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ABSTRACT Nowadays, network infrastructures such as Software Defined Networks (SDN) achieve a huge computational 

power. This allows to add a high processing on the network nodes. In this paper, a multimedia traffic management system is 

presented. This system is based on estimation models of Quality of Experience (QoE) and also on the traffic patterns classification.  

In order to achieve this, a QoE estimation method has been modeled. This method allows for classifying the multimedia traffic 

from multimedia transmission patterns. In order to do this, the SDN controller gathers statistics from the network. The patterns 

used have been defined from a lineal combination of objective QoE measurements. The model has been defined by Bayesian 

regularized neural networks (BRNN). From this model, the system is able to classify several kind of traffic according to the quality 

perceived by the users. Then, a model has been developed to determine which video characteristics need to be changed to provide 

the user with the best possible quality in the critical moments of the transmission. The choice of these characteristics is based on 

the quality of service (QoS) parameters, such as delay, jitter, loss rate and bandwidth. Moreover, it is also based on subpatterns 

defined by clusters from the dataset and which represents network and video characteristics. When a critical network situation is 

given, the model selects, by using network parameters as entries, the subpattern with the most similar network condition. The 

minimum Euclidean distance between these entries and the network parameters of the subpatters is calculated to perform this 

selection. Both models work together to build a reliable multimedia traffic management system perfectly integrated into current 

network infrastructures, which is able to classify the traffic and solve critical situations changing the video characteristics, by 

using the SDN architecture. 
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I. INTRODUCTION 

Nowadays video streaming has been wide developed and is 

present in most of the networks. This type of traffic, due to its 

bandwidth requirements, causes a high increase of traffic over 

the networks, making more difficult to manage and optimize 

the network performance. Furthermore, for video streaming is 

critical to have good network performance in order to provide 

QoS and guarantee an adequate QoE for the final user. 

Therefore, traffic modeling has a great interest. In this context, 

SDN based networks offers many advantages for video 

streaming over the network. Control panel and data panel are 

separated in SDN, offering a powerful solution to manage 

traffic network, instead of standard switching or routing 

decides how to forward packets. The SDN Controller gets 

statistics and other parameters from SDN switches. With this 

information it is possible to know the status of the network, 

i.e., link utilization, link capabilities, packets being 

transmitted, paths to destinations, etc.  Specifically, 

controlling and modifying the network and video streamed 

parameters, the QoE and QoS required values can be provided. 

Thus, processing all this information with IA and machine 

learning we obtain a powerful tool to process the network 

traffic packets and manage the network. Hence, in this paper 

we propose a multimedia traffic management model based on 

QoE estimation model and traffic pattern classification for 

SDN networks. The QoE estimation model, which is based on 

Bayesian Regularized Neural Network (BRNN) using the 

Levenberg-Marquardt algorithm, will allow wus to make 

multimedia traffic classification. We also propose another 

model that can determine what video characteristics could be 

changed in order to improve the QoE in critical situations. The 

selection of these characteristics are based on subpatterns, 

which represents different network and video streaming 

conditions. The network conditions are defined by QoS 

parameters such as delay, jitter, packet loss or bandwidth. The 

video characteristics are defined by parameters like bitrate, 

framerate, width, height, etc. Both models together provide a 
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robust multimedia traffic management system that can be 

integrated in present networks to classify network traffic and 

solve critical situations by changing video streaming 

characteristics. 

This study is an extension of [1]. Deeper study and further 

analyzes have been added. The starting point is the database 

used in [1] with sampling frequencies based on GOP (Group 

of Picture) of 2 seconds. We will also use different types of 

videos depending on its characteristics, format and 

codification as we used in [1]. By performing a deeper and 

better QoE estimation model, we have developed a high 

reliable multimedia traffic management system. The 

classification model based on BRNN (Bayesian Regression 

Neural Network) presented now will provide better results 

than the obtained in [1]. In order to improve the results we will 

analyze several parameters such as weights initialization, 

number of neurons of the hidden layer, number of hidden 

layers of the neural network (NN), gamma activation function, 

the weighting factor C, etc. Then, in order to try to improve 

the results of accuracy and recall, as well as adding more 

critical traffic cases. Then, additional study of traffic 

parameters will be made with the aim to analyze the relation 

among these parameters. Then, to try to improve the results of 

accuracy and recall, we have focused especially on the cases 

of critical traffic, in such a way that the model learns from an 

efficient number of samples of this type without reaching 

overfitting. For this purpose we have used cross-validation 

learning methods. Finally, we have studied the correlation 

between network parameters and video flow, to develop a 

model that allows us to redefine the characteristics of the video 

flow, thus improving QoE in critical traffic situations. 

The remainder of this article is organized as follows. 

Section II presents the related work. In Section III, multimedia 

traffic classification systems are analyzed. QoE adjustment is 

analyzed in Section IV. In Section V, the network architecture 

is described and the system implementation is discussed. 

Finally, conclusion and future work are included in Section 

VI. 

II. RELATED WORK 

In the last years, due to the increase of network traffic, many 

works have been proposed to classify multimedia traffic in 

order to guarantee QoS and QoE. In [1] authors proposed a 

multimedia traffic classification model based on patterns by 

using video streaming and network characteristics as input 

parameters and video quality evaluation measures as output. 

They use NQI, VQM, SSIM, and PSNR metrics to conform 

traffic patterns. Different learning methods are studied to find 

out which of them provides the best result. These methods are 

based on NNs, vector support machines, statistics and the 

nearest neighbors. In [2] is presented an experimental 

comparison of the performance of SNR, SSIM, NQI and 

VQM. Depending on several parameters, the best performance 

can be obtained from a different method, but in general, best 

results are given by VQM. 

In [3], it is developed a novel framework called DeepQoE 

to predict video QoE. The end-to-end framework first uses a 

combination of deep learning (DL) techniques (e.g., word 

embedding) to extract generalized features. Next, these 

features are combined and fed into a NN for representation 

learning. Such representations serve as inputs for classification 

or regression tasks. 

Authors in [4] try to solve the bandwidth allocation 

problem in cloud computing data center networks using 

Software Defined Networking (SDN) paradigm. This method 

makes use of machine learning techniques to classify the 

incoming traffic flows in real-time while ensuring game flows 

are prioritized over others. In [5] authors use machine learning 

techniques to try to demonstrate how QoS metrics can be 

exploited to accurately estimate and predict key QoE factors. 

They show that context information on network congestion 

and basic characteristics on video streams further improves 

predictions. 

Some authors, like in [6], evaluate the QoE for Internet of 

Things (IoT) applications, with particular attention to 

multimedia traffic. They introduce the concept of Multimedia 

IoT (MIoT) and define a layered QoE model aimed at 

evaluating and combining the contributions of each influence 

factor to estimate the overall QoE in MIoT applications. In [7], 

authors try to predict video QoE based on information directly 

extracted from the network packets using a deep learning 

model. The QoE detector is based on a binary classifier (good 

or bad quality) and uses seven common classes of anomalies. 

The proposed classifier is based on a combination of a 

Convolutional Neural Network (CNN), recurrent neural 

network, and Gaussian process classifier. A deep subjective 

study of video quality has been performed in [8]. It is also 

evaluated the performance of several state-of-the-art, publicly 

available full-reference video quality assessment algorithms. 

Authors in [9] study the adaptive multimedia traffic control 

mechanism leveraging Deep Reinforcement Learning (DRL) 

that combines deep learning with reinforcement learning, 

which learns from rewards by trial-and-error. This mechanism 

is able to control multimedia traffic directly from experience 

without referring to a mathematical model. 

Authors in [10] analyze several researches about 

application of Machine Learning (ML) techniques to IP traffic 

classification. They also discuss a number of key requirements 

for the employment of ML-based traffic classifiers in 

operational IP networks. In [11], authors employ three 

supervised machine learning algorithms, Bayesian Networks, 

Decision Trees and Multilayer Perceptrons for the flow-based 

classification of six different types of Internet traffic. Their 

experiments show that ML algorithms such as Bayesian 

Networks and Decision Trees are suitable for Internet traffic 

flow classification at a high speed. 

