
Contra-*: Mechanisms for Countering Spam Attacks on Blockchain’s Memory Pools

Muhammad Saad, Joongheon Kim, DaeHun Nyang, David Mohaisen∗

Abstract

Blockchain-based cryptocurrencies, such as Bitcoin, have seen on the rise in their popularity and value, making them a
target to several forms of Denial-of-Service (DoS) attacks, and calling for a better understanding of their attack surface
from both security and distributed systems standpoints. In this paper, and in the pursuit of understanding the attack
surface of blockchains, we explore a new form of attack that can be carried out on the memory pools (mempools), and
mainly targets blockchain-based cryptocurrencies. We study this attack on Bitcoin’s mempool and explore the attack’s
effects on transactions fee paid by benign users. To counter this attack, this paper further proposes Contra-*, a set
of countermeasures utilizing fee, age, and size (thus, Contra-F, Contra-A, and Contra-S) as prioritization mechanisms.
Contra-* optimize the mempool size and help in countering the effects of DoS attacks due to spam transactions. We
evaluate Contra-* by simulations and analyze their effectiveness under various attack conditions.
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1. Introduction

Blockchain technology promises to redefine trust in dis-
tributed systems by serving as a tamper-proof and trans-
parent public ledger that is easily verifiable and difficult to
corrupt [2]. Blockchains use an append-only model backed
by Proof-of-Work (PoW), augmenting trust in decentral-
ized Peer-to-Peer (P2P) settings. Due to such features,
blockchains are used in cryptocurrencies, smart contracts,
and Internet of Things (IoT) [3, 4]. The most widespread
use of blockchains can be found in crytocurrencies, e.g.,
Bitcoin, Ethereum, Zcash, Litecoin, Altoins, etc. [5].

Although blockchains are publicly verifiable and tamper-
proof, they are vulnerable to attacks [6, 7]. Moreover, since
blockchains are most widely used in digital currencies, at-
tackers have a high incentive to exploit them. In the last
few years, attacks on cryptocurrencies have increased in-
cluding including multiple 51% (majority) attacks, selfish
mining, double-spending, block withholding, block forks
and distributed denial-of-service (DDoS) attacks [8, 9].

In Bitcoin, DDoS attacks are launched against min-
ers, users, and currency exchanges [10]. In P2P systems,
DDoS attacks may take various forms. For example, users
or miners can be re-routed towards a counterfeit network,
denying them access to the real network [11, 12]. Aposto-
laki et al. [13] estimate that an attacker can isolate more
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than 50% of the network’s hashing power by hijacking a
few (<100) BGP prefixes. Moreover, attackers may exploit
the block-size limit and network throughput to prevent
benign users from getting their transactions verified. In
Bitcoin, the average block size is limited to 1 MB and the
average time of block mining is 10 minutes. On average,
the transaction size varies from 200 Bytes to 1K Bytes.2

Under these constraints, Bitcoin can only verify three to
seven transactions per second [15], in contrast to main-
stream payment processors such as Visa Credit which can
verify up to 2000 transactions per second. Low transac-
tion throughput creates a competitive environment where
only selected transactions get accepted into a block. It
also makes Bitcoin vulnerable to flood attacks [16], where
malicious users exploit the block size limit in Bitcoin (≈1
MB)3 to overwhelm the blockchain with low-valued spam
transactions. This further causes delay in verification of
benign transactions. To prevent such attacks that exploit
block size limit, miners in Bitcoin apply priority checks
on the incoming transactions. The priority is given to the
transactions that offer higher mining fee. Once high pri-
ority transactions are verified and mined into a block, the
low priority transactions are queued into a memory pool.

In Bitcoin, memory pool (mempool) acts as a reposi-
tory where all the transactions waiting to be confirmed are
logged. Once a user generates a transaction, it is broadcast
to the entire network. The transaction is stored into the
mempool where it waits for confirmation. If the rate of in-

2We derive the average transaction size by dividing the Bitcoin
block size by the total number of transactions in a block. These
statistics are available at [14]

3The average Bitcoin block size is ≈1MB. Some miners use the
SegWit protocol to increase the block size a little over 1MB. However,
no Bitcoin block has exceeded a size of 1.4MB [17, 18].

Preprint submitted to Elsevier January 5, 2021

ar
X

iv
:2

00
5.

04
84

2v
2 

 [
cs

.C
R

] 
 1

 J
an

 2
02

1



coming transactions at mempool is less than the through-
put of the network (3-7 transactions/sec), there is no queue
of unconfirmed transactions. Once the rate increases be-
yond the throughput, a transaction backlog starts at the
mempool. Transactions that remain unconfirmed for long
eventually get rejected. On November 11, 2017, the mem-
pool size exceeded 115k unconfirmed transactions, result-
ing in USD 700 million worth of stall transaction [19]. As
the mempool size grows, users pay more mining fee per
transaction to prioritize their transactions.

The Bitcoin network throughput is limited by the block
size and the block mining time. Since the average block
time is ≈10 minutes and the average block size is ≈1MB,
Bitcoin can only process 3–7 transactions per second [15].
Due to the limited throughput, users compete to get their
transactions mined into the blockchain. Typically, users
that pay a higher transaction fee win that competition. We
note that the transaction fee is determined by the mem-
pool size and if the mempool size is large, more trans-
actions compete for the block. In this paper, we show
that this competition can be exploited to launch a denial-
of-service attack where an attacker can flood the Bitcoin
mempool with unconfirmed transactions and inflate the
mempool size. This attack makes the benign users be-
lieve that there is high competition in the mempool, and
to win that competition, those users pay a higher mining
fee [20]. We further show that in the current Bitcoin net-
work, this attack can be easily launched since the default
Bitcoin mempool does not apply any policy to filter the
spam transactions. Therefore, our motivation is to iden-
tify the attack, show the attack feasibility, and propose
the attack countermeasures
Contributions. We make the following contributions.
1 We identify the effect of mempool flooding on benign
users in Bitcoin and the way that effect turns into a DoS
attack. 2 We present a threat model and associated at-
tack procedure whereby an attacker can exploit the cur-
rent Bitcoin protocol to achieve his goals. 3 We propose
Contra-* as countermeasures. Contra-* comes in fee-based
(Contra-F), age-bases (Contra-A), and size-based (Contra-
S), for transaction filtering. The three countermeasures
optimize the mempool size, neutralize the attacker’s capa-
bilities, prevent mempool flooding, and put benign users
at an advantage. 4 We examine the performance of our
proposed countermeasures through discrete-event simula-
tions and evaluate their performance under varying attack
conditions. To the best of our knowledge, this is the first
study to address the problem of mempool attacks in cryp-
tocurrencies with new mitigations.
Organization. section 2 outlines the related work,
and section 3 outlines the preliminaries. In section 4 and sec-
tion 5 we describe the threat model and attack procedure
that lead to mempool flooding and its associated effect.
A modeling framework for analyzing Contra-* as well as
evaluation metrics are introduced in section 6. We propose
countermeasures in section 7 with their associated analy-
sis. Conclusion and future work are presented in section 8.

2. Related Work

As described earlier, well-known attacks on blockchains
include selfish mining, the 51% attack, block withholding,
double-spending, blockchain forks and DoS attacks. In this
section, we review notable work covering those attacks,
and security aspects of blockchains.

Selfish mining is a form of attack where miners choose
not to publish their block after computation, hoping to
mine subsequent blocks and get more reward. The prob-
lem of selfish mining has been addressed by Eyal and
Sirer [21] and Heilman [22]. Eyal and Sirer [21] proposed
defense strategies to deter selfish mining attacks on blockchains.
Block Withholding Attack (BWH), introduced in [23], is
an attack in which miners in a pool choose to submit par-
tial PoW, instead of the full proof. As a result, they get
rewarded for participating in the pool although the pool
suffers a loss due to partial solutions. Kwon et al. [24]
studied a new form of attack on blockchains called Fork
After Withholding (FAW) attack which guarantees greater
rewards than the block withholding attacks.

The 51% attack can be launched if a mining pool in
the network gains more than 50% of the network’s hashing
power. With more than half the hashing power of network,
the attacker can prevent transactions from verification and
other miners from computing a block. To address the at-
tack, the Two Phase PoW (2P-PoW) was proposed by Eyal
and Sirer [25] and was analyzed by Bastiaan [26]. Double-
spending or equivocation happens when a user generates
two transactions from the same inputs and sends them to
two recipients [27]. Double-spending can be countered by
using one-time signatures in blockchains.

