University of

"1l Kent Academic Repository

Tahir, Ruhma, Tahir, Shahzaib, McDonald-Maier, Klaus D., Howells, Gareth
and Sajjad, Ali (2021) A Novel ICMetric Public Key Framework for Secure
Communication. Journal of Network and Computer Applications, 195.
ISSN 1084-8045.

Downloaded from
https://kar.kent.ac.uk/90751/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.orq/10.1016/j.jnca.2021.103235

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/90751/
https://doi.org/10.1016/j.jnca.2021.103235
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Novel ICMetric Public Key Framework for Secure
Communication

Ruhma Tahir®, Shahzaib Tahir®* Hasan Tahir¢, Klaus Mc-Donald-Maier?,
Gareth Howells?, Ali Sajjad®

@School of Computer Science and Electronic Engineering, University of Esset,
Colchester, United Kingdom,
b Department of Information Security, College of Signals, National University of Sciences
and Technology, Islamabad, Pakistan, 46000,
¢Department of Information Security, School of Electrical Engineering and Computer
Science (SEECS), National University of Sciences and Technology, Islamabad, Pakistan,
4School of Engineering and Digital Arts, University of Kent, Canterbury, United

Kingdom.,

¢Research and Innovation, British Telecommunications, Adastral Park, Ipswich, United
Kingdom,

Abstract

The Integrated Circuit Metric (ICMetric) technology is a novel trust basis
that uses the system features to create an identification of a device. The
ICMetric of the device is used for the provision of security services, thereby
addressing the issue of trust associated with device identity. The ICMetric
technology can be adapted to function with varying environments; however,
the short length and low entropy of the ICMetric key pose a major threat
to applications based on ICMetric. This paper proposes a secure compre-
hensive ICMetric based architecture that facilitates asymmetric ICMetric
applications for secure services in an end-to-end environment. This novel
framework has been designed keeping in mind the construction principles
of ICMetric thereby preventing threats that are prevalent in many security
schemes. Finally, an empirical evaluation and feasibility has been presented
by implementing the proposed framework and doing an extensive security
analysis.

Keywords: Entropy, Key derivation function, Brute-force attacks, Shamir
secret sharing, SHA-2, RSA.

*Corresponding author; email: shahzaib.tahir@mcs.edu.pk

Preprint submitted to Elsevier August 3, 2021



1. Introduction

Digital devices are becoming increasingly ubiquitous, and this gradual
shift towards pervasive computing [1] envisions many benefits in sectors as
diverse as finance, entertainment, healthcare, information access, automotive
etc. Embedded systems are composed of devices connected together through
wireless communication links to achieve a goal [2][3]. However, the wireless
communication links between the embedded system devices are vulnerable
to being attacked by adversaries [4][5], that need to be addressed. There-
fore, embedded systems security is a fundamental design requirement and is
increasingly emerging. Many security services rely on stored keys for provid-
ing security in applications. The stored keys can be compromised through
a variety of attacks many of which are based on side channel exploits. This
highlights a need for the creation of a framework that assists in the gener-
ation of keys at runtime thereby providing improved security for embedded
devices and the privacy to the humans interacting with them. The prob-
lems associated with key theft and stored keys [6] have paved way for design
and development of security paradigms that focus on a novel root of trust,
designed by using hardware and software features of a device.

ICMetric (Integrated Circuit Metrics) [7] technology has been developed
to cater for the security vulnerabilities found in embedded system applica-
tions [8]. ICMetric technology identifies a system based on its various system
level features[9]. The ICMetric serves as a secret key for the device and is
based on hardware and software features of the device. The key is sufficiently
unique, while the features are such that they provide distinguishability for
similar devices using the same features. These features not only provide suf-
ficient variance but also provide a reproducible key; additionally the features
have to remain obscure to any unauthorized access. The generated ICMet-
ric key exists only locally and is removed from memory. The ICMetric key
is reproduced as required using hardware and software features of the de-
vice. ICMetric enables device verification with a very high accuracy, since
the hardware/ software features of a system are directly being used in the
generation cryptographic key being used by the system [8].

A strong key having high entropy and sufficient length is the basic re-
quirement for the secure working of a cryptosystem. The use of an ICMetric
in its original form is very challenging[10]. The ICMetric may have low



entropy or insufficient length, thereby easily being guessed by the attacker
leading to system compromise [11]. The generated ICMetric must have cer-
tain characteristics of having sufficient key entropy and length, to be securely
used in applications for performing cryptographic operations. In this paper
a strong ICMetric key generation protocol will be presented that can poten-
tially improve the strength of the ICMetric for crytpographic applications.
The proposed protocol for the generation of a strong ICMetric, results in
the generation of secret key having required length and sufficient entropy. A
major goal of the strong ICMetric key generation protocol is to secure the
[CMetric from pre-computed and brute force attacks. This is a very critical
requirement in ICMetrics since compromise of the ICMetric can potentially
mean the compromise of the device and all subsequently the whole system.
The ICMetric strong key generation protocol generates an ICMetric strong
key based on the proposed two-tier key derivation function for the generation
of strong ICMetric key from ICMetric data.

The importance of public key cryptosystems cannot be denied owing
to the additional security advantages provided by public key cryptography.
Therefore, designing a public key framework for ICMetric based applications
is of utmost importance. The proposed ICM-RSA protocol is a step in this di-
rection that aims to design and develop a protocol for ICMetric based entities
thereby providing confidentiality and non-repudiation of data. The ICMet-
ric RSA (ICM-RSA) protocol uses the ICMetric strong key to generate an
ICMetric based public/private key pair for public key security applications.

1.1. Contributions

In this research we present a novel ICMetric public key framework to
strengthen the use of ICMetric technology in various applications thereby
making the following contributions:

e We present an ICMetric strong key generation protocol that generates
ICMetric keys having an entropy very close to 8 bits per byte and re-
quired length. The proposed protocol safeguards the ICMetric key from
brute force attacks and its two-tier architecture prevents the possibility
of the original ICMetric being revealed to adversaries.

e We propose a modified ICM-RSA protocol that enables ICMetric based
entities to perform secure one to one communication in a public key set-
ting; keeping in mind the design principles of the ICMetric technology
and security properties of RSA.



e We carry out security analysis of the proposed framework, thereby
developing a proof of concept prototype to formally test the proposed
framework.

1.2. Organization

The remainder of this paper is organized as follows; section 2 discusses the
proposed architecture with the help of a scenario that helps formally present
the threat model and thereby the design goals respectively. Section 3 dis-
cusses the ICMetric technology and its features elaborating on how ICMetric
could be a viable solution. The major relevant literature is also concisely
discussed in this section. In section 4 the ICMetric public key framework is
formally proposed, tuning it in accordance to the proposed security defini-
tions. Section 5 presents the security proof that helps validate the security
of the proposed framework. The security analysis of our proposed framework
is presented in section 6. The implementation details of our design with its
performance analysis is presented in section 7. The conclusion and future
work is presented in section 8.

2. Design of ICMetric-based Public Key Framework

This section discusses the proposed framework with the help of a scenario.
The scenario leads to the threat model and the design goals respectively.

2.1. Proposed Architecture

Suppose Alice and Bob want to communicate with each other by sharing
a message (m). They rely on a public key cryptosystem to securely transmit
the message. Alice and Bob store their individual private keys on their
machine and broadcast their public keys. This gives rise to the prevalent
problem of key theft as the private keys need to be stored. ICMetric presents
a possible solution to this problem [12]. Therefore Alice and Bob make use of
the ICMetric technology that extracts the device features and generates the
cryptographic keys at run time. This eliminates the possibility of key theft
as the keys do not need to be stored in any form. Although these ICMetric
keys can be used to communicate securely, they give rise to certain challenges
that are narrated in the threat model below.



2.2. Threat Model

Cryptographic keys vary in strength and some are stronger than oth-
ers. The weakness in cryptographic keys often exists due to a lack of suf-
ficient entropy and length. The core principle is that cryptographic keys
should be strong, have high entropy (not readily derivable) and be of suffi-
cient length. Key generation/ derivation is normally done by incorporating
a cryptographically secure pseudo random number generator. This ensures
that the generated key has sufficient entropy and possesses qualities suitable
for a cryptographic key. The ICMetric of a device is in no way a cryptograph-
ically secure primitive which raises the need for additional key strengthening
mechanisms. A weak ICMetric key could make the underlying device open to
pre-computed and brute force attacks, thereby defeating the purpose of the
ICMetric technology. Following are the attacks/ problems commonly seen
against key generation/ derivation schemes where hashing has been used as
a leading primitive:

e Key brute force attack

e Rainbow table attacks

Low key length

Low key entropy
e [CMetric theft deterrence

Furthermore, the ICMetric is a fingerprint of the device and its compro-
mise implies that the device can be compromised. However, the ICMetric of
a device is created using unique device features that are unique, unspoofable
but reproducible. In this case the greatest strength of the ICMetric tech-
nology becomes its greatest liability. Therefore should one set of ICMetric
feature data be compromised, that one ICMetric feature set is compromised
forever.