In [12] authors apply a Naïve Bayes estimator to categorize 

traffic by application, showing its high level of accuracy. In 

this approach, they use samples of well-known traffic to allow 

the categorization. A fully automated Packet Payload Content 
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(PPC) based network traffic classification system is presented 

in [13]. The proposed system learns new application 

signatures in the network where classification is desired. 

Furthermore, that system adapts the signatures as the traffic 

for an application changes. 

In [14] it is analyzed how different factors contribute to the 

Quality of Experience (QoE), in the context of video 

streaming delivery over cloud networks. The authors describe 

different methods that are often used to collect QoE datasets 

in the form of a Mean Opinion Score (MOS). Machine 

Learning methods are then used to classify a preliminary QoE, 

and six classifiers are evaluated and determined. Also, in [15] 

the authors present a user quality of experience prediction 

algorithm which extracts features based on user traffic pattern 

parameters such as bit-rate, resolution, frame rate, etc. They 

use three different feature selection algorithms and six 

different classifiers in order to optimize the features set and the 

corresponding ML algorithms. 

L. Huixian et al. develop a traffic-analysis method using an 

unsupervised ML technique, where flows are automatically 

classified by exploiting the different statistics characteristics 

of flow [16]. Authors in [17] develop a machine learning based 

traffic classification based on statistical properties while 

optionally de-coupling flow classification and treatment. This 

de-coupled architecture allows centralized traffic classifiers to 

control traffic filtering and shaping by diversely located, low-

performance network devices. 

III. INTELLIGENT MULTIMEDIA TRAFFIC 

CLASSIFICATION  

In this section is explained how the development of the 

multimedia traffic classification model was carried out. First, 

a QoE classification model is developed. Then, according to 

the results, we have analyzed and evaluated which model 

works better for the multimedia traffic classification.  

A. DATABASE PRE-PROCESSING  

The database used in this paper to develop the intelligent 

multimedia traffic classification system comes from the work 

done in [1]. It is composed by 2741 samples with 14 features 

per sample. Each sample is labeled according to the patterns 

obtained. Moreover, their values are obtained from objective 

QoE measurements which has a high correlation with the 

subjective QoE, like ISSM, VQM and NQI.  PSNR is also 

used due to its importance for the study. In order to extract 

every single sample, several video transmission with different 

network and video conditions were sent. Each video 

transmitted were divided into GOPs (group of pictures) 

equivalents to a 2s video clip. The average values of some 

characteristics were extracted from each video clip. Some of 

these features are: frame count, stream size, proportion stream, 

footer size, bitrate, width, height, frame rate and minimum 

frame rate. Furthermore, some network parameters like delay, 

jitter, packet loss, jitter variation and bandwidth for each time 

interval were extracted. For each video clip, several objective 

measurements were extracted by comparing the source and the 

destination videos so that the class labels could be generated. 

Depending on the correlation with the subjective QoE, a 

weight was assigned to each one of them and an average was 

calculated.  

B. QoE ESTIMATION MODEL 

An important aspect of this study is to obtain an accurate QoE 

estimation model with which a high-reliable multimedia 

traffic management system could be developed.  In [1] only a 

classification model of the type of traffic was obtained. This 

classification model is addressed in the subsection C. In this 

paper, a wide study about QoE estimation is firstly performed 

to improve the results of the traffic classification model. For 

this study, several classification and regression algorithms 

have been evaluated.  The problem can be addressed from two 

different points of view. It could be either a classification 

problem where discrete (1:1:5) MOS values are obtained as 

results or a regression problem where the result is a set of 

continuous values (1, 5). In this work, the problem has been 

turned into a classification problem by transforming 

continuous MOS values into discrete values. This means, the 

output continuous values of the regression model have been 

rounded to discrete values. Therefore, the regression problem 

changes into a classification problem. This allows to use 

regression models and check how good they suit the problem. 

In order to obtain the models, the following algorithms have 

been used: 

Classification models based on: 

 Support vector machines (CSVM) 

 Neural networks (CNN) 

 Naïve Bayes (CNB) 

 Decision trees (CDT) 

 Discriminant analysis (CDA) 

 K- Nearest neighbors (CKNN) 

Regression models based on: 

 Gaussian process (RGP) 

 Non-linear (RNL) 

 Decision trees (RDT) 

 Neural networks (RNN) 

In order to carry out this study, MATLAB and the available 

machine learning libraries have been used. The array of 

features of each sample has been used as entry parameters in 

the supervised learning models, and the MOS is used as the 

class label. From the whole simple set, 2441 samples have 

been used for training and 300 for testing. Cross-validation has 

been used to avoid the overfitting and, thus, generalize and 

validate the models. Concretely, 10-fold cross-validation has 

been used. 

The procedure of model obtaining has been as follows. 

Firstly, the different models have been evaluated using the 

default parameters. Then, the models with the best 

classification results have been polished to find a local or 

global minimum that improves the classification results.  
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Several scripts have been created to analyze and evaluate 

several learning parameters like kernel function, optimization 

coefficients, stopping criteria, etc. In order to evaluate the 

classification results of each proposed automatic supervised 

learning algorithm, the confusion matrix has been calculated. 

With the obtained values, the precision, recall, accuracy, F 

Score (F1)  and proximity values have been calculated. These 

values are displayed in Fig. 1.  Proximity has been included to 

obtain a less strict and rigorous accuracy measurement.  

Precision indicates how good the system can be to detect the 

class that is being analyzed. This means, with regard to the 

samples of that class, how many has been labeled correctly. 

Proximity allows to consider whether the system not only 

detects that class, but also if it is close to do it. This 

measurement gives an idea of how quasi-accurate the model 

is. It can be a big help to select the management system.  

   
a) 

  
b) 

FIGURE 1. Learning results for QoE estimation in the different classification 

(a)) and regression (b)) models according to the confusion matrix. 

As it is depicted in Fig. 1, the first measurement is 

precision, which indicates the positive cases detected 

correctly.  RNN and CSVM models are the ones with the best 

precision results. They have obtained similar results, with an 

84%. Moreover, CKNN, CDT and RGP present good results 

with an 81% for CKNN and a 77% for CDT and RGP. Worse 

results are obtained from the models based on CNB and CDA 

with 44% and 65% respectively. This poor results for CNB 

and CDA are also obtained in the other measurements, except 

proximity, being unable to be greater than 46%. Since CNB 

presents good results with non-parametric data, it can be 

concluded that this is consequent with the current problem and 

it is not an issue at all. As regards regression (Fig. 1 b), RDT 

and RGQ present the worst results, except for proximity, like 

in the previous case. This high value in proximity indicates 

that the model fails but it is close to be valid. On the other 

hand, regarding recall, i.e. the capacity of detecting properly 

the positive cases, RNN presents the best results with a 79%. 

CSVM and CKNN present similar results with 69% and 66% 

respectively. The next parameter, accuracy, shows how good 

the system is regarding the total correct estimations. CSVM 

presents the best results regarding accuracy (82%) followed by 

RNN (78%) and CKNN (72%). In this case, unlike the other 

measurements, CSVM presents a better result than RNN 

because all the right choices, from the whole set of possibilities 

(TP, TN, FP and FN), have been taken into account. This 

difference in the results only happen in those two scores. F1 

has been another parameter tested. This parameter combines 

precision and recall in the same measurement to indicate the 

quality of the method.  This score emphasizes the difference 

between the algorithms that presents good results and those 

which not. CSVM and RNN are the models with best results 

as regards this score. Finally, as regards proximity, RNN 

stands out with a 97%. However, the other regression methods 

achieve high results with 96%, 95% and 91% for RGP, RDT 

and RGQ respectively. This can be observed in Fig. 1 b). 

