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Abstract

The rapidly expanding nature of the Internet of Things (IoT) networks is
beginning to attract interest across a range of applications, including smart
homes, smart transportation, smart health, and industrial contexts such as
smart robotics. This cutting-edge technology enables individuals to track and
control their integrated environment in real-time and remotely via a thousand
IoT devices comprised of sensors and actuators that actively participate in sens-
ing, processing, storing, and sharing information. Nonetheless, IoT devices are
frequently deployed in hostile environments, wherein adversaries attempt to
capture and breach them in order to seize control of the entire network. One
such example of potentially malicious behaviour is the cloning of IoT devices, in
which an attacker can physically capture the devices, obtain some sensitive infor-
mation, duplicate the devices, and intelligently deploy them in desired locations
to conduct various insider attacks. A device cloning attack on IoT networks is
a significant security concern since it allows for selective forwarding, sink-hole,
black-hole, and warm-hole attacks. To address this issue, this paper provides
an efficient scheme for detecting clone node attack on IoT networks that makes
use of semantic information about IoT devices known as context information
sensed from the deployed environment to locate them securely. We design the
location proof mechanism by combining location proofs and batch verification of
the extended elliptic curve digital signature technique (ECDSA*) to accelerate
the verification process at selected trusted nodes. We demonstrate the security
of our proposed scheme and its resilience to secure clone node attack detection
by conducting a comprehensive security analysis of our proposed scheme. The
performance analysis and experimental results compared with existing studies
suggest that our proposed scheme provides a high degree of detection accu-
racy with minimal detection time and significantly reduces the computation,
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communication and storage overhead.
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1. Introduction

The Internet of Things (IoT) is an emerging and promising network paradigm,
consisting of a large number of devices that provide people and objects with the
means to interact, communicate and share data for multiple purposes [1]. These
devices are heterogeneous and are deployed in a versatile environment to gather
data and information sent to some managing authorities, i.e. clouds for analysis
or improve decision-making [2]. For example, IoT-based smart home features a
variety of automated devices, such as smart refrigerator, thermostat, doorbells,
security alarms, and so on., which allow homeowners to control and manage
their homes remotely, and to inform them when suspicious activity occurs in
their absence [3]. Few other prominent IoT-based applications are smart cities
[4], smart vehicles [5], smart health [6], and IoT-based industries [7].

Apart from providing quality services in several day-to-day routine activities,
IoT devices have experienced a large number of attacks ranging from security
threats to privacy concerns due to the limitations of their functional capabilities
(i.e. computing, storage, power), heterogeneous design, restricted features and
availability, and lack of advanced security protocols [8]. For example, IoT de-
vices are primarily non-tempered resistant and versatile, so malicious attackers
can easily compromise the authentication mechanisms and control highly avail-
able devices of the IoT network [9]. One such type of attack on IoT devices is
a clone-node attack, also referred to as a device replication attack [10].

In a clone-node attack, the attacker can capture the physical device(s) from
the IoT network by extracting their secret credential, including ID, public and
private keys. There are several steps to exploiting this vulnerability which
involve capturing the physical device, obtaining the secret credentials, modifying
its function, and placing it back in the network at some other location [11].
In most cases, the IoT devices designed and assembled by untrusted security
partners, which lack updated security firmware and outdated certificates, may
lead to a cause of the clone-node attack [12]. Thus, a clone-node attack is
regarded as the most severe attack in which clone nodes claim to be legitimate
nodes with the same credentials as original nodes. The clone node attack can
also be used as a part of other malicious attacks within the IoT network, such
as a selective forwarding attack, wormhole attack, and blackhole attack [13].
A scenario of clone node attack and its influence on IoT-based networks is
illustrated in Fig. 1.

A most straightforward way to mitigate the risk of a clone-node attack on
an IoT network is that every device sends an authentication message consist-
ing of its information and all the information of the neighbour devices to a
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Figure 1: A Scenario of Clone Node Attack and its Influence in IoT

base station using some data forwarding protocol. The base station verifies the
message’s authenticity by using a secret key shared with the particular node
[14]. However, this forwarding information approach incurs extra communica-
tion overhead because of redundant information of the same neighbouring nodes
already sent by other nodes to the base station. As a result, this procedure cre-
ates additional computing overhead during the verification process. Although
witness-based techniques are also used to detect clone node attack, these rely on
public-key cryptography, which may not be feasible for low constrained devices.
In addition, some clone node attack detection mechanisms rely on secret key
sharing, which allows adversaries to intercept, drop some messages, and create
their authentication messages [15].

An effective clone node attack detection mechanism must accomplish the
following objectives to secure IoT devices from adversaries. For example, a
clone node detection mechanism must achieve a high detection rate of attacks
in the system, which can be achieved by matching the traffic patterns or attack
patterns with the incoming traffic in order to track the adversary’s activities.
Implementing a secure database with consistent and up-to-date device-related
record and attack patterns can also result in a high detection rate of clone node
attack. The detection time is also an important objective for developing the
cloned node detection system since it facilitates detecting malicious activities
performed by adversaries in the shortest amount of time. A robust framework
for detecting clone nodes attack on IoT systems must detect attacks in real-
time. Along with achieving a high detection rate and a low detection time, one
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of the main objectives of developing an effective clone node attack detection
mechanism is to minimise the false positive rate, which occurs when the system
incorrectly interprets normal behaviour as an attack, triggering false alarms in
the system and causing significant issues. Furthermore, since IoT networks are
often composed of heterogeneous devices that are resource-constrained, they are
unable to perform computationally intensive operations or store large amounts
of data. As a result, when designing the cloned node detection mechanism, one
must carefully consider the computation, storage, and energy limitations of IoT
devices.

To address the shortcomings of existing clone node attack detection mecha-
nisms and achieve the objectives above, we propose a novel and efficient clone
node attack detection mechanism in IoT networks that leverage context-aware
information of IoT devices. Context information is the semantic information
that enables users to comprehend the networking environment and subsequently
locate network entities via the relationships of entities with the environment. We
develop a location-proof system that works in conjunction with context-aware
modalities information to locate IoT devices securely. To achieve computa-
tional efficiency in the location proof system (LPS), we used batch verification
of ECDSA* (an upgraded version of the elliptic curve digital signature algo-
rithm) to accelerate the verification process of location proofs at selected trusted
nodes than verifying them at a single base station. In addition, we conducted
an extensive security analysis, outlining the prerequisites and several security
needs for ECC and the possibility of several types of attacks on the signatures
and hashes used in our proposed scheme. Our simulation results indicated that
the proposed scheme is robust towards attack detection in a timely manner and
significantly reduces computation, communication, and storage overhead.

To design the context-aware information-based clone node attack detection
mechanism in IoT, the following are the main contributions to this paper.

• We emphasise the importance of addressing security issues associated with
existing IoT device authentication mechanisms that frequently result in
node cloning attacks on IoT networks.

