

Anagnostopoulos, C. and Kolomvatsos, K. (2019) An intelligent, time-

optimized monitoring scheme for edge nodes. Journal of Network and

Computer Applications, 148, 102458. (doi: 10.1016/j.jnca.2019.102458).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/198142/

Deposited on: 30 September 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1016/j.jnca.2019.102458
http://eprints.gla.ac.uk/188143/
http://eprints.gla.ac.uk/

An Intelligent, Time-Optimized Monitoring Scheme for
Edge Nodes

Christos Anagnostopoulos

School of Computing Science, University of Glasgow, G12 8QQ, Glasgow, UK

Kostas Kolomvatsos

Department of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, 15784, Greece

Abstract

Monitoring activities over edge resources and services are essential in today’s

applications. Edge nodes can monitor their status and end users/applications

requirements to identify their ‘matching’ and deliver alerts when violations are

present. Violations are related to any disturbance of the desired Quality of Ser-

vice (QoS). QoS values depend on a number of performance metrics and can

differ among applications. In this paper, we propose the use of an intelligent

mechanism to be incorporated in monitoring tools adopted by edge nodes. The

proposed mechanism continually observes the realizations of performance pa-

rameters that result in specific QoS values and decides when it is the right time

to ‘fire’ mitigation actions. Hence, edge nodes are capable of changing their con-

figuration to secure the desired QOS levels as dictated by end users/applications

requirements. In our work, a mitigation action could involve either upgrades

in the current services/resources or offloading tasks by transferring computa-

tional load and data to peer nodes or the Cloud. We present our model and

provide formulations for the solution of the problem. A high number of simula-

tions reveal the performance of the proposed mechanism. Our experiments show

that our scheme outperforms any deterministic model defined for the discussed

setting as well as other efforts found in the respective literature.

Keywords: Edge Computing, Edge Nodes, Monitoring, Quality of Service,

Preprint submitted to Elsevier September 3, 2019

Optimal Stopping Theory

1. Introduction

In a Cloud computing setting, end users try to acquire remote access to a

number of resources. Resources include hardware as well as software applica-

tions. Cloud services provide specific functionalities to users over the underly-

ing hardware infrastructures. However, the advent of various technologies like

the Internet of Things (IoT) [7], Mobile Edge Computing (MEC) [3], Network

Function Virtualization (NFV) [42] and Software Defined Networking (SDN)

[31] challenges the Cloud Computing model. For instance, if we realize the

data processing activities close to end devices, we can reduce the latency in the

provision of the requested services (the use of Cloud resources is characterized

by increased latency [12]). Hence, the paradigm of Fog and Edge computing

come into the scene [61]. Both, Edge and Fog computing involve the transfer

of storage and processing at the edge of the network, where data are collected.

End users/applications asking for analytics can be served in the minimum time,

thus, supporting their requirements for getting a response in real time. However,

these two technologies are not identical. The OpenFog Consortium identifies

that Edge computing is often erroneously called Fog computing [60]. The focus

of this distinction is mainly based on the hierarchical relation between them

and the services that can provide. Fog computing can provide computing, net-

working, storage, control, and acceleration at multiple points of the hierarchy

starting from Cloud and reaching the end devices while Edge computing tends

to be limited to the provision of services at the edge of the network [60]. In

short, the differences that the OpenFog Consortium detects between the two

technologies are [43]: (i) Fog works with the Cloud while Edge is defined by the

exclusion of Cloud; (ii) Fog is hierarchical, where Edge tends to be limited to

a small number of layers; (iii) In additional to computation, Fog also addresses

networking, storage, control and acceleration. The problem in Edge comput-

ing is the limited computational capabilities of Edge Nodes (ENs) compared to

2

the Cloud infrastructure and Fog nodes. Usually, the storage and processing

can be performed in small edge servers or even more in end devices themselves.

The critical issue is that ENs are connected with a high number of devices,

thus, making imperative the need of monitoring their performance in order to

efficiently support end users/applications processing tasks and data collection.

A monitoring service is the key element of any management system [1]. The

reason is that management systems try to automate various processes in the

infrastructure, thus, an autonomous module should supervise the independent

components. In any case, services executed in ENs should be characterized

by high Quality of Service (QoS) to efficiently support end users/applications.

QoS characteristics may involve the performance of the underlying hardware as

well as the performance of the execution of specific software solutions. In the

relevant literature, one can find definitions for a number of parameters affect-

ing QoS like CPU performance [22], response time, completion time, through-

put, network utilization, mean-time between failures, mean-time to switchover,

mean-time system recovery, etc [28], [37], [41], [57]. However, meeting the de-

sired QoS levels does not depend only on the provided services. It also depends

on users’/applications’ requirements that could be updated over time. When

a user/application adopts a ‘public’ EN to host or consume a critical service,

performance variability and availability become a major concern [2]. Therefore,

monitoring tools at ENs are essential in maintaining QoS at high levels and

sustaining the performance of every application [6].

So far, monitoring services are offered by Cloud providers or third party

companies. In Edge computing, the functionalities that should be adopted by

such monitoring mechanisms are related to specific performance metrics for the

software/hardware and users/applications requirements. Alerts can be produced

to inform ENs for possible malfunctions and the need for applying a mitigation

plan. In this paper, we propose a model to be adopted in a monitoring module

that will be responsible to deliver alerts when potential QoS violations could

be present in an EN. The proposed scheme is ‘node-’ and ‘user/application-

oriented’ at the same time. If an EN cannot efficiently support the desired

3

level of QoS, a mitigation action should be initiated. Such an action may lead

to the offloading of processing tasks and data to Cloud, Fog or peer nodes, if

possible [29]. The ‘user/application-oriented’ aspect of our scheme deals with

the monitoring activities performed to detect updates in users’/applications’

requirements relying on ENs to enjoy the provided services. The discussed

mechanism works in a pro-active manner trying to handle the problem before it

is realized in contrast to the majority of the available monitoring mechanisms.

We assume that the mechanism is connected with a component that results

in a QoS realization based on the set of values for the performance metrics

under consideration. The mechanism should wait to secure that QoS is not

violated. Nonetheless, the decision should be immediate as users/applications

desire to have a high QoS and an uninterrupted execution. In this paper, we

adopt the principles of Optimal Stopping Theory (OST) [44] to determine the

right time for a meaningful decision on a mitigation action over sequentially

observed QoS values. We model the discussed scenario and build an optimal

stopping decision making mechanism. Based on the sequentially received QoS

values realized through a set of Key Performance Indicators (KPIs), our mech-

anism identifies the appropriate time to stop the monitoring process and ‘fire’

a mitigation action. As noted, our aim is to update the configuration of ENs,

offload the specific task or any other action that will secure the QoS at high

levels. The significant is that our mechanism tries to ‘match’ the performance

of an EN with the updates in the requirements of users/applications, thus, to

pro-actively take the appropriate measures. We propose an efficient mecha-

nism that maintains the status of ENs to the appropriate one to continuously

meet end users/applications requirements. In the following list, we present the

contributions of our work:

• we support a monitoring mechanism to be applied at the edge of the net-

work and assist ENs to monitor their performance and end users/applications

requirements;

• we provide a decision making mechanism for ENs that results the appro-

4

priate time for applying mitigation actions towards securing the QoS at

high levels;

• we adopt the principles of OST and present a generalized optimal stopping

rule for firing mitigation actions. Our model focuses on time-optimized

decisions, i.e., to find the appropriate time to apply mitigation actions.