CSVM, CKNN, CDT present similar values, 93%, 92% and 

91% respectively. This score is quite important for this work 

because it shows that if the model fails with the MOS 

prediction, it will be close. Therefore, it will not return a MOS 

of 5 when the actual MOS is 2, for instance.  This aspect is 

really important to improve or polish the system. 

As a conclusion of the results obtained from the confusion 

matrix, the most adequate models with regard to the problem 

are the ones based on CSVM and RNN. In Fig. 2, the behavior 

of both models in the test can be analyze deeply. RNN has 

obtained less prediction errors than CSVM, facing the problem 

slightly better. When MOS = 5, both systems predict a right 

result, RNN with 93% and CSVM with 97% of right 

estimations. In the cases when RNN has failed, it has predicted 

MOS = 4 except in one of them, where it has predicted MOS 

= 3. CSVM has predicted MOS = 4 once and MOS = 2 in the 

other mistakes. When MOS = 4, CSVM predicts correctly in 

the 75% of cases, with MOS = 3 with 75% too and with MOS 

= 1 with 62%. It should be highlighted that, with MOS = 1, the 

number of errors increases significantly up to 14, a 38% of the 

total cases with MOS = 1. RNN predicts correctly when MOS 

= 4 with 70%, 77% when MOS = 3, with 78.5% when MOS 

= 2 and with 70% when MOS = 1. As it can be observed, the 

highest difference is located when MOS = 1, where RNN 
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predicts better. It is a remarkable problem that CSVM predicts 

MOS = 4 and MOS = 5 with a 50% of probability in that case, 

when MOS presents an actual value of 1.  These facts 

correspond to samples 3, 6, 8, 10, 14, 27 and 37. RNN predicts 

only in an 18% of times MOS = 5 (samples 27 and 37), while 

in the other times it predicts MOS = 1. With a MOS = 2, RNN 

only fails returning a predicted MOS greater than 3 twice 

(14.2%, samples 38 and 40). However, CSVM returns a 

predicted MOS greater than 3 in 9 of the 12 mistakes, a 75% 

of the total, in samples 2, 4, 5, 6, 40, 44, 45, 46 and 58. This 

result is really bad for CSVM because in all of these cases, the 

classification model described in the next subsection would 

not detect a critical traffic. When MOS = 3, RNN predicts a 

MOS greater than 3 in 6 of the 11 samples (4, 9, 26, 31, 42 and 

43). CSVM predicts this in 14 of 21 (66.6%). Finally, when 

MOS = 4, the results obtained are quite similar for both 

models. With RNN 6 of the 16 samples (37.5%) were 

estimated with a MOS lower than 4 and with CSVM 3 of 13 

(23%). Only the sample 32 were estimated with a MOS lower 

than 3 with RNN, while SVM estimated none with a MOS 

lower than 3. 

In conclusion, the estimation level of both models are quite 

similar. However, RNN presents better results because the 

wrong estimated values are not as far from the right ones as 

the presented by CSVM. This supports the results obtained 

from the proximity measurement. This fact is really important 

for the traffic classification, as it is explained in the next 

subsection. 

 
FIGURE 2. Test results of the QoE estimation for CSVM and RNN models. 

C. CLASSIFICATION MODEL OF THE TYPE OF 
TRAFFIC 

The classification model presented in this paper is based on 

the proposal shown in [1]. This model classifies the type of 

traffic into critical or not critical. The traffic is considered 

critical when the MOS is less than or equal to 3. This 

consideration was taken due to the subjective QoE, by 

watching a set of videos and checking when the perception of 

the quality started to be low. Since the videos were labeled 

according to the objective QoE, it could be checked that this 

subjective value matched a MOS of 3 in the model presented 

in [1]. In order to evaluate the different learning models 

presented in last subsection, the following criteria are used: 

 TP (True-Positive): The model classifies the traffic as 

critical and it matches.  

 TN (True-Negative): The model classifies the traffic as non-

critical and it matches.  

 FP (False-Positive): The model classifies the traffic as 

critical but it does not match. 

 FN (False-Negative): The model classifies the traffic as 

non-critical, but it is critical 

After calculating the values of TP, TN, FP and FN, the 

precision, recall, accuracy, and F1 measurements of every 

model were obtained. Obtained results are depicted in Fig. 3.   

 
a) 

 
b) 

FIGURE 3. Training results for multimedia traffic classification obtained from 

the different classification a), and regression b) models according to the 

confusion matrix.   

In [1], CSVM y CKNN were the best methods with an 83% 

and a 73% of system accuracy respectively. In this work, these 

values have improved to a 93% and 83% respectively, as it can 

be seen in Fig. 3 a). It is also remarkable the result obtained 

from RNN with a 91% of accuracy (Fig. 3 b)). In both, [1] and 

this work, the recall score presents the lowest results of all the 

measurements, except the 97% obtained in the statistic method 
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in [1] and the 82% from the CNB (Fig. 3 a)). Nevertheless, in 

[1] the statistic model did not work properly because it tended 

to extract a single value that matched a low MOS and matched 

the test samples. Therefore, that result was excluded. In this 

study, the same error happened. CNB tends to classify the 

traffic as critical so that the 22% of the cases in which the 

traffic is actually critical it would classify it that way the 51% 

of the times. Thereby, and due to it low accuracy, the value of 

CNB is excluded. Then, the best value obtained is 86% from 

RNN. CNN also presents a good result of 80.6%. This 

measure is quite important for the system. Recall depends on 

FN, which means, the times the model classify the traffic as 

no critical when actually it is. Therefore, the number of 

learning samples should be increased to improve the test 

results in that way. This feature was already considered as 

future work in [1]. The fact that the result presented by CSVM, 

a 70%, is even lower than CKNN, with a 72%, is an important 

result. It can be expected, then, that CSVM will not be as 

efficient as RNN for the system. As regards accuracy, the best 

result obtained in [1] was 81% from CKNN. Although the 

result obtained from CKNN in this study is high (90%, the 

same result as RGP), it is lower than the ones presented by 

CSVM (92%) and RNN (95%). For the other models, the 

results are higher than 80% except for CNB (63%). The last 

analyzed score is F1, which indicates how good the models 

and the observations matches. The best result obtained is an 

88% from RNN, while the best one in [1] was the kernel based 

function.  

After the quantitative analysis of the different models, 

CSVM and RNN are the learning algorithms that presents the 

best results and they are the ones analyzed in the test. The 

result of the test is shown in Fig. 4, which shows that RNN 

presents a 5.6% of mistakes.  A 41% of these mistakes have 

been made when the model has predicted the traffic as critical 

when it is not and 59% the other way round.  Concretely, the 

model predicts that the traffic is critical and it is not in 7 

samples (76, 122, 137, 138, 139, 140 and 192) and ten times 

the other way round (44, 67, 162, 193, 196, 217, 273, 288, 289 

and 298). The classification errors increased for the CSVM 

model up to 11.3%. Unlike the other model, the majority of 

the errors in CSVM are produced when the algorithm 

classifies the traffic as no critical when it actually is. This 

happens in the 91.17% of times. This kind of error is more 

problematic due to the fact that the system would not handle 

several moments where the traffic transmitted is critical. Some 

of the samples of this case are: 17, 19, 22, 23, 97 and 225. On 

the other hand, the model has predicted only in 3 samples that 

the traffic is critical when it is not (137, 216 and 287).  

In conclusion, after the evaluation of all the results 

presented, and thought CNN and CSVM classify with similar 

results, the model selected to classify multimedia traffic is 

RNN. The principal factor is that, although RNN has less 

accuracy that CSVM, it suits better the multimedia traffic 

classification problem. In addition, the RNN performance 

based on Root Mean Square Error (RMSE), which shows how 

reliable the model is or how it suits the data, is the highest one 

with 22.88%. Thereby, the overlearning can be avoided.  

 

FIGURE 4. Test results of the multimedia traffic classification of CSVM and 

RNN models.  