• We explore the objectives for designing an efficient clone node attack de-
tection mechanism, with the aim of implementing an efficient context-
aware information-based mechanism for detecting clone node attack on
IoT networks.

• We design a location proof mechanism in conjunction with batch verifica-
tion of ECDSA* to accelerate the verification process at selected trusted
nodes.

• We conduct an extensive security analysis, outlining the prerequisites and
several security needs for ECC and the possibility of several types of at-
tacks.

• We compare our proposed scheme to existing clone node attack detec-
tion mechanisms, proving its efficiency in detecting attacks with minimal
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detection time and highlighting its importance in terms of computation,
communication, and storage overhead in IoT networks.

The rest of the paper is organised as follows: Section 2 presents the pre-
liminaries as a background to our work and summarise the existing clone node
attack detection mechanisms developed for IoT. In section 3, we present a de-
tailed description of our proposed methodology, including network and attacker
models, an enhanced elliptic curve digital signature technique, and the selection
of trusted nodes. Section 4 discusses the mechanism for localisation employed
in the LPS, including the proposed algorithm and execution flow. In section
5, we conduct a security analysis of our proposed method, including multiple
ECC security requirements and attacks on hashes and digital signatures. The
simulation results and analysis of our proposed scheme are then presented in
section 6. Finally, in section 7, we summarise our work and describe future
work.

2. Background and Related Work

This section describes the following concepts as a preliminary or background
to our work, such as batch verification, context-aware systems and LPSs, and
then provides an overview of existing state-of-the-art clone-node detection mech-
anisms and their limitations in the related work sub-section.

2.1. Preliminaries

2.1.1. Batch Verification

With the proliferation of IoT applications ranging from home to large-scale
industrial setups and adopting advanced communication protocols, security has
evolved into an integral component of IoT networks. To guarantee the security
of IoT devices and the data they transmit, digital signatures are used to verify
the authenticity of the devices or messages during communication [16]. However,
since IoT network scalability is critical in most applications, verifying individual
IoT device signatures is a time-consuming process that is not recommended in
IoT systems. However, by verifying digital signatures in batches, it is possible
to reduce verification time significantly.

Batch Verification is a concept that involves verifying multiple signatures
simultaneously in order to minimise the time taken to validate each signature
submitted by thousands of sensor nodes in large-scale IoT networks. The ad-
vantage of employing the batch verification principle is that it can significantly
reduce the computation load and time required for IoT devices by performing
multiple digital signatures. As a result, this concept is advantageous in an IoT
setting where nodes have limited computing power and run in real-time [17, 18].
Numerous batch verification methods have been proposed for several crypto-
graphic protocols, including the digital signature algorithm (DSA) [19] and the
rivest-shamir-adleman (RSA) [20]. However, these protocols are not appropri-
ate to IoT devices due to their resource scarcity. Recent years have seen a surge
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of interest in the use of ECDSA in IoT applications, owing to the smaller key
and signature sizes needed by ECDSA compared to DSA and RSA. However,
the implementation of batch verification of these protocols is not immediately
applicable to ECDSA signatures [21].

2.1.2. Context-Aware Systems

IoT networks comprise a generous amount of connected devices stacked with
a certain degree of intelligence that collects data from their surroundings. These
IoT devices are expected to produce many data, which often requires care-
ful identification, interpretation, and analysis. A context-aware system is an
exemplary IoT environment where the system is deployed to keep track of sur-
rounding objects and also provide timely feedback to the user, and their related
applications [22, 23].

Context-aware systems have been implemented in IoT environments to sense
the landscaping operational eco-system and react appropriately to the user and
application. These systems analyse and translate data produced by IoT devices
into contextual information, providing a high level of understanding of semantic
data used for machine-integrated setup. In such systems, the server transforms
the information stored in devices into a higher-level type and analyses it se-
mantically before acting on it to perform further operations. Therefore, context
information is the foundation that allows users to understand the networking
environment and then locate the network entities by leveraging the relationships
between the entities and the environment [24].

Context information is used to describe the state of an environment, which
is typically composed of the following primary entities: users, an application, a
location, or a device. There are essentially two forms of contextual information
used in the IoT environments, such as primary and secondary. In the primary
context, the information is specified as name, time, location, activity, etc. Fur-
thermore, the secondary context is any information that can be measured by
using the primary context. For example, the sensor deployed in the smart city
environment is capable of monitoring vehicle position information along with
other information, such as vehicle identification, activity, time, and so on [25].

2.1.3. Location proof system

Location-based services are primarily used to support a variety of services
in diverse IoT-based applications, such as tracking and monitoring patients,
tracking the location of vehicles on the road, and determining the actual position
of an individual [26]. However, it is critical and a difficult problem in most IoT-
based applications to establish trust for the physical presence of any users and
its operated devices at a specific location and time using an efficient, accurate,
and robust method [27].

To resolve this issue, LPSs are being developed in IoT-based applications,
which provide a means for creating and sharing digitally signed context data to
provide evidence of a particular user’s location at any point instance at a given
time. Such systems provide secure proof of a user’s location, in which LPS
first verify a location of a device at a given time and then grant the additional
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access needed for a particular device [28]. Additionally, it may also facilitate
the process of establishing evidence for a variety of location-based scenarios,
including a single location, travel route history, and event summaries such as
running and walking [29].

2.2. Related Work

Due to the popularity of IoT-based specific applications in recent years,
there has been an increase in interest from researchers and academia in finding
security solutions for protecting IoT devices and the data shared between them.
A clone node attack detection mechanism has proven to be an effective way to
protect IoT devices from adversaries. The detection methods attempt to locate
the abnormal activities performed by the attacker, which resulted in the creation
of duplicate nodes in the network. For example, a unique ID is associated with
two different locations. A few other methods used to detect the cloned node
attacks are received signal strength, witness finding, random key predistribution,
location verification, and calculating distance measurement using the Euclidean
distance algorithm [11].

Each detection mechanism is intended to detect clone node attack in the
shortest amount of time with the least amount of damage; however, this is not
a simple task due to the legal identity of nodes and other environmental factors
such as location. In general, detection mechanisms according to their detection
ability are categorised into two different position patterns in the deployed net-
work: static and mobile. Since most nodes deployed in an IoT setting adhere
to a static position pattern due to their fixed locations, it becomes easier to
detect node replicas or clones by matching their identities. On the other hand,
in comparison to static position patterns, detecting clone nodes in a mobility
pattern is more difficult because nodes are not fixed in one location and often
move in the network; thus, even if identity information is matched, it is difficult
to conclude that a clone of the ID is found in another location [38].