2.3. Design Goals

Given the threat model, the ICMetric public key framework focuses on
the following security goals:



e Length and Entropy of the ICMetric Key - a fundamental goal of the
ICMetric public key framework is to generate strong keys that have
required length and 8 bits per byte of entropy to be safely used in
security critical applications. The sufficient length of the key protects
it from easily being compromised and high entropy ensures that the
keys can’t be easily compromised using pre-computed attacks.

e Deterring compromise of the device ICMetric - a crucial security goal
of the designed ICMetric public key framework is deterring the effects
of a possibly successful brute force attack on the original ICMetric.
Therefore, the ICMetric should not be compromised during the working
of the ICMetric public key framework.

e Data Confidentiality - a major goal of the proposed ICMetric public
key framework is to provide confidentiality of data for ICMetric based
entities. The proposed protocol uses an extended RSA encrypt/ de-
crypt algorithm for the provision of data secrecy between ICMetric
based entities.

e Non-repudiation - a goal of the proposed ICMetric public key frame-
work is non-repudiation of data. The key generation is based on the
ICMetric of the entity, therefore the resulting cipher text can be traced
back to the original source.

Definition (ICMetric-based Public Key Framework): The proposed FRSE
comprises of five polynomial time algorithms IT = (ICMKey, ICMStrongKey,
KGenPK, Encpk, Dec) such that:

ICMKey, MICM <+ ICMGen(F,): takes as input n device features F,, to
generate a mini-ICMetric for each feature set and thereby an ICMetric
for the entity.

ICMStrongKey + ICMStrongKeyGen(ICM Key, MICM): takes as in-
put the ICMetric and the mini-ICMetric’s as pepper value to generate
an ICMStrongKey with the required length and entropy.

(sk,pk) < KGenPK(ICM StrongKey): generates a private/public key-
pair (sk, pk) based on the ICMStrongKey.

¢ < Encpk(m): encrypts message m with private key sk and outputs ci-
phertext c.



m < Dec(c, sk): decrypts ciphertext ¢ with secret key sk and outputs
message m.

3. The ICMetric Technology and Existing Literature

The security of many cryptographic schemes lies in the secrecy of the
keys. This is in line with the Kerckhoff security principle[13] which states
that the secrecy of a system should lie in keeping the keys secret and not
the algorithm. These keys are often stored on the system thus making them
vulnerable. An ideal solution to this problem would be to entirely eliminate
stored keys and be able to have them available when required. ICMetric is an
important technology in this direction that aims to resolve the threats associ-
ated with the use of stored keys, by making use of system level characteristics
to recalculate the cryptographic keys at runtime.

3.1. Working of ICMetric Technology

ICMetrics is a revolutionary new trusted computing approach that avoids
storage of root-of-trust encryption keys by creating them on demand based
on measurable properties and features of the desired device or system it-
self. ICMetrics is essentially the electronic’ equivalent of biometrics, with
the additional advantage of not needing to store unique templates for key
creation.

The Template-Free technique employed by ICMetrics uses a novel nor-
malisation and combination strategy to merge a series of metrics, which rep-
resent the properties, features and behavioural characteristics of the desired
device to generate a secret vale termed ICMetric. Abstractly, the ICMetric
architecture has three key stages as shown in Figure 1:

The ICMetrics technique involves generating and obtaining feature val-
ues from the operation of the device in question. The obtained metrics are
selected and combined using advanced pattern recognition techniques. The
primary purpose of ICMetrics is to encrypt components of devices, systems
or services using properties or features derived from their own construction
and behaviour to form a digital signature capable of assuring both their au-
thenticity and freedom from malware whilst simultaneously operating within
their designed specification and execute on an arbitrary platform. The abil-
ity to securely access data from a remote sensor by an online server offers
significant advantages for ease of remote monitoring and data processing. A
major novelty of the ICMetric system is that the measured characteristics



ICMetrics

E 4 N

: e
=T - . L Normalise,
HW & SW features IMonltmmg Ql gatuse & Feature Trim and
. infrastructure Pre-process .
from device Combine

&

Figure 1: Operational Phase of ICMetrics

need not remain absolutely constant but are free to vary within deduced pa-
rameters, thus allowing the device to operate in several states. ICMetrics
creates identifiers for embedded devices enabling the generation of unique
digital signatures and potential secure encrypted communication between
services and sensor nodes.

The practical operation comprising of two parts is presented in this sec-
tion:

3.1.1. Calibration Phase
(applied once)

a. For the device in question, the desired feature values are measured; that
will typically be operating characteristics of the associated software.

b. Feature distributions are generated for each measured feature value
illustrating the frequency of each occurrence.

c. The feature distributions are normalised thereby generating normalisa-
tion maps for each feature.

3.1.2. Operation Phase
(applied at the time of generation of encryption key)

a. Measure features for the given device for which digital signature (or an
encryption key) is desired.

b. Apply the normalisation maps to generate values suitable for key gen-
eration.

c. Apply the key generation algorithm which combines the normalised
feature values into a single key (termed the ICMetric)



It should be emphasised that the ICMetric system may be used in con-
junction with a range of encryption techniques such as RSA, ECC, DSA and
so on; and is independent of any particular encryption algorithm [7].

The ICMetric technology generates an ICMetric based on the software
and hardware features of a device. The system characteristics used in the
calculation of an ICMetric are not static and vary in a pre-determined fashion
depending on the system characteristics and its interaction with the environ-
ment, thereby making it difficult for the attacker to deduce at any point
in time. The features are individually processed by using algorithms for
feature set establishment, feature extraction, feature value correlation anal-
ysis and change probability analysis to produce a device identification that
can distinguish between two devices that have the same model, specifica-
tions, manufacturer and environment. To achieve this the technology uses
a range of features such as communication addresses, CPU IDs, data in the
RAM/ROM, network profiles, users content and locations specific informa-
tion. The calculated ICMetric is stored temporarily and whenever a secure
operation is to take place the ICMetric is recalculated based on the system
characteristics of the device.

For a particular device, the same ICMetric can be calculated by measur-
ing the individual features, applying the normalisation maps [14], [15] and
combining these individual feature values to generate an ICMetric. Papoutsis
et al. propose that the measured individual feature values can be combined
by adding individual feature values [16][15]. The ICMetric is used as input
in the key derivation algorithms to generate a secure strong ICMetric key.

An advantage of such a mechanism is that since the keys are not residing
on the system then for an attacker there is nothing to steal or infiltrate. The
ICMetric system will provide another secure layer upon the existing security
infrastructure. This results in the development of a key theft proof system
that can be authenticated and can resist impersonation attacks. Papoutsis in
his extensive work [16][15] has carried out a detailed discussion on employing
the ICMetric technology for the generation of encryption keys.

3.2. Emisting Literature

Extensive research on the use of ICMetric technology Papoutsis et al.
[16][15], propose a technique where they generate a key directly from the
measurable properties of a given hardware device, thereby safeguarding de-
vices from threats related to key storage.



In a very recent study [17], the researchers have shown that it is possible
to create symmetric keys for group of devices using MEMS PUF. The research
makes two contributions. The first outcome is the feasibility of the MEMS
PUF for the creation of device keys. The second contribution of the research
is a Diffie Hellman inspired symmetric key for the group that is created
by taking contributions from the group members. The proposed scheme
suffers from denial of service attack and the regeneration of keys for changing
group members becomes a constant problem. Moreover the scheme creates
a symmetric key which although secure does not provide the benefits offered
by asymmetric keys.

A patent on secure group communications through ICMetric [18] shows
the establishment of a group ring key by using asymmetric keys. A prereq-
uisite for the proposed system is the availability of asymmetric keys.

In a study [19], the qualities and characteristics of a device ICMetric have
been explored and a scheme presented. The research introduces a security
scheme for wearable devices based on the ICMetric technology. Wearable
devices are able to provide a wide range of services as they are embedded
with sensors that detect movement while worn on the body. The ICMetric
scheme presented uses the bias in a MEMS accelerometer and gyroscope as
a device fingerprint to create a device ICMetric thereby extracting the cryp-
tographic key. The authors have shown that the ICMetric of a device can be
used to extract varying key sizes and then made to function with multiple
confidentiality schemes. The authors in [19][12] claim that the generation of
encryption keys requires developing suitable methods for combining selected
feature values to produce a unique ICMetric. In [14], two alternative tech-
niques have been designed namely feature addition and concatenation. The
authors claim that although with the feature concatenation technique a big-
ger encryption key in length is produced, this key is less stable compared to
one produced with addition technique. Moreover, with feature combination
using addition, a lower number of samples are required to produce the same
[CMetric for the ICMetric device compared to applying the concatenation
combination technique.