ENs should delay their decision to collect more contextual data, however,

should not wait for long as any heavy disturbance of QoS will limit the

performance of applications;

• we propose a mechanism responsible to continuously ‘align’ the perfor-

mance of ENs with end users/applications requirements. The proposed

model takes into consideration both aspects of the problem, thus, it tries

to ‘match’ them and take the most appropriate decision;

• we provide an experimental evaluation of our model and a comparative

assessment targeting to reveals its pros and cons.

The proposed mechanism could be combined with a system responsible to handle

the life cycle of applications. This combination is beyond the scope of this paper

and left for future work.

The paper is organized as follows. The related work is presented in Section 2

while in Section 3, we present our scenario and describe our setting. In Section 4,

we analytically describe the proposed mechanism. In Section 5, we present the

performance of our mechanism based on a high number of simulations. Finally,

in Section 6, we conclude our paper by describing future extensions of our work.

2. Related Work

In recent years, researchers’ attention is paid on the delivery and the com-

bination of new services over the available infrastructure. The main focus is

on providers’ side meaning that main research results are related to the perfor-

mance of services. Many efforts focus on services composition [5], [8], [13], [16],

5

[18], [30], [33], [48], [59], [62], while others focus on resource selection and de-

ployment in Cloud [9], [45], [47]. Semantic techniques, planning algorithms and

evolutionary approaches are some of the adopted techniques. The aim is to have

new services through a combination of already provided, some times incompat-

ible, components. The performance of such ‘complex’ services depends on the

performance of their parts. The most difficult scenario is when these parts are

offered by different providers. This is more intense when a user wants to monitor

the performance of services to secure that the QoS is at high levels. The reason

is that users should monitor a number of metrics for a set of providers. One can

find commercial and open source tools offering Cloud services monitoring. An

extensive survey in the field is available in [2]. Apart from these tools, users can

build their own models. However, significant attention should be paid on the

underlying resource management. An extensive survey on the Cloud resource

management techniques can be found in [38].

In our review of the relevant literature, we start with the virtual resources

monitoring in Cloud. For a full survey, the interested reader cal refer in [52].

The approach of providing Monitoring-as-a-Service (MaaS) [4] is usable for both

providers and end users. Such an approach offers the monitoring software as

a part of the Cloud infrastructure capable of performing monitoring activities

even in federated Clouds. The requirement is to have all the involved infras-

tructures applying the same monitoring mechanism. Other approaches involve

dashboards where users can observe the collected performance metrics realiza-

tions [32]. Usually, such tools are devoted to monitor the available hardware like

the CPU, memory, storage and so on and so forth. Software agents can be also

adopted for monitoring purposes [40]. Agents can undertake the responsibility

of observing the performance of specific metrics and transfer the relevant data

to an application that will decide if a potential QoS violation is present. In any

case, the centralized approach in the decision making adds obstacles towards

having a mechanism that is fully adapted to the needs of any local processing

unit. Lattice, proposed in [14], aims at providing observation functionalities

over virtual infrastructures. The framework provides an API and the necessary

6

interfaces to be adopted by software components that may want to support cus-

tomized solutions. iOverbook, presented in [11], is an intelligent, autonomous

tool capable of supporting monitoring activities in virtualized, however, hetero-

geneous environments. The basis of the tool is the decision making on top of a

neural network that is responsible to deliver forecasting of the resources’ usage.

The tool can have a view on the future trends of the usage, thus, it can act

proactively in identifying any potential problems.

Another form of virtualization that demands less resources are containers

[50]. Containers can be uploaded in different hosts without the requirement of

adopting a specific operating system. In Edge computing, there is the need of

monitoring such container based installations at the ENs. In [51], the authors

propose a distributed self-adaptive model that is applied on the Edge computing

setting to ensure the QoS in time critical applications. The same image can

be uploaded in different locations. The evaluation of docker containers is the

subject of [46]. The performance of dockers is evaluated in terms of the hardware

performance approximating the performance of a native environment. Securing

the QoS levels in time critical applications on top of dockers is the focus of

[19]. A priority scheme is adopted to manage the access to the network for any

docker. The main focus is paid on scenarios where multiple dockers are present

in the same host.

Additionally, a set of efforts focuses on the monitoring of applications per-

formance [20], [21], [27], [34], [39], [49], [53], [58]. Such frameworks mainly aim

to observe specific KPIs in a distributed manner facilitating scale in/out ac-

tions to be aligned with end users requirements. Applications can be separated

into a number of parts hosted in different e.g., containers. The management

of this distributed nature of the approach should be accompanied by a power-

ful coordination mechanism. Meeting end users requirements is imperative in

environments where time critical applications should be provided. A proactive

mechanism based on intelligent techniques (e.g., neural networks) may be ap-

plied and satisfy users future demands [26]. Performance data can be seen as

time series and their processing should be concluded in real time. Such data

7

cover the entire set of ‘points’ where the attention should be paid, e.g., the CPU

performance, the remaining storage capacity, the memory usage and so on and

so forth.

Monitoring systems are also proposed to be adopted by the edge infrastruc-

ture trying to deal with several challenges in the domain. Edge computing has to

do with a very dynamic infrastructure where nodes may join and leave the net-

work frequently. In addition, tasks scheduling and resource provisioning require

monitoring KPIs with very low and predictable latency to make fast decisions

[10]. To reduce the latency, instead of sending the monitored data to the Fog

or Cloud, ENs may store them for local processing. Such an approach may as-

sist in the efficient management of data and performance intensive applications

like online games and Augmented Reality. In such cases, applications endpoints

should be close to end users together with the management of location context

[15]. In [56], the authors propose a monitoring approach for Fog systems in a

cyber-manufacturing scenario incorporating multiple technologies like Wireless

Sensor Networks (WSNs), communication protocols, and predictive analytics.

PyMon [23] is another monitoring framework fully aligned with the edge infras-

tructure needs. The proposed system is lightweight designed to be hosted by

nodes with limited computational capabilities. The authors of [10] present the

requirements of edge monitoring tools and propose the FMonE framework. This

framework allows the deployment of monitoring workflows in the edge infras-

tructure. In [24], the authors propose a scheme for the detection of key nodes

and their influence on the status of the entire network. Based on these nodes,

the proposed approach tries to identify links that are not monitored, thus, it is

able to setup monitoring activities in key locations of the network. The Edge

NOde Resource Management (ENORM) framework, presented in [54], aims at

the provisioning of auto-scaling edge resources. The auto-scaling actions are a

type of mitigation actions when increased resources should be devoted to effi-

ciently service applications. The benefits are related to a reduced latency and

reduced data transfer between ENs and Cloud. Finally, in [55], the authors dis-

cuss an optimization platform that deals with the end-to-end throughput in real

8

time. The optimal throughput is achieved by adopting a set of components, i.e.,

a dynamic routing engine, a performance monitoring scheme and an information

exchange model.

To the best of our knowledge, the available monitoring tools (mainly pro-

posed to be used in Cloud) do not offer an automated intelligent mechanism that

assists ENs to decide when it is the appropriate time to proceed to a mitigation

action (pro-active action). The majority of the related efforts deal with mech-

anisms that provide alerts when violations in specific constraints are present.