D. NETWORK ARCHITECTURE OF THE TYPE OF 
TRAFFIC CLASSIFICATION MODEL 

After the study, analysis and evaluation of the different 

automatic and supervised learning models proposed for type 

of multimedia traffic classification, RNN has been chosen as 

the most adequate. The optimization process of this neural 

evolutionary network modeled by a Bayesian regulation for 

critical multimedia traffic prediction is described as follows:  

 

1. Gathering network data and video characteristics within 

different network environments and transmission 

characteristics to build the dataset.  

2. Optimizing the NN architecture to find the most adequate 

number of the neurons in the hidden layer.  

3. Peer data training application to optimize the NN 

architecture by using the Levenberg-Marquardt algorithm 

with the Bayesian regulation method until the network 

converges.  

4. Introducing the test data into the well-trained and 

generalized NN to validate the predictive performance.   

 

The design of the network architecture result of these steps is 

presented in Fig. 5. 
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FIGURE 5. General architecture of the neuronal network used in this work.  

Where J is the number of neurons in the input layer that 

corresponds to the set of features composed by network 

parameters and video characteristics. H is the number of 

neurons in the hidden layer and M the number of those in the 

output layer. This network is defined as:  

Given n par of arrays  

(𝒙⃑⃑ 𝒍, 𝒚𝒍) =  (𝒙𝒍𝟏, 𝒙𝒍𝟏, … , 𝒙𝒍𝒊; 𝒚𝒍), 𝒍 = 𝟏, 𝟐, … , 𝒏 (1) 

Where 𝒏 is the number of samples and 𝒊 the number of 

features of each sample. 𝒚𝒍  uses discrete values in the interval 

(1:1:5). In order to calculate the values of 𝒚𝒍 the following 

model has been used: 

𝒚̂𝒍 = 𝜱𝟎 (𝜶𝟎 + ∑ 𝝎𝒉𝟎
𝑯
𝒉=𝟏 𝜱𝒉(𝜶𝒉 + ∑ 𝝎𝒋𝒉

𝑱
𝒋=𝟏 𝒙𝒍𝒊)) (2) 

Where  𝚽𝒉 is the activation function of the hidden layer, 

𝝎𝒋𝒉 is the weight from the input layer to the hidden layer for 

the neurons between  𝒋 and 𝒉, 𝜶𝒉 is the bias value in  the 

hidden layer. 𝝎𝒉𝟎 and 𝜶𝟎 are the weights and bias from the 

hidden layer to the output layer and 𝚽𝟎 is the transfer function 

from the hidden layer to the output layer.  

The Bayesian regulation minimizes a lineal combination of 

squared errors and weights. Moreover, it modifies the lineal 

combination so that the network has good generalization 

qualities at the end of the training [18]. This regulation has 

been performed with the Levenberg-Marquardt algorithm. 

The different weights are calculated and adjusted within the 

learning process to minimize the error function 𝑬𝑫 as follows: 

𝑬𝑫 = ∑ (𝒚𝒋 − 𝒕𝒋)
𝟐𝑱

𝒋=𝟏 = ∑ 𝒆𝒋
𝟐𝑱

𝒋=𝟏             (3) 

Where 𝑱 is the number of inputs of the data set 𝑫, and 𝒕 is 

the label value. 

In order to optimize 𝑬𝑫, the optimum values of the weights 

and biases have to been determined. One of the algorithms that 

solve this problem is Levenberg-Marquardt. This algorithm is 

faster than the backpropagation algorithm. It has been 

designed to have a training speed close to second order 

algorithms. However, it has not to calculate the Hesse matrix 

directly, but it operates as it is explained next [19].  

Hessian matrix (H) can be calculated approximately as: 

𝑯 = 𝑱𝑻𝑱   (4) 

The gradient 𝒈 could be calculated as: 

𝒈 = 𝑱𝑻𝒆    (5) 

Where 𝑱 is the Jacobian matrix that contains the first 

derivations of the network errors with regard to the weights 

and biases and 𝒆 is an array of network errors. With 

backpropagation the Jacobian 𝑱𝑻 is calculated and every 

variable is adjusted according to the Levenberg-Marquardt 

algorithm [20]. The Levenberg-Marquardt algorithm uses the 

Hessian matrix approximation with the following Newton 

algorithm variation: 

𝝎𝒋+𝟏 = 𝝎𝒋 − (𝑱𝒋
𝑻𝑱𝒋 + 𝝁𝒋𝑰)

−𝟏
 𝑱𝒋

𝑻𝒆𝒋   (6) 

Where 𝒆 is the error array and 𝑰 is the identity matrix. The 

adaptive value of 𝝁 is being incremented until the performance 

of the network starts reducing. 

The training stops when one of this conditions is true: 

 The maximum number of repetitions is reached.  

 The maximum time limit is exceeded.  

 The performance is reduced up to the desired value. 

 The gradient of the performance becomes lower than the 

minimum gradient.  

 𝝁 surpasses the maximum 𝝁. 

The optimization of the network architecture takes often a 

long time. The Levenberg-Marquardt algorithm is faster than 

any variation of the backpropagation algorithm [21, 22]. 

Levenberg-Marquardt is used to minimize the addition of the 

squared error and to overtake some of the limitations of the 

standard backpropagation algorithm like the overfitting 

problem [23]. Another different problem may happen if too 

few nodes are added to the hidden layer. If this happens the 

network will have problems in the learning process and the 

predicted results will be poor. In order to solve this problem, 

the BRNN algorithm incorporates the Bayes theorem in the 

regulation scheme. BRNN is, basically, a backpropagation 

network which combines the conventional addition of the 

minimal square error function with an additional term called 

“regulation”. Therefore, from the equation (3) the next 

equation is obtained:  

𝑺(𝝎) = 𝜷𝑬𝑫 + 𝜶𝑬𝑾; 𝑬𝑾 = ∑ 𝝎𝒋
𝟐𝒎

𝒋=𝟏             (7) 
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Where 𝜷 y 𝜶 are the regulation parameters and 𝑬𝑾 is the 

penalty term, which penalizes big values for the weights, being 

𝒎 the number of weights of the system. In this context, the 

weights of the network are considered to be random variables. 

Then statistical techniques can be applied to calculate 

distribution parameters such as, for instance, variations. 

According to the Bayes’ law, the distribution of probability 

can be written as [24]: 

𝑷(𝝎|𝜶, 𝜷, 𝑫) =
𝑷(𝑫|𝝎,𝜷)𝑷(𝝎|𝜶)

𝑷(𝑫|𝜶,𝜷)
   (8) 

Where 𝑷(𝝎|𝜶) is the prior probability of the weights, 

which represents how reliable the weights are before gathering 

the data; 𝑷(𝑫|𝝎, 𝜷) is the likelihood function, which 

represents the error probability; and 𝑷(𝑫|𝜶, 𝜷) is the 

normalization factor, named evidence in this model [25]. 

The optimal weights for the model can be obtained in the 

training phase by maximizing the posterior probability.  It has 

the same results as minimizing the regulated objective 

function (7) [26]. If the weight and the distribution of the 

probability of the data are Gaussian, the prior probability of 

the weights can be written as follows [27]: 

𝑷(𝝎|𝜶) =
𝟏

𝒁𝑾(𝜶)
𝒆𝒙𝒑(−𝜶𝑬𝑾)    (9) 

Likewise, the error probability can be expressed as: 

𝑷(𝑫|𝝎, 𝜷) =
𝟏

𝒁𝑫(𝜷)
𝒆𝒙𝒑(−𝜷𝑬𝑫)    (10) 

Finally, the distribution of posterior probability can be 

calculated as: 

𝑷(𝝎|𝜶, 𝜷, 𝑫) =
𝟏

𝒁𝑺(𝜶,𝜷)
𝒆𝒙𝒑(−𝑺(𝝎))   (11) 

By using the Bayes’ law, the optimal values of the 𝜶 and 𝜷 

regulation parameters can be inferred from the data. 