Conventional cryptography is based on using stored keys for the provision
of security. Cryptographic algorithms rely on algorithmic intractability for
the creation of a cryptographic primitive. While this method has proven
sufficiently secure and is the basis for cryptographic algorithms today; it
does not protect against side channel attacks [20]. As adversaries become
increasingly well equipped to target cryptosystems, a renewed approach to

10



help protect them is required.

Physically Unclonable Function (PUF) provide a novel basis upon which
cryptographic services can be provisioned. A PUF is a one way function that
takes an input and provides an output that is a representative of a unique
characteristic of the device [21]. The device characteristics suitable for a
PUF are unique, unpredictable, stable and repeatable. These device charac-
teristics are introduced by a number of factors that cannot be recreated. For
instance, soldering of MEMS sensors onto the mainboard introduces stresses
that cause a bias in the sensor readings which has proven to be an identifying
characteristic [22]. Similar characteristics have been studied and proven suc-
cessful in studies related to SRAM [23]. Research has shown that PUF’s can
be used to create stronger security primitives leading to provision of improved
security that is resistant to many issues faced by conventional cryptographic
systems [24].

The work presented in this paper is an extension of ICMetric, whereby
a public key generation protocol is designed that generates keys pairs for
devices based on ICMetric. The proposed protocol aims to increase the
entropy of generated ICMetric key, thereby generating public key pairs useful
for embedded system applications.

ICMetric is a patented technology and most research has been done to
look into suitable features which can be used to support the establishment of
a device ICMetric. The research in [18] requires ICMetric based asymmet-
ric keys for the establishment of the ICMetric group ring keys. No existing
research addresses this thus forming the research gap and a motivation of
this research. Thus this research studies the design of a two-tier ICMetric
asymmetric key generation scheme which can be used for security provisions
or possibly adapted with other systems that are based on public key cryp-
tosystems.

4. The ICMetric Public Key Framework

As discussed in the definition presented in Section 2, the proposed frame-
work comprises of five polynomial time algorithms. This section presents
each of the phases/algorithm in details. The ICMetric Public Key Frame-
work is comprised of two protocols namely the ICMetric strong key gener-
ation protocol that is responsible for generating a strong ICMetric key and
an asymmetric key protocol based on an extended RSA algorithm that has
been tuned in accordance with the design principles of ICMetrics.

11



4.1. ICMetric Strong Key Generation

The proposed strong key generation protocol aims to improve the security
of the ICMetric based cryptosystem by proposing a protocol that generates
a strong ICMetric key for use with symmetric or asymmetric cryptosystems.
The proposed protocol is an effort to generate high entropy ICMetric keys
of sufficient length which can be used for secure cryptographic operations in
various applications. Secrecy of the ICMetric is of utmost importance, since
compromise of the ICMetric will result in compromise of the whole device for
any future operations. Therefore, the proposed protocol has been developed
following this critical requirement and the design principles of the ICMetric
technology.

The proposed protocol is comprised of two main phases; namely the sub-
key generation phase and the strong key generation phase. Figure 2 shows
a general model of the proposed ICMetric strong key generation protocol,
depicting a generalization of the components that become part of the protocol
design.

ICM MICM; salt (Sp)

111

MICM, Salt (S») \

\ ICMetric subkey l l

Sub-key Generation Phase

;ﬁ
g
=]
3
™
=
<
KDF @
— 8§
g
2
=
g
=
l &
o
ICMetric Strong Key /

Figure 2: General Model of the ICMetric Strong Key Generation Protocol

Both phases, the sub-key generation phase and the strong key genera-
tion phase are interlinked where the output of the sub-key generation phase

12



is used as input to the strong key generation phase, thereby generating a
strong ICMetric key. The device ICMetric, a mini-ICMetric M ICM; and a
random salt S; become input to the chosen key derivation function (KDF)
and generate an ICMetric subkey, which is the output of the sub-key genera-
tion phase. In the next phase, the ICMetric sub-key, a second mini-ICMetric
MICM, and a random salt Sy become input to the chosen key derivation
function (KDF) and generate the final ICMetric strong key. The two mini-
ICMetric values are used as cryptographic peppers and prevent the possibility
of brute force attacks. They also enable the possibility of multiple strong de-
rived keys that can be used for various secure cryptographic operations in the
ICMetric application. The concept behind the two-tier ICMetric strong key
generation approach is to safeguard the device ICMetric from being captured
by an adversary, which could in effect compromise the device for any future
operations.

The following section details each step involved in the working of the
ICMetric strong key generation protocol.

4.1.1. Key Setup
The first phase of the protocol requires the device to generate an ICMetric
based on the extracted feature values

ICM = ICMetric generated using features of Device (1)

Device features are the foundation of creating an ICMetric for the device.
There are certain aspects of each feature that are considered to determine
their adequacy. Features are thoroughly examined to ensure they have high
inter-sample variation and low intra-sample variation. Features showing
promise have possible values that can be clustered for a device separate
from another devices’ grouped values. These enable finding small clusters
of values that are far enough apart from another device’s cluster of val-
ues. These features can include low-level hardware features that measure a
device’s processing capabilities such as execution time and memory to the
software features of a device. These offer more scope for identifying devices
and an undefined range of values are harder to spoof than a static value. Dy-
namic features also offer the ability to compare how values can change during
operation [7]. Correlations offer a measurement of how values can change in
relation to how another feature’s value changes. Two devices can have fea-
ture values fall between a similar range, one device’s values can rise with an

13



increase in another feature’s value while the other devices values can drop,
while the range is similar the behaviour is different. This can be reflected
in one device having a positive correlation between two features and other
device exhibiting a negative correlation between same two features. These
features having high correlations are combined together and these multidi-
mensional correlations are analyzed to find the boundaries of distinct clusters
of values for these features. The selected features of a device are logically
categorized into specific sets called mini-ICMetrics. Each set contains fea-
tures which share similar traits or are affected by the same modifications of a
device. The creation of mini-ICMetric feature sets allows for fault tolerance
system to be implemented into the ICMetric key generation process [25] [7].

The fault tolerance is achieved by using Shamir’s secret sharing [26] to
allow a fixed minimum number of mini-ICMetrics to be required to produce
the same key. If the tolerance number of sets is not reached, the system
fails, as it does not meet the secret sharing reconstruction threshold and a
different key will be produced.

The advantage of this secret sharing process is that the ICMetric key is
not stored on the system and the only values that are stored are one half of
each coordinate that is necessary to generate the polynomial that produces
the key. The halves stored on the system cannot be used to find out the
polynomial that was used to generate them, which is a proven characteristic
of the secret sharing process. Each mini-ICMetric is also discarded and half

of the stored value specific to each set cannot be used to recover the original
mini-ICMetric [27].

4.1.2. Parameter Setup

This phase of the framework is responsible for setting up various input
parameters for the working of the strong ICMetric key generation protocol.
Table I, lists the parameters that are required in the setup of the protocol.

Salting is the inclusion of a random value in the password hashing pro-
cess that greatly decreases the likelihood of identical keys returning the same
hash. If two keys are identical, salting can make it highly unlikely that their
resulting hashes are the same. Detailed specifications [28][29] suggests that
the salt value should be at least 64 bits long. This makes collisions (i.e. occa-
sions that two stored passwords use the same salt) unlikely [30]. The random
salts in the proposed architecture are generated using timestamps as the seed
to the random number generator. As shown in table 1, the salt values S,
and Sy employed by the proposed ICMetric strong key generation protocol

14



Table 1: Description of Symbols/ Input Parameters in the Protocol

Symbol Description
ICM [CMetric of device
[ Concatenation
fas bitwise exclusive OR
S1, S 128 bits random salt values
MICM;, MIC M, Mini-ICMetric pepper values
SHA2(256/512) The selected SHA2 variant
N Number of iterations
L Required length of the strong key:
(256/512/1024 /2048 bits)
S ICMetric sub-key
M [CMetric strong key

are 128 bits long. A pepper performs a similar role to a salt, however unlike
a salt the pepper value has to be kept in a place to prevent it from being ob-
tained by the attacker in case of a breach. Therefore the pepper value in the
proposed scheme is selected randomly from the set of possible mini-ICMetric
values. The mini ICMetric value does not need to be stored and discarded
after use, thereby safeguarding it from possible compromise. SHA-2 is the
hash function used for the purpose of key stretching, and the SHA2 variant of
choice can be selected based on the required length of the generated strong
key as shown in table 1. Therefore, the required length 'L’ of the strong
key will help in the selection of the exact SHA2 variant. The recommended
SHA-2 iterations for a key stretching function recommended by NIST guide-
lines are “as high as can be tolerated while still allowing acceptable server
performance”.