In static networks, a commonly used technique for detecting cloned node
attack is to compare the information of all neighbouring nodes, in which each
node compares its information to the information of all neighbouring nodes and
then determines whether or not there is any inconsistency in the stored infor-
mation [14]. Witness finding is another widely used technique for detecting
clone nodes attack in static networks. In particular, the idea of using the wit-
ness finding technique is to find the existence of clone’s nodes and decide what
proportion of nodes are cloned based on their positions being conflicted with
others in the network. Parno et al. [10] suggested a witness-based scheme for
detecting replica nodes in which several witness nodes were randomly chosen or
selected along the network’s forwarding path. Thus, each sensor node kept track
of the identity of neighbouring nodes and the location of several witness nodes.
However, the scheme is inefficient for the majority of sensor nodes with limited
memory since it is based on public-key cryptography, which allows each sensor
to store the public keys of the other nodes, increasing the memory overhead.

Brooks et al. [30] employ the principle of random key predistribution to de-
tect clone attacks in sensor networks, in which the keys accessible on clone nodes
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Table 1: A Comparison of Existing Clone Node Attack Detection Mechanisms in Internet of
Things

Ref clone node attack
Detection
Technique

Network
Type

Strengths Weaknesses

Evaluation
Parameters

DP CO SO CMO

[14]

Create fingerprints
of each node
by analysing

the social features
of neighbourhood

nodes Static

Significantly
decrease computation,
communication, and
storage overhead

while maintaining a
high probability

of detection

Performs additional
processing to

generate fingerprints
on both

sensors and
base station ✓ ✓ ✓ ✓

[10]

Witness
finding

technique Static

Detection of
globally aware
distributed

node replicas
with optimum efficiency

characteristics
High storage

overhead ✓ ✓ ✓ ✓

[30]
Random key

predistribution Static

The hypothesis
testing approach and

bloom filters
allow the safe and
efficient collection

of key usage
data

Proposed mechanism
is limited

to detection probability
and

communication
overhead, relying

entirely on symmetric
cryptography ✓ ✗ ✗ ✓

[31]

Perform set
operations
(union and
interaction)
on exclusive
subsets in

the network Static

An adversary’s
exclusive subset is
unpredictable due

to the tree
structure and
randomisation

High computation
overhead ✓ ✓ ✓ ✓

[13]

Utilize the
mapper function

to assign
each node a
unique ID
and rank

information Static

The mapper
function efficiently
identifies anomalies

between node
IDs and their ranks

An attacker
can seize a witness

node to isolate
itself from the
network’s other

replicas ✓ ✓ ✓ ✗

[32]

Extensive node
energy

consumption
smoothing Static

The trust algorithm
includes multi-
stage identity

and location verification

Restricted the
scope of its

application to
computation and
security analysis ✓ ✗ ✓ ✓

[33]
Trust-profiling
of sensor nodes Static

Attribution analysis
detects all
forms of

potential malicious
nodes with

contact behavior-
based data

Introduces an
additional

computational
overhead for large

networks with
hundreds of nodes ✓ ✓ ✗ ✗

[34]

Fingerprint-based
zero-knowledge

mechanism Static

The fingerprint algorithm
increases the
detection rate

with minimal time

Increase the
computation and
communication

overhead ✓ ✗ ✗ ✗

[35]

Localised
algorithms

(XED, EDD) Mobile

Localized detection,
Efficiency and

effectiveness, Network-wide
synchronization and

revocation
avoidance

High computation
overhead ✓ ✓ ✓ ✓

[36]
Sequential tests of

statistical hypotheses Mobile

Composed of
random and
sequential

measures decreases the
false-positive

and false-negative
instances

Increases computation
and storage

on the witness node
for detecting
cloned devices ✓ ✓ ✓ ✓

[37] Multidimensional scaling Both

Requires zero
geographical location

information,
improving the entire
detection process

Restricted in
scope of

achieving security ✓ ✓ ✓ ✓

DP = Detection Probability, CO = Computation Overhead, SO = Storage Overhead, CMO =
Communication Overhead
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and their maximum usage for authentication determine the attacker’s presence
in the network. The process recovered from a cloning attack by eliminating ties
using cloned keys upon identification of clone nodes. Choi et al. [31] proposed
a clone node attack detection mechanism for sensor networks to reduce compu-
tation and storage overhead by using various set operations such as union and
interactions. The main idea of the proposed scheme is to detect clones by calcu-
lating set functions (intersection and union) on exclusive subsets in the network
in order to securely define additional exclusive unit subsets across neighbours.
Nonetheless, this method allows an attacker to obtain the secret information
of the sensor nodes, which can then be used to conduct network-wide insider
attacks.

Raza et al. [13] suggested a clone node attack detection protocol for the
6LoWPAN networks called SVELTE to detect unusual behaviours, such as
cloning and selective forwarding. In this protocol, each node, including its
parents and neighbours, is allocated with a unique ID and the rank informa-
tion using a mapper function called the 6LoWPAN Mapper. Later, the mapper
feature employed by the witness node can identify anomalies between the node
IDs and their ranks. However, if an attacker can capture a witness node, this
information is shielded from the other replicas in the network. Alsaedi et al.
[32] developed a multi-level-based cloning mechanism to verify the identity and
positions of nodes using the exponential smoothing trust algorithm. In this
process, the energy consumption of the nodes suggested the difference between
the legitimate nodes and the cloned nodes, which means that nodes with higher
energy consumption in the network are considered to be cloned nodes. How-
ever, this approach significantly increased the energy consumption of routine
workload due to the additional computation required to differentiate the cloned
and original nodes.

Rikli et al. [33] proposed a trust-profiling based mechanism that detects
cloned nodes attack in wireless sensor networks. In this method, trust values
called threshold values are determined for the subsequent adjacent nodes, and
then these values are used to decide whether the observed values are less than
the calculated threshold values. This method, however, introduces an additional
computational overhead for large networks with hundreds of nodes, as each sen-
sor node determines the threshold value for their neighbouring nodes and then
compares it to the threshold values of others for detection purposes. Shanmugam
et al. [34] proposed a method for detecting clone nodes in an IoT-enabled smart
cities environment using a fingerprint-based zero-knowledge mechanism for two-
level authentication of sensor devices. The base station calculates the unique
fingerprint for each node using information about its immediate surroundings,
which is defined by a superimposed s-distinct code matrix. Although this work
claims a high detection rate by comparing the fingerprints of each device to the
stored information at the base station, this method increases the computation
overhead on the base station if a large number of sensor nodes need to verify
their fingerprints simultaneously. Additionally, this work restricts the sensor
device pattern to a static network, increasing the communication overhead be-
tween cluster nodes and base station.
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While defending against node replication attacks is critical, very few solu-
tions have been proposed in mobile networks compared to the comprehensive
research on defending against node replication attacks in static networks. A lim-
ited number of techniques are used to protect mobile sensor networks against
clone node attack, including localised algorithms, witness finding, and multidi-
mensional scaling.