However, the envisioned pro-active response is very important in the case of

composite services as multiple providers are involved, thus, the monitoring tool

should take decisions based on a large number of KPIs originated in different

providers.

3. Rationale and Preliminaries

3.1. Performance Monitoring

Each user/application ci selects a service or a set of services (e.g., data col-

lection service, data processing tasks) offered by an EN pk. We focus on the

monitoring process of a specific service sj offered by pk. Our mechanism will

monitor the status of a service assignment A(ci, sj) which connects ci with

sj . Each A(ci, sj) is configured with the ci profile and sj end reference point.

We have to notice that our model can be applied in any setting that monitors

the aforementioned assignments. The mathematical analysis that we provide

in this effort will be the same, however, the adopted assumptions and param-

eters are aligned with the Edge computing infrastructure. In Edge computing,

assignments are more dynamic compared to the remaining cases (i.e., Fog and

Cloud). Monitoring needs differ as edge based resources are highly dynamic and

the executed tasks exhibit a short lifecycle while being frequently instantiated

[1]. In addition, migration activities may need to be performed more frequently

compared to Cloud and Fog. Finally, IoT devices mobility can also affect the

services execution at the edge. All these issues affect the envisioned assignments

making imperative the need for our monitoring mechanism. QoS violations may

9

be more frequent making us to be based on the specific assumptions and pa-

rameters as defined throughout our paper.

Our system registers A(ci, sj) and defines an ‘observer’ responsible to re-

ceive QoS values for A(ci, sj). The ‘observer’ has two interfaces: (a) with

end users/applications and (b) with a component resulting the final QoS value

based on a specified set of KPIs. The ‘observer’ monitors any changes to

users/applications’ requirements (e.g., increased data delivery rate, demand for

additional services) or in services performance (e.g., latency for delivering data

processing results). The aim is to have an insight of when the assignment

A(ci, sj) will be ‘violated’. The assignment A(ci, sj) is ‘violated’ when:

• the system observes user/application requirements and ‘sees’ that the

user/application requires a higher or a lower QoS compared to the current

setting. For instance, if the user/application needs a low QoS, the system

could devote less resources and ‘migrate’ resources to other users/applications.

• the system observes the performance of services and decides when the

desired QoS level is not fulfilled. For each application, we can easily

define a QoS threshold based on the specific requirements. For instance, if

we focus on Augmented Reality applications, QoS should reach the upper

bound (unity, if we consider that QoS is in the interval [0,1]).

3.2. Problem Formulation

We assume that the time is divided in slots of duration d, e.g., the sampling

interval could be d = 1 time unit. The ‘observer’, at each time slot, receives

values for the desired KPIs and determines the final QoS. That is, at each

time slot, a QoS value is calculated, thus, we obtain a sequence of QoS values.

Without loss of generality, we consider the parameter QoSv indicating the QoS

violation for a specific service. QoSv is represented through a non-negative

integer, which is assumed to be Poisson distributed with parameter λ. The QoSv

value is desired to be as small number as possible, with QoSv = 0 representing

the highest QoS level. The QoSv value, Sn, is observed in the interval ((n −

10

1)d, nd], n > 0 is s with probability

Pd{Sn = s} =
e−λd(λd)s

s!
.

We now consider the stochastic process Xn, n ≥ 0, which represents the

accumulated QoSv values up to nd, i.e., Xn =
∑n
k=0 Sk. We set X0 = 0 and

for n ≥ 1, we define

Xn =



x if the number of accumulated QoSv values x in [0, nd]

satisfy x < Y = y

x{y} if the number of accumulated QoSv values x satisfy

x ≥ Y = y at the end of the interval [(n− 1)d, nd]

whereas at the beginning of the aforementioned

time interval x < Y = y

The random variable Y represents an upper bound of the acceptable tolerance

on the QoSv. Specifically, Y indicates the acceptable sum of QoSv values in

which the QoS is considered satisfiable by the user/application. Once the sum

of QoSv exceeds this value, the mechanism should proceed with a mitigation

decision. In general, Y is random, but can also be a fixed, pre-determined, value

for each application.

{Xn} is a Markov chain with states xy; states x are transient. In the state

space of the monitoring process, we define a function g(·) over the sum of QoSv

values that reflects the cost of the system at the end of the the nth time slot.

Specifically, in this paper we set (if Xn = x)

g(x) = ax− nβ (1)

whereas, if Xn = xy,

g(xy) = G(x, y) (2)

Eq(1) accounts for the cost due to the cumulative QoSv values with a factor

a > 0, whereas, Eq(2) accounts for a gain due to postponing the mitigation

process, with a factor of β > 0. The rationale behind the cost function is that the

11

mechanism after observing a sequence of (random) QoSv values, S0, S1, . . . , Sn,

decides whether to stop the monitoring process at time slot n and proceed with a

decision of mitigation due to violations of the corresponding assignment A(ci, sj)

or, continue the service. However, since QoS values are random and the EN has

defined an acceptable bound on the tolerance on QoSv, the mechanism should

deal with this stochasticity to proceed with an ‘optimal’ decision.

The parameter a indicates the ‘penalty’ that we incur if successive high

QoSv values (referring to low degree of quality - QoS) are accumulated with

time. On the other hand, the β parameter indicates the gain of using the

edge services as long as A(ci, sj) is not violated, or the received QoSv values

are within acceptable levels. This implies that the EN desires to postpone a

possible mitigation decision. The meaning of β is that it represents the cost

for a mitigation process, thus, once the mechanism decides at n not to proceed

with a mitigation decision, a ‘reward’ of −β incurs due to this postponing.

Nonetheless, once a mitigation decision is needed, then we incur a cost, which

might be a function of the current cumulative QoSv values Xn (i.e., the up to

now behavior of the invoked service in terms of QoS) and the tolerance on QoSv

represented by Y . This cost is expressed in Eq(2) and refers to the maximum

tolerance that can be accepted by the EN. Hence, the problem is to find the

right time (i.e., nth time slot) to proceed with one of the two following decisions:

D1 Continue the invocation of the service and observe its QoSv value at the

next time slot n + 1 without proceeding with a mitigation process with

cost β;

D2 Stop the monitoring process and proceed with a mitigation action incur-

ring a cost equal to β.

We formalize our problem as follows:

Problem 1. Given a tolerance Y on QoSv values and a maximum tolerance

G(Xn, Y), with Xn be the cumulative sum of QoSv values up to n, determine a

right time (optimal stopping time), which minimizes the cost function in Eq(1)

and Eq(2).

12

We treat Problem 1 through the OST, since the observed QoSv values are

random and a decision is desired for minimizing the rational cost defined in

Eq(1) and Eq(2). The only information we have in our hands is QoSv values

observed up to n and the tolerance on QoSv for the considered service. The

derived optimal stopping time is that which minimizes the cost function g(·)

based on the two above-mentioned decisions D1 and D2.

3.3. Optimal Stopping Theory

The Optimal Stopping Theory (OST) [44], concerns finding the right time to

take an action (decision) based on sequentially observed random variables. The

final aim is to minimize the expected cost. The optimal stopping problem is

defined by a sequence of random variables X1, X2, . . . whose joint distribution is

known and a sequence of real-valued cost functions g0, g (x1) , g (x1, x2) , g (x1, x2, x3) ,

Let (Ω, B, P) be the probability space, and Gt be the sub-σ-field of B generated

by X1, . . . , Xn. We have a sequence of σ-fields as G1 ⊂ G2 ⊂ . . .Gn ⊂ B. A

stopping time is defined as a random variable N ∈ {0, 1, . . . ,∞} such that the

event {N = n} is in Gn. The aim is to choose an optimal stopping time n∗ to

minimize the expected cost E[gn∗]. If there is no bound on the number of steps

at which one has to stop, this is an infinite horizon problem and the optimal

return can be computed via an optimal stopping rule.