The two-tier mechanism is critical in hindering the attacker’s ability of
ever getting hold of the raw ICMetric number. At no point can a system
afford to lose its ICMetric and result in compromise of the fingerprint of the
device. The computations required by the two-tier mechanism for generat-
ing the derived ICMetric key increases with the number of iterations [31].
There is obviously a trade-off, larger iteration counts make the systems more
secure but at the same time hurt performance. The number of iterations
should be set as high as tolerable for an environment/user; ranging from
constrained systems where at least 1000 iterations are recommended, to very

15



powerful systems where 10,000,000 iterations are appropriate. In many cases
ICMetric key derivation is only done once for a long session, hence not being
detrimental for the efficiency of the ICMetric based application.

4.1.3. Generation of Iterated ICMetric Hash

This step of the algorithm is responsible for performing N iterations on
the device ICMetric by using the selected SHA2-variant, a mini-ICMetric
value M ICM; and a salt value S;. The number of iterations in the proposed
strong ICMetric key generation protocol make the key derivation function
intentionally slow to compute and, can be adjusted to control the slowness.
The strong ICMetric key generation process begins with the device’s ICMet-
ric, a mini-ICMetric value and a 128 bits random salt S; passed through the
selected SHA2-variant function. In the second round, the result from the first
round of the SHA2-variant function and the ICMetric becomes the output
of the second iteration. The SHA2-variant function is iterated 10,000 times
to generate a strong ICMetric key for secure onward operations. Both the
mini-ICMetric, 128 bits salt and IC'M are combined via SHA-2, as shown
in the set of equations (2). The purpose of the SHA-2 based key stretching
and derivation algorithm is to combine and thus stretch the key, so that it
qualifies for use in secure operations. The 128 bits random number serves as
a salt value and the mini-ICMetric are used for the key stretching function
and safeguards against rainbow table attacks. By adding a salt and mini-
ICMetric pepper value to the IC'M, the possibility of using pre-computed
hashes for attacks is reduced.

The purpose of the salt and pepper is to allow the generation of a large set
of keys corresponding to each password, for a fixed iteration count. Therefore,
using a salt makes it difficult for the attacker to generate a table of resulting
keys, for even a small subset of the most-likely passwords. If I; is the result
of a single iteration where i € N then

Iy = SHA2(ICM,MICM, S)

Too,000 = SHA2(ICM, Igg 999)
Finally, the result of each SHA2-variant function is XORed as follows:

Xi=hohLho oy (3)

16



This gives the iterated ICMetric hash X; based on the selected SHA2 vari-
ant. For SHA2(256), the final hashed output block size is 256 bits, whereas
in SHA2(512) the final hashed output block size is 512 bits. Exclusive OR
adds an extra layer of protection and the iterations of the hashing function
and the salt value add security.

Figure 3 shows a blocked diagram of how the generation of the iterated
ICMetric hash is connected to the rest of the sub-components in the genera-
tion of the ICMetric sub-key. It is evident from the figure that the ICMetric
and the salt (S7), become input to the ‘Iterated ICMetric hash generation’
module. The generated iterated ICMetric hashes become input to the ‘1C-
Metric sub-key generation” module, which after performing computations on
the input iterated ICMetric hashes, generates an ICMetric sub-key 'S’, as
shown in figure 3.

Parameter Setup

MICIM, lSalt (51)

ICMetnic i
ICMetrics — Generation of Iterated ICMetric
Hash
l X Xa o X

Generation of ICMetric Sub-Key

!

Sub-key 'S’

Figure 3: ICMetric Sub-Key Generation

4.1.4. Generation of ICMetric Sub-key

This section gives details of the operations in the ICMetric sub-key gener-
ation block shown in figure 3. In this phase, each generated iterated I[CMetric
hash is concatenated to generate a strong ICMetric key of required length
'L’ that can be used for further cryptographic operations.

17



For SHA2(256), the hashed block size is 256 bits. Therefore, if the re-
quired length of the strong ICMetric key is 1024 bits, then there should be
1024/256=4 blocks concatenated to produce the strong ICMetric key 'S’

S = X1||X2|| e ||XL/256 (4>

For SHA2(512), the hashed block size is 512 bits. Therefore, if the re-
quired length of the generated strong ICMetric key is 1024 bits, then there
should be 1024/512=2 blocks concatenated to produce the strong sub key
5.

S = X1 Xoll - 1 X, (5)

The ICMetric strong key generation protocol can derive strong ICMetric
keys of specified length.

4.1.5. Generation of Iterated Sub-Key Hash

This step of the algorithm does a stretching operation similar to the
iterated hash function outlined in (3) above, however the input parameters
are different. The sub-key generated in (4), the mini-ICMetric M 1C M, and
salt Sy are fed as input to the N iterations of the selected SHA2 variant.
In the second round, the result from the first round of the SHA2-variant
function and the sub-key 'S’ becomes the output of the second iteration.
In this step, 100,000 iterations are carried out, resulting in hashed values
Hy, Hs, ..., Higoo00 as outlined in the set of equations (6).

Hy = SHA2(S, MICM,, S,)
H2 - SHAQ(S, Il)

Hyg0,000 = SHA2(S, g9 999)
Finally, the result of each SHA2-variant function is XORed as follows:

SX,=H, & Hy & --- @ Hy (7)

the iterated sub key hash SX; based on the selected SHA2 variant.
For SHA2(256), the final hashed output block size is 256 bits, whereas in
SHA2(512) the final hashed output block size is 512 bits.

Figure 4 shows a blocked diagram of how the generation of the iterated
sub-key hash is connected to rest of the sub-components in the generation of

18



the ICMetric sub-key. It is evident from the figure that the ICMetric sub-key,
the mini-ICMetric (M 1CM,) and the salt (Se) become input to the ‘Iterated
sub-key hash generation” module. The generated iterated sub-key hashes
become input to the ‘ICMetric strong key generation’” module, which after
performing computations on the input iterated sub-key hashes, generates an
[CMetric strong key 'M’, as shown in figure 4.

Parameter Setup

MICMa ‘ Salt (51)

Generation of Iterated Sub-
Sub-Key ‘S’ ‘ Key Hash

‘ X1, 8X9, .. BXjy

Generation of IChetric
Stirong Key

$

Strong key M’

Figure 4: ICMetric Strong Key Generation

4.1.6. Generation of Strong ICMetric Key

This section gives details of the operations in the ICMetric strong key
generation block shown in figure 4. In this phase, each generated iterated
ICMetric hash is concatenated to create a strong ICMetric key of required
length 'L’ that can be used for further cryptographic operations.

For SHA2(256), the hashed block size is 256 bits. Therefore, if the re-
quired length of the strong ICMetric key is 1024 bits, then there should be
1024/256=4 blocks concatenated to produce the strong ICMetric key 'S’.

M = SX\||SXoll -+ S, ®)

19



For SHA2(512), the hashed block size is 512 bits. Therefore, if the re-
quired length of the generated strong ICMetric key is 1024 bits, then there
should be 1024/512=2 blocks concatenated to produce the strong sub key
S

M = SX1||SX2|| T ||SXL/512 (9)

The ICMetric strong key generation protocol can derive strong ICMetric
keys of required length. It generates as many blocks as required to achieve the
required key length. Each block is produced by iterating the key stretching
function 100,000 times.

Once generated, all blocks are concatenated to create the required sized
key, which gives the strong ICMetric key that has sufficient length and en-

tropy.

4.2. The ICMetric Asymmetric Key Protocol

The proposed ICM-RSA cryptosystem details an ICMetric centred asym-
metric key protocol that can be used with asymmetric key applications based
on the ICMetric technology. The proposed protocol is an idea to improve
the security of the ICMetric based applications using ICMetric based pub-
lic/private key pairs for achieving confidentiality. The following section de-
tails the working of the ICM-RSA protocol.

4.2.1. Key Generation
The keys for the ICM-RSA algorithm are generated the following way:

a. Employ the generated strong ICMetric key as the private key d'.
b. Choose two large prime numbers p and ¢ such that d’ is co-prime with
©(n), where n = pq.
e Check if d’ is co-prime with ¢(n), else set the Offset d’ such that
d = f(d,of fset) and ged(d,p(n))=1 where function f may be
XOR or + operation
c. Determine e as e = d~'(mod p(n)); i.e., e is the modular multiplicative
inverse of d(mod p(n)).
e ¢ is released as the public key.
e dd',p,q,p(n) are discarded.
e f and the offset are retained locally.

The pair (n,e) is the public key.

20



4.2.2. Encryption
The message m is represented as an integer in the interval [0---n — 1]
and the public key (n, e) of the entity is used to compute

c=m*modn
The ciphertext ¢ is sent to the receiver.

4.2.3. Decryption
To recover the message m from the ciphertext ¢, the entity can recover
message as

m = c*modn

5. Security Proof

This section presents the corollaries and lemmas that help validate the
security of the proposed framework.

Corollary 1 — The proposed framework is secure considering the ICMet-
ric 1s strong and the ICM-RSA is secure.

The proof to this corollary is dependent upon the following two lemmas:

Lemma 1: The security of the proposed framework is dependent upon
the strength of the ICMetric derived key.