For instance, Yu et al. [35] suggest a similar method based on localisation
algorithms (e.g. XED and EDD), in which each node in the network communi-
cates with only its one-hop neighbours, as opposed to a distributed algorithm,
which only implies that nodes accomplish the job independently of the base
station. With this method, each node can enforce network-wide revocation
of the clone nodes without overwhelming the entire network with revocation
messages. Similarly to the witness finding strategy in static networks, Zhou
et al. [36] proposed a distributed and management technique for detecting
mobile replicas that tolerates node failures by forwarding sensor node location
claims to collect samples only when the relevant witnesses meet. Sequential tests
based on statistical hypotheses are used to detect the cloned node in accordance
with the witness nodes, significantly reducing the routeing overhead and false
positive/negative rate for detection; however, this technique imposes additional
computation and storage overhead on the witness node acting as the main node,
collecting samples and forwarding information to the base station for detection
of clone nodes. Lee et al. [37] suggested a multidimensional scaling-based ap-
proach for detecting clone nodes in IoT networks that works for both static and
mobile networks. This approach creates a network map by using the nodes’ rel-
ative neighbourhood-distance information. This method generates the network
map using the relative neighbourhood-distance information for the nodes and
distributing the total computational load of such information across multiple
base stations with increased computational capacity. Since this approach aims
to achieve a high detection rate for clone nodes in the network, it is restricted
in the scope of computational, communication, and storage overhead for IoT
devices and base stations.

To overcome the limitations of existing solutions for detecting clone node
attack, such as the most use of static networks and a high detection rate, and
the computational and communication overhead on the network as compared in
Table 1, we propose an efficient scheme that makes effective use of the context
information of IoT devices to detect clone node attack. We used the LPS concept
to determine the exact location of IoT devices in a mobile network environment.
To achieve computational efficiency, we use the batch verification principle of
ECDSA* to verify the signatures of IoT devices in less time, intending to achieve
a high detection rate with low computation overhead.

3. Proposed Methodology

This section describes our proposed methodology for detecting clone node
attack on IoT networks using sensed context-aware information and location-
based services provided by an LPS. First, we create a network model of our
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proposed scheme that provides an overview of the cloned node detection mech-
anism for an IoT network composed of different entities such as the original
node, clone node, and gateway node, as well as an explanation of their working
mechanism and the assumptions underlying them. In the attacker model, we
outline the attacker’s assumptions and capabilities for carrying out malicious
actions in an IoT network. Furthermore, we summarise the batch verification
protocol for ECDSA*, which aims to aid our proposed detection scheme with
its underlying algorithms.

3.1. Network Model
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Figure 2: Network Model

We consider an IoT network composed of a large number of heterogeneous
resource-constrained IoT devices connected to gateway nodes in order to facil-
itate their interaction and provision of a variety of services. Furthermore, IoT
devices adopt a spatial mobility pattern, allowing them to move freely within a
specific geographic region. The primary objective of the proposed scheme is to
detect clone node attack in IoT networks efficiently by leveraging context-aware
information sensed by IoT devices and to achieve a high detection rate with
minimum storage and communication overhead. Fig. 2 depicts the network
model of the proposed context-aware clone node attack detection mechanism in
the IoT environment.

The network model is represented as an undirected graph G = (V, E ),
where V and E denote a set of nodes and edges, respectively. We employ a
connected graph model in which an edge exists between nodes u and v, (u, v)
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∈ E, if the Gaussian distribution between u and v such as |u − v| ≤ 1. In our
proposed network model, we have the following communicating components:
original nodes, clone nodes, and gateway nodes. The following are the specifics
for each component:

3.1.1. Original Nodes

In our network model, an original node is referred to as a “IoT device”. An
IoT network is described as a collection of heterogeneous, resource-constrained
IoT devices equipped with sensors and actuators that allow data transmission
to other nodes and communication through the internet. Each node in the
network exhibits mobile behaviour distributed geographically using a random
way point (RWP) mobility model. The criteria for choosing this model allow
devices to move around and provide appropriate patterns to geographic regions
used for most real-time applications. To minimise the computational complexity
of the mobility pattern, each node in the network can have a maximum of “p”
neighbours, where “p” belongs to the interval {1, N-1}, and N is the total
number of nodes in the network.

Further, each node is associated with a specific piece of information known
as context-information gathered from the deployed environment. The context
information is often expressed as semantic information used to uniquely identify
objects (e.g., IoT devices) about the deployed environment and is easily com-
prehended and interpreted by humans. The following parameters pertain to the
context information (CI ) sensed by the original nodes in our proposed network
model:

• ID: ID is a unique identifier that is guaranteed to be distinct from all
other identifiers used for objects and a particular purpose. It is one of
the important context information parameters associated with a given
collection of nodes. Each node has a unique identity ranging from 1 to n,
which is defined as a set of nodes {N1, N2, N3, . . . , Nn}.

• Time: In an IoT context, each device generates data observations that
are followed by a timestamp. This timestamp is critical in the analysis
section because it defines when data is collected and allows for statistical
and time-series analysis. There is no single format that imposes data
and time serialisation requirements for data collection. However, we used
the ISO8601 format for DateTime representation in our proposed model,
which is defined as YYYY-MM-DDTHH:mm:ss.sssZ.

• Location: The data obtained by IoT devices must be attributed to the
device’s relative location at the time of collection. Indeed, when location
data is paired with timestamps, companies can determine when and where
anything is or was. As a result, we defined graph G = (V, E ) as two-
dimensional, which means that G is a Euclidean graph in which each node
has a coordinate (xi, yi) in a two-dimensional space. The coordinates (xi,
yi) indicate the position of node i within the defined object plane.
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• Activity: Since IoT devices are equipped with sensors and actuators,
they can perform a wide range of activities over the network, including
data sensing, computation, temperature control, and data transmission.
Additionally, some powerful IoT devices can perform a limited range of
data filtering and analysis functions.

Each original node is equipped with a pair of keys: a private key (e.g., Kpr)
that is kept secret and a public key (e.g., Kpb) that is accessible to everyone.
The private key Kpr is used to sign the context information as digital content in
our proposed scheme. To identify itself as the issuer of the context information,
the IoT device employs its own secretly private key.

3.1.2. Clone Node

A clone node is a replica of the original node in the network model that the
attacker physically captures to control a more significant portion of the setup
and perform malicious actions over it. Several steps are involved in exploiting
this vulnerability, including capturing the physical device, extracting the hidden
credentials, modifying its function, and reinstating it into the network at a
different location. In our network model, the attacker can create clone nodes
by capturing and copying their context information, which is referred to as
captured context information (CCI ).

3.1.3. Gateway Node

A gateway is a device that acts as an interface between IoT devices and other
systems, such as the cloud. IoT gateways can be physical or virtual devices
that collect data from IoT devices and send it to the cloud for processing and
storage. Since IoT devices cannot communicate directly over the internet, they
are typically connected via a gateway.