4. Time-Optimized Performance Monitoring

4.1. A generalized optimal stopping rule

In the following, we provide the optimal stopping rule for Problem 1. Specif-

ically, we find the optimal policy of postponing the mitigation action due to

‘good’ QoSv values for Problem 1.

We first describe the transition probabilities for the Markov chain {Xn}. Let

us denote P = Pd{s} F̄Y (x+s)
F̄Y (x)

. Then, we obtain

p{x+ s |x} = P, 0 ≤ s, x+ s < y

p{(x+ s){y} |x} = Pd{s}P{Y=y}
F̄Y (x)

, x < y ≤ x+ s

p{x{y} |x{y}} = 1, y ≤ x

(3)

13

where Y = y is a realization value of Y and F̄Y (x) = 1 − FY (x) (cumulative

distribution function of Y), that is

F̄Y (x) =

∞∑
m=x+1

P{Y = m}

F̄Y (x+ s) =

∞∑
`=x+s+1

P{Y = `}

The previous transition probabilities should sum to unity given that Xn = x.

For Xn = x{y} it is obvious. For Xn = x, we have that

∞∑
s=0

p{x+ s |x}+

∞∑
s=0

x+s∑
y=x+1

p{(x+ s){y} |x}

=

∞∑
s=0

Pd{s}
F̄Y (x+ s)

F̄Y (x)
+

∞∑
s=0

x+s∑
y=x+1

Pd{s}
P{Y = y}
F̄Y (x)

=

∞∑
s=0

P +

∞∑
s=0

Pd{s}
x+s∑

y=x+1

P{Y = y}
F̄Y (x)

=

∞∑
s=0

P +

∞∑
s=0

Pd{s}
F̄Y (x)− F̄Y (x+ s)

F̄Y (x)

= 1

The expected cost at Xn = x is given by

C(x) = EY [g(x)] =

∞∑
m=x+1

g(x)
PY = m

F̄Y (x)
(4)

whereas, at Xn = xy, the expected cost is simply

C(xy) = g(xy) = G(x, y). (5)

Let now C(x) represent the expected cost under an optimal policy given that

we take a decision at x. Using the one-stage look ahead rule [44], C(x) should

satisfy the following functional equation (optimality equation):

C(x) = min{C(x), PC(x)}. (6)

The operator P denotes that one more step is taken by the mechanism, that is,

we postpone the mitigation action in the next interval. Thus,

PC(x) =

∞∑
s=0

C(x+s)p{x+s |x}+

∞∑
s=0

x+s∑
y=x+1

C((x+s){y})p{(x+s){y} |x} (7)

14

The rationale behind Eq(7) is that it is optimal to stop (decision D2) at the

current time where we have accumulated x, if C(x) is less or equal to PC(x).

Otherwise, it is optimal to continue the monitoring process, i.e., decision D1.

Theorem 1. If at n, QoSv values sum up to Xn, the optimal stopping rule

for Problem 1 is provided by:

∞∑
m=Xn+1

∞∑
s=m−Xn

(G(Xn+s, y)−a(Xn+s)+(n+1)β)Pd{s}
P{Y = m}
F̄Y (Xn)

≥ β−aλd.

Proof. Substituting (5), (6) in (8) we obtain

PC(x) =

∞∑
s=0

∞∑
m=x+s+1

(a(x+ s)− (n+ 1)β)
P{Y = m}
F̄Y (x+ s)

P +

∞∑
s=0

x+s∑
m=x+1

G(x+ s, y)R,

where R = Pd{s}P{Y=m}
F̄Y (x)

. Therefore,

PC(x) =

∞∑
s=0

∞∑
m=x+s+1

(a(x+ s)− (n+ 1)β)
P{Y = m}
F̄Y (x)

Pd{s}+

∞∑
s=0

x+s∑
m=x+1

G(x+ s, y)R

=

∞∑
s=0

∞∑
m=x+1

(a(x+ s)− (n+ 1)β)R−
∞∑
s=0

x+s∑
m=x+1

(a(x+ s)− (n+ 1)β)R

+

∞∑
s=0

x+s∑
m=x+1

G(x+ s, y)R

=

∞∑
s=0

∞∑
m=x+1

(ax− nβ)R+

∞∑
s=0

∞∑
m=x+1

(as− β)R

+

∞∑
s=0

x+s∑
m=x+1

(G(x+ s, y)− a(x+ s) + (n+ 1)β)R

= C(x) + aλd− β +

∞∑
s=0

x+s∑
m=x+1

(G(x+ s, y)− a(x+ s) + (n+ 1)β)R.

Therefore, it is optimal to stop if the following condition holds true:

∞∑
s=0

x+s∑
m=x+1

(G(x+ s, y)− a(x+ s) + (n+ 1)β)R ≥ β − aλd (8)

Changing the sum limits
∑∞
s=0

∑x+s
m=x+1(·) =

∑∞
m=x+1

∑∞
s=m−x(·) results

in the following criterion:

∞∑
m=x+1

∞∑
s=m−x

(G(x+ s, y)− a(x+ s) + (n+ 1)β)R ≥ β − aλd. (9)

15

The criterion in inequality (10) refers to the optimal stopping rule, at which

the mechanism makes decision D2 in a time slot n where we have accumulated

QoSv values Xn = x with which the inequality (10) holds true. Otherwise, it is

optimal to continue, i.e., decision D1.

4.2. A simplified optimal stopping rule

In the discussed setting, we should specify G(x, y) and P{Y = m}. For

further simplifications, we assume a fixed maximum tolerance and a fixed ac-

ceptable tolerance upper bound on QoSv. That is, we set G(x, y) = G and

P{Y = y} = 1 if y = D; otherwise 0, with G > 0 and D > 0. In this case, the

optimal stopping rule of inequality (10) is simplified to:

∞∑
s=D−x

(G− a(x+ s) + (n+ 1)β)Pd{s} ≥ β − aλd (10)

with x+ 1 < D <∞.

Since Xn = Xn−1 + Sn, we can define the recursion:

∞∑
s=D−Xn

Pd{s} =

D−(Xn−1+1)∑
s=D−Xn

Pd{s}+

∞∑
s=D−Xn−1

Pd{s}

with X0 = 0, thus, initially, we obtain

∞∑
s=D

Pd{s} = 1−
D−1∑
s=0

Pd{s}.

Moreover, since
∑∞
s=0 sPd{s} = λ, in a similar way, we can define the recursion

∞∑
s=D−Xn

sPd{s} =

D−(Xn−1+1)∑
s=D−Xn

sPd{s}+

∞∑
s=D−Xn−1

sPd{s}

with X0 = 0, thus, initially, we obtain

∞∑
s=D

sPd{s} = λ−
D−1∑
s=0

sPd{s}.