Lemma 2: The proposed ICM-RSA does not violate the hard assump-
tion/intractability of the original RSA.

Proof of lemma 1:

To test the proposed protocol, the key generation protocol is partially
based on existing cryptographically secure pseudorandom number genera-
tors, i.e., random number generators which are deterministic but nonetheless
indistinguishable from truly random sequences, and then they are analysed
whether the keys generated through the designed protocol have strong or
weak entropy. Therefore, the goal of this section is to assess the entropy of
the generated ICMetric keys based on the proposed strong key derivation
function. The entropy analysis helps decide whether an ICMetric key is of
sufficient length and can safely be used in various cryptographic applications
to perform security critical operations.

In order to evaluate the cryptographic strength of the keys generated
through the ICMetric based key generation method, this section compares
the entropy measurements of the designed protocol against two well-known

21



cryptographically secure key generation schemes that are widely used in mod-
ern information security systems. The first one is a standardized key generat-
ing algorithm based on 'SHA1PRNG’ [32], which is a pseudorandom number
generation (PRNG) algorithm based on SHA-1 cryptographic hash function
and comes as a built-in default in a lot of programming languages e.g., C++
and Java etc. The second one is /dev/random, a blocking pseudorandom
number generator available in most Unix-like operating systems e.g., Linux,
FreeBSD, OpenBSD, macOS and iOS etc. It allows access to environmental
noise collected from device drivers and other sources to include a measure
of true randomness in its working, however, not all operating systems imple-
ment the same semantics for /dev/random [33].

The testing of the proposed design involves generating key of lengths
128, 256 and 512 bits respectively; using the three key generation methods
and then measuring the entropy of the information content of these keys.
The entropy measurement code treats the input key as a stream of 8-bits
bytes and the reported statistics reflect this property of the bits-stream. The
detailed results for the three key lengths are given in Figure 5, that show the
entropy of each generated strong ICMetric key as a result of the rivalling key
generation methods.

It is clear from the above Figure 5, the measured entropy of the keys
generated from the three methods increases steadily as the size of the keys
increases. However, it is still quite short of approaching the perfect entropy
score of 8 bits per byte. The measured entropy of all three methods for
all the different key sizes stays very close to each other, i.e., around 4 bits
per byte for 128 bits keys, around 4.8 bits per byte for 256 bits keys and
around 5.8 bits per byte for 512 bits keys. Therefore, the ICMetric based
key generation protocol is faring as well as some other common and widely
used cryptographically secure key generation protocols.

Furthermore, the suspected reason for these three schemes falling short
of approaching the ideal Shannon Entropy was that, the amount of under-
lying information content being measured for entropy calculation is far too
less. Therefore, the experiment was performed again, but this time the key
generation schemes were modified to produce longer bits-streams. In other
words, the inputs to the entropy measurement calculations were increased
to 100 keys; of lengths 128, 256 and 512 bits respectively using the three
key generation methods. Therefore, the entropy measurement code treats
the input key as a stream of 12800, 25600 and 51200 bits respectively. The
results of this experiment are given in Figure 6.

22



Maximum Entropy

i

ZIS-wopuei/nsp/

ZTIS-DONUATIVHS

€TS-SO1d13ndI

ggz-wopues/nsp/

9ST-ONYdIVHS

9S5Z-SJIH1INDI

gzT-wopuel/napf

BIT-DONUJTIVHS

8TT-SI21HLINDI

00 M~ WO W MmN - O
(@1Aq 4ad suq) yjuswainseaw Adoajug

Key Generation Methods

Figure 5: Entropy Measurements for Strong Key Variants

Maximum Entropy

(L

ZIS-wopueasfnap/

ZTS-ONUdIVHS

ZTS-SOILINDI

ggz-wopues/nap/f

9SZ-ONUJITIVYHS

9SZ-SOI13INDI

geT-wopues/aap/f

8CT-DONUJIVYHS

8ZT-SOIMLINDI

O M~ WO W= menN—~ O
(21Aq 1ad suq) Juswaanseaw Adoajug

Key Generation Methods

Figure 6: Entropy Measurements of Strong Key Variants based on Larger Inputs

23



As is clear from the above Figure 6, now the results of the measured
entropy are almost equal to the theoretical maximum entropy of a uniformly
distributed random key generation system. The number of 100 keys were
chosen arbitrarily, however upon further experiments, the measured entropy
stays very close to 8 bits per byte for even huge number of keys, although
never exactly equal to 8.

Proof of lemma 2:

Corollary 2 - The security of RSA depends on the hardness of factoring
n=pgq, i.e., the prime factors p and q cannot be determined within polynomaial
time and therefore becomes a hard problem.

Claim - The security of the proposed ICM-RSA is based on the following
assumptions:

e Having ((n) secure disables factoring n.
e Keeping d secure disallows factoring n.

To prove the security of ICM-RSA, we firstly prove that the above as-
sumptions are strictly met in the proposed protocol. For this, we firstly
assume that ¢(n) is known, so how can it lead to solving the integer factor-
ization problem [34]. Solving the corresponding equations (b) and (c) may
reveal the value of p and ¢ respectively. Therefore, to solve the factorization
problem, one possibility is to know the ¢(n) which contradicts our assump-
tion because ICM-RSA is based on the strict assumption of ¢(n) being kept
secure by the entity and not being revealed to an adversary.

Now, we assume that d is known to an adversary. To show how it leads
to the solving the factorization problem we refer readers to [34][35]. Which
is a clear contradiction of our assumption as d is based on the ICMetric of
the device whose property is that it is kept always secret and regenerated
when required. Therefore, d is also not revealed to an adversary. This leads
to the conclusion that the proposed ICM-RSA does not weaken the security
of the primary RSA protocol and hence ICM-RSA is secure.

Based on the proofs of the lemma 1 and lemma 2, it is evident that the
proposed framework is secure.

6. Scheme Evaluation Against Threat Landscape

In this section, we perform a security analysis of the designed ICMetric
public key framework against the threat model and design goals mentioned

24



Table 2: ICMetric Public Key Framework Evaluation
Attack Vectors ICMetric Strong Key Protocol | ICM-RSA

Brute-force Attacks
Rainbow table Attacks
Length
Entropy
Deters ICMetric Capture
Confidentiality
Adaptability
Non-repudiation

DN N N N NN

AN NN

in section 2.2 and 2.3 respectively. Particular focus has been on the security
goals accomplished via the proposed scheme. In table II, a summary overview
of the goals accomplished/ unaccomplished by the designed ICMetric Public
key framework are presented.

6.1. Length of the Strong Key

The originally generated device ICMetric has inherent weaknesses like
insufficient length and entropy, owing to which it cannot serve as a key for
cryptographic operations [10]. The strong ICMetric key generation protocol
makes use of key derivation functions on the device ICMetric coupled with
the mini ICMetric as a pepper and a random salt, to generate strong ICMet-
ric key variants of sufficient length that can serve as cryptographic keys in
various cryptographic applications. The proposed ICMetric strong key gen-
eration protocol generates keys that have sufficient entropy to be securely
used in cryptographic applications. The inclusion of two pepper values and
random 128 bits salt values to the key derivation function, at two stages of
the protocol adds entropy to the ICMetric and generates a longer stretched
key having sufficient entropy. The large iteration count repeats the hash op-
eration over the ICMetric multiple times to produce a strong key that has
more entropy. This makes the weak ICMetric key suitable for use in various
cryptographic applications requiring security.

6.2. Safety against ICMetric Compromise
The ICMetric technology is an innovative concept, designed to deter key
theft. The proposed strong ICMetric key generation protocol also deters all

25



forms of key capturing. The proposed protocol works in accordance with
the design principles of the ICMetric technology and at no point does it
disclose the device ICMetric to an adversary. When the keys are no longer
required both the ICMetric and the cryptographic key are discarded hence
deterring all forms of key capturing. This implies that at no point does the
system rely on stored keys/ credentials to deliver cryptographic services. To
further safeguard the ICMetric from being compromised, the proposed two
tier architecture of the strong ICMetric key generation protocol is able to
hinder an attacker’s ability to get hold of the ICMetric at any point of the
working of the protocol.

6.3. Mitigation of Pre-Computed Attacks

The proposed strong [CMetric key generation protocol makes use of a
two tier approach, where it generates an internal ICMetric sub-key in the
first phase and a strong ICMetric key in the second phase based on the de-
vice ICMetric. Two pepper and salt values are associated with the hashing
operation at two tiers of the proposed protocol, for the generation of a longer
derived ICMetric key, and several key derivation function rounds make it
more time consuming to crack the strong ICMetric key. The pepper values
are based on the generated mini-ICMetrics that are discarded after use in
the key derivation function. Therefore the attacker is never able to capture
the pepper value and launch a pre-computed attack on the key. The salt
values add an additional layer to the ICMetric, thereby preventing the pos-
siblity of brute force or rainbow table attack on the strong ICMetric. The
strong ICMetric key generation protocol produces a stretched high entropy
key bringing an increase in both the entropy and length of the key thus
safeguarding against pre-computed attacks.