𝑷(𝜶, 𝜷|𝑫) =
𝑷(𝑫|𝜶,𝜷)𝑷(𝜶,𝜷)

𝑷(𝑫)
   (12) 

Where 𝑷(𝜶, 𝜷) is the prior probability for the 𝜶 and 𝜷 

regulation parameters, 𝑷(𝑫|𝜶, 𝜷)is the likelihood term, called 

the evidence for 𝜶 and 𝜷 [25]. Thereby, the minimization of 

𝑺(𝝎) has the same results as the maximization of 

𝑷(𝝎|𝜶, 𝜷, 𝑫), which depends on the 𝜶 and 𝜷 parameters. The 

optimal values of 𝜶 and 𝜷 are obtained from the next equation 

[27]: 

𝜶 =
𝜸

𝟐𝑬𝑾
    (13) 

𝜷 =
(𝒏−𝜸)

𝟐𝑬𝑫
   (14) 

𝜸 is obtained from the next equation: 

𝜸 = ∑ 𝒎𝒎
𝒋=𝟏 − 𝜶. 𝒕𝒓𝒂𝒄𝒆−𝟏(𝑯)             (15) 

Where 𝜸 is the number of effective parameters, i.e. how 

some of the NN parameters are effectively used to reduce the 

error function, 𝒎 is the number of parameters and 𝑯 is the 

Hessian matrix of the objective function 𝑺(𝝎). 

In the Bayesian context, the iterative process to find the 

optimization of the weights (𝑺(𝝎)) and the optimal values of 

𝜶 and 𝜷 in (15) (𝜸) has to be, according to [26]: 

1. Initialize the weights and the values of 𝜶 and 𝜷. 

2. Move a step forward in the LM algorithm to find the 

weights that minimize the objective function 𝑺(𝝎) (7). 

3. Calculate the effective number of parameters 𝜸 and new 

values for 𝜶 and 𝜷. 

4. Repeat steps number 2 and 3 until it converges. 

With this parameters, the number of neurons in the hidden 

layer and the number of hidden layers, the model has been 

adjusted and the multimedia traffic classification results have 

been improved, as Table I shows. All the scores have been 

improved by adjusting the model, except for accuracy. The 

recall of the model has been improved up to near a 4%. This 

is an important fact for the problem of this work. 

TABLE I 

OPTIMIZATION OF THE RNN CLASSIFICATION MODEL 

 PRECISION RECALL ACCURACY F1 PROXIMITY 

RNN 91,289 86,645 95,038 88,907 97,847 

RNNα,β,HN 94.032 90.067 91.511 90.465 97.117 

 

In conclusion, the BRNNs are more robust than the 

standard networks with backpropagation, and the can reduce 

or even eliminate the necessity of an extended cross-

validation. The Bayesian regulation is a mathematic process 

that converts a non-linear regression into a statistical problem. 

The advantage of BRNN networks is that they provide 

solution to a series of problems such as: the model choice, the 

robustness of the model, the choice of the validation set, the 

size of the validation effort and the optimization of the 

network architecture.  Moreover, it is hard to overtraining 

them, because the evidence procedures presents an objective 

Bayesian criteria to stop the training. It is hard to overfitting 

them too, because RNN calculates and trains in with a set of 

effective parameters or weights in the network, disabling those 

that are not relevant.  

IV. CLASSIFICATION AND MODELLING OF 

NETWORK AND VIDEO FOR QOE REGULATION  

Once the type of traffic classification model, which indicates 

when the traffic is critical, has been defined, some subpatterns 

that represents different network conditions and video 

characteristics are needed.  In order to do that, the samples are 

classified according to the MOS, which is defined by the class 

label. Then, each subgroup is divided into clusters that are 

represented by a centroid or subpattern.  
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A. EXTRACTION OF THE NETWORK AND VIDEO 
SUBPATTERNS  

The multimedia traffic subpatterns help to recognize network 

conditions and possible solutions for critical traffic situations 

by the variation of the characteristics of the video sent.  The 

first step to extract these multimedia traffic subpatterns was to 

study the correlation between the video characteristics during 

the transmission and the video quality perceived for the end 

user. This is analyzed from the results presented in Fig. 6. It 

shows several network and video characteristics and their 

relationship with MOS. They are: frame rate, minimum frame 

rate, width, height, bitrate and stream size and bandwidth. 

Their values have been obtained from the dataset used in this 

work. Each value corresponds to the mean and the standard 

deviation of every characteristic with the same MOS value 

defined by the class label. As Fig. 6 shows, there is some 

connection between the characteristics of the video sent and 

the MOS. In Fig. 6 a) this relation can be observed with regard 

to the minimum frame rate. It can be observed that, with the 

current dataset, the bigger the MOS, the bigger the minimum 

frame rate.  However, this trend does not occur with the frame 

rate, which increases with MOS until a MOS = 3 but then there 

are no more considerable variations. This is also presented in 

[1] where MOS has a high correlation with the minimum 

frame rate (0.4732), unlike with the frame rate (0.1528). The 

correlation value of Pearson exists in the interval [-1, 1]. A 

value close to 0 indicates a low correlation but a value close to 

1 or -1 indicates a high correlation. Fig. 6 b) depicts a similar 

relation but declining, the biggest the MOS, the lowest the 

video resolution. This trend is clear and, as it is shown in [1], 

it coincides with a high correlation between those values 

(Height = -0.2902 and Width = -0.3108). As regards bitrate 

and stream size, this tendency is not as clear, although it is 

considerable (Fig. 6 c)). This fact demonstrates the correlation 

between both measurements and it will help to the 

development of the management system. The last 

measurement, the bandwidth, Fig. 6 d), represents a network 

parameter with a really low correlation of 0.1552. Therefore, 

this parameter will not be considered by the system as a 

decisive measurement for improving the critical status of the 

network. 

 

a) 

 
b) 

 
c) 

d) 

 

FIGURE 6. Mean and standard deviation of several characteristics with regard to MOS, like a) frame rate and minimum frame rate, b) width and height, c) bitrate 

and stream size and d) bandwidth.  
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After discussing the existent correlation between video and 

network characteristics with regard MOS, a system for 

extracting subpatterns will be developed. The main idea is to 

create clusters which can make relations between both, 

different network conditions and video characteristics, and the 

quality perceived by the end user. Therefore, for each MOS 

value, a set of subpatters that represent that value will be 

obtained. The number of subpatterns or clusters for each MOS 

value is unknown. In order to extract them, validation 

techniques will be used to select the adequate number.   

The algorithm used to carry out the clustering has been K-

means. The metric distance used for the calculation of the 

centroids is the Euclidean distance. The whole dataset 𝑋  has 

been divided into subset 𝑋𝑀 ∈ 𝑋, where 𝑀 = {1, 2, 3, 4, 5}. 
This defines subset with regard the MOS values. Then, given 

an array of measurements 𝑥𝑚 = {𝑥𝑚1
, 𝑥𝑚2

, … , 𝑥𝑚𝑛
} ∈ 𝑋𝑀, 

the k sets are calculated using the K-means algorithm, 

minimizing the sum of squares for each set of centroids 𝐶𝑀 =
{𝐶𝑀1, 𝐶𝑀2, … , 𝐶𝑀𝑘}, so that:  

𝒂𝒓𝒈𝒎𝒊𝒏
𝑪𝑴

∑ ∑ ‖𝒙𝒋 − 𝝁𝒊‖𝒙𝒎𝝐𝑪𝑴𝒊

𝟐𝒌
𝒊=𝟏      (16) 

Where 𝜇𝑖 is the mean of points in 𝐶𝑀𝑖 and 𝑛 = 14, being 𝑛 

the number of characteristics per sample. The result is 

𝐶𝑀𝑘centroids for 𝑋𝑀 data sets.   