In our proposed network model, a gateway node has many responsibilities
such as (i) provide the interaction between IoT devices and the external server,
(ii) ensure the verification process of location proofs signatures (iii) it possesses
the keys material, such as the public key used for signature verification, for
all deployed IoT devices, as well as his own key pair, e.g., public and private
keys (iv) it keeps track of all deployed IoT devices and their associated context
information, referred to as {CI1, CI2, CI3, . . . , CIN}.

3.1.4. Assumptions about the Network Model

• The Gateway node is a trusted third party which provides the secure
interaction between IoT devices and system.

• The Gateway node maintains its role as the central trusted authority.

• The communication medium utilises a symmetric routing pattern, which
refers to the same path taken by data movement between original nodes
and gateway nodes and vice-versa.
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3.2. Attacker Model

In our attacker model, we consider an environment in which an attacker can
obtain physical parameters from IoT devices, copy them and replicate or clone
legitimate nodes in order to attack the IoT network. Since cloned nodes have
hidden credentials for authentication and encryption purposes, stolen credentials
can be used to interrupt network operations and launch numerous attacks inside
the network.

• The attacker’s capability is limited to the extent that it can compromise a
small number of nodes that is less than the total number of original nodes.

• An attacker has complete control over the compromised nodes, which are
limited in number.

• An attacker with malicious intent is capable of dropping or misdirecting
information before forwarding it to the base station.

• An attacker can place IoT devices in strategic locations, such as redirecting
traffic to a specific server.

• An attacker may manipulate the detection mechanism in order to remain
undetected in the detection scenario.

• Cloned nodes can also collaborate with other cloned nodes by exchanging
their cloned identifiers extracted from the original nodes.

3.3. Enhanced Elliptic Curve Digital Signature Algorithm (ECDSA*)

Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature
algorithm that utilises elliptic curve cryptography (ECC) to derive the keys.
ECC is a subset of public-key cryptography focused on the elliptic curves de-
rived from the algebraic structure over finite fields. Although ECDSA performs
similarly to other signature algorithms such as DSA and RSA, it is more effi-
cient and robust due to its ECC foundation, which needs smaller keys to provide
equivalent security. Using the ECDSA has proven effective in improving speed
and reliability while improving the performance and strength of the overall
ECC algorithm. Additionally, a version of ECDSA is proposed called ECDSA*
that takes less time to compute and validate signatures than ECDSA. However,
more significantly, ECDSA* increases the size of the signature in comparison to
ECDSA without compromising stability [17].

3.3.1. ECDSA* Batch Verification

Batch verification is a technique for validating several digital signatures in
less time than it takes to validate them individually. In this technique, the
signer produces t signatures by interacting with the verifier, and the verifier
validates all of these t signatures at the same time.

ECDSA is a common digital signature algorithm in IoT since it offers the
same level of security as public-key cryptography but uses smaller key sizes
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and ensures the authenticity of devices and data communication between them.
Therefore, in our work, we aimed at ECDSA* signatures as a means of veri-
fying location proof signatures produced by IoT devices. ECDSA* signatures
are a variant of ECDSA signatures that offer 40% more efficiency in verifica-
tion without compromising security. Similarly to the ECDSA, the ECDSA*
requires the implementation of the following algorithms: (i) key generation, (ii)
signature generation and (iii) signature verification. The followings outline the
implementation and descriptions of these algorithms.

• ECDSA* Key Generation Algorithm: The algorithm 1 demonstrate
the working of the ECDSA* key generation mechanism, including public
and private keys. The algorithm for key generation generates a public
and private key pair for use in the signing and verification processes. It
is important to note that the key generation algorithm for ECDSA and
ECDSA* works similarly. This algorithm takes standard domain parame-
ters as a set such as {p, E, P, n, h}. These parameters are listed in greater
detail below.

– p = The order in which the prime field Fp exists

– E (a,b) = An elliptic curve y2 = x3 + ax+ b defined over thhe prime
field Fp

– P = A non-zero random base point in E (Fp)

– n = The ordinal value of P, which is normally a prime number.

– h = The co-factor =
|E(Fp)|

n

The private key can be computed by selecting a random integer d from the
range d = {1 , n-1}. While, the public key Q is calculated by multiplying
the private key d by a non-zero random base point P.

Algorithm 1 ECDSA* Key Generation

Input: Domain Parameters: {p, E, P, n, h }
Output: Key Pairs: Public key Q and private key d

1: procedure Key Generation(p, E, P, n, h)
2: Choose P of order n for an elliptic curve E(Fp), where P ∈ E(Fp)
3: Generate private key d, where d = {1 , n-1}
4: Compute Q = dP
5: end procedure

• ECDSA* Signature Generation Algorithm: The signing process is
performed to generate the actual digital signature. Even though the al-
gorithm for generating signatures is similar to that used by ECDSA, the
signature forward to the verifier is different for ECDSA and ECDSA*
signature schemes. Algorithm 2 illustrates the ECDSA* Signature Gen-
eration procedure, which begins with the following parameters as inputs:
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message m, hash function H, and domain parameters such as P, and out-
puts the signature (r, s) for each participant. In IoT, for example, each
different signature is generated for each device for verification. The sig-
nature generation process in this algorithm begins with the selection of
the k parameters as a random integer between 1 and n-1. Following that,
the coordinates X are determined by multiplying the random integer k
by the random point P. The hash function H (in this case, SHA-1) takes
the message m and produces a hash value in the form of a digest string
value, which is then converted to an integer e. Finally, a signature value
s is calculated by taking the inverse of k random integers and multiplying
the sum of integer e and private key d by r. The final output of ECDSA*
signature generation is a pair, such as (r, s).

Algorithm 2 ECDSA* Signature Generation

Input: Message m, Private Key d, Hash Function H, Domain Parameters {P}
Output: Signature (r, s)

1: procedure Signature Generation(m, d,H, P )
2: Select a random integer k, where 1 ≤ k ≤ n - 1
3: Compute X = kP ⊲ X= coordinates (x,y)
4: Compute r = x mod n ⊲ If r = 0, repeat the process with the next k
5: Compute H(m) and convert it to an integer e ⊲ Hash function e.g.,

SHA-1
6: Compute s = k−1 (e + dr) mod n ⊲ If s = 0, repeat the process with

the next k.
7: end procedure

• ECDSA* Signature Verification Algorithm: The signature verifi-
cation process is used to verify the signatures sent by the signer with
his/her public key. The verification process depends on the signature size;
the lengthy the signature is, the more time-consuming. Hence the signa-
ture verification algorithms are a little different since the signature size is
different.