The designed strong ICMetric key generation protocol is based on hash
function computations. A major problem associated with schemes making
use of hashing is the possibility of pre-computed attacks [36]. These pre-
computed attacks were of major concern for the proposed protocol and have
been dealt with by the two-tier model of the designed protocol. The proposed
protocol can defeat pre-computed attacks; by passing the device ICMetric
through two tiers of the protocol based on two salt and pepper values.

The proposed protocol safeguards against rainbow table attacks, owing to
its two-tier architecture. An adversary makes use of two 128 bits salt values
and two pepper values thus dramatically increasing the amount of space
required by the tables. This design element makes use of rainbow tables

26



infeasible. The purpose of the salt and pepper values is to make the rainbow
table a user specific element thereby increasing the complexity of the attack.
A second salt and pepper value is used to provide a second layer of security
with a random string in addition to the salt already being used. Doing so
increases the workload and makes the activity very slow and cumbersome for
the attacker. This process of pre-computation of rainbow tables for salted
hashes is very slow; since it first requires the adversary to find salt value, and
further to compute the rainbow tables with two 128 bits random values at run
time. The proposed protocol follows a two-tier approach; where in the first
stage the output of thousands of hash operations on the device ICMetric with
a pepper and salt value become input to another huge number of hashing
operations with a second salt and pepper value. These two stages of intensive
hashing make the creation of rainbow tables more time consuming. For
the attacker trying to break the stretched ICMetric key using rainbow table
attacks, the proposed strong ICMetric key generation protocol increases the
time and complexity thereby making the strong ICMetric key difficult to
break.

6.4. Confidentiality

A vital security goal of the ICMetric public key framework is to main-
tain confidentiality of data. Preserving the secrecy of data is of utmost
importance, so that the data is not leaked to adversaries. As communication
takes place over insecure networks, the system should provide communication
security that secures information exchanged between all participants. The
proposed strong key generation protocol can be used in conjunction with any
cryptographic algorithm. However in this paper, the RSA protocol has been
used in conjunction with the proposed protocol to provide confidentiality of
data in a public key setting. The proposed ICM-RSA protocol is based on
an extended RSA key generation algorithm and the simulations for confiden-
tiality are based on modified RSA encryption/ decryption algorithm. The
greatest advantage of combining the ICMetric technology with RSA is that
it aids in deterring attacks on cryptographic keys which can otherwise result
in the system being exposed.

6.5. Non-repudiation

Asymmetric keys possess qualities which are not directly provisioned by
symmetric keys. A prominent quality is non-repudiation. The proposed
ICM-RSA algorithm has established that it is possible to create asymmetric

27



keys based on the ICMetric of a device. The non-repudiation service is
provisioned by virtue of the qualities of asymmetric keys. Thus when a
message is encrypted with the private keys, a sender cannot deny the action
as the private key is singularly held by that individual/ sender. The non-
repudiation claim is backed by another strong guarantee as the scheme is
based on ICMetric technology which does not rely on stored keys. Thus any
claim related to key theft is rejected at source.

7. Performance Evaluation of the ICMetric Public Key Framework

This section evaluates the performance of the ICMetric strong key gen-
eration protocol and the ICMetric asymmetric key protocol. The strong IC-
Metric key generation protocol using SHA-256 and SHA-512 supports four
strong [CMetric key variants to facilitate operation with varying key sized
cryptosystems.The ICMetric key protocol supports four variants for the gen-
eration of ICMetric public key pairs.

7.1. Implementation

A working prototype of the proposed ICMetric public key framework was
implemented using C on Linux. The framework has been implemented on a
first generation Intel Core i3 3.2 GHz processor with 6 GB RAM using the
OpenSSL cryptographic library [37].

The strong [CMetric key generation protocol has been tested based on
SHA-256 and SHA-512 counterparts respectively. These counterparts each
have four strong key variants to facilitate operation with varying key sized
cryptosystems. The strong ICMetric key generation counterpart based on
SHA-256 has been tested to support four strong ICMetric key size variants
i.e. 256, 512, 1024 and 2048 bits; with a 128 bits device ICMetric as input.
Similarly, the strong ICMetric key generation counterpart based on SHA-512
supports a 256 bits, 512 bits, 1024 and 2048 bits strong ICMetric keys respec-
tively. The features used for the generation of the ICMetric were sequential
input, sequential output, random seeks, max speed for copy function, etc.
The two pepper values used in the implementation are also 128 bits long.
The two unique salt values used in the implementation of the strong ICMet-
ric key generation protocol are each 128 bits long. These salts are generated
as a sequence of random bytes using timestamp as a seed to the random
number generator.

28



The efficiency of the framework is tested by measuring the RAM con-
sumption and execution time of the implemented framework. The runtime
has been used for evaluating the execution time of the system, whereas Val-
grind [38] is used for evaluating the memory consumed by the prototype.
Valgrind is a code profiling and memory debugging tool for Linux. For mem-
ory profiling Valgrind uses Massif [39]. Massif is a memory profiler in Valgrind
that measures how much memory the program uses during its lifetime. It
gives information about the following thereby measuring all possible parts of
memory required for the program:

Useful heap- heap used by the program over time.

Extra heap- heap blocks allocated for administration data over the pro-
grams lifetime.

e Total heap- Total of the useful heap and extra heap allocated for the
program over its lifetime.

Stack- stacks used by the program over time.

Therefore, all the results for memory evaluation are represented in terms
of the above parts of memory occupied by the implementation of the ICMetric
public key framework.

7.2. Execution Time

This section evaluates the time requirements of the proposed ICMetric
strong key generation protocol variants using SHA-256 and SHA-512 respec-
tively. The prototype uses a 128 bits device ICMetric and two 128 bits salt
and pepper values as input for testing all the variants of the prototype.

To prove the scalability of the strong key generation protocols, the time
taken for the generation of keys of varying sizes has been considered.

7.2.1. ICMetric Strong Key Generation

The performance comparison between the proposed strong ICMetric key
generation protocol key variants and PBKFD2[30] is carried out based on the
time taken for the generation of a strong ICMetric key over several experi-
ments. Fach variant has been further evaluated based on either SHA-256 or
SHA-512. The figure 7.2.1 performs a time performance comparison between

the two variants of the proposed ICMetric strong key generation protocol and
PBKDEF2, for generating 256 bits, 512 bits, 1024 bits and 2048 bits strong

29



80000 140000

70000 120000
_ 60000 € 100000
2 50000 8
S % 80000
g 10000 MPBKDF2-256 | © W PBKDF2-512
o [t}
5 mSHA2S6256 | £ 60000 B SHA256-512
g 3000 =
Q
s 200 mSHAS12-256 E 40000 W SHAS12-512
F 10000 20000
0 0
1357 9 11B1517180A85 1357 9 1B1517192123815
Experiment Number Experiment Number
500000
450000
o000 400000
350000
300000 _
3 ¥ 300000
c c
e 230000 WPBKDF2-1024 | § 950000 W PBKDF2-2048
3 200000 WSHA2S6-1024 | & B SHAZS6-2048
g £ 200000
£ NSHAS12-1024 | § HSHAS12-2048
E 150000 £ 150000
o L
£ 100000 £
E £ 100000
50000 50000
0 0

1357 95 101BLLIT1BANBLS 1357 9113151719213 2%5
Experiment Number Experiment Number

Figure 7: Execution Time Comparison of the ICMetric Strong Key Protocol Variants with
PBKDF2 for the Generation of (a) 256 bits (b) 512 bits (c) 1024 bits (d) 2048 bits Strong
Keys (Clockwise starting upper-left corner)

ICMetric keys respectively. The two variants namely SHA256-required key
size and SHA512-required key size are compared with PBKDF2 to gener-
ate the required sized strong ICMetric key in graphs (a) to (d) in figure 7.
The graph shows the number of the experiment versus the time taken in mi-
croseconds by the experiment. It is clear from the graph that the time taken
by the strong ICMetric key variants is more than standard PBKDF2.There
is an increase in the execution time for the proposed protocol, however the
security advantages of the strong key protocol far outweigh the traditional
PBKDF2. These results help assess the resource consumption of the strong
key generation protocol.

30



7.2.2. ICM-RSA Key Generation

The evaluation of the proposed ICM-RSA key generation protocol is done
by comparing it with the performance of the standard RSA key generation
algorithm. These tests have been carried out to show the practicality of
the system, while the security of the system was established theoretically
above. As key sizes are increasing, therefore bigger key sizes have been
simulated as a baseline. The graphs in this section show the trend of the
time consumed by each run of the algorithm and is execution profile of the
program. The graphs a to d in figure 8 are a comparison of the standard
RSA and the ICMetric based RSA (ICM-RSA) key generation algorithm;
when generating 1024, 2048, 3072, 4096 bits keys respectively. Repeated
executions of the algorithm show that standard RSA algorithm possesses
better performance. Additional resources are taken up by ICM-RSA due to
the checks/computations performed on d at steps (e) and (f) of the ICM-
RSA key generation protocol. At the same time, it must be stated that the
use of the ICM-RSA algorithm is justified owing to the benefits it offers.

