j.future.2011.05.007
http://www.cineca.it/
https://www.flexiant.com/
https://www.flexiant.com/
https://www.flexiant.com/
http://dx.doi.org/10.1145/564691.564759
https://flink.apache.org/
http://dx.doi.org/10.1016/J.JNCA.2017.08.011
http://dx.doi.org/10.1016/J.JNCA.2017.08.011
http://dx.doi.org/10.1016/J.JNCA.2017.08.011

IEEE, Loutraki, Greece, 2011, pp. 277–282. doi:10.1109/MUE.2011.56.590

[27] O. Alipourfard, H. Harry Liu, J. Chen, S. Venkataraman, M. Yu, M. Zhang, CherryPick: Adaptively

Unearthing the Best Cloud Configurations for Big Data Analytics, in: Proceedings of the 14th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’17), Boston, MA, USA, 2017,

pp. 469–482.

[28] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik, Quantitative system performance : computer595

system analysis using queueing network models, 1st Edition, Prentice-Hall, 1984.

[29] E. Ataie, R. Entezari-Maleki, S. E. Etesami, B. Egger, D. Ardagna, A. Movaghar, Power-aware Perfor-

mance Analysis of Self-adaptive Resource Management in IaaS Clouds, To appear in Future Generation

Computer Systems 86 (2018) 134–144. doi:10.1016/J.FUTURE.2018.02.042.

[30] E. Ataie, R. Entezari-Maleki, L. Rashidi, K. S. Trivedi, D. Ardagna, A. Movaghar, Hierarchical Stochas-600

tic Models for Performance, Availability, and Power Consumption Analysis of IaaS Clouds, To appear

in IEEE Transactions on Cloud Computingdoi:10.1109/TCC.2017.2760836.

[31] R. Entezari-Maleki, L. Sousa, A. Movaghar, Performance and Power Modeling and Evaluation of Vir-

tualized Servers in IaaS Clouds, Information Sciences 394-395 (2017) 106–122. doi:10.1016/J.INS.

2017.02.024.605

[32] R. Entezari-Maleki, K. S. Trivedi, A. Movaghar, Performability Evaluation of Grid Environments Using

Stochastic Reward Nets, IEEE Transactions on Dependable and Secure Computing 12 (2) (2015) 204–

216. doi:10.1109/TDSC.2014.2320741.

[33] A. Movaghar, J. F. Meyer, Performability Modeling with Stochastic Activity Networks, in: Proceedings

of the 1984 Real-Time Systems Symposium, Austin, TX, USA, 1984, pp. 215–224.610

[34] W. H. Sanders, J. F. Meyer, Stochastic Activity Networks: Formal Definitions and Concepts, in:

Proceedings of the 1st EEF/Euro Summer School on Formal Methods and Performance Analysis,

FMPA 2001, Berg en Dal, Netherlands, 2001, pp. 315–343.

[35] P. Reinecke, L. Bodrog, A. Danilkina, Phase-Type Distributions, Resilience Assessment and Evaluation

of Computing Systems (2012) 85–113doi:10.1007/978-3-642-29032-9_5.615

[36] T. Courtney, S. Gaonkar, K. Keefe, E. W. D. Rozier, W. H. Sanders, Möbius 2.3: An extensible

tool for dependability, security, and performance evaluation of large and complex system models, in:

Proceedings of the 2009 IEEE/IFIP International Conference on Dependable Systems & Networks,

DSN 2009, IEEE, Lisbon, Portugal, 2009, pp. 353–358. doi:10.1109/DSN.2009.5270318.

[37] Hive, Apache Hive, [Online]. Available: https://hive.apache.org/. [Accessed on Jul. 2018].620

[38] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli, G. Franceschinis, The GreatSPN Tool:

Recent Enhancements, ACM SIGMETRICS Performance Evaluation Review 36 (4) (2009) 4–9. doi:

10.1145/1530873.1530876.

30

http://dx.doi.org/10.1109/MUE.2011.56
http://dx.doi.org/10.1016/J.FUTURE.2018.02.042
http://dx.doi.org/10.1109/TCC.2017.2760836
http://dx.doi.org/10.1016/J.INS.2017.02.024
http://dx.doi.org/10.1016/J.INS.2017.02.024
http://dx.doi.org/10.1016/J.INS.2017.02.024
http://dx.doi.org/10.1109/TDSC.2014.2320741
http://dx.doi.org/10.1007/978-3-642-29032-9_5
http://dx.doi.org/10.1109/DSN.2009.5270318
https://hive.apache.org/
http://dx.doi.org/10.1145/1530873.1530876
http://dx.doi.org/10.1145/1530873.1530876
http://dx.doi.org/10.1145/1530873.1530876

[39] Z. Zhang, L. Cherkasova, B. T. Loo, Benchmarking approach for designing a mapreduce performance

model, in: Proceedings of the ACM/SPEC international conference on International conference on625

performance engineering, ICPE 2013, ACM Press, Prague, Czech Republic, 2013, pp. 253–258. doi:

10.1145/2479871.2479906.