Algorithm 3 illustrates the process of ECDSA* signature verification. This
algorithm requires the following inputs: a signature value (r, s) that must
be validated and a public key Q. However, the signature verification out-
put is in the form of a binary decision, such as accept or reject. The
signature verification process begins by determining if the signature val-
ues r and s belong to the interval [1, n-1] or not. Following that, the hash
H function calculates the hash value of the message m for comparison
purposes. Similarly to the signature generation algorithm, the hash value
is converted into an integer e. By taking the modulus of the inverse value
of the signature, an integer value w is generated. Following that, two co-
ordinates, u1 and u2, are determined by multiplying the integers e and r
by the value w, respectively. An X value is generated by combining the
multiplications of P and Q by the calculated coordinates (u1, u2) from
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the previous step. If X = O, the signature will be rejected; otherwise, it
will be accepted if and only if υ = r.

Algorithm 3 ECDSA* Signature Verification

Input: ECDSA* Signature (r, s), Public Key Q
Output: Accept or Reject Signature (r, s)

1: procedure Signature Verification(Signature (r, s), Public Key Q)
2: Determine that r and s are both integers in the range [1, n-1]
3: Calculate H(m) and convert it to an integer e ⊲ Hash function e.g.,

SHA-1
4: Compute w = s−1 mod n
5: Compute u1 = ew mod n and u2 = rw mod n
6: Compute X = u1P + u2Q ⊲ X= coordinates (u1,u2)
7: if X = O then

8: Reject signature
9: else

10: Accept signature if υ = r ⊲ υ = u1 mod n
11: end if

12: end procedure

3.4. Selection of Trusted Nodes

Batch verification significantly reduces the time required to validate the sig-
nature of each IoT device on gateway nodes. In IoT networks, gateway nodes
are considered to have greater computing power than resource-constrained IoT
devices. However, along with providing internet connectivity through cloud ser-
vices, gateway nodes in an IoT network often have additional responsibilities
such as data preprocessing, data aggregation, and running protocols to ensure
the security of connected IoT devices. Considering these responsibilities, it is
a critical requirement for batch verification to minimise the amount of work at
gateway nodes. One approach is to offload the signature verification task from
the gateway node to a few other IoT devices without compromising security.

However, one of the critical tasks is to select the trusted IoT devices for
signature verification from the pool of available IoT devices in the network. To
facilitate this, we proposed the model to select the trusted IoT devices from
available IoT devices for signature verification task. Numerous others trusted
models for selecting nodes to perform computation tasks have also been pro-
posed, some of which are cloud-based and platform-dependent. In contrast, oth-
ers concentrate on selecting individuals based on their trust values [39, 40, 41].
For instance, one model [42] is proposed for selecting trusted IoT devices for
signature verification. Since this proposed model selects IoT devices based on
physical and security criteria, it imposes additional computation overhead on
the overall system by selecting IoT devices that satisfy these two critical condi-
tions.

Given that IoT devices usually have limited processing power, memory, and
battery capacity, it is important to select trusted IoT devices and distribute the
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load to them to perform operations similar to those previously performed by
the gateway nodes. Thus, we aim to distinguish trustworthy IoT devices from
other IoT devices that exhibit the ECDSA* signature verification process in a
more efficient and timely manner. Our trusted device selection model focuses
on selecting trusted IoT devices based on device profiling capabilities such as
processing capacity, sensed context information, and confidence credibility.

For example, in a particular IoT network area, the devices are denoted by
D = {D1, D2, D3, . . . , Dn} where D = 1,2,3, . . . , n. The entire network device
area is classified into two types of devices. One type is simple devices such as
Ds = {D1, D2, D3, . . . , Dn}, which are responsible for signature generation
and must be verified; the other type is trustworthy devices such as Dt = {D1,
D2, D3, . . . , Dp}, which are trusted devices responsible for batch signature
verification. The number of trusted devices is less than the number of original
devices, such as p ¡ n.

In confidence credibility, numerous known trust factors are calculated when-
ever a transaction happens between simple IoT devices Ds and trusted IoT
devices Dt to evaluate an IoT device’s trustworthiness. The confidence measure
for the p dimension are respectively C1Ds,Dt

, C2Ds,Dt
, C3Ds,Dt

, . . . , CpDs,Dt
.

To calculate the confidence C, we divide the confidence credibility for an individ-
ual IoT device into two measures: implicit confidence and explicit confidence.
In implicit confidence (IC ), trust is determined by examining an independent
reputation of IoT device. In explicit confidence (EC ), the trust placed in the
suggestions of other nodes based on their prior experiences. The overall con-
fidence of both implicit and explicit measures for the given devices in the IoT
network is determined in Eq. 1.

CDs,Dt
= αi ∗ ICDs,Dt

+ βi ∗ ECDs,Dt
(1)

Eq. 1 provides the formula for calculating total confidence. It is composed
of two parts: ICDs,Dt

represents the implicit trust between a simple IoT device
and a trusted IoT device, and ECDs,Dt

represents the explicit trust between
a simple IoT device and a trusted IoT device. α and β are the total weighted
factors for IC and EC, respectively, and the total weighted factor τ is determined
as τ = α + β.

Both weighted factors αi and βi satisfy the following equations indepen-
dently, as shown in Eq. 2 and Eq. 3

0 ≤ αi ≤ 1,

p
∑

i=1

= 1 (2)

0 ≤ βi ≤ 1,

p
∑

i=1

= 1 (3)

The implicit confidence for a trusted IoT system is measured by adding the
implicit confidence for a location as sensed context information to the device’s
feedback. If no transaction history exists for IoT devices Ds, Dt, an initial value
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is allocated to implicit confidence; however, if there is no association between
IoT devices Ds, Dt, the default value of 0.5 is used. The implicit confidence
interval for a set of devices at specific locations is computed using Eq. 4.

IC =

p
∑

i=1

αiICi(Dsi, Dti) (4)

where α is further subdivided into two weights, αL
Ds and αL

Dt, for Ds and Dt

respectively at various locations {L1, L2, L3, . . . , Lp}, as specified below.

αL
Ds

=
α
Lp
Dt

α
Lp
Dt

and α
Lp
Dt

=
α

Lp

Dt

αLocations

Eq. 5 calculates the weighted factors for Ds and Dt with respect to their
locations.

p
∑

L=1

α
Lp
Ds

α
Lp
Dt

= 1 (5)

Where Lp can be calculated using the Euclidean distance method defined in
the algorithm 4.

The aggregate implicit confidence (previous and recent) of all trusted IoT
devices is determined using Eq. 6.

ICL
Ds

, Dt =

p
∑

i=1

ICLi

Dsi
, Dti(previous) + ICLi

Dsi
, Dti(recent) (6)

Following the implicit confidence measurement, we measured the explicit
confidence measurement when simple IoT devices request feedback fd about the
location of a trusted IoT device at a particular point. All IoT devices measure
the location of a trusted IoT device and transmit the requested location as
feedback to the requested IoT devices. For explicit confidence EC, the p trusted
levels can be calculated as follows: (β1, β2, β3, . . . , βp), where 0 ≤ βi ≤ 1. For
IoT devices, the trusted level sequence can be implemented as β1 < β2 < β3 <

. . . , βp.
Individual feedback fd from IoT devices can be calculated by measuring

their position, which is expressed as fdDsi,Dti
. The explicit confidence EC for

a trusted device Dt in terms of its feedback fdDt
is measured using Eq. 7.