DoS attacks have been quite prevalent [28], and are re-
peatedly launched against the mining pools, benign users,
and currency exchanges. Johnson et al. [29] performed a
game-theoretic analysis of DDoS attacks against Bitcoin
mining pools. Vasek et al. [28] illustrated DoS attacks em-
pirically on the Bitcoin system. Cryptocurrency exchanges
are frequently targeted to prevent coin tradings [30], and
no mitigation to those attacks is proposed.

Another form of DDoS attack on blockchain includes
spamming the network with low valued dust transactions.
This attack is also called the penny-flooding attack. Baqer
et al. [16] performed Bitcoin stress testing to analyze the
limitations of the Bitcoin network and how attackers ex-
ploit them. Similar to their work, in this paper we analyze
the effect of penny-flooding attacks on users when a spam
attack is carried out on the mempool of Bitcoin, and com-
plement this analysis with countermeasures through mem-
ory pool optimization. To the best of our knowledge, this
is the first study conducted to analyze the effect of spam
attacks on mempool and explore their countermeasures.

3. Preliminaries

We now review the preliminaries of this work including
details about the blockchain system and data collection.
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Figure 1: Transaction lifecycle in a blockchain-based cryptocurrency.
User A generates a transaction for user B. The transaction is stored in
the memory pool along with other unconfirmed transactions. Miner
validates transactions from memory pool, and computes a block. A
valid block is added to the blockchain.

3.1. An Overview of Bitcoin

Transaction Lifecycle. Bitcoin users generate trans-
actions and propagate them in the network. Transactions
are temporarily stored in the mempool of Bitcoin nodes.
Miners select transactions from the mempool and confirm
them in a block. When a block is mined, it is released to
the network and corresponding transactions in the mem-
pool are removed.In Figure 1, we provide an illustration of
the transaction lifecycle in the Bitcoin network.
Memory Pool. In cryptocurrencies, a memory pool
(mempool) is the repository of unconfirmed transactions [31].
As shown in Figure 1, miners select transactions from the
mempool and put them in a block. Typically, the mempool
size is greater than the block size [14], and the block size
is limited to 1MB. If the mempool size exceeds the block
size, it shows that the transaction arrival rate exceeds the
confirmation rate. If the mempool size continues to grow,
the transaction confirmation is delayed.
UTXO. In Bitcoin, a user generates a transaction by
using spendable balance in his wallet. The spendable bal-
ance includes transactions that are called “Unspent Trans-
action Outputs” (UTXO’s) [32]. UTXO’s are transactions
received from other users and mined in the blockchain. For
more details on the UTXO model, we refer to [33].
Relay Fee and Mining Fee. In Bitcoin, the relay fee is
the minimum fee a transaction must pay to be relayed by
the network nodes. If a transaction does not pay the relay
fee, it does not reach a miner’s mempool. The mining fee
is the fee paid to a miner as an incentive to confirm the
transaction in a block [31]. Miners tend to prioritize those
transactions that pay a higher mining fee.
Confirmation. Transaction confirmation means that
(1) the transaction is successfully mined in a block, (2)
the block is accepted by the network, and (3) the transac-
tion is now a spendable UTXO in the receiver’s wallet [31].
A transaction confirmation score is the number of blocks
mined after the block that includes the transaction. For
example, if a transaction is mined at block height 10 and 5

blocks have been mined after that, the transaction confir-
mation score is 5. Note that the confirmation score is also
called the age of the transaction. A 0 confirmation score
means that either the transaction is not mined in a block
or no block has been mined after the block that contains
the transaction. Transactions that await mining are also
called the “unconfirmed transactions.”
Dust Transactions. In cryptocurrencies, low paying
transactions are called “dust transactions” [34], and they
transfer a small value from the sender to the receiver. How-
ever, their transaction size is comparable to the size of a
high-value transaction. Typically, attacks that target the
block size limits are launched using dust transactions [16].

3.2. DDoS Attack on Mempools

There are two types of DDoS attacks on blockchain-
based cryptocurrencies. In the classical attack, the attack-
ers exploit the block size limit by generating dust transac-
tions. This attack was discovered by Baqer et al. [16], and
has been addressed by the Bitcoin community. The Bit-
coin network applies a relay fee and a mining fee to filter
dust transactions from the block. The second DDoS at-
tack targets mempools by flooding them with unconfirmed
transactions. Although these transactions may eventually
be rejected by miners using countermeasures in [16], their
presence in the mempool creates another major problem.
The mempool size determines the fee paid to the miners. If
the mempool size is big, users compete to get their trans-
actions mined by paying a higher fee.

In Figure 2, we show a high correlation between the
mempool size the transaction fee paid by users. Since the
attacker’s dust transactions get rejected, the attack does
not affect his balance. In contrast, it invariably forces
honest users to pay a higher mining fee. To the best of
our knowledge, this work is the first attempt to notice this
attack and propose countermeasures.

3.3. Data Collection

To observe the relationship between the mempool size
and the mining fee, we used the public dataset provided by
the company called “Blockchain” [35]. For this study, we
gathered the dataset of mempool size and fee from January
2016 to May 2018. In Figure 2, we plot the results obtained
from the dataset and we use the min-max normalization to
scale our dataset in the range [0–1]. Our data shows that
Bitcoin mempool has been attacked three times in 2017,
resulting in an increased mining fee.

4. Threat Model

In this work, we assume that the attacker is a full
Bitcoin client with a complete blockchain and a memory
pool at his machine. The attacker’s wallet has spendable
bitcoins denoted by “UTXO’s”; those bitcoins have been
previously mined into the blockchain. In Bitcoin, transac-
tions can be split into various small transactions [36]. We

3
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Figure 2: Temporal study of mempool size and mining fee paid by
the users. Notice that as the mempool size grows, the mining fee in-
creases accordingly. The spikes during May, September, and Novem-
ber indicate spam attacks.

assume that the balance in the attacker’s wallet is large
enough that it can be split into fractions of dust trans-
actions; each of those transactions is at least capable of
paying the mining fee. We assume also that the attacker
controls a group of sybil accounts, each with multiple pub-
lic addresses. These public addresses could be used to ex-
change transactions during an attack. The attacker and
the sybil accounts have an apriori knowledge of each oth-
ers’ public addresses. Furthermore, the attacker and sybils
have client side software and scripts [37, 38], which enable
them to initiate a flood of “raw transactions” [39] in a short
time span. We assume that Sybils (collectively) have a ca-
pacity of exchanging transactions at a much higher rate
than the network’s throughput [40].

Although, being a full client in the network, we assume
that the attacker does not have the capability of mining
transactions. This means that the attacker does not pos-
sess enough computational power to mine a block, discard
a transaction, reverse a transaction or delay other trans-
actions from being mined. Moreover, the attacker does
not have control over other benign users in the network
and, as such, cannot prevent them from broadcasting their
transactions and accessing mempool nor other resources in
the network. The attacker is also constrained by a “bud-
get”: since every transaction requires a minimum fee to
be relayed to the network, the fee limits the number of
transactions that an attacker can generate.
Attacker’s Goal. The end goal of the attacker is to flood
mempools in the network with dust transactions. The at-
tacker will broadcast dust transactions at a higher rate
than the throughput of the network. At mempools, the ar-
rival rate corresponds to the flow of incoming transactions
and the departure rate corresponds to the rate of trans-
action mining. The departure rate is fixed, because the
average block computation time and the size of the block
are currently fixed. When the arrival rate increases due to

a flood of dust transactions, it results in transactions back-
log. As the queue size grows, the mempool size increases
accordingly. Overwhelming the mempool size alarms the
benign users, who naturally start paying higher mining fee
to prioritize their transactions.

Upon flooding, a secondary objective of the attacker is
to reduce the cost of attack by causing the mempool to
reject his transactions. For the attacker, mining transac-
tions will result into losing the associated mining fees to
the miners. However, if the transactions get rejected, the
attacker will have another chance to launch attack.