Once the algorithm used for the clustering has been defined, 

the optimal number of clusters will be calculated. The 

validation method used to define the number of clusters is 

Silhouette. The statistic of Silhoutte works with distances. 

This method traces the silhouettes using the function of 

distance between points specified in the distance metric, which 

in this case is the Euclidian distance. In Fig. 7, the results 

obtained for the subsets defined for MOS = 4 and MOS = 5 

after applying the Silhoutte method are depicted. The optimal 

number of clusters is 4 for the subset of data defined by MOS 

= 4 and 5 for the one defined by MOS = 5. To begin with, 

negative values represent errors in the selection of a cluster. 

However, there are no negative values in Fig. 7. That means 

there are no values assigned to a cluster where they actually 

do not belong. Another relevant fact, which determines the 

validation of the clustering, is that the values obtained must be 

higher than 0.8. In both graphs, the majority of values are 

higher than 0.8. That means that most of the area under the 

value of maximum probability equal to 1 is covered. Once 

defined the number of clusters and once the centroids have 

been extracted, the working of the system is defined in the next 

subsection. 

B. SUBPATTERN-BASED QoE REGULATION MODEL  

Once the subpatterns are defined, the system has to be able to, 

given a set of network parameters, obtain video characteristics, 

or vice versa, to solve the situations where the traffic is critical. 

In order to achieve this, the next process is performed. 

 

a) 

 
b) 

FIGURE 7. Subpatterrns for a) MOS = 4 and b) MOS = 5. 

Firstly, the minimum Euclidean distance between the 

network parameters of the input and every subpatterns or 

centroids is calculated. The network Euclidean distance 

between the input sample 𝒙 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏} and the 

centroid 𝒄 = {𝒄𝟏, 𝒄𝟐, … , 𝒄𝒏} is: 

𝒅((𝒙𝟏, 𝒙𝟐, … , 𝒙𝒓), (𝒄𝟏, 𝒄𝟐, … , 𝒄𝒓))
= 𝒅((𝒄𝟏, 𝒄𝟐, … , 𝒄𝒓), (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒓)) 

 
= √(𝒄𝟏 − 𝒙𝟏)

𝟐 + (𝒄𝟐 − 𝒙𝟐)
𝟐 + ⋯+ (𝒄𝒓 − 𝒙𝒓)

𝟐 = 

= √∑ (𝒄𝒊 − 𝒙𝒊)
𝟐𝒓

𝒊=𝟏                  (17) 

Where 𝒓 is the number of network parameters for each 

sample and whose value is 5. The set of centroids that define 

a non-critical traffic, i.e. with MOS = 5 and MOS = 4, is 

defined as: 

 

𝑪 = {(𝒄𝒕,𝟏, 𝒄𝒕,𝟐, … , 𝒄𝒕,𝒏) |𝑪 =  𝑪𝟒⋃𝑪𝟓  ∧   𝒕 = 𝐾4 + 𝐾5 ,   
where 𝐾𝑀  is the total number of centroids of 𝐶𝑀}.  
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Therefore, the minimum network distance to each 

subpattern is defined as: 

𝒂𝒓𝒈𝒎𝒊𝒏
𝒄𝒋,𝒊

(√∑ (𝒄𝒋,𝒊 − 𝒙𝒊)
𝟐𝒓

𝒊=𝟏 ) , 𝒋 𝝐 [𝟏, 𝒕]       (18) 

Equation (18) returns the subpattern or centroid 𝒋 whose 

network conditions are similar to the input sample.  From this 

result, the video characteristics of that subpattern are 

extracted. Then, the video characteristics will change until the 

critical network situation will be solved. The Pearson’s lineal 

correlation coefficient between the objective QoE and each 

characteristic determines the probability that the system 

chooses one characteristic or other. The higher the probability 

of a characteristic is, the higher priority of changing that 

characteristic has. The probability function of 𝒄𝒋,𝒊 is defined 

as:  

𝒇(𝒄𝒋,𝒊) = 𝒇(𝒙𝒊)  =  
∑ (𝒙𝒔,𝒊−𝒙̅)(𝒚𝒔−𝒚̅)𝒘

𝒔=𝟏

√∑ (𝒙𝒔,𝒊−𝒙̅)
𝟐𝒘

𝒔=𝟏 √∑ (𝒚𝒔−𝒚̅)𝟐𝒘
𝒔=𝟏

        (19) 

Where 𝑾 is the total number of samples of the dataset 𝑿, 

𝒀 is the set of class label for each sample and 𝒊 the 

characteristic index.  

The probability of selecting the characteristic 𝒊 of the 

centroid  𝒋 from the centroids set 𝑪 is defined by 𝑷(𝒄𝒋,𝒊). The 

order of the index depends on the maximum probability value 

that maximizes the value of the function that is defined as:  

𝒊 = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒊∈𝑰

𝒇(𝒙𝒊 , 𝒊)      (20) 

Where 𝐼 = 𝑖5,𝑖6, … 𝑖14 is the set of indices to be estimated 

and which correspond to the video characteristic indices. If the 

estimated index did not solve the network critical state 

problem, the next index with the maximum probability would 

be searched. 

V. ROBUST MULTIMEDIA TRAFFIC 

MANAGEMENT SYSTEM 

After configuring the multimedia traffic classification model 

and the QoE regulation model, a robust multimedia traffic 

management has been developed. The system analyzes and 

classifies the multimedia traffic, detects if it is critical and, if 

so, finds the video parameter that, by being changed, can solve 

the problem. The system is considered as robust because it 

learns from the cases that are not solved by applying the 

method discussed in section IV B, creating new subpatterns. If 

the problem is not solve, the network conditions and the video 

characteristics are saved to feedback the system. In this 

section, the architecture of the network is presented and the 

interaction between the modules defined is discussed. Then, 

the algorithm and its implementation are detailed. Finally, the 

test bench is discussed. 

A. NETWORK ARCHITECTURE  

The classification model, as a system, can be applied in every 

kind of network because the performance of the system does 

not depend on the kind of network, but only on the network 

parameters (jitter, delay, packet loss and bandwidth) 

monitored on the nodes.” However, in this paper, we use SDN 

as a tool to provide the system with data. Consequently, we 

extract statistics directly from the network nodes. Despite the 

independency of the system towards the network architecture, 

our proposed network presents the architecture displayed on 

Fig. 8, as an example. The blue lines are the corresponding 

ones to the datapath, which is used to communicate the data 

through the network nodes. However, the connections painted 

in green belong to the SDN Control to Data-Plane Interface 

(CDPI), which physically implements the interaction between 

network nodes and the SDN controller. The final nodes are IoT 

nodes, which are the producers of video traffic. However, the 

core of the network, starting from the gateway, are nodes of a 

SDN network. Therefore, there is a SDN controller which 

manages the network. SDN controller receives the statistics 

gathered by the network nodes. These statistics are network 

parameters: delay, jitter, loss rate and bandwidth. From these 

parameters, the management system determines if a great QoE 

degradation can happen. OpenFlow protocol is used to 

implement the communication between the nodes and the 

SDN controller. Furthermore, these statistics are needed by the 

system to perform several tasks. For instance, classifying the 

critical traffic is one of the task that needs the data from the 

network in real time. Since this interaction between the SDN 

controller and the system must be implemented through the 

northbound API, we define the global logical architecture of 

the network as is depicted in Fig. 9. It depicts how the 

communication between modules is implemented. Firstly, the 

communication between the SDN controller and the network 

nodes is performed through the southbound API. The 

northbound API is the channel between the SDN controller 

and the AI module. In this interaction, not only the network 

statistics and data are sent to the AI module. The AI module 

sends back the necessary actions to be performed in the 

network to ensure the QoS. The video streaming application 

receives orders from the SDN controller. This allows the SDN 

controller to execute the orders of the AI module. Depending 

on the results of the system, the SDN controller will change 

the video characteristics. This is performed by using the 

interface of the video streaming application. The software 

features are presented in the test bench subsection. 
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FIGURE 8. Network architecture example 

 

FIGURE 9. SDN Architecture 

B. SIMPLE MANAGEMENT ALGORITHM 

Fig. 10 shows the algorithm that describes in detail how the 

management system works. Every 2s, which corresponds to a 

GOP, the system gets as input the QoS and video parameters. 