δ(ECDs
, Dt, fd) =

{

∑p

i=0, 0 ≤ ECDsi , Dti ≤ 1
∑p

i=0, 0 ≤ fdDt
≤ 1

(7)

The explicit confidence for the trusted IoT device is measured using Eq. 8.

ECDs,Dt
=

∑FDs

i=1 (fd
Lp

Ds,Dt
∗ βp)

FDs
(8)
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where fd
Lp

Ds
represents the individual feedback for trusted IoT devices re-

garding location, and FDs represents the aggregate feedback for trusted IoT
devices regarding the location that is obtained from all connected devices. βp

denotes the weighted factors that the trusted IoT device possesses in the re-
quested node. The overall weighted factor can be calculated by using Eq. 9,
taking into account input from all IoT devices.

βp = β1 ∗ fd1Dt
+ β2 ∗ fd2Dt

+ β3 ∗ fd3Dt
+ · · ·+ βk ∗ fdkDt

(9)

where β1 + β2 + β3 + . . . = 1.

4. Location Proof System

This section presents the LPS model following the context-aware modalities
localisation technique. We developed several algorithms to explain the process of
detecting clone node attack on LPS. Finally, this section discusses the execution
flow of our proposed scheme between various components of the LPS model by
using location proofs and batch verification concepts.
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4.1. Localization Technique

Localisation is an important concept in LPS, in which localisation and net-
work/location infrastructure-independent methods are used to determine the
location of the user’s device. Localisation refers to how a device determines its
position in relation to another device, satellite or maps, etc. Several software-
based or hardware-based techniques have been used for localisation, including
fingerprint, distance-bounding protocol, context-based modalities, proximity,
triangulation, beaconing, and mobile network or tower-based approaches.

We used context-aware modalities as a technique for localisation in our work
because we used context-aware information to detect clone node attack on IoT
networks. The basic idea behind context-based localisation is that it gathers
various contextual values about the IoT device environment, such as ambient
acoustic light, noise level, humidity, temperature, and Wi-Fi and Bluetooth sig-
nal power, and then generates proof of presence for physical device location by
combining all of them to determine the device’s location. Contextual informa-
tion is collected simultaneously by the verifier and device. The device produces
the proof of presence, which includes context information, and the verifier vali-
dates the context information to confirm the device’s physical presence.

The network model of the LPS used to detect clone node attack on IoT
networks via a context-aware information-based localisation technique is shown
in Fig. 3. The network model of an LPS incorporates the following entities:

• Prover: The provers are the IoT devices that want to demonstrate that
adversaries have not compromised their identities and location. We re-
ferred to the simple IoT device as “Prover” for simplicity.

• Clone Node: The clone nodes are compromised IoT devices whose cre-
dentials, such as context information, have been compromised by the at-
tacker.

• Verifier: The verifiers are the selected IoT devices that employ a trust
model and communicate with the gateway to verify the evidence. We
referred to the selected IoT devices as “Verifiers” for simplicity.

• LBS: The gateway nodes serve as location-based services (LBS), with
verifier IoT devices serving as clients.

In our proposed scheme, we consider a scenario in which a client of an LBS,
referred to as verifiers, aims to demonstrate to the LBS the existence of provers
at a specific location to detect clone nodes attack on an IoT environment. A
prover and a verifier simultaneously collect contextual data through IoT devices
to create an incident context. To validate the proofs, the verifier IoT devices
compare the context information obtained from the prover IoT devices to their
own context information to determine whether or not the IoT device has been
compromised. For proof validation, we used the ECDSA* signature process, in
which each party (prover and verifier) is assigned their public and private keys.
We assume that an intruder from outside the context cannot detect context
information.
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4.2. Proposed Algorithms

Along with describing the network model, attacker model, and entire work-
ing mechanism of ECDSA*, we proposed several algorithms to demonstrate the
execution of an LPS for detecting clone node attack in an IoT environment.
These algorithms include a location calculation algorithm, a location proof gen-
eration algorithm, and a location proof-verification algorithm. The procedure
of each proposed algorithm is defined in the algorithms 4 - 6. Table. 2 shows
the notations and descriptions used in the algorithms 4 - 6.

Table 2: Notations

Notations Description

ID Provers’ identification
T Data sensing time
Loc Location on two dimensional space
Actv Prover’s activity at specific time
CI Context Information
{CI1, CI2, CI3, . . . , CIn} A set of stored context information on LBS
H Hash function (SHA256)
KPr Prover’s private key
P Location Proof
Psign Location Proof Signature
{P1sign, P2sign, P3sign, . . . , Pnsign} A set of provers’ signature
{K1P b, K2P b, K3P b, . . . , KnP b} A set of provers’ public keys
{V er1, V er2, V er3, . . . , V ern} A set of verifiers for batch verification
Signature() Elliptic Curve Digital Signature function
isEmpty() Checking the location proof request
isNotExisted() Checking the existence of context information
revert() Sent back the transaction

4.2.1. Location Calculation Algorithm

Approximating distance is a significant obstacle when addressing a location
in majority of the IoT networks. The algorithm 4 demonstrates the process of
determining the locations of network devices. We estimate the location of each
device (such as the prover and verifier) as a key element of context information
in our proposed location proof framework model by measuring the distance
between the provers and verifiers in two-dimensional (2-D) space. A prover in
two-dimensional space is represented by P = {x1, y1}, whereas a verifier in
two-dimensional space is represented by V = {x1, y1}. Based on their distance
estimation, we used the Euclidean distance algorithm to calculate the location
of each prover with respect to the verifiers. The distance between verifier and
prover is denoted by d(V,P ).

The euclidean distance process starts by taking the prover and verifier’s co-
ordinates in two-dimensional space, such as P = {x1, y1} and V = {x1, y1},
as input values respectively. It calculates the distance between each verifier
{V er1, V er2, V er3, . . . , V ern} by taking the square root of difference between
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the coordinates of each verifier and prover pair. After calculating the distance
between their provers, each verifier maintains a list of the euclidean distances be-
tween their provers as determined locations at specific points, such as {dP1(v1,p1) ,
dP2(v1,p1) , dP3(v1,p1) , . . . , dPn(v1,p1)

}.