In the prior work, the target of attack was either a
mining pool [29], a Bitcoin exchange [41] or the blockchain
itself [16], leading to various avenues of DoS attacks. In
our work, on the other hand, the target of the attack is
the mempool of the system outlined in Figure 1, while the
potential victims in every attack are the benign users in
the blockchain network who are denied service. Another
distinguishing feature of this threat model is that the at-
tacker does not want his transactions to be mined. In
the analysis performed by Baqer et al. [16], the intent of
the spam attack was to flood blocks in the blockchain by
exploiting the block size limit. Such an attack requires
transaction mining in the blockchain. In Bitcoin, the gap
between the block size and the mempool size presents an
opportunity that can be exploited for an attack.4 Note
that mempool flooding in the network does not require
require transaction mining. Moreover, attacks exploiting
block size can be effectively countered by miners while the
attack on mempools cannot be countered in the same way.
As transaction mining involves mining fee while the attack
objective is only mempool flooding. Therefore, transaction
acceptance in a block remains undesirable for the attacker
in this attack. According to the taxonomy of DoS attack
[44], the mempool flooding attack can be characterized as
a “semantic attack of variable rate.”

5. Attack Procedure

As mentioned earlier, when the rate of incoming trans-
actions exceeds the network’s throughput, a backlog of
unconfirmed transactions builds up at the mempool. As
backlog grows, competition for transaction mining also in-
creases. Users try to prioritize their transactions by offer-
ing more fee to the miners. As a result, the fee per trans-
action paid to the miners increases. To facilitate usage,
there are online services such as “Bitcoin Fee Estimation”
[45], which estimate mempool size and the average fee paid
per transaction. Therefore, a fee is recommended for users
who want their transactions confirmed within desired time.

4By default, the mempool size at each Bitcoin node is 300MB.
Since the average block size is limited to ≈1MB, the gap between the
block size and mempool size can be exploited to flood the network
with dust transactions. The mempool size can be adjusted in the
Bitcoin.conf file. However, decreasing it to the average block size
may result in losing valuable transactions for mining [42, 43]
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Figure 3: Sequence of transactions obtained from blockchain.info on May 3rd, 2018. Notice that one of the addresses as an output is used
as the input address to the next transaction. The difference in the output balance and input balance is the fee paid by the transaction. The
figure shows that unconfirmed transactions can be spent prior to confirmation and while they may not be selected by the miners, they still
overwhelm the mempool. This depicts the attack model where Sybils exchange unconfirmed transactions at a high rate.

Since the mempool size affects the way users pay the
mining fee, this creates an attack possibility for an attacker
to exploit the mempool size and create panic among be-
nign users. When a benign user sees the mempool size
growing, the user, as a rational agent, will try to prioritize
his transactions by adding more mining fees to them. Dust
transactions of an attacker will eventually be rejected by
the miners, to protect blockchain from spam. Although it
protects the system from spam, that policy in itself also
works in favor of the attacker, since the attacker loses no
bitcoins as a result of enforcing this policy. On the other
hand, benign users end up paying more than the required
fee to get their transactions confirmed. Upon rejection,
the attacker can re-launch the attack multiple times.

As shown in Figure 2, there is a high correlation be-
tween the mempool size and the transaction fee paid to
the miners. In May, August and November 2017, it was
reported [? ] that Bitcoin was under spam attack of
unconfirmed transactions which led to higher mining fee.
From Figure 2, it can be observed that during those months
the size of the mempool was much larger than the average
size. As a result, the mining fee pattern also followed simi-
lar growing trend as the mempool size. In December 2017,
the problem of mempool flooding with was highlighted by
crypto analysts [46] suggesting that it was an attempt to
increase the mining fee and drive the users away from Bit-
coin. To further establish the relationship between the
mining fee and the mempool size, we computed Pearson
correlation on our dataset. The Pearson correlation coef-
ficient is defined as ρ(X,Y ) = Cov(X,Y )√

Var(X)Var(Y )
, and from

our dataset, we observed a high correlation of 0.69 between
the mempool size and the mining fee.

As a result, we conclude that overwhelming the mem-
pool size can also lead to other problems in the blockchain.
In November 2017, when the mempool was flooded, USD

700 million worth of bitcoins remained stuck in the pool
for two days [47]. Delay in verification can create multiple
problems, including possibilities of double-spending.

As described in the threat model, the objective of the
attacker is to maximize the size of the mempool and min-
imize the cost of the attack. The cost of the attack is
the fee paid to the miner if a transaction gets mined in a
block. The fee consists of the relay fee5 and the mining fee.
Higher fee increases the priority of transaction and chances
of a transaction mining. To avoid that, the attacker will
design his transactions in a way that they are less likely to
be prioritized by miners. At the same time, the attacker
wants his transactions to stay in the mempools for as long
as possible. As such, this attack can be carried out in two
phases: the distribution phase and the attack phase.

5.1. The Distribution Phase

In the distribution phase, the attacker estimates the
minimum relay fee of the network, divides his spendable
bitcoins (“UTXO’s”) into various transactions and sends
them to the sybil accounts. This can be done in two ways.
1) The attacker may generate a dust transaction from pre-
vious UTXO, send it to a sybil wallet and get the change
back as a new transaction. The attacker uses the change
as new input balance and repeats the procedure multiple
times for all sybil addresses. 2) An alternative way is to
use the spendable balance and generate a series of outputs
to all the addresses of sybil nodes. Unlike the previous
method, this will result in only one transaction to all the

5The relay fee is a cap implemented by nodes to filter spam trans-
actions. The relay fee threshold can be adjusted in the Bitcoin.conf
file [48]. Typically, if a node receives a transaction with 0 fee, the
node discards the transaction and does not forward it to other nodes.
Therefore, it protects the network from spam transactions. Realizing
this utility, we consider the relay fee for our model.
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sybil outputs. Transactions of this nature are known as
“sendmany” transactions [49], because the user is send-
ing bitcoins to various addresses within one transaction.
Since the aim of the attacker is to generate as many trans-
actions as possible, he will not opt for “send many” option.
All transactions to the sybil wallets will be generated in-
dependently. The transactions made in the distribution
phase will have input “UTXO’s”, which will be previously
mined in the blockchain. Hence, these transactions will
have greater-than-zero age (confirmation score), and will
be capable of paying the minimum mining fee.

5.2. The Attack Phase

Once the distribution phase is completed, all sybil ac-
counts will have sizable balance in their wallets. In the
attack phase, all sybils will carry out “raw transactions”
[39] from the balance received in the distribution phase.
Sybils will generate dust transactions and exchange them
with each other. To maximize the severity of attack, they
will prefer to have one recipient per transaction. The rate
of transactions will be much higher than the throughput
of the network. As a result, the arrival rate of the trans-
actions at the mempools will be higher than the depar-
ture rate of mined transactions. This will increase the
transaction backlog and the size of the mempools over the
duration of the attack. The attack will be carried out un-
til all the spam transactions get into the mempools. The
transactions made in the attack phase will have the trans-
actions of distribution phase as input “UTXO’s”. These
inputs will still be awaiting confirmation in the blockchain.
As such, their confirmation factor or age score will be zero.

5.3. Attack Illustration

In Figure 3, we provide an illustration of such an attack
whereby unconfirmed transactions were exchanged. The
letter “U” (in red) shows the unconfirmed transaction. As
shown in Figure 3, various transactions were generated to
flood the mempool within a short time duration. The user
started with one confirmed transaction in the blockchain.
The transaction was later split into two transactions (the
distribution phase). Out of the two resulting transactions,
one was immediately spent. Moreover, the spent trans-
action was unconfirmed, thus the letter “U” encoded (in
red) was used to denote its status. Among all the transac-
tions exchanged, each transaction paid a fee of 8.27 USD, 0
USD, and 4.97 USD, respectively. Compared to the value
exchanged in each transaction, the percentage of fee was
0.01%, 0%, and 0.01%. All these transactions had zero
confirmation score. The attack phase in depicts a similar
case where sybils exchange such transaction at a high rate.

5.4. Attack Cost

As mentioned earlier, one of the objectives of attacker
is to minimize the attack cost. To be able to achieve that,
the attacker requires transactions to be part of the mem-
pool but not part of the blockchain. This can be achieved

by adding the minimum relay fee (Rf ) to each transaction
but not the minimum mining fee (Mf ). The relay fee is
necessary for a transaction to be broadcast to all peers
in the network and be accepted by the mempool. If the
attacker adds the mining fee, his transactions will attain
priority from a miner and might get mined. To avoid that,
the sybils only pay the relay fee. If a transaction has i in-
puts, where each input contributes a size of k Bytes, and
o outputs, where each output contributes a size of l Bytes,
then the total size of the transaction S and its associated
cost C are determined by (1)-(2), respectively.