Minor fluctuations were observed when executing the key generation al-
gorithm. The spikes are present because of the probabilistic nature of the
protocol, and therefore the execution time may vary for each run of the pro-
gram, but remains flexible as the complexity measure of the algorithm does
not change. Although this is a substantial increase compared to the ba-
sic RSA key generation algorithm but the increase does not heavily impact
the performance of modern computation systems. The 3072 bits key size is
simulated in figure 8 (c¢) to determine how the ICMetric technology would
influence futuristic applications where the key sizes can be 3072 bits or more.
The basic RSA key generation algorithm is highly efficient in operations but
this should not deter cryptographers from choosing the slightly expensive
ICM-RSA.

Like the previous key sizes the RSA algorithm outperforms the ICM-RSA
when considering the 4096-bits key in graph 8(d). The execution time of the
ICM-RSA is excessively high but since measurements are in the microsec-
onds scale therefore the performance is not severely hampered. After a large
number of iterations, the average is computed for both the proposed proto-
col and the rivalling scheme. It can be concluded that the standard RSA
algorithm is faster and on average takes 1704.008 microseconds, while the
ICM-RSA algorithm offers higher levels of security but requires much more
average execution time i.e. 773117.61 microseconds.

31



8.00E+04 1.B0E+05

e L5 ICM-RSA
— A em— CM-RSA 16005
7.00E+04
1.40E+05
7 6.00E+04 =
E T 120E+05
o =
5.00E+04 8
U 100E+05
2 g
£ 4.00E+04 £ BODE:04
£ 3.00E-04 £ 60004
[S S
2.00E+04 4.00E+04
1.00E+04 2.00E+04
L - A s
0.00E=00 Ve A — 0.00E+00
Ao Ho LA o0 R 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 81 97
Experiment Number Experiment Number
— R5A ICM-RSA 1.00E+06
6.00E+05
9.00E+D5
5 00E+05 B.0DE+D5
& 7.00E+05
— 9
E 4.00E+05 é 5.00E+05
g 8
b 2 5.00E+D5
£ 3008405 =
k = 4.00E+05
5 £
T £
£ 2000005 F 3.00E+05
2.00E+05
1.00E+05 1.00E+05
0.00E+D0
0.00E+00 CPHEREARTSRABBRRERA A
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 907 Experiment Number
Experiment Number — R 5A ICM-RS5A

Figure 8: Execution Time Comparison of the RSA Key Generation with Extended RSA
Key Generation for a (a) 1024 bits (b) 2048 (c) 3072 and (d) 4096 bits Key (Clockwise

starting upper-left corner)

32



120000 em— E iy pt

e EnCrypt
25000 decrypt e deCrypt
— P
o 100000 s [CM-ENCTYPT
s | CM-£n CTYPT
ICM-d " w ICM-decrypt
20000 ecrypt “
- e £ o000
;
ﬁ 15000 2 60000
5
g E
o =
£ 10000 £ 40000
T =
E
. 5000 20000
0 et 0
1 7 13 19 75 31 37 43 49 55 61 67 73 79 85 91 97 103 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103
Experiment Number Experiment Number
m— FrCrypt
400000 — o
decrypt
350000 s |CM -£nCTYDRL —
ICM-decrypt s00oco s [CM N CTYpT

300000 800000 icM-decrypt
7700000

E 600000
200000 2 500000
o

150000 EADDDDD 1 n AAN A
100000 £ 300000
= 200000 n..,\,ﬁ. Aond A

50000 100000
0 0

1 6 1116 21 26 31 36 41 46 51 56 61 66 71 76 81 8 91 25 101 1 6 1116 21 26 31 36 41 45 51 56 61 66 71 76 B1 86 91 96101

250000

Time(microseconds)

Experiment Number Experiment Number

Figure 9: Execution Time Comparison of RSA Encryption/Decryption with ICMetric-
RSA Encryption/Decryption using (a) 1024 bits Key (b) 2048 bits key (c) 3072 bits key
and (d) 4096 bits key (Clockwise starting upper-left corner)

7.2.8. ICM-RSA Encryption/Decryption

To understand the effect of key size on encryption and decryption oper-
ations, the generated ICM-RSA key variants are tested using both the pro-
posed and the standard RSA protocols. It is evident from the superimposed
graphs a to d in Figure 9 that the standard RSA is faster while performing
encryption/ decryption.

A comparison of RSA encryption/ decryption with the proposed ICM-
RSA encryption/ decryption shows very competitive results. The graphs a
to d in figure 9 depict the proposed protocol performance comparison with
the standard RSA using a 1024 bits, 2048 bits, 3072 bits and 4096 bits key
respectively. Both protocols are very competitive in performance although
the standard RSA outperforms the proposed protocol. The average time for
key generation using RSA is very moderate while the ICM-RSA protocols

33



average execution time is slightly elevated. The biggest factor influencing
the resource consumption of ICM-RSA encryption/decryption is the value of
e and d. Both the encryption/decryption in ICM-RSA are exponentiation
functions; with the values of e and d being quite large. Therefore, the execu-
tion time is also fairly large since the time taken is proportional to the size
of the exponent. The exponent d is the ICMetric number and quite large,
therefore the time taken for decryption is quite large. Encryption time is
also much greater in ICM-RSA, since e is much greater in case of ICM-RSA
as compared to e in standard RSA. As there are frequent fluctuations in
execution time therefore the average execution time is computed.

7.8. Average RAM Consumption Performance Comparison

In this section, the performance comparison between the proposed strong
ICMetric key generation protocol and PBKDF2 is carried out based on the
RAM consumed for the generation of a strong ICMetric key. The purpose
here is to demonstrate that strong ICMetric based keys can be generated
with minimum impact on the target system.

The graphs a to d in figure 10 performs an average RAM consumption
comparison between the two variants of the proposed ICMetric strong key
generation protocol versus the PBKDF2 for generating a 256 bits, 512 bits,
1024 and 2048 bits strong key respectively. These two used variants namely
SHA256 and SHA512 are compared with PBKDF2 to generate varying sized
strong ICMetric keys. The graph shows the name of the protocol versus the
average RAM consumption in bytes. It is evident from the graphs a to d that
the SHA-512 bits variant of the proposed protocol has the maximum average
RAM consumption. A comparison of strong 256 bits ICMetric key generation
based on SHA-256 and SHA-512 shows that, there is a 1.19 precent increase in
RAM for strong ICMetric key generation based on SHA-512. This percentage
increase in RAM translates to 16 bytes which is readily available in many
modern computation systems. There is very slight difference in the RAM
consumed by the four variants of the strong ICMetric key generation protocol
based on SHA-256 and SHA-512. This is because the internal structures of
both key derivation function blocks are very similar. Both the SHA-256 and
SHA-512 have the same internal block size and the same internal state size.
It is for this reason that there is very small difference between the memory
consumption readings of the SHA-256 based strong ICMetric key variants
and the SHA-512 based strong key variants.

34



1360 1420

F 1350 T
§ 1320 § 150
& 1330 2 1360
S 1320 <
2 1310 - 2 1340
& 1300 = 1320
1290 1300
wn 1=} [f=1 ~ ~ ™~
wn w vy ™~ ™~ ™~
o o o n D~ v~
~ Z o Z o ™~ z e =
g &3 &3 g 88 &3
> >
g cE 23 g 25 <3
s b b b
] 3 3 3
— 1550 7 1800
$ 1500 £ 1700
2 1450 £ 1600
s 1400 2 1500 -
< 1350 £ 1200
1300 © = =
§ z% 2% S E4 &4
o b g 2 Q b 0O«
0 P o vh o5
s
& 8§ 3§ 2 3% 3%
- -~ - ~ - ~

Figure 10: Average RAM Consumption Comparison of the ICMetric Strong Key Protocol
Variants with PBKDF2 for the Generation of (a)256 bits (b) 512 bits (c¢) 1024 bits and
(d) 2048 bits Strong ICMetric Keys

35



8. Conclusion

This paper presents a public key framework based on the ICMetric tech-
nology thereby demonstrating the feasability of the ICMetric technology for
asymmetric key cryptosystems.The proposed framework bridges the gap be-
tween the ICMetric technology and its use in security applications. The
proposed ICMetric strong key generation protocol and the ICMetric asym-
metric protocol make the ICMetric public key framework adaptable to the
requirements of different public key cryptosystems. The two-tier approach
followed by the strong key generation protocol aims to strengthen the weak
ICMetric key, thereby safeguarding it from pre-computed attacks and IC-
Metric capture. The RSA key generation algorithm is highly stable therefore
efforts have been made to ensure that it is very carefully tuned to work with
ICMetric technology, thereby providing confidentiality and non-repudiation.