Algorithm 4 Calculate Location

Input: Two Points on 2-D space with their coordinates such as P = {p1, p1}
and V = {v1, v2}
Output: Distance d

1: procedure Distance Calculate(V, P)
2: for Each Verifiers {V er1, V er2, V er3, . . . , V ern} do

d(V,P ) =

√

√

√

√

n
∑

i=1

(pi − vi)
2

3: end for

4: Maintain a list of provers’ distances {dP1(v1,p1) , dP2(v1,p1) , dP3(v1,p1) , . . . ,
dPn(v1,p1)

}
5: end procedure

4.2.2. Generate Location Proof

The algorithm 5 demonstrates the process of generating location proofs for
IoT devices showing their presence at a specific location in terms of LBS. The
proof generation process begins with sensing the contextual information by both
the prover and the verifier about their deployed environment. The context
information includes the identification of IoT device ID, data sensing time T,
its specific location Loc and activity Actv. The combination of such information
is referred to as CI, and it is maintained and stored at LBS as {CI1, CI2, CI3,
. . . , CIn}. A location Loc between two IoT devices or between an IoT device
and a selected IoT device is determined using the Euclidean distance algorithm,
which determines the length of a segment connecting the two points and its
location in 2-dimensional space or at a specific point in place. An IoT device’s
activity can be any operation, such as monitoring, sensing, or broadcasting at
a specific time T. To generate a location proof, a verifier first requests that the
prover generate a proof using sensed context information such as CI. The proof
is generated by signing the context information CI using the prover’s private key
KPr. The signature Psign is generated using the ECDSA* signature generation
algorithm (algorithm 2).

4.2.3. Verify Location Proof

The algorithm 6 illustrates the process of verifying location proofs for IoT de-
vices claiming to be at a specific location with context information CI. The veri-
fication process begins with taking inputs such as provers’ signatures as {P1sign,
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Algorithm 5 Generate Location Proof

Input: Context Information (ID, Time, Location, Activity), Private Key KPr

and Hash Function H
Output: Prover’s Signature Psign

1: procedure Proof Generation(ContextInformation, KPr, H )
2: Both prover and verifier sense a contextual information
3: ID ← Identification of IoT device
4: T ← Data sense time
5: Loc ← Location
6: Actv ← Activity
7: Context Information CI = {ID, T, Loc, Actv}
8: Stored context information at LBS such as {CI1, CI2, CI3, . . . , CIn}
9: if Request Location Proof = isEmpty() then

10: revert(“Reject Proof”)
11: else

12: Proof Generation(CI, KPr)
13: P = Hash(CI )
14: Psign = Signature KPr(P) ⊲ Algorithm 2
15: return Psign

16: end if

17: end procedure

P2sign, P3sign, . . . , Pnsign}, and their respective public keys as {K1P b, K2P b,
K3P b, . . . , KnP b}. To validate the position proof obtained from the prover, the
verifiers {V er1, V er2, V er3, . . . , V ern} analyze the contextual information CI
from the LBS and perform ECDSA* batch verification on the signatures (algo-
rithm 3) after getting confirmation about the availability of stored information
on the LBS. As the batch verification process is carried out by multiple verifiers
chosen using the trust model, the LBS maintains and controls the list of verifiers.
The verifiers used the prover’s public key KPb to validate the signature Psign.
After successfully verifying the signatures obtained from each selected verifier,
the verifier will confirm the authenticity of the IoT device in the network and
accept the proof with location confirmation and other credentials. However,
if the signature is not successfully verified, the verifier notifies the LBS of the
compromise of the prover in the IoT network.

4.3. Execution Flow

The detection of clone node attack on an IoT environment is accomplished by
using the numerous interconnected modules included in the proposed network
model. Following the proposed network model, we proposed an LPS for detect-
ing clones node in an IoT environment, which consists of the following entities:
prover, clone nodes, verifiers, and LBS, all of which interact with one another
to detect a clone node attack successfully. Fig. 4 depicts the execution flow of
our proposed LPS model, which demonstrates the relationship between the en-
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Algorithm 6 Verify Location Proof

Input: A set of Provers’ Signatures {P1sign, P2sign, P3sign, . . . , Pnsign}, A
set of Provers’ Public Keys {K1P b, K2P b, K3P b, . . . , KnP b}, A set of Verifiers
{V er1, V er2, V er3, . . . , V ern}
Output: Accepted/Rejected

1: procedure Proof Verification(Psign , KPb)
2: The verifiers {V er1, V er2, V er3, . . . , V ern} check the context informa-

tion from LBS
3: if CI = isNotExisted() then

4: revert(“Information not existed”)
5: else

6: for Each verifiers {V er1, V er2, V er3, . . . , V ern}
do

7: if

8: Extract CI then

9: Proof Verification (Psign, KPb) ⊲ Algorithm 3
10: return “Proof Accepted”
11: else

12: revert(“Proof Rejected”)
13: end if

14: end for

15: end if

16: end procedure

tities (successful/failed). In addition, the execution flow diagram illustrates the
method of implementing a proposed clone node attack detection scheme based
on the LPS.

The process of detecting clone nodes attack begins with the prover and
verifiers sensing information about the deployed environment. The context in-
formation includes the identifier of the IoT device ID the time stamp for data
sensing Time, the device’s specific location, and the activity performed Activity.
The combination of these context information is grouped and represented as CI.
Following the process of sensing context information CI, the verifiers save this
information to the LBS entity and receive an acknowledgement from the LBS
about the saved information.

After storing the context information in the LBS, the verifiers request that
the prover give the location proof in order to validate the prover’s authentic-
ity and to ascertain whether or not the prover has been compromised. The
prover generates a location proof of sensed context information CI using the
ECDSA* signature generation method and sends it to the verifiers for verifi-
cation. Upon receiving the signed proof, the verifiers compare the existence
of context information CI with stored context information CI to the LBS and
receive acknowledgement of the existence of information to the LBS.

After obtaining the signed proof from the prover, the verifiers conduct the
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proof verification process on the received signed proof using the ECDSA* batch
verification process and determine the provers liable for pretending to be at a
particular location using context information. If the verifiers verify the signed
proof successfully, it notifies the prover of the accepted location proof. Mean-
while, the verifiers notify the LBS when a prover is compromised in the network.

We designed two scenarios in the LPS to detect clone node attack in the IoT
context, such as detecting the clone node attack by evaluating and comparing
the details to the LBS and requesting the location proof to the clone node
determining its compromise after verification. In the former case, if the signature
is not successfully verified by the verifiers, then LBS indicates that the provers
in the network have been compromised. In the latter case, the verifier requests
the clone node’s location proof in order to validate its authenticity and location
modification. Since an intruder created clones of the provers and copied their
context information CI to cloned context information CCI, the verifiers compare
the cloned context information CCI to the previously stored context information
CI after receiving the location proof from the cloned node. Upon receiving
confirmation from LBS that context information did not exist, the verifiers
rejected the location proof and informed LBS about the provers’ compromise.
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5. Security Analysis

This section provides a security analysis of the proposed scheme for detect-
ing clone nodes based on LPS. Given that our proposed scheme makes use of
the ECDSA* principle for achieving security and validating proofs