S(Bytes) = (i× k) + (o× l) + i (1)

C(BTC) = Rf ×
S

1024
= Rf ×

[(i× k) + (o× l) + i]

1024
(2)

Assuming that the attacker is limited by a budget B
(BTC) and minimum transferable value set by the network
as Tmin, then, using (2), the total number of transactions
Ta that the attacker can generate can be computed in (3).
At the time of writing of this paper, the minimum trans-
ferable value in Bitcoin was 5460 Satoshis [50].

Ta =
B × 1024

Rf × Tmin × [(i× k) + (o× l) + i]
(3)

Now we look at the system from standpoint of a benign
user. A benign user who intends to get his transaction
mined into the blockchain pays relay fee for transaction
broadcast and mining fee as an incentive to the miner.
For such a user, contributing a total T transactions, the
cost incurred per transactions and the total cost of all
transactions Tl[Rf +Mf ] can be derived using (4) and (5)
.

C(BTC) = [Rf +Mf ]× [(i× k) + (o× l) + i]

1024
(4)

Tl(BTC) = T× [Rf +Mf ]× [(i× k) + (o× l) + i]

1024
(5)

As mentioned in the threat model (section 4), the aim
of the attacker is to increase the cost per transaction paid
by the benign user (4). A benign user will aim to have
his transactions mined, therefore he will pay relay fee and
a high mining fee. The attacker will only aim to get
his transactions into the mempool and eventually not get
mined, so he will only pay the relay fee. In these settings,
the maximum loss an attacker can incur would happen if
all his transactions get mined. The cost in such a case will
be equal to the product of the total number of transactions
and the relay fee (Ta × Rf ). The attacker can re-launch
the same attack with a new balance of B− (Ta×Rf ). If a
portion of the attacker’s total transactions ta gets mined,
where ta ≤ Ta, then the attacker would be able to re-
launch the attack with new balance of B − (ta ×Rf ).
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5.5. Attack Feasibility

Our threat model and attack procedure are feasible
in the real-world Bitcoin network. As shown in subsec-
tion 5.4, the minimum transferable value in Bitcoin is 5460
satoshis which is equal to 546×10−7 bitcoins [50]. If the
attacker has 1 bitcoin, he can generate up to 18315 trans-
actions at any time. Since the Bitcoin network throughput
is 3–7 transactions per second, therefore, to launch an ef-
fective attack, the attacker needs to generate transactions
at a faster rate than the network throughput. Assuming
the upper bound throughput limit (7 transactions per sec-
ond), the attacker can sustain the attack for (18315/7)
≈2616 seconds. Since the average Bitcoin block time is
600 seconds, Therefore, with only 1 bitcoin, the attacker
can target up to four consecutive blocks.

Moreover, since all transactions are dust transactions,
they are less likely to be mined in a blockchain and will
stay in the mempool for a long time. If those transac-
tions are evicted from the mempool, the attacker can reis-
sue them. As a result, the attack will persist even after
four blocks and benign users will continue to pay a higher
transaction fee. Also note that the attacker can control all
Sybil accounts from a single machine since multiple wal-
let addresses can be generated from a single blockchain
node [14]. Therefore, the attack does not require the ad-
versary to control multiple machines.

From the above analysis, we make the following key
conclusions. (1) The adversary does not require a signif-
icant balance to launch the mempool DDoS attack since
only 1 bitcoin can suffice. (2) With only 1 bitcoin, the ad-
versary can easily cross the maximum transaction through-
put to inflate the mempool size. (2) Given that the at-
tack is less costly and can be easily managed from a single
blockchain node, a single attacker can launch the attack
instead of multiple attackers jointly targeting the network.
All these factors justify our threat model, making the at-
tack more practical in the real-world Bitcoin network.

6. Modelling The Mempool Attack

As mentioned in section 3, mempool acts as a buffer
for unconfirmed transactions, where the incoming trans-
actions denote the arrival, and transaction mining repre-
sents the departure process. As long as the arrival process
is within the bounds of system’s throughput (3–7 trans-
actions per second), the mempool queue remains stable
and there is no transaction backlog. However, as shown
in our threat model, the attacker overflows the buffer by
accelerating the arrival process and increasing the queue
size. Therefore, to construct effective countermeasures, it
is useful to formulate this abstraction as a queuing theory
problem with necessary mathematical primitives. To that
end, we model the mempool attack as Lyapunov optimiza-
tion problem that encapsulates the attack procedure and
provides a roadmap towards the attack countermeasures.

a[t]

Transactions
(Malicious + Legitimate)

Mempool, Q[t] Throughput
(Network)

Control

t0t1t2t3t4t5t6t7 b[t]

Figure 4: Mempool as a queue with arrival and departure processes.
The arrow with control is where we apply optimization techniques.

6.1. Lyapunov Optimization

Lyapunov optimization is a popular scheme applied to
the field of dynamic control systems for time-average opti-
mization under stability constraints [51]. In queuing net-
works, Lyapunov drift is used to model the queues while
optimizing time-average performance objectives such as
the energy or the throughput. Subject to the queue stabil-
ity, i.e., limt→∞ 1

t

∑t−1
τ=1Q[t] <∞ where Q[t] is the queue

backlog at t, the time-average Lyapunov optimization (i.e.,
drift-plus-penalty (DPP) [52, 53]) is defined as:

Qo(t+ 1) ≥ Qo(t) + yo(t) (6)

yo(t) ≤ Qo(t+ 1)−Qo(t) (7)
∑t−1

τ=1
yo[τ ] ≤ Qo(t+ 1)−Qo(0) = Qo(t) (8)

Minimize : lim
t→∞

1

t

∑t−1

τ=1
yo[τ ] (9)

where yo[τ ] is the objective function at t. Note that Q[t]
is a discrete time queue where Qo[t] is the queue backlog
at any time and yo[τ ] is the difference between arrivals
and departures on the given time slot. A stable queue
ensures that the time average of the objective function is
minimum. Based on DPP, this time-average optimization
subject to queue stability can be formulated as the follow-
ing decision-making framework:

α∗[t]← arg min
α[t]∈A

[V · yo[α[t]] +Q[t] {a(α[t])− b(α[t])}] ,
(10)

where α[t] is possible decision at t, α∗[t] is time-average
optimal decision at t, A is a set of possible decisions, V is
tradeoff coefficient between optimization criteria and sta-
bility, yo[α[t]] is objective value with decision α[t] at t,
a(α[t]) is an arrival with decision α[t] at t, b(α[t]) is a
departure with decision α[t] at t, respectively.

To apply this scheme to the mempool attack, we first
model the mempool as a queue and show the arrival and
departure processes. We present our design model in Fig-
ure 4, where the arrival process consisting of benign and
malicious transactions is denoted by a[t], the departure
process is denoted by b[t], and the mempool is denoted
by Q[t]. Since the mining rate eventually determines the
throughput of the network, therefore, we use throughput
as the departure process. The control shown in the red
allows us to apply countermeasures and modify the queue
size. Our objective is to minimize the time-average size,
subject to the queue stability. Queue stability can be
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achieved by removing malicious transactions or limiting
the total number of transactions in the queue. The cost
is the unwanted removal of benign transactions as an out-
come of the applied countermeasure. Therefore, we have
two cases that represent the state of the mempool. In the
first case, when the mempool is idle, the applied control
policy should only remove a small number of transactions
to fulfill the objective function of time-average cost min-
imization. In the second case, when mempool is flooded,
the applied control policy should remove a large num-
ber of transactions to guarantee mempool size stability.
With these objectives, the Lyapunov-based DPP changes
to (10) is updated to (11), where C(α[t]) is power con-
sumption when our decision is α[t]. If the mempool is
empty (Q[t] = 0), we have to minimize our cost by permit-
ting more arrivals. If the mempool is flooded (Q[t] ≈ ∞),
we have to minimize (α[t]) by removing malicious transac-
tions and stabilizing the mempool size.

α∗[t]← arg minα[t]∈A {V · C[α[t]] +Q[t]a(α[t])} . (11)

The formal attack model provides us the following key
insights that can be used to develop effective countermea-
sures for the DoS attack: 1. The mempool acts as a buffer
for incoming transactions. Therefore, the countermeasure
policy should not only reduce the number of malicious
transactions but also ensure the queue stability to ensure
operational consistency. 2. Since the network throughput
is constant, therefore, we cannot control the rate of out-
going transactions. As such, our countermeasures must be
applied at the control knob of the queue.