Based on the above recursions, the criterion in inequality (10) for stopping at

Xn is written as:

16

[G− aXn + (n+ 1)β]

∞∑
s=D−Xn

Pd{s} − a
∞∑

s=D−Xn

sPd{s} ≥ β − aλd. (11)

Based on the above analysis, the simplified algorithm that our ‘observer’

adopts to instruct the initiation of mitigation actions is as follows:

Algorithm 1: The monitoring algorithm

input : A (ci, sj)

output: The invocation of mitigation actions

n = 0;

Xn = 0 ;

while true do

n+ + ;

QoS = getQoS(A (ci, sj)) ;

Sk = calculateQoSViolation(QoS) ;

Xn += Sk ;

if Inequality (10) is satisfied then

Decision D2 ;

n = 0 ;

Xn = 0 ;

else

Decision D1 ;

end

end

5. Performance Assessment

We report on the performance of the proposed mechanism through a set of

simulations. We provide numerical results and give an insight on the strengths

and weaknesses of the proposed model.

17

5.1. Performance Metrics & Simulation Set-up

Initially, we compare the proposed time optimized mechanism with a Deter-

ministic Stopping Rule (DSR) in order to demonstrate the optimality achieved

by our Optimal Stopping Rule (OSR) in Section 4.2. Specifically, a mechanism

that is based on a DSR proceeds with a stopping decision (i.e., decision D2)

iff the accumulated QoSv values up to time slot n, Xn = x, exceeds a fixed

threshold z. The DSR then:

D1 Continues the monitoring process at the next time slot n+ 1, if Xn < z;

D2 Stops and proceeds with a mitigation process, if Xn ≥ z.

We evaluate our OSR with the DSR for diverse values of z, z ∈ [1, D), to examine

the cases where OSR results in better optimization of the g(·) function than the

DSR. The evaluation of each mechanism (OSR and DSR) refers to the expected

cost E[gn] with gn∗ = aXn∗−n∗β for the OSR, where n∗ is the optimal stopping

time at which inequality (10) holds true, and gn# = aXn# − n#β for the DSR,

where n# is the stopping time based on the above-mentioned deterministic rules,

respectively.

In addition, we compare our model with schemes found in the relevant lit-

erature and more specifically, with three other schemes adopted for predicting

future QoS values. In their recent study, the authors of [25] present an analysis of

multiple technologies aiming at the prediction of services QoS violation. Among

them, they propose the use of: (i) the Exponential Smoothing Model (ESM); (ii)

the Moving Average Model (MAM); and, (iii) the Holt-Winter Double Exponen-

tial Smoothing Model (DESM). For comparing our OST Model (OSTM) with

those three schemes, we rely on widely used classification KPIs, i.e., precision

ε, recall ζ and accuracy φ. With the adoption of these metrics, we aim at re-

vealing if the aforementioned models are capable of detecting QoS violations as

generated by our synthetic trace. The discussed metrics are defined as follows:

ε = TP
TP+FP , ζ = TP

TP+FN , φ = TP+TN
TP+TN+FP+FN where T refers to ‘true’, P refers

to ‘positive’, F refers to ‘false’, and N refers to ‘negative’. For instance, TP

18

refers to true positive events, i.e., identified events that had to be identified,

FP refers to false positive events, i.e., identified events that had to not been

identified, and so on and so forth.

The QoSv value at each time slot is assumed to be Poisson distributed with

parameter λ. However, the proposed optimal stopping mechanism can deal with

any arbitrary QoSv distribution; one can simply replace the Pd{s} in Theorem 1

with the desired probability distribution. We deal with the Poisson distribution

since through the λ parameter, we can generate QoSv referring to low values,

i.e., high degree of quality (QoS), by adopting a low λ value (e.g., λ = 1), or

QoSv values corresponding to a low degree of quality (QoS) by adopting a high

relatively λ value. We experiment with λ ∈ {1, 5, 10}, representing low, medium,

and high degree of quality (QoS). Through this approach, we can examine the

behaviour of the proposed mechanism in dealing with a range of QoSv patterns.

Moreover, we experiment with difference mitigation cost values, i.e., β values, so

as to demonstrate the eagerness of the mechanism to decide on either postponing

or proceeding with a mitigation process. Obviously, as it will be shown, a high

β value along with a stream of low QoSv values (i.e., high degree of quality)

results in postponing a mitigation decision, since the mechanism observes that

the QoSv, and QoS respectively, of the invoked service, is within the acceptable

levels and an immature decision on a mitigation process would cost a lot the EN.

On the other hand, once consecutive QoSv values are relatively high, i.e., low

degree of quality, the mechanism should decide on a mitigation process provided

that β is relatively small. Furthermore, we experiment with different G values to

examine the capability of the proposed mechanism in dealing with a high risk in

terms of receiving a low QoS, referring to consequent unacceptable QoS values

(highQoSv values). This denotes whether the mechanism is able to proceed with

optimal decisions either D1 or D2 to secure QoSv and, respectively, QoS values

within acceptable levels. We set D = 100 in experiments with G = f ·D, with

f ∈ {10, 30, 60}, a = 1, and β ∈ {25, 50, 100, 200}. Without lot of generality,

we consider the sampling period d = 1 time unit. For each experiment, we

execute 1,000 runs and take the Optimal Expected Cost (OEC) and the

19

Deterministic Expected Cost (DEC) for the OSR and DSR mechanisms,

respectively. The z deterministic threshold for the DSR takes values z ∈ [1, D).

5.2. Performance Assessment

In Fig. 1, we plot OEC and DEC values for different λ; note that OEC

is independent of z. The smaller the values are, the higher the reward is for

remaining at the same setup. In these cases, the system receives low a QoSv and

respectively, it gains high quality services (QoS). The DSR mechanism performs

worse than the OSR, especially for z ≤ 90. This stands for λ = 1. When the

mechanism receives high quality services, the appropriate decision is to remain

at the same setup and avoid the mitigation process. The greater the λ is, the

smaller the reward becomes for remaining at the same setup. This is natural

as the mechanism receives consecutive high QoSv values and respectively gains

low quality services. Additionally, when λ = 10, the DSR and the OSR have

similar performance when z ≥ 65. In the discussed scenario, the difference

of the performance between the OSR and the DSR mechanisms (we consider

the minimum DEC value which corresponds to the maximum performance) is

6.93%, 7.27% and 1.33% for λ = 1, λ = 5 and λ = 10, respectively. Note that,

there is a region of z values close to D in which the DSR approaches the OSR

in terms of cost. Specifically, as z → D the DSR relaxes its tolerance, thus, it

delays a mitigation decision. This results in minimizing the cost since n assumes

relatively high values. However, given the stochasticity of QoS values, as long as

z → D, there is a high likelihood that a ‘next’ QoSv value will result in exceeding

theD tolerance, thus, incurring a cost ofG. This indicates the incapability of the

DSR to handle the stochastic nature of QoS in decision making, thus, resulting

in high cost values close to the tolerance D. On the other hand, OSR takes

into consideration the random nature of QoSv through the optimal stopping

rule. OSR relies its decision making on the behaviour/trend of the sequence

of QoSv through the cumulative sum Xn. In this context, OSR achieves the

minimization of the cost function by using random stopping times (and not fixed

as defined in DSR) that are governed by the stochasticity of QoSv, as presented

20

in Theorem 1.

Figure 1: OSR vs. DSR for different λ.