According to those parameters, the classifying model 

estimates if the traffic is critical or if it is not.  If it is not critical, 

the previous process will be repeated. However, if the traffic 

is critical, the process to solve this critical situation will start. 

Every traffic subpatterns that can recover a MOS higher than 

3 to exit from the critical situation are analyzed. Those 

subpatterns are obtained from the clustering, explained in 

section IV, applied to the multimedia traffic patterns.  

When the subpatterns have been obtained, the system 

calculates which parameters of the transmitted video can be 

modified to improve the QoE. The system uses as input 

parameters the QoS parameters and the different traffic 

subpatterns extracted from the clustering. Then, the shortest 

distance to every subpattern according to the network 

parameters is calculated. Thereby, the system looks for the 

subpattern, or centroid, that represents the closest or most 

similar network conditions to the current ones. Once the 

subpattern has been obtained, the video characteristics of that 

subpattern are used as the new video transmission parameters. 

The selection of the video characteristic is performed 

regarding to the model explained in section IV. Specifically 

we will use (20). If the critical traffic situation is not solved, 

the next characteristic, according to the model, is chosen. If 

applying this process the traffic critical situation is not solved, 

then we would apply the robust method of management. In 

this way, instead of changing only one different characteristic, 

each of them will be added or combined to the transmitted 

video. If  this procedure does not work, we would keep this 

sample in order to improve the system with new intelligent 

methods that we will study in future works. This process is 

repeated until the problem is solved or there are no more 

characteristics to choose. As the subpatterns are defined by 

both, network parameters and video characteristics, any of 

them could be the input parameter or the parameter to be 

adjusted. This feature of the system will be discussed further 

in future works.  

 

FIGURE 10. Management system algorithm.  

C. ROBUST MANAGEMENT SYSTEM 
IMPLEMENTATION 

In this subsection, the implementation of the robust 

management system is described. Algorithm 1 details the 

process. For each input cycle (GOP of 2s), the program reads 

the average network and video parameters and an array of 

indices is initialized. A loop starts until the array is not empty. 

In this loop, the system checks the multimedia traffic using the 

BRNN, trained and validated in the learning process. If the 

traffic is not critical, the array is cleared and the program 

restarts. Nevertheless, if the traffic is critical, firstly, the index 

of the subpattern with the lowest Euclidean distance, by using 

equation (18), between the network parameters of the 

subpatterns matrix (SUBPATTERNS) and the network 

parameters of the input sample (X). Then, the new video 

characteristics (NEWVIDEOparam) are obtained from the 

subpatterns matrix of that index. After that, the index of the 

characteristic with the highest correlation from 

NEWVIDEOparam    is calculated, by using equation (20), and, 

then, it is removed from the array of indices. Finally, this 

characteristic is changed in the video that is being transmitted. 

If, after changing the characteristic, the traffic becomes non-

critical, the program will leave the while loop, clearing the 

array of indices I and it will restart. If the critical situation is 

not solved, the next characteristic with the highest correlation 
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will be selected. This is repeated until the program finds a 

characteristic that solves the critical situation or until the array 

of indices gets empty. If the problem is not solved, a robust 

solution is taken. This solution consists of combining different 

characteristics attending to equation (20) until a solution is 

found. This process is performed if there has not been any 

other similar case performed with this robust method. The 

robust solution is determined by the Euclidean distance, using 

equation (18). If there is no other similar case and the system 

finds a solution, it calculates the distance to the centroids of 

the clusters and a new subpattern, along with its solution, it is 

saved (ROBSUBPATTERNS). If the system do not find a 

solution, the case is saved as a sample to study to improve the 

system (UNKNOWN). The intelligent system to improve it 

with this feedback is not studied in this work, but can be 

discussed in future works. In this last scenario, the program 

saves the sample so that the network can learn from it 

(UNKNOWN).  

 

Algorithm 1 

     1: X1 = QoSparam 

     2: X2 = VIDEOparam 

     3: I   = ALL_INDEX 

     4: indexsubpat = min_dist(SUBPATTERNS(4:5), X1) 

     5: NEWVIDEOparam = SUBPATTERNS(indexsubpa , 6:14) 

     6: while size(I) not NULL  && SOLVED = false 

     7:     TRAFFIC = net(X1 , X2) 

     8:     if  TRAFFIC = CRITIC 

     7:         if  NOT ROBUSTMETHOD 

     9:             indexcarac = maxcorr(NEWVIDEOparam, I) 

     10:             X2(indexcarac) = NEWVIDEOparam(indexcarac) 

     11:         else  

     12:             ROB_INDEXScarac = robust_maxcorr (NEWVIDEOparam, I) 

     13:             X2(ROB_INDEXScarac) = NEWVIDEOparam(ROB_INDEXScarac) 

     14:         end if 

     15:          I = delatecarac(I, indexcarac) 

     16:          if size(I) is NULL 

     17:              TRAFFIC = net(X1 , X2) 

     18:              if  TRAFFIC not CRITIC 

     19:                  Go to 6  

     20:              end if 

     21:          end if 

     21:     end if 

     22:     else 

     23:        SOLVED = true 

     24:         if  ROBMETHOD 

     25:             ROBSUBPATTERNS(f++) = NEW ROBSUBPATTERN 

     26:         end if 

     27:     end if 

     28: end while 

 29: if SOLVED = false     

     30:    if  NOT ROBMETHOD 

     31:      indexsubpat_robust = min_dist(ROBSUBPATTERNS(:,1:5), X1) 

     32:      if indexsubpat_robust  =  NULL  

     33:         ROBMETHOD = true;  I = ALL_INDEX;  

34:         X2 =       VIDEOparam 

     35:         Go to 6 

     36:     else  

     37:         NEWVIDEOparam = ROBSUBPATTERNS (indexsubpa , 6:14) 

     38:         X2 = NEWVIDEOparam 

     39:     end if 

     40: else if SOLVED = false   && ROBMETHOD 

     41:     UNKNOWN(fk++) = [X1 X2] 

     42: end if 

D. TEST BENCH 

In this subsection, both the hardware and the software used are 

specified. In Fig. 11, the hardware of the SDN nodes is shown.  

Regarding the software, the SDN controller has been 

created from scratch (programming by ourselves, not using 

one of the available SDN controllers like OpenDaylight) so 

that we could perform customized researches such as [28]. 

This allows a better control over the operation and guarantees 

the inter-operability between the software modules described 

by the network architecture. As video server software, VLC 

has been chosen due to its capability to modify the video 

streaming dynamically. Therefore, the SDN controller can 

modify the video characteristics. The version used is VLC 

3.0.7.1 for both, the video server and the client computers.   

 
FIGURE 11. Hardware used in the test bench. 

In the next subsection, the results of the test are discussed.  

E. WORKING TEST 

The last study performed in this work is a working test of the 

developed system. The test samples are provided to the system 

and the system check for each sample if the traffic is critical 

or it is not. If the traffic is critical, the system tries to solve this 

situation by changing the video parameters as it has been 

described in this section. Two different experiments have been 

performed, in the first one all the centroids or subpatterns are 

used and in the other one some of them were removed to 

analyze the consequences. In order to improve the robustness 

of the system, the network and video parameters are saved to 

feedback the system, only if the problem has not been solved.  

1) FIRST TEST 

In the first experiment, the performance of the system when 

all the multimedia subpatterns are used is evaluated. If the 

system detects a multimedia traffic critical situation, the 

network status at that moment will be the input parameters. 

Then, with those parameters, the system will search for the 
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subpattern that matches the conditions given. The Euclidean 

distance is the method which is used to make this comparison. 