6.2. Evaluation Parameters

We use the following parameters to examine effective-
ness of Contra-*; Contra-F, Contra-A, and Contra-S.
Precision. Precision measures the relevant information
obtained from an experiment with respect to the total in-
formation. It can be computed as the ratio of true positive
and the sum of true positive and false positive TP

TP+FP .
Recall. Recall is the measure of relevant information
obtained from an experiment with respect to the total rel-
evant information. Mathematically, it is defined as the
ratio of true positive and the sum of true positive and
false negative TP

TP+FN .
F1 Score. F1 score uses both precision and recall and
provides their harmonic average. F1 score can be com-
puted as 2×precision×recall

precision+recall
Accuracy. In machine learning, accuracy measures the
the classifier’s strength in determining the experimental
outcomes, computed as TP+TN

TP+TN+FP+FN .
Negative Rate. Negative rate or specificity is the mea-
sure of truly identified negatives in the complete set of neg-
ative values. Negative rate can be computed as TN

TN+FN .
We will use this evaluation criteria for all the experi-

ments described in the rest of the paper.

7. Countering The Mempool Attack

To counter DoS on Bitcoin’s mempool, we propose
three countermeasures that prevent the spam on the sys-
tem. The design motivation is to increase the attack cost
for the attacker while keeping the operational efficiency
for benign users. We develop our designs for a miner’s
priority and apply the priority check on transactions at
the mempool level. One of the effective countermeasures
against spam attack in Bitcoin is to prevent the trans-
mission of dust transactions in the network. We envision
that if mempools can discard spam transactions and stop
relaying them to other mempools, the pool size can be
effectively controlled and spam can be countered.

7.1. Contra-F: Fee-based Mempool Design

Fee-based design aims to optimize the size of mempool
by filtering spam transactions upon arrival. As the threat
model states, an attacker only intends to relay spam trans-
actions between the mempools and does not want them to
be mined. To achieve this goal, the attacker only pays
minimum relay fee in transactions so that mempools ac-
cept and relay them. To prevent the transactions from
mining, the attacker does not pay the mining fee. We use
this insight to construct a “Fee-based Mempool Design.”

For this design in Algorithm 1, we assume that the
mempool is initially empty when transactions begin to
arrive. We also assume that each incoming transaction
has its associated relay fee and mining fee. We also fix
a threshold beyond which the mempool starts spam filter-
ing. Initially, when the transactions arrive in the pool, and
for each transaction, the mempool checks if the transac-
tion pays a minimum relay fee. If the transaction pays the
minimum relay fee, it is accepted and the mempool size
is updated. As the transactions get added into the mem-
pool, the size of mempool grows. When the size reaches a
threshold, the mempool starts applying the fee-based pol-
icy. Now, if the incoming transaction pays both the mini-
mum relay fee and the minimum mining fee, only then it is
accepted in the mempool. The key idea behind this scheme
is that only those transactions should be accepted, which
eventually get mined into the blockchain. As a result, this
technique puts a cap on the incoming transactions and fil-
ters spam transactions, thereby reducing mempool size. If
the new size is less than the baseline size threshold then the
mempool can proceed its operation from relay fee check.
Otherwise, it will continue with the fee-based design.

7.1.1. Analysis of Contra-F

In the following, we will analyze the workings of fee-
based design and its utility in light of our threat model.
We will limit the number of transactions an attacker can
generate within his budget by increasing the mining fee
threshold. We also observe how this design affects other
benign users within the same network.

In the current settings of Bitcoin, where an attacker
only pays the relay fee to broadcast his transactions, if the
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removal of legitimate transactions as an outcome of the
applied countermeasure. Therefore, we have two cases that
represent the state of the mempool. In the first case, when
the mempool is idle, the applied control policy should only
remove a small number of transactions to fulfill the objective
function of time-average cost minimization. In the second
case, when mempool is flooded, the applied control policy
should remove a large number of transactions to guarantee
mempool size stability. With these objectives, the Lyapunov-
based DPP changes to (7) is updated to (8), where C(↵[t])
is power consumption when our decision is ↵[t]. If the
mempool is empty (Q[t] = 0), we have to minimize our
cost by permitting more arrivals. If the mempool is flooded
(Q[t] ⇡ 1), we have to minimize (↵[t]) by removing
malicious transactions and stabilizing the mempool size.

↵⇤[t] arg min↵[t]2A {V · C[↵[t]] + Q[t]a(↵[t])} (8)

The formal attack model provides us the following key
insights that can be used to develop effective countermea-
sures for the DDoS attack: 1) The mempool acts as a buffer
for incoming transactions. Therefore, the countermeasure
policy should not only reduce the number of malicious
transactions but also ensure the queue stability to ensure
operational consistency. 2) Since the network throughput is
constant, therefore, we cannot control the rate of outgoing
transactions. As such, our countermeasures must be applied
at the control knob of the queue.

7 COUNTERING THE MEMPOOL ATTACK

To counter DDoS on Bitcoin’s mempool, we propose three
countermeasures that prevent the spam on the system. The
design motivation is to increase the attack cost for the adver-
sary while keeping the operational efficiency for legitimate
users. We develop our designs for a miner’s priority and
apply the priority check on transactions at the mempool
level. One of the effective countermeasures against spam
attack in Bitcoin is to prevent the transmission of dust
transactions in the network. We envision that if mempools
can discard spam transactions and stop relaying them to
other mempools, the pool size can be effectively controlled
and spam can be countered.

7.1 Fee-based Mempool Design

Fee-based design aims to optimize the size of mempool
by filtering spam transactions upon arrival. As the threat
model states, an attacker only intends to relay spam trans-
actions between the mempools and does not want them
to be mined. To achieve this goal, the attacker only pays
minimum relay fee in transactions so that mempools accept
and relay them. To prevent the transactions from mining,
the attacker does not pay the mining fee. We use this insight
to construct a “Fee-based Mempool Design.”

For this design in algorithm 1, we assume that the
mempool is initially empty when transactions begin to ar-
rive. We also assume that each incoming transaction has its
associated relay fee and mining fee. We also fix a threshold
beyond which the mempool starts spam filtering. Initially,
when the transactions arrive in the pool, and for each

transaction, the mempool checks if the transaction pays a
minimum relay fee. If the transaction pays the minimum
relay fee, it is accepted and the mempool size is updated.
As the transactions get added into the mempool, the size
of mempool grows. When the size reaches a threshold, the
mempool starts applying the fee-based policy. Now, if the
incoming transaction pays both the minimum relay fee and
the minimum mining fee, only then it is accepted in the
mempool. The key idea behind this scheme is that only
those transactions should be accepted, which eventually
get mined into the blockchain. As a result, this technique
puts a cap on the incoming transactions and filters spam
transactions, thereby reducing mempool size. If the new size
is less than the baseline size threshold then the mempool can
proceed its operation from relay fee check. Otherwise, it will
continue with the fee-based design.

Algorithm 1: Fee-based Mempool Design
State: Mempool Empty

1 foreach transaction 2 incoming transactions do
2 while (Mempool Size < Threshold Size) do
3 if (transaction relay fee > minimum relay fee)

then
4 Mempool transaction
5 UPDATE (mempool);
6 else
7 (transaction relay fee < minimum relay fee)

transaction rejected;
State: Mempool Size Exceeds Threshold Size

8 while (Mempool Size > Threshold Size) do
9 while (transaction relay fee > minimum relay fee)

do
10 if (transaction mining fee > minimum mining

fee) then
11 Mempool transaction;
12 UPDATE (mempool);
13 else
14 transaction rejected
15 return Mempool Size

Result: Spam Transactions Rejected

7.1.1 Analysis of Fee-based Mempool Design

In the following, we will analyze the workings of fee-based
design and its utility in light of our threat model. We will
limit the number of transactions an attacker can generate
within his budget by increasing the mining fee threshold.
We also observe how this design affects other legitimate
users within the same network.