In Fig. 2, we plot our results for different β values. Recall that β represents

the mitigation cost. We observe similar results as in Fig. 1. The OEC defines

the optimal limit as already discussed. The difference in the performance is

significantly high especially when z ≤ 85. It is worth noting that when β = 50

and z ∈ [85, 90], the DSR mechanism performs better than the OSR. In this

case, we obtain 4.95% reduction in the optimal expected cost. In the remaining

cases (β ∈ {25, 100, 200}), we obtain 7.27%, 3.15% and 12.89% higher values

(performance) from the OSR mechanism.

21

Figure 2: OSR vs. DSR for different β.

In Fig. 3, we experiment with various tolerance values. Similar results are

also obtained for this set of experiments. The OSR mechanism performs better

than the DSR mechanism for the majority of z values. When G = 30 and

z = 90, the DSR achieves a better value compared to the OSR mechanism. The

difference in the performance between the OSR and the DSR mechanisms is

3.15%, -2.17% and 0.04%.

22

Figure 3: OSR vs. DSR for different G.

In general, the proposed OSR mechanism minimizes the expected cost of the

mitigation process as revealed from our experiments in terms of high, medium

and low QoSv values, as well as when dealing with low and high mitigation

costs and maximum tolerance values. On average, for the entire set of our

experiments, the OSR achieves 3.49% smaller expected cost compared to the

best achieved expected cost value obtained from any deterministic rule.

In Fig. 4, we provide plots for the probability density function (pdf) of n∗

(the optimal stopping time for OSR) and for different λ. We observe that the

smaller the λ is, the greater the n∗ becomes. This is natural, as small λ means

that the mechanism receives low QoSv values and, respectively, it enjoys high

quality services (high QoS). Hence, the EN should remain at the same setup

and avoid any mitigation action. When λ = 10, users/applications enjoy low

quality services (low QoS), thus, the mechanism results a mitigation action. In

this case, n∗ values are around 10 which is 89.5% lower than n∗ values for λ = 1.

23

Figure 4: n∗ pdf for the OSR mechanism.

In Fig. 5 and 6, we depict the pdf of n# for the DSR model (z = 10 and

z = 50 respectively). We observe a similar performance as in the OSR case.

The n# values are affected, as natural, by λ. A high λ leads to low n#, thus, a

mitigation action is the immediate decision. The interesting is that a low z leads

to low n# as the threshold is immediately violated and the system decides the

mitigation action. This observation stands for all λ realizations. Low z results

a very low n# (below 15) which means that the system decides the mitigation

in a short time. This is judged as inefficient because the EN will continually

proceed to a mitigation action.

24

Figure 5: n# pdf for the DSR mechanism (z = 10).

Figure 6: n# pdf for the DSR mechanism (z = 50).

Let us now compare n∗ and n#. n∗ is seven (7), four and a half (4.5) and

four (4) times larger than n# for λ = {1, 5, 10}, respectively. These results are

obtained for z = 10. When z = 50, n∗ is 90%, 72.7% and 66.7% greater than n#

for λ = {1, 5, 10}. The OSR results higher optimal stopping times compared

to DSR. The OSR observes QoSv values and only when there is the need, it

decides the mitigation action. It concerns an efficient mechanism as it tries to

avoid unnecessary mitigation actions.

25

In Tables 1, 2 & 3, we provide our comparison results between the proposed

OSTM and ESM, MAM and DESM. These results are retrieved for different λ

realizations. Recall, that λ affects the ‘generation’ of QoS violations, i.e., when

λ → 0, we get low QoSv values which represent a high QoS and no frequent

violations. The opposite, i.e., high QoSv and frequent violations, stands for a

high λ realization. In the aforementioned tables, we can see that the OSTM

outperforms the remaining models that are affected by the statistical process

adopted to deliver the final result. When λ = 1, the OSTM does not produce

any FP or FN events which means that it is able to detect QOS violations and

correctly infer the corresponding mitigation actions. However, the remaining

models (ESM, MAM, DESM) also exhibit a good performance even if they

produce a few FP and FN events. When we adopt λ = 5 (the frequency of

violations reduces as already explained), we observe that all models produce

a higher FN events number compared to the previous experimental scenario

which means that they are not able to detect the entire set of violations. Our

model results a high ζ compared to the remaining models. The MAM and the

DESM are heavily affected by the adopted statistical model that dictates to

process multiple historical values before they provide the final result. When

λ = 10, only a few events are realized though our synthetic trace and, again,

ESM, MAM & DESM increase the number of FN events leading to a limited

performance concerning ζ. The OSTM manages to keep its performance at high

levels exhibiting its ability to proactively detect the upcoming violations and

‘fire’ the relevant mitigation actions.

Table 1: Comparison results for λ = 1

OSTM ESM MAM DESM

ε 1.000 0.750 0.875 0.417
ζ 1.000 0.750 0.875 0.625
φ 1.000 0.996 0.998 0.990

26

Table 2: Comparison results for λ = 5

OSTM ESM MAM DESM

ε 1.000 1.000 0.500 0.272
ζ 0.981 0.187 0.188 0.188
φ 0.997 0.987 0.984 0.979

Table 3: Comparison results for λ = 10

OSTM ESM MAM DESM

ε 1.000 1.000 0.475 0.231
ζ 0.980 0.031 0.198 0.063
φ 0.998 0.907 0.902 0.890

6. Conclusions and Future Work

In an edge computing setting, end users through their devices as well as

applications adopt the desired services to be capable of uploading their data

and utilizing edge nodes software solutions. The most critical issue is to secure

QoS values at high levels. QoS values define the quality level of the edge nodes

and their services and secure the efficient execution of applications. Services

monitoring functionalities are necessary in order to identify QoS violations. In

this paper, we propose a model that has the responsibility of observing QoS

values and progressively deciding whether violations are present. If so, probably

the best solution is to select a mitigation action which is represented by data and

tasks offloading to the Cloud or to peer nodes. We model the discussed problem

and propose a solution adopting the principles of the Optimal Stopping Theory

(OST). The proposed mechanism identifies the right time to take a mitigation

decision based on sequentially observed values indicating QoS violations. The

optimal stopping mechanism can deal with any arbitrary distribution. A set

of simulations reveal the strengths of the proposed approach. Our mechanism

consists of an efficient solution that outperforms a deterministic model as well

as other schemes proposed in the relevant literature. On average, the optimal

stopping scheme achieves better results concerning the expected mitigation cost

compared to any deterministic model.

27

Future extensions of our work incorporate the connection of the proposed

mechanism with a real monitoring tool. This tool could be responsible for simple

as well as more complex services (composition of services). An optimal stopping

scheme for manipulating composite services is also in our future research agenda.

In this case, the mechanism will receive multiple QoS values and should decide

when it is the right time to decide the mitigation for the entire set of services

(the composite service) or for a subset of them.

References

[1] Abderrahim, M., Ouzzif, M., Guillouard, K., Francois, J., Lebre, A.,

’A Holistic Monitoring Service for Fog/Edge Infrastructures: a Foresight

Study’, The IEEE 5th International Conference on Future Internet of Things

and Cloud, 2017, pp. 3337–344.

[2] Aceto, G., Botta, A., De Donato, W., Pescape, A., ’Cloud Monitoring: A

Survey’, Journal of Computer Networks, vol. 57(9), 2013, pp. 2093–2115.

[3] Ahmed, A., Ahmed, E., ’A survey on mobile edge computing’, in 2016 10th

International Conference on Intelligent Systems and Control (ISCO), 2016,

pp. 1-8.