[40] Y. Chen, A. S. Ganapathi, R. Griffith, R. H. Katz, Towards Understanding Cloud Performance Tradeoffs

Using Statistical Workload Analysis and Replay, Tech. Rep. UCB/EECS-2010-81, EECS Department,

University of California, Berkeley (may 2010).630

[41] D. Jiang, B. C. Ooi, L. Shi, S. Wu, The performance of MapReduce: an in-depth study, Proceedings

of the VLDB Endowment 3 (1-2) (2010) 472–483. doi:10.14778/1920841.1920903.

[42] N. Yigitbasi, T. L. Willke, G. Liao, D. Epema, Towards Machine Learning-Based Auto-tuning of

MapReduce, in: Proceedings of the IEEE 21st International Symposium on Modelling, Analysis and

Simulation of Computer and Telecommunication Systems, IEEE, San Francisco, CA, USA, 2013, pp.635

11–20. doi:10.1109/MASCOTS.2013.9.

[43] A. Ganapathi, Y. Chen, A. Fox, R. Katz, D. Patterson, Statistics-driven workload modeling for the

Cloud, in: Proceedings of the IEEE 26th International Conference on Data Engineering Workshops,

ICDEW 2010, IEEE, Long Beach, CA, USA, 2010, pp. 87–92. doi:10.1109/ICDEW.2010.5452742.

[44] V. Fedorov, Optimal Experimental Design, Wiley Interdisciplinary Reviews: Computational Statistics640

2 (5) (2010) 581–589.

[45] D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti, M. Gribaudo, T. B. M. Pinto, A. Guimarães,

A. P. Couto da Silva, J. M. Almeida, Performance Prediction of Cloud-Based Big Data Applications,

in: Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE

2018, ACM Press, Berlin, Germany, 2018, pp. 192–199. doi:10.1145/3184407.3184420.645

[46] J. E. Marynowski, A. O. Santin, A. R. Pimentel, Method for Testing the Fault Tolerance of MapReduce

Frameworks, Computer Networks 86 (2015) 1–13. doi:10.1016/j.comnet.2015.04.009.

[47] M. C. Ruiz, J. Calleja, D. Cazorla, Petri Nets Formalization of Map/Reduce Paradigm to Optimise

the Performance-Cost Tradeoff, in: Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 3,

IEEE, Helsinki, Finland, 2015, pp. 92–99. doi:10.1109/Trustcom.2015.617.650

[48] J. I. Requeno, I. Gascón, J. Merseguer, Towards the Performance Analysis of Apache Tez Applications,

in: Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE

2018, ACM Press, Berlin, Germany, 2018, pp. 147–152. doi:10.1145/3185768.3186284.

[49] F. Cicirelli, A. Forestiero, A. Giordano, C. Mastroianni, Parallelization of space-aware applications:

Modeling and performance analysis, Network and Computer Applications 122 (2018) 115–127. doi:655

10.1016/J.JNCA.2018.08.015.

[50] X. Yu, W. Li, Performance modelling and analysis of mapreduce/hadoop workloads, in: Proceedings

31

http://dx.doi.org/10.1145/2479871.2479906
http://dx.doi.org/10.1145/2479871.2479906
http://dx.doi.org/10.1145/2479871.2479906
http://dx.doi.org/10.14778/1920841.1920903
http://dx.doi.org/10.1109/MASCOTS.2013.9
http://dx.doi.org/10.1109/ICDEW.2010.5452742
http://dx.doi.org/10.1145/3184407.3184420
http://dx.doi.org/10.1016/j.comnet.2015.04.009
http://dx.doi.org/10.1109/Trustcom.2015.617
http://dx.doi.org/10.1145/3185768.3186284
http://dx.doi.org/10.1016/J.JNCA.2018.08.015
http://dx.doi.org/10.1016/J.JNCA.2018.08.015
http://dx.doi.org/10.1016/J.JNCA.2018.08.015

of the 21st IEEE International Workshop on Local and Metropolitan Area Networks, IEEE, Beijing,

China, 2015, pp. 1–6. doi:10.1109/LANMAN.2015.7114723.

[51] S. Bardhan, D. A. Menascé, Queuing Network Models to Predict the Completion Time of the Map660

Phase of MapReduce Jobs, in: Proceedings of the 2012 International Computer Measurement Group

Conference, CMG 2012, Las Vegas, Nevada, USA, 2012, pp. 1–9.

[52] M. Malekimajd, D. Ardagna, M. Ciavotta, A. M. Rizzi, M. Passacantando, Optimal Map Reduce Job

Capacity Allocation in Cloud Systems, ACM SIGMETRICS Performance Evaluation Review 42 (4)

(2015) 51–61. doi:10.1145/2788402.2788410.665

[53] E. Gianniti, A. M. Rizzi, E. Barbierato, M. Gribaudo, D. Ardagna, Fluid Petri Nets for the Perfor-

mance Evaluation of MapReduce and Spark Applications, ACM SIGMETRICS Performance Evaluation

Review 44 (4) (2017) 23–36. doi:10.1145/3092819.3092824.

32

http://dx.doi.org/10.1109/LANMAN.2015.7114723
http://dx.doi.org/10.1145/2788402.2788410
http://dx.doi.org/10.1145/3092819.3092824

	Introduction
	System Architecture and Application Structure
	Overview of SANs
	Proposed Models
	MR Model
	Performance Measure

	Monolithic DAG Model
	Composite DAG Model

	Numerical Results
	Related Work
	Conclusion and Future Work