In the current settings of Bitcoin, where an attacker only
pays the relay fee to broadcast his transactions, if the mem-
pools employ the fee-based design, all spam transactions
will be rejected. As such, the mempool will only accept the
transactions which pay both the relay fee and the mining
fee. Legitimate users, on the other hand, will benefit by this
design, since they will always pay the relay and the mining
fee, so their transactions will be accepted. Once the attacker
becomes aware of the fee-based design, the only way it can
carry out the attack is by adapting to the new settings and
masquerading as a legitimate user. The attacker can do that
by adding mining fee to each transaction. Given a budget B,
adding mining fee to each transaction will reduce the total

Table 1: Confusion Matrix
Actual Transaction

Legitimate Malicious
Mempool Legitimate TP FP
Transaction Malicious FN TN

mempools employ the fee-based design, all spam transac-
tions will be rejected. As such, the mempool will only
accept the transactions which pay both the relay fee and
the mining fee. Legitimate users, on the other hand, will
benefit by this design, since they will always pay the relay
and the mining fee, so their transactions will be accepted.
Once the attacker becomes aware of the fee-based design,
the only way it can carry out the attack is by adapting
to the new settings and masquerading as a benign user.
The attacker can do that by adding mining fee to each
transaction. Given a budget B, adding mining fee to each
transaction will reduce the total number of transactions
Ta the attacker could generate in (3) will now become

Ta =
1024×B

[(i× k) + (o× l) + i]× [Rf +Mf ]× Tmin
(12)

From (12), we can observe that the number of transac-
tions the attacker can generate has an inverse relationship
with the total fee paid per transactions. Using that rela-
tionship, we can adjust the fee parameter and investigate
how it limits the attacker’s capabilities. To do that, we
simulate the affect of increasing the mining fee on the vol-
ume of transactions that the mempool accepts. We allo-
cate a fixed budget to the attacker and select thresholds of
minimum mining fee and maximum mining fee. Using (3),
we select a suitable budget for attacker that results into
1000 transactions with a minimum mining fee. Then, we
generate 1000 benign transactions, each with a mining fee

normally distributed over the range of the minimum and
maximum mining fee. Using a discrete-event time simula-
tion, we increase the mining fee and monitor its affect on
transactions of the attacker and the benign users.

We plot the results in Figure 5, and use the confusion
matrix in Table 1 to evaluate the effect of the fee-based
design on the mempool. We classify the true positives
and the false positives as benign and malicious transac-
tions accepted by the mempool respectively. We classify
the false negatives and the true negatives as benign and
malicious transactions rejected by the mempool. We plot
the results of confusion matrix in Figure 5(a). The results
show that with the increase in the mining fee threshold,
the mempool size (TP+FP), malicious transactions (FP)
and benign transactions (TP) decrease. The trend of (FP)
is explained by (12). With a fixed budget, increasing the
mining fee decreases the total transactions Ta. Accord-
ingly, the size of the mempool also decreases due to fewer
spam transactions (FP). However, increasing the mining
fee also limits the fee-paying benign users. This, in turn,
explains the trend of decreasing (TP).

7.1.2. Evaluation Results

From Figure 5(a) and the evaluation criteria defined
above, we measured the precision and the accuracy of our
design. From Figure 5(b), we observed that the accuracy
increases with the mining fee to a maximum value and
then decreases. From Figure 5(b), we found the minimum
fee cutoff corresponding to the maximum accuracy.

In Figure 5(c), we the plot accuracy and size ratio; the
size ratio is the fraction of mempool transactions out of
the total number of incoming transactions where a lower
size ratio indicates higher size optimization. The results
in Figure 5(c) show that at a fee threshold of 13, we achieve
60% accuracy, 70% size optimization, and 78% precision.
Increasing the fee parameter further increases the size op-
timization but decreases the accuracy. Therefore, the fee-
based design presents a trade-off between the size efficiency
and the accurate detection of malicious transactions.

7.1.3. Shortcomings of Contra-F

To understand the limitations of “Fee-based Mempool
Design” we highlight the nature of some transactions in
Bitcoin. Suppose Alice sends 10 BTC to Bob in a transac-
tion. That transaction is yet to be verified and mined, but
Bob spends them by sending 5 BTC to Charlie. For Bob’s
transaction to be successfully mined, its parent transaction
by Alice needs to be mined first. This sequence of trans-
actions is known as parent-child transaction [54]. For a
child transaction to become benign, its parent transaction
needs to be mined first. Oftentimes when priority factor of
a parent transaction is low, the child transaction increases
the mining fee to increase the overall priority factor. This
process is called “Child Pays For Parent” (CPFP). For be-
nign users, this situation might be undesirable, since more
child transactions can lead to transactions getting stuck.
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Figure 5: Analysis of Fee-based Design. Notice that as the mining fee increases, the mempool size reduces. However increasing mining fee
also affects benign transactions which is why the accuracy of detection decreases with increasing mining fee. An optimum cut-off fee can be
selected from Figure 5(c) based on the trade-off between accuracy and size ratio.

However, the same situation can be viewed as an oppor-
tunity by the attacker to circumvent the fee-based design
and carry out the same attack at a lower cost.

For transactions made in the attack phase, their parent
transactions in the distribution phase need to be verified
and mined. The attacker can minimize the probability of
transaction acceptance in the first phase by reducing their
priority factor; e.g., by paying a minimum relay fee and
no mining fee. Once the parent transactions have a lower
probability of acceptance in the first phase, the child trans-
actions can increase their priority factor by increasing the
relay and mining fees. As a result, and when the mempools
apply the fee-based countermeasures, spam transactions of
the attack phase will get in mempool. After the mempool’s
size reaches the baseline threshold, the mempool will check
for the incoming transactions with the minimum relay and
mining fee. Since now the transactions of sybil accounts
will pay both the relay and the mining fee, therefore, they
will be accepted and the attacker will succeed.
Countermeasure. One way to address this problem
is to prioritize the incoming transactions on the basis of
mining fee. Mempool can sort the incoming transactions
for the fee value and accept the ones which pay higher fee.
As we increase the mining fee, the capability of attacker
to produce transactions reduces (12). The attacker is con-
strained by the budget and increasing mining fee reduces
the number of transactions he can produced. We can ob-
serve this trend in Figure 5(a). Although this reduces the
number of spam transactions in the mempool and opti-
mizes its size, it also reduces accuracy and the number of
benign transactions that get accepted. As the fee param-
eter is increased, the capability of all the benign users to
pay higher fee also decreases. To this end, the fee-based
countermeasures do limit the attacker from flooding the
mempool, but they also limit the number of benign trans-
actions that successfully pass the fee threshold. To address
these limitations we propose age-based countermeasures.

7.2. Contra-A: Age-based Countermeasures

7.2.1. Contra-A’s Design

To limit attacker’s chances of success, we propose the
“Age-based Mempool Design” which addresses the limita-
tions of our previous model. For this design, we leverage
the confirmation factor or “age” of a transaction to dis-
tinguish between benign and malicious transactions. In
Bitcoin, the age of a transaction determines how many
block confirmations it has achieved over time (§3.1).

For this design in Algorithm 2, we assume that the
baseline size threshold of the mempool has been reached,
and the mempool is only accepting transactions which are
paying the relay fee as well as the mining fee. Now, for
each incoming transaction, we count the number of inputs
or parent transactions. We initialize a variable “average
age” and set its value to 0. Next, we calculate the av-
erage age of the transaction by adding the age of each
parent transaction and dividing by the total number of
parent transactions. This gives an estimate of confirma-
tion score of the incoming transaction. Then, we apply a
“minimum age limit” filter on the mempool. The “mini-
mum age limit” can take any arbitrary value greater than
0. According to Bitcoin Developers Guide [55], a confir-
mation score of 6 is considered good for any transaction.
If the transaction’s mean age value fulfills the age criteria,
only then the mempool accepts the transaction.

A transaction in Bitcoin has an input pointer to the
spendable transaction it previously received. For spam
transactions, these inputs are not spendable and are less
likely to be mined, serving the objectives of the attacker
who intends to broadcast spam transactions which even-
tually get rejected. Although the age factor is taken into
account for transactions, it is not considered while broad-
casting those transactions. As such, attackers may exploit
this feature of the system by broadcasting spam transac-
tions and flooding the mempools without losing bitcoins.
In this design, we apply the check on the age of the in-
coming transactions. In the attack phase (§5.2), the spam
transactions will have input pointers of a parent transac-
tion that will not be confirmed in any block. The age of
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parent transactions from the distribution phase will be 0.
Using this knowledge about the nature of spam trans-

actions, we compute the average age of all the input point-
ers (parent transactions); minimum age value of 1 means
that all transactions coming into the pool are confirmed
in at least the most recent block of the blockchain. In Bit-
coin, once the transaction is mined into a blockchain, its
parent transaction is removed from the “UTXO” set and
cannot be spent again. The transaction itself becomes the
new spendable “UTXO.” With these advantages, the age-
based design prevents the system from spam transactions.