[4] Al-Hazmi, Y., Campowsky, K., Magedanz, T., ’A monitoring system for

federated clouds’, In Proceedings of the 1st IEEE International Conference

on Cloud Networking, 2012, pp. 68-74.

[5] Alrifai, M., Risse, T., Dolog, P., Nejdl, W., ’A scalable approach for QoS-

based web service selection’, in Proceedings of Service-Oriented Computing-

ICSOC Workshops, 2009.

[6] Armstrong, D. J., ’Enhancing Quality of Service in CC Through Novel Re-

source Management’, PhD Thesis, University of Leeds, 2012.

[7] Atzori, L., Iera, A., Morabito, G., ’The internet of things: A survey’, Com-

puter networks, vol. 54, no. 15, pp. 2787-2805, 2010.

28

[8] Bartalos, P., Bielikov, M., ’Automatic dynamic web service composition: A

survey and problem formalization’, Computing and Informatics, vol. 30, no.

4, pp. 793-827, 2012.

[9] Bradshaw, R., Desai, N., Freeman, T., Keahey, K., ’A scalable approach

to deploying and managing appliances’, in Proceedings of the TerraGrid

Conference, 2007.

[10] Brandn, A., Prez, M. S., Montes, J., Sanchez, A., ’FMonE: A Flexible

Monitoring Solution at the Edge’, Wireless Communications and Mobile

Computing, vol. 2018, art. 2068278, 2018.

[11] Caglar, F., Gokhale, A., ’iOverbook: intelligent resource-overbooking to

support soft real-time applications in the cloud’, In Proceedings of the 7th

IEEE International Conference on Cloud computing (CLOUD) 2014, pp.

538-545.

[12] Chen, Z., Hu, W., Wang, J., Zhao, S., Amos, B., Wu, G., Ha, K., Elgazzar,

K., Pillai, P., Klatzky, R., Siewiorek, D., Satyanarayanan, M., ’An Empirical

Study of Latency in an Emerging Class of Edge Computing Applications for

Wearable Cognitive Assistance’, in Proc. of the 2nd ACM/IEEE Symposium

on Edge Computing, 2017

[13] Chieu, T., Mohindra, A., Karve, A., Segal, A., ’Solution based deployment

of complex application services on a cloud’, in Proceedings of the 2010 IEEE

International Conference on Service Operations and Logistics and Informat-

ics, 2010.

[14] Clayman, S., Galis, A., Mamatas, L., ’Monitoring virtual networks with

lattice’, In Proceedings of 2010 IEEE/IFIP Network Operations and Man-

agement Symposium Workshops, 2010, pp. 239-246.

[15] Dastjerdi, A. V., Buyya, R., ’Fog Computing: Helping the Internet of

Things Realize Its Potential’, The Computer Journal, vol. 49(8), 2016, pp.

112-116.

29

[16] Dastjerdi, A. V., Buyya, R., ’Compatibility-aware Cloud Service Compo-

sition Under Fuzzy Preferences’, IEEE Transactions on Cloud Computing,

vol. 2(1), 2014, pp. 1–13.

[17] Dastjerdi, A. V., Tabatabaei, S. G. H., Buyya, R., ’A Dependency Aware

Ontology Based Approach for Deploying Service Level Agreement Monitor-

ing Services in Cloud’, Software Practice and Experience, vol. 42, pp. 501,

518, 2012.

[18] Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Mhr, T., Loichate,

M., ’Building a mosaic of clouds’, in Proceedings of EuroPar 2010 Parallel

Processing Workshops, Springer, 2011.

[19] Dusia, A. , Yang, Y. , Taufer, M., ’Network quality of service in Docker con-

tainers’, In Proceedings of 2015 IEEE International Conference on Cluster

Computing (CLUSTER), 2015, pp. 527-528.

[20] Evans, K., Jones, A., Preece, A., Quevedo, F., Rogers, D., Spasic, I., Taylor,

I., Stankovski, V., Taherizadeh, S., Trnkoczy, J., Suciu, G., Suciu, V., Mar-

tin, P., Wang, J., Zhao, Z., ’Dynamically reconfigurable workflows for time-

critical applications’, In Proceedings of International workshop on Workflows

in support of large-scale science, 2015, pp. 1-10.

[21] Farokhi, S., Lakew, E.B., Klein, C., Brandic, I., Elmroth, E., ’Coordinat-

ing CPU and memory elasticity controllers to meet service response time

constraints’, In Proceedings of International Conference on Cloud and Au-

tonomic Computing, 2015, pp. 69-80.

[22] Goiri, I., Julia, F., Fito, J. O., Macias, M., Guitart, J., ’Resource-Level

QoS Metric for CPU-based Guarantees in Cloud Providers’, in Proceedings

of the 7th international conference on Economics of grids, clouds, systems,

and services, 2010.

[23] Grobmann, M., Klug, C., ’Monitoring Container Services at the Network

30

Edge’, in Proceedings of the 29th International Teletraffic Congress, ITC,

2017, pp. 130-133.

[24] Huckova, I., Cicak, P., ’Advanced Network Monitoring using the Selection

of Critical Nodes’, in 42nd International Conference on Telecommunications

and Signal Processing (TSP), 2019.

[25] Hussain, W., Sohaib, O., ’Analysing Cloud QoS Prediction Approaches and

Its Control Parameters: Considering Overall Accuracy and Freshness of a

Dataset’, IEEE Access, vol. 7, 2019, pp. 82649–82671.

[26] Islam, S., Keung, J., Lee, K., Liu, A., ’Empirical prediction models for

adaptive resource provisioning in the cloud’, Future Generation Computer

Systems, vol. 28(1), 2012, pp. 155-162.

[27] Jamshidi, P., Sharifloo, A.M., Pahl, C., Metzger, A., Estrada, G., ’Self-

learning cloud controllers: fuzzy q-learning for knowledge evolution’, In Pro-

ceedings of International Conference on Cloud and Autonomic Computing,

2015, pp. 208-211.

[28] Karlapudi, H., Martin, J., ’Web application performance prediction’, In

Proceedings of the IASTED International Conference on Communication

and Computer Networks, 2004.

[29] Kolomvatsos, K., Anagnostopoulos, C., ’Multi-criteria Optimal Task Allo-

cation at the Edge’, Elsevier Future Generation Computer Systems, vol. 93,

2019, pp. 358–372.

[30] Konstantinou, A. V., Eilam, T., Kalantar, M., Totok, A. A., Arnold, W.,

Snible, E., ’An architecture for virtual solution composition and deployment

in infrastructure clouds’, in Proceedings of the 3rd International Workshop

on Virtualization Technologies in Distributed Computing, 2009.

[31] Kreutz, D., Ramos, F., Esteves, P., Esteve Rothenberg, C., Azodolmolky,

S., Uhlig, S., ’Software-defined networking: A comprehensive survey’, Pro-

ceedings of the IEEE, vol. 103(1), pp. 14-76, 2015.

31

[32] Kwon, S., Noh, J., ’Implementation of monitoring system for cloud com-

puting’, IJMER, vol. 3(4), 2013, pp. 1916-1918.

[33] Lecue, F., Mehandjiev, N., ’Towards scalability of quality driven semantic

web service composition’, in Proceedings of IEEE International Conference

on Web Services, 2009.