The lowest distance determines the subpattern to be selected. 

Once the subpattern has been selected, the video 

characteristics will be modified to solve the critical situation 

of the network. In this first experiment, every video 

characteristics were checked to observe if the critical situation 

changed. Fig. 12 a) shows the results of the test. If the system 

is allowed to select any centroid, it has a 100% success rate.  

As it is shown in the figure, the characteristics that more 

critical traffic situations solve are: Frame count and height, 

with about 60%. Then, with about a 50% stream size, width 

and min. frame rate. The characteristic with the worst results 

to solve critical traffic situations is the frame rate, with only a 

15% of all the cases. 

A statistical study has been performed from the obtained 

results. The data presented in Fig. 12 shows that the system 

uses bitrate as characteristic to be changed when the delay is 

high (over 0.03s), frame rate and stream size with delays 

values over 0.0073s and frame count, proportion stream, 

footer size, width and minimum frame rate when the delay is 

low (0.003-0.0012s). The results as regards jitter are similar. 

However, the differences between low and very low jitter 

values are not as big as with regard to delay. These values are 

0.004s for a low jitter and 0.002s for a very low jitter.   

The loss rate can be divided into three categories: high loss 

rate (4%), medium loss rate (0.5%-0.2%) and low loss rate 

(0.08%). In order to solve a critical situation with a high loss 

rate, the characteristics used are the stream size, the bitrate and 

the frame rate. These characteristics are related to the video 

bandwidth consumption. In scenarios with network conditions 

with loss rate of 0.2%-0.5%, the video characteristics changed 

are: frame count, footer size and height. Finally, when the loss 

rate is lower than 0.008% these parameters are: proportion 

stream, width and min. frame rate. 

 
a) 

 
b) 

FIGURE 12. Video characteristic selection performed by the system according 

to the NN model (based on QoE estimation) to solve the critical situation with 

all the subpatterns a). In b) the results of the statistical study relationship jitter 

and delay with every video characteristic selection. 

2) SECOND TEST 

Like in the last scenario, a statistical study has been performed 

from the obtained results. Nevertheless, if the system can only 

select a specific number of centroids and the others are 

discarded, the problem is not always solved.  This happened 

in two cases. In order to solve those two cases, the robust 

method of modifying two different characteristics together, 

depending on the subpattern, was used in this study. Fig. 13 a) 

shows the test result for every video characteristic checked to 

observe if the critical situation changed. As the figure shows, 

and unlike the last case (12 a)), the characteristic that solves 

more critical traffic situations is the footer size with about 55% 

of cases. The next characteristic is the minimum frame rate, 

with about a 50%. Stream size, bitrate and height are able to 

solve about a 40% of critical traffic situations. The 

characteristic with the worst results, and like in the last case 

(12 a)), is the frame rate with less than the 15% of the cases. It 

can be observed that the frame count in the last case and the 

footer size in this one, solve an important quantity of cases, 

despite being characteristics with low correlation. This will be 

an interesting aspect to be addressed in future works regarding 

the improvement of the characteristics selection by using the 

management system. As it is depicted in Fig. 13 b), when there 

is a high delay, the parameters changed are the bitrate and the 

frame rate of the video. When there is a low delay, the other 

parameters are used. The delay is considered high when it is 

higher than 0.03s and low when it is lower than 0.007s. When 

the delay is around 0.07s, the parameter changed is the stream 

size. The frame count, footer size and height are variated when 

the delay is over 0.002s. Finally, when the delay is 0.0012s, 

the parameters used are proportion stream, width and 

minimum frame rate. The behavior regarding jitter is similar, 

although, for the stream size parameter, the value is decreased 

to 0.004s from the 0.007s with regard to delay. The loss rates 
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can be classified into high loss rate (4%), significant loss rate 

(1%) and low loss rate (0.2%-0.8%). In order to solve a critical 

situation with loss rates greater than 4%, the parameters 

changed are bitrate and frame rate. The stream size is used 

with losses of 1% and the other parameters for losses of 0.08-

0.2%. 

 
a) 

 
b) 

FIGURE 13. Video characteristic selection performed by the system according 

to the original model (subjective QoE) to solve the critical situation without all 

the subpatterns a). In b) the results of the statistical study relationship jitter and 

delay with every video characteristic selection. 

VI. CONCLUSION AND FUTURE WORK  

In this work we have developed a multimedia traffic 

management system to classify the type of traffic and, in case 

of critical situation, this tool is able to reverse the situation by 

changing the parameters of the video that is being transmitted. 

For the development of this system, first we have analyzed 

different classification and regression models for the QoE 

estimation. The models that better fit the proposed estimation 

problem are the classification CSVM and the regression RNN. 

We have performed a test to analyze them in more detail and 

we have concluded that, although both of them have very 

similar precision values, RNN adjusts better to the problem. 

The expected result is very close to the one we get with this 

method. In the following study we have analyzed and 

evaluated the same models from the previous study case to 

check how well they fit the problem of multimedia traffic 

classification. Again, CSVM and RNN were the models 

providing the best results. RGP, CDT and CKNN are also 

good models. They provided fair results in both studies but not 

so good as CSVM and RNN.  Based on the results obtained, 

we decided that the model based on RNN fits the problem 

better. Next step was to define the model and the architecture 

based on BRNN. We also made some adjustments in order to 

get better statistical classification results, improving the results 

in the measure of Recall by 4%. Thus, after a deep study and 

development of a QoE estimation system, we have been able 

to improve the results of multimedia traffic classification 

obtained in the study presented in [1]. 

The system consists of a traffic classification module and a 

module to reverse critical situations of the network. Once 

detected a critical state of the network, this module looks for 

network conditions that are similar to different conditions 

classified in subpatterns. When the subpattern is found, it will 

give us a series of video features that will be applied to the 

video that is being transmitted, in order to reverse the critical 

traffic situation. The selection of these characteristics is based 

on the maximum correlation with respect to the objective QoE. 

Once we have selected the multimedia traffic classification 

model and the QoE regulation model based on subpatterns, we 

implement the management system. The system works in the 

following way: first it captures samples every 2s (based on 

GOPs), then it establishes if it corresponds to a network critical 

situation. If critical situation occurs, then the system checks 

which subpattern has more similar network conditions. This 

subpattern will give us the characteristics that we should apply 

to the video that is being transmitted until the critical situation 

of the network reverts, as explained in Section IV. A system 

implementation, from the network architecture, using the SDN 

technology, to the algorithm has been proposed in Section V. 

After the tests we made with the system, we have verified that 

minimum frame rate, resolution and stream size are highly 

efficient when the system is reverting a critical situation. We 

also have verified that with all subpatterns, all critical network 

situations have been solved. If we eliminate subpatterns, this 

fact would not occur. 

In future works we will improve the proposed system. The 

selection of the characteristics will be made by machine 

learning and statistical methods of conditional probability. In 

this way, we will try to obtain the value of maximum 

probability given by the conditional probability of a given 

subpattern, and obtain the probability that a specific 

characteristic is selected as a solution to the problem. We have 

been considered the idea of interacting with the end user to 

improve the robustness of the system, using their feedback. 

Thereby, the model could learn continuously from new cases 

and improve the estimation results. We will also consider that, 

instead of waiting for the first warning of critical network 

situation to activate the system, we will analyze when this 
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activation could be more effective. In addition, we will 

analyze how the system works in different environments such 

as IoT, smart cities, and 5G and how the system can learn in 

these different scenarios. Another task for future work is to 

implement the system in SDN nodes to create a routing 

algorithm [29] and analyze how it works in a real environment. 

Finally, we would like to optimize the system, improve the 

execution time, to be used in real networks, and using resource 

allocation systems [30]. And we also plan to make the system 

reversible, that is, since the subpatterns are defined based on 

network parameters and video characteristics, it will allow us 

to enter the video features as input, and as output, return those 

network parameters that could revert critical network 

situations. 
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