Once this design is implemented, if a user tries to spend
his coins, he needs to have at least one valid confirmation
for his transaction. This gives advantage to the benign
user who can make a normal transaction with a confirmed
parent transaction of significant age. On the other hand,
the attacker’s spam transactions will be rejected due to
low confirmation factor despite paying high mining fee.

7.2.2. Analysis of Contra-A

In this section, we analyze the working of “Age-based
Mempool Design” and how it can help in countering DoS
attack. For this design, we have established that the at-
tacker has the capability of circumventing the “Fee-based
design” and is willing to pay the relay fee and the mining
fee in all of his transactions. Also, the attacker knows that
his transactions will not be verified, so he pays higher relay
and mining fee than the benign users.

We carried out our second experiment to analyze the
working of the age-based countermeasures. We set a mini-
mum age limit and a maximum age limit as thresholds for
the incoming transactions. For the attacker, the only set of
transactions with age value greater than 1 are generated in
the distribution phase. Child transactions made in the at-
tack phase were assigned 0 age value due to unconfirmed
parent transactions. To capture that, we normally dis-
tribute the average age value of all malicious transactions
from 0 to the minimum age limit. The average age value
of all benign transactions was set from 0 to the maximum
age limit. A total of 2000 transactions were generated with
half of them being malicious and half being benign. Then,
we applied the age-based design on all the incoming trans-
actions at the mempool. We increased the age requirement
for the transactions and evaluated the detection accuracy
and the mempool state for each transaction.

7.2.3. Evaluation Results

Using the same confusion matrix in Table 1 and eval-
uation parameters in (§6.2). The results in Figure 6 show
that upon increasing the average age the malicious transac-
tions (FP) decrease sharply. The mempool size decreases
to a point where there are only benign transactions left in
the mempool. Due to low (FP) and higher (TP), the preci-
sion reaches a close to 1 Figure 6(b). In Figure 6(c), it can
be observed that at an average age value of 100 we achieve
60% accuracy, 80% size optimization and 80% precision.
As we increase the age parameter to 200, the accuracy does

not decrease like the fee-based design while the size ratio
increases up to 90% and the precision increases up to 98%.
This shows that the age-based prevents a majority of ma-
licious transactions from entering into the pool and helps
the benign users in getting their transactions accepted.

In these settings, if the attacker intends to spam the
network, he needs to have majority of his transactions con-
firmed in the blockchain. However, in our attack model, we
have described that confirmation is undesirable for the at-
tacker since it results in losing bitcoins in mining and relay
fee. In Bitcoin, recall that the average block mining time
is 10 minutes. For a single confirmation of all of the trans-
actions, the attacker has to wait on average for 10 minutes.
Using the results from Figure 6(c), the attacker will have
to wait a minimum of 100 blocks to relaunch the attack.
With average block computation time of 10 minutes, 100
blocks lead to 16 hours of delay. Even if the attacker still
plans to carry out the attack after waiting and paying all
the fee, he will not be able to flood the mempool. The
best the attacker might achieve will be occasional network
stressing with series of transactions; higher attack cost and
low incentive will discourage the attacker. Therefore, the
age-based design offers more security against the DoS at-
tacks without affecting the benign users.

7.2.4. Shortcomings of Contra-A

Although the age-based countermeasures provide an ef-
fective defence in mitigating DoS attack on Bitcoin, there
are some limitations in this design. Primarily, it requires
all the incoming transactions to have a confirmed par-
ent transaction.The average mining time for a block in
Bitcoin is 10 minutes [55]. Depending on the bottleneck
and size of the mempool, transaction verification can take
even longer. In fast transactions where users cannot wait
for verification, their transactions will be rejected by the
mempool. An illustration of the fast transaction is bitcoin
accepting vending machine. However, we do not see Bit-
coin evolving into such applications any soon, so we do not
consider it as a significant problem.

7.3. Contra-S: Size-based Countermeasures

As discussed in section 1, the block size is a key bottle-
neck dictating the transaction throughput. The size limit
of blocks enables the attacker to create a queue of pending
transactions in the mempool. Ideally, if the block size is set
equal to the mempool size, the mempool queue can be vir-
tually eliminated. However, as discussed in [56], increasing
the block size may have multiple drawbacks, including: 1
increasing the blockchain size overhead, 2 increase the
transmission and propagation delays in the network, and
3 increase the processing overhead at the receiving node.
Therefore, the block size cannot be set equal to the mem-
pool size. However, we postulate that a calculated increase
in the block size can prevent the mempool flooding with-
out sacrificing the performance. Conti et al. [57] show
that Bitcoin can process a block size of up to 8 MB with
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Figure 6: Analysis of Age-based Design. Notice that with age-based design, the accuracy, precision, and size ratio are comparatively higher
than the fee-based design. This policy is effective in rejecting the unconfirmed transactions.
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fee-based design. This policy is effective in rejecting the unconfirmed transactions.

Algorithm 2: Age-based Mempool Design
State: Mempool Size Exceeds Threshold Size

1 foreach transaction 2 incoming transactions do
2 initialize;
3 average age = 0;
4 N number of parent transactions of current

transaction;
5 while (transaction relay fee > minimum relay fee) do
6 while (transaction mining fee > minimum mining

fee) do

7 average age =
(
PN

i=1 parenti)

N
; /* apply

age filter */
8 if ( average age > minimum age limit) then
9 Mempool transaction;

10 UPDATE (mempool);
11 else
12 transaction rejected
13 return Mempool Size;

Result: Spam Transactions Rejected

7.2.2 Analysis of Age-based Mempool Design

In this section, we analyze the working of “Age-based
Mempool Design” and how it can help in countering DDoS
attack. For this design, we have established that the attacker
has the capability of circumventing the “Fee-based design”
and is willing to pay the relay fee and the mining fee in
all of his transactions. Also, the attacker knows that its
transactions will not be verified, so it pays comparatively
higher relay and mining fee than the legitimate users.

We carried out our second experiment to analyze the
working of the age-based countermeasures. We set a mini-
mum age limit and a maximum age limit as thresholds for
the incoming transactions. For the attacker, the only set of
transactions with age value greater than 1 are generated in
the distribution phase. Child transactions made in the attack
phase were assigned 0 age value due to unconfirmed parent
transactions. To capture that, we normally distribute the
average age value of all malicious transactions from 0 to the
minimum age limit. The average age value of all legitimate
transactions was set from 0 to the maximum age limit. A
total of 2000 transactions were generated with half of them
being malicious and half being legitimate. Then, we applied
the age-based design on all the incoming transactions at the
mempool. We increased the age requirement for the incom-
ing transactions and evaluated the accuracy of detection and

the state of mempool for each transaction.

7.2.3 Evaluation Results
Using the same confusion matrix in Table 1 and evaluation
parameters in (§7.1.2). The results in Figure 6 show that
upon increasing the average age the malicious transactions
(FP) decrease sharply. The mempool size decreases to a
point where there are only legitimate transactions left in the
mempool. Due to low (FP) and higher (TP), the precision
reaches a close to 1 Figure 6(b). In Figure 6(c), it can be
observed that at an average age value of 100 we achieve
60% accuracy, 80% size optimization and 80% precision.
As we increase the age parameter to 200, the accuracy
does not decrease like the fee-based design while the size
ratio increases up to 90% and the precision increases up to
98%. This shows that the age-based prevents a majority of
malicious transactions from entering into the pool and helps
the legitimate users in getting their transactions accepted.

In these settings, if the attacker intends to spam the
network, he needs to have majority of his transactions
confirmed in the blockchain. However, in our attack model,
we have described that confirmation is undesirable for the
attacker since it results in losing bitcoins in mining and relay
fee. In Bitcoin, recall that the average block mining time is 10
minutes. For a single confirmation of all of the transactions,
the attacker has to wait on average for 10 minutes. Using
the results from Figure 6(c), the attacker will have to wait a
minimum of 100 blocks to relaunch the attack. With average
block computation time of 10 minutes, 100 blocks lead to 16
hours of delay. Even if the attacker still plans to carry out the
attack after waiting and paying all the fee, he will not be able
to flood the mempool. The best the attacker might achieve
will be occasional network stressing with series of transac-
tions; higher attack cost and low incentive will discourage
the attacker. Therefore, the age-based design offers more
security against the DDoS attacks while ensuring regular
service provision for the legitimate users.