[34] Leitner, P., Inzinger, C., Hummer, W., Satzger, B., Dustdar, S.,

’Application-level performance monitoring of cloud services based on the

complex event processing paradigm’, In Proceedings of the 5th IEEE In-

ternational Conference on Service-Oriented Computing and Applications,

2015,pp. 1-8.

[35] Li, Q., Hao, Q., Xiao, L., Li, Z., ’Adaptive Management of Virtualized

Resources in Cloud Computing Using Feedback Control’, in 1st International

Conference on Information Science and Engineering, 2010, pp. 99–102.

[36] Li, J., Qiu, M., Niu, J. W., Chen, Y., Ming, Z., ’Adaptive Resource Allo-

cation for Preemptable Jobs in Cloud Systems’, in 10th International Con-

ference on Intelligent System Design and Application, 2011, pp. 31–36.

[37] Lu, J., Wang, J., ’Performance modeling and analysis of Web Switch’,

In Proceedings of the 31st Annual International Conference on Computer

Measurement (CMG05), Orlando, 2005.

[38] Manvi, S. S., Shyam, G. K., ’Resource Management for Infrastructure as

a Service (IaaS) in Cloud Computing: A Survey’, Journal of Networks and

Computer Applications, vol. 41, pp. 424–440, 2014.

[39] Mastelic, T. , Emeakaroha, V.C. , Maurer, M. , Brandic, I., ’M4Cloud:

generic application level monitoring for resource-shared cloud environments’,

In Proceedings of the 2nd International Conference on Cloud Computing and

Services Science, 2012, pp. 522-532.

[40] Meera, A., Swamynathan, S.,’Agent based resource monitoring system in

IaaS cloud environment’, In Proceedings of the 1st International Confer-

32

ence on Computational Intelligence: Modeling Techniques and Applications,

2013, pp. 200-207.

[41] Mei, R. D., Meeuwissen, H. B., Phillipson, F., ’User perceived Quality-of-

Service for voice-over-IP in a heterogeneous multi-domain network environ-

ment’, In Proceedings of ICWS, 2006.

[42] Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., De Turck, F., Boutaba,

R., ’Network function virtualization: State-of-the-art and research chal-

lenges’, IEEE Communications Surveys & Tutorials, vol. 18(1), pp. 236-262,

2015.

[43] OpenFog Consortium, ’OpenFog Reference Architecture for

Fog Computing’, Report, 2017, retrieved at August 2019 from

https:www.iiconsortium.orgpdfOpenFog Reference Architecture 2 09 17.pdf.

[44] Peskir, G. and Shiryaev, A., ’Optimal stopping and free boundary prob-

lems’, ETH Zuerich, Birkhauser, 2006.

[45] Pham, T., Truong, H., Dustdar, S., ’Elastic high performance applicationsa

composition framework’, in Proceedings of IEEE Asia-Pacific Services Com-

puting Conference, 2011.

[46] Preeth, E.N., Mulerickal, F.J.P., Paul, B., Sastri, Y., ’Evaluation of Docker

containers based on hardware utilization’, In Proceedings of 2015 Interna-

tional Conference on Control Communication & Computing India (ICCC),

2015, pp. 697-700.

[47] Rodriguez, A., Carretero, J., Bergua, B., Garcia, F., ’Resource selection for

fast large-scale virtual appliances propagation’, in Proceedings of the IEEE

Symposium on Computers and Communications, 2009.

[48] Rosenberg, F., Muller, M., Leitner, P., Michlmayr, A., Bouguettaya, A.,

Dustdar, S., ’Metaheuristic optimization of large scale qos-aware service

compositions’, in Proceedings of IEEE International Conference on Services

Computing, 2010.

33

[49] Rossi, F., Oliveira, I., de-Rose, C., Calheiros, R., Buyya, R., ’Non-invasive

estimation of cloud applications performance via hypervisors operating sys-

tems counters’, In Proceedings of the 14th International Conference on Net-

works, 2015, pp. 177-184.

[50] Seo, K., Hwang, H., Moon, I., Kwon, O., Kim, B., ’Performance comparison

analysis of Linux container and virtual machine for building cloud’, Adv. Sci.

Technol. Lett. 66, 2014, pp. 105-111.

[51] Stankovski, V., Trnkoczy, J., Taherizadeh, S., Cigale, M., ’Implementing

time-critical functionalities with a distributed adaptive container architec-

ture’, In Proceedings of the 18th International Conference on Information

Integration and Web-based Applications and Services (iiWAS2016), ACM,

Singapore, 2016, pp. 455-459.

[52] Taherizadeh, S., Jones, A., Taylor, I., Zhao, Z., Stankovski, V., ’Monitoring

Self-Adaptive Applications within Edge Computing Frameworks: A State-

of-the-art Review’, The Journal of Systems and Software, vol. 136, 2018, pp.

19–38.

[53] Wamser, F., Loh, F., Seufert, M., Tran-Gia, P., Bruschi, R., Lago, P.,

’Dynamic cloud service placement for live video streaming with a remote-

controlled drone’, In Proceedings of the 15th IFIP/IEEE International Sym-

posium on Integrated Network Management (IM) (Demonstration), 2017.

[54] Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D., ’ENORM: A

Framework For Edge Node Resource Management’, IEEE Transactions on

Services Computing, 2017.

[55] Wu, N., Tang, A., ’End-to-end Network Throughput Optimization Through

Last-mile Diversity’, in 52nd Annual Conference on Information Sciences and

Systems (CISS), 2018.

[56] Wu, D., Liu, S., Zhang , L., Terpennya, J., Gaoc, R., Kurfessd, T., Guzzob,

J., ’A fog computing-based framework for process monitoring and prognosis

34

in cyber-manufacturing’, Journal of Manufacturing Systems, vol. 43, 2017,

pp. 25-34.

[57] Xiong, K., Perros, H., ’Service Performance and Analysis in Cloud Com-

puting’, in World Conference on Services, 2009.

[58] Xiong, P., Pu, C., Zhu, X., Griffith, R., ’vPerfGuard: an automated

model-driven framework for application performance diagnosis in consoli-

dated cloud environments’, In Proceedings of the 4th ACM/SPEC Interna-

tional Conference on Performance Engineering, 2013, pp. 271-282.

[59] Yao, Y., Chen, H., Qos-aware service composition using nsga-ii, in Pro-

ceedings of the 2nd International Conference on Interaction Sciences: Infor-

mation Technology, Culture and Human, 2009.

[60] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji,

A., Kong, J., Jue, J., ’All One Needs to Know about Fog Computing and

Related Edge Computing Paradigms’, Journal of Systems Architecture, vol.

98, 2019, pp. 289–330.

[61] Yu, W., Liang, F., He, X., Hatcher, W. G., Lu, C., Lin, J., Yang, X., ’A

Survey on the Edge Computing for the Internet of Things’, IEEE Access,

vol. 6, 2017.

[62] Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A., A Declara-

tive Recommender System for Cloud Infrastructure Services Selection, Eco-

nomics of Grids, Clouds, Systems and Services, Lecture Notes in Computer

Science, Springer, 2012.

35

	Introduction
	Related Work
	Rationale and Preliminaries
	Performance Monitoring
	Problem Formulation
	Optimal Stopping Theory

	Time-Optimized Performance Monitoring
	A generalized optimal stopping rule
	A simplified optimal stopping rule

	Performance Assessment
	Performance Metrics & Simulation Set-up
	Performance Assessment

	Conclusions and Future Work