The proposed framework has been simulated and tested to show that 1C-
Metric based asymmetric keys can be generated without excessive resource
demand. Simulation results show that the basic RSA algorithm outper-
forms the proposed algorithm, but this should not deter system designers
and cryptographers as the ICM-RSA algorithm is both feature rich and pro-
vides increased security. The results obtained from performance evaluation
and security analysis lead to the conclusion that at the expense of additional
time and memory, the proposed protocol makes the ICMetric technology very
viable for deployment in various applications.

References

[1] A. J. Brush, J. Hong, J. Scott, Pervasive computing moves in, IEEE
Pervasive Computing 15 (2) (2016) 14-15.

[2] J. Soni, R. Goodman, A Mind at Play : How Claude Shannon Invented
the Information Age, Simon & Schuster, 2017.

[3] Y. Dodis, The Cost of Cryptography (2013).
URL http://nautil.us/issue/7/waste/the-cost-of-cryptography

[4] C. Graham, NHS cyber attack: Everything you need to know about
'biggest ransomware’ offensive in history (may 2017).
URL http://www.telegraph.co.uk/news/2017/05/13/nhs-cyber-
attack-everything-need-know-biggest-ransomware-offensive/

36



[5]

[10]

[11]

L. J. Camp, M. E. Johnson, The Economics of Financial and Medical
Identity Theft, Springer US, Boston, MA, 2012. doi:10.1007/978-1-4614-
1918-1.

URL http://1link.springer.com/10.1007/978-1-4614-1918-1

M. Miskiewicz, B. Ksieezopolski, Cryptographic keys management sys-
tem based on dna strands, in: 2019 Federated Conference on Computer
Science and Information Systems (FedCSIS), 2019, pp. 231-235.

K. Mcdonald-Maier, Device to generate a machine specific identification
key, Tech. rep. (aug 2013).

P. Barry, P. Crowley, Modern embedded computing : designing con-
nected, pervasive, media-rich systems, Morgan Kaufmann/Elsevier,
2012.

D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, E. Tromer, Physical
key extraction attacks on PCs, Communications of the ACM 59 (6)
(2016) 70-79. doi:10.1145/2851486.

URL http://doi.acm.org/10.1145/2851486Y%

R. Tahir, H. Huosheng Hu, D. Dongbing Gu, K. McDonald-Maier,
G. Howells, Resilience against brute force and rainbow table attacks
using strong ICMetrics session key pairs, in: 2013 1st International Con-

ference on Communications, Signal Processing, and their Applications
(ICCSPA), IEEE, 2013, pp. 1-6. doi:10.1109/ICCSPA.2013.6487307.

D. Merli, R. Plaga, Physical unclonable functions: devices for cryp-
tostorage, in: Proceedings of the 3rd international workshop on Trust-
worthy embedded devices - TrustED ’13, ACM Press, New York, New
York, USA, 2013, pp. 1-2. doi:10.1145/2517300.2528524.

URL http://dl.acm.org/citation.cfm?doid=2517300.2528524

H. Tahir, R. Tahir, K. McDonald-Maier, On the security of consumer
wearable devices in the Internet of Things, PLOS ONE 13 (4) (2018)
e0195487. do0i:10.1371/journal.pone.0195487.

URL https://dx.plos.org/10.1371/journal.pone.0195487

J. Andress, Foundations of Information Security: A Straightforward
Introduction, No Starch Press, 2019.
URL https://books.google.com.pk/books?id=kVv6DwAAQBAJ

37



[21]

[22]

[14]

[15]

[16]

[17]

S. Tahir, I. Rashid, Icmetric-based secure communication, in: Innovative
Solutions for Access Control Management, IGI Global, 2016, pp. 263
293.

E. Papoutsis, Investigation of the Potential of Generating Encryption
Keys for ICMETRICS, Doctoral thesis, University of Kent (2009).

E. Papoutsis, G. Howells, A. Hopkins, K. McDonald-Maier, Integrating
Feature Values for Key Generation in an ICmetric System, in: 2009
NASA/ESA Conference on Adaptive Hardware and Systems, IEEE,
2009, pp. 82-88. doi:10.1109/AHS.2009.30.

M. Mehdi, M. T. Ajani, H. Tahir, S. Tahir, Z. Alizai, F. Khan,
Q. Riaz, M. Hussain, Puf-based key generation scheme for se-
cure group communication using mems, Electronics 10 (14) (2021).
d0i:10.3390/electronics10141691.

URL https://www.mdpi.com/2079-9292/10/14/1691

G. H. W. G. J. W. G. T. R. I. G. Mcdonald-maier, Klaus Dieter (Har-
wich, Trusted ring (March 2020).
URL https://wuw.freepatentsonline.com/y2020/0099521.html

R. Tahir, H. Tahir, K. McDonald-Maier, Securing health sensing using
integrated circuit metric, Sensors (Switzerland) 15 (10) (2015) 26621
26642.

K. Schramm, K. Lemke, C. Paar, Embedded Cryptography: Side
Channel Attacks, in: Embedded Security in Cars, Springer-Verlag,
Berlin/Heidelberg, 2006, pp. 187-206. doi:10.1007/3-540-28428-141.

R. Maes, Physically Unclonable Functions: Constructions, Properties and
Applications, Ph.D. thesis, Katholieke Universiteit Leuven (2012).

H. Bojinov, Y. Michalevsky, Mobile Device Identification via Sensor Finger-
printing, Tech. rep. (2014). arXiv:1408.1416.
URL http://arxiv.org/abs/1408.1416

G.-J. Schrijen, V. van der Leest, Comparative analysis of SRAM memories
used as PUF primitives, in: Proceedings of the Conference on Design, Au-
tomation and Test in Europe, IEEE, Dresden, 2012, pp. 1319-1324.

38



[24]

32]

33]

R. Maes, A. Van Herrewege, I. Verbauwhede, PUFKY: A Fully Functional
PUF-Based Cryptographic Key Generator, in: International Workshop on
Cryptographic Hardware and Embedded Systems, Springer, Berlin, Heidel-
berg, Leuven, 2012, pp. 302-319. doi:10.1007/978-3-642-33027-8;8.
URLhttp://link.springer.com/10.1007/978-3-642-33027-8_18

K. Dieter, Howells, W. G. James, Tahir, Ruhma, Trusted ring - metrarc
limited (Mar 2020).
URL http://www.freepatentsonline.com/y2020/0099521 . html

E. Karnin, J. Greene, M. Hellman, On secret sharing systems, IEEE Trans-
actions on Information Theory 29 (1) (1983) 35-41.

S. Yadav, G. Howells, Secure device identification using multidimensional
mapping, in: 2019 Eighth International Conference on Emerging Security
Technologies (EST), 2019, pp. 1-5.

M. S. Turan, E. Barker, W. Burr, L. Chen, Recommendation for Password-
Based Key Derivation - Part 1: Storage Applications (2010).
URL http://csrc.nist.gov/publications/nistpubs/800-132/

B. Kaliski, PKCS #b5: Password-Based Cryptography Specification (2000).
URL http://www.ietf.org/rfc/rfc2898.txt

A. F. Tuorio, A. Visconti, Understanding optimizations and measuring per-
formances of pbkdf2, in: International Conference on Wireless Intelligent and
Distributed Environment for Communication, Springer, 2018, pp. 101-114.

NIST, Digital Identity Guidelines: Authentication and Lifecycle Manage-
ment (2017).

URL  http://csrc.nist.gov/publications/drafts/800-63-3/sp800-
63b-draft.pdf

D. Hook, Beginning Cryptography with Java, Wrox Press Ltd, Birmingham,
2005.
URL http://dl.acm.org/citation.cfm?id=1051127

Z. Gutterman, B. Pinkas, T. Reinman, Analysis of the Linux random num-
ber generator, in: 2006 IEEE Symposium on Security and Privacy, IEEE,
Berkley, 2006, pp. 15 pp.—385. do0i:10.1109/SP.2006.5.

URL http://ieeexplore.ieee.org/document/1624027/

39



[34] A. Das, C. E. V. Madhavan, Public-key cryptography theory and practice,
Pearson Education, 2009.

[35] D. R. Hankerson, S. A. Vanstone, A. J. Menezes, Guide to Elliptic Curve
Cryptography, Springer, 2003.

[36] A. Visconti, S. Bossi, H. Ragab, A. Calo, On the weaknesses of pbkdf2,
in: International Conference on Cryptology and Network Security, Springer,
2015, pp- 119-126.

[37] J. Viega, M. Messier, P. Chandra, Network security with OpenSSL, O’Reilly,
2002.

[38] Valgrind Documentation, Tech. rep., Valgrind Developers (2016).

[39] M. Wolff, Massif-Visualizer Memory Profiling UI, Tech. rep. (2011).

40