7.2.4 Limitations of Age-based Countermeasures
Although the age-based countermeasures provide an effec-
tive defence in mitigating DDoS attack on Bitcoin, there
are some limitations in this design. Primarily, it requires
all the incoming transactions to have a confirmed parent
transaction.The average mining time for a block in Bitcoin
is 10 minutes [63]. Depending on the bottleneck and size of

tolerable size overhead and delay. In response to that,
the Bitcoin community experimented with two soft works
called Segwit and Segwit2x, which allow the block size to
exceed the standard threshold of 1 MB. Motivated by these
changes, in this section we will investigate the usefulness
of block size in countering the mempool flooding attack.

Before analyzing the size-based design in detail, with
the results shown in Figure 7 we provide an intuitive overview
of the gap between the block size and the mempool size.
The blue region in Figure 7 shows the size of the pend-
ing transactions, and an attacker would ideally want to
maintain the size in the blue zone to maintain the pres-
sure on the mempool and avoid losing resources through
transaction confirmation. In contrast, if the gap between
block size and the mempool size is reduced, the transaction
backlog will decrease, and the attacker will risk losing re-
sources. Therefore, the block size variation can be modeled
as a probability distribution that evaluates the chances of
the attacker’s transactions to be mined. The intuition be-
hind this strategy is that if the mining probability is high,
the attacker will be discouraged from launching the attack.
Moreover, it will also reduce the gap between the block
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Figure 7: Difference between the Bitcoin block size and mempool
size. The gap (shaded in blue color) provides advantage to the at-
tacker to flood the mempool. Naturally, if the block size limit is
increased, the gap can be reduced and the attack can be prevented.

size and the mempool size, shown in Figure 7, thereby
preventing the mempool flooding and the fee hike. Com-
pared to the fee-based and age-based countermeasures, in
this design we do not use transaction properties to isolate
malicious transactions from benign transactions, and in-
stead maximize the chances of transaction confirmation to
raise the attack cost. In Figure 8, we illustrate the effect
of increasing the block size (as proposed by SegWit and
Segwit2x) on the mempool size. Note that the blue region
shown in Figure 7 is significantly reduced in Figure 8. As
a result, if the attacker has to flood the mempool he will
have to generate transactions at a much higher rate with
a high probability of losing balance.

7.3.1. Analysis of Contra-S

For design analysis, we first define the system parame-
ters. From section 6, we use the network throughput b[t],
the mempool size Q, and the incoming transactions rate
a[t]. Moreover, we define the block size as S, the set of
transaction in the mempool as T , the attacker’s transac-
tions in T as I, the priority of a transaction ti ∈ T as
P(i), the mining probability of a transaction as P (i), and
the priority factor of a transaction as γi. The mempool
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Figure 8: The effect of Segwit and Segwit2x on the mempool size. No-
tably, the Segwit2x minimizes the gap between the mempool size and
the block size. As a result, during an attack, attacker’s transactions
will be mined in the blockchain.

state is defined as:

Mempool State =

{
a[t] < b[t] Q = 0 Empty

a[t] > b[t] Q > 0 Attack
(13)

Next, we define the priority factor γi for a transaction
ti ∈ T . In cryptocurrencies, the priority is given to a
transaction that pays a higher mining fee. Let f1, · · · , fv be
the fee paid by each transaction, where v = |T | is the total
number of transactions in T . We compute a normalized
value for γi and the priority factor Pi as follows:

γi =
fi −min(f1...fv)

max(f1...fv)−min(f1...fv)
,P(i) =

S
Q
× γi (14)

From the transaction priority and the size difference
between the block and the mempool, we compute the trans-
action confirmation probability P (i) as:

P (i) = P(i)

/ |T |∑

z=1

P(z). (15)

Following from (15), we define the aggregate probabil-
ity P (j) for all of the attacker’s transaction in I as:

P (j) =

|I|∑

y=1

P(y)

/ |T |∑

z=1

P(z) (16)

From (14), we notice that if all transactions pay the
same fee then the priority factor of any transaction will
be 0. As a result, P (i) will be undefined. However, the
likelihood of such an event is small, since we mention in
subsection 3.2 that the attacker will try to pay less fee
than the mining fee of the benign users, facilitated by the
lack of standard fees in Bitcoin. With n users in Bitcoin,
and assuming that each user generates one transaction, the
probability that all users generate the same transaction fee

is 1
n . Since there are more than 1 million Bitcoin users [58],

the probability for such an event is negligible.
When the size-based design is applied, a miner first

checks the mempool state, shown in (13). If the queue is
empty, then the newly mined block size will be restricted
to the standard size. However, when a[t] > b[t], the miner
would increase the block size. As a result, Pr(i) for each
transaction will also increase. Our goal is to evaluate the
mining probability for an attacker when the block size is
increased. Intuitively, if the block size is large, the attacker
will be discouraged from launching the attack, fearing bal-
ance exhaustion. Additionally, we assume that attacker
only pays the minimum relay fee to flood the mempool.

7.3.2. Evaluation Results

To evaluate the effect of Contra-S, we generate a se-
ries of transactions, each of which is with a size of 2 KB.
Each transaction was assigned a fee, distributed normally
between minimum and maximum fee threshold (subsec-
tion 7.1). The mempool size is then the sum of the size
of all transactions. Next, we start with fixed transaction
size for the attacker (10%), and sequentially increase the
size to 90% of the total transactions. For each of the at-
tacker’s transaction, we randomly select the transaction
fee between 0 and the minimum relay fee. We apply the
size-based policy by setting the block size to 1 MB (cur-
rent block size in Bitcoin), 4 MB (the segwit size), and 8
MB (segwit2x size). We use the same discrete-event sim-
ulation settings as used in the earlier experiments. In our
simulations, we evaluate the effect of the block size on
the probability of transaction confirmation and report the
results in Figure 9. Our results show the effect of increas-
ing the block size on the confirmation probability P (j) of
the attacker’s transactions in I ∈ T . The general trend
indicates that when the block size increased, P (j) also
increased, which would naturally affect the attacker’s bal-
ance. Moreover, it is worth noting that when the attacker
increases the rate of the incoming transactions, shown on
the x-axis, P (j) increases exponentially. Therefore, the
risk of balance exhaustion becomes more significant.

Apart from the promising results achieved by Contra-
S, we believe that applying Contra-S in current Bitcoin
protocol is relatively easier than Contra-F’s and Contra-
A’s. The Contra-S will be applied on the block rather than
the mempool. This would require minimal changes in the
client software. Moreover, the size-based design specifies
concrete parameters (4 MB or 8 MB), which prevent con-
flicting views. In the fee-based and age-based countermea-
sures, nodes can have different size of the mempool due to
variance in the incoming transaction rate. As a result, they
will apply different threshold parameters to control the
size of the mempool, which can lead to conflicting states
at each node. On the other hand, with concrete parame-
ters for the block size, such a requirement to alter policies
at the mempool will be alleviated. As part of our future
work, we will analyze the asynchronous settings of Bitcoin
network to understand the disagreements in the mempool
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Figure 9: Results obtained from the simulation of the size-based
policy. The x-axis show the percentage of the attacker’s transaction
among the total transactions. The y-axis is the probability of accep-
tance of all of the attacker’s transactions P (j). The results show that
the increase in block size will increase the probability of transactions.
Therefore, the attacker will risk losing his balance.

view. Using that, we will derive bounds on the fee-based
and age-based design to prevent the mempool attack while
preserving the agreement on the mempool state.

8. Conclusion

In this paper, we identify a DoS attack on Bitcoin
mempools that pushes the users into paying higher min-
ing fees. Attacks on Bitcoin mempools have not been ad-
dressed previously, and we propose three countermeasures
to the problem: fee-based, age-based, and size-based de-
signs. Using simulations and various analyses, we conclude
that when the attack is not severe, the fee-based design is
more effective in mempool size optimization. However, the
fee-based design does so by affecting both the attacker and
the benign users. When the attack is severe, the age-based
design is more useful in helping benign users while discard-
ing maximum spam transactions. However, both designs
use features from incoming transactions to distinguish be-
tween malicious and benign transaction. Our third design
overcomes this shortcoming by simply increasing the block
size and limiting the attacker’s capabilities. The strength
of the size-based design lies in concrete policy parameters
that can be easily applied in the blockchain system, with-
out any major protocol modifications.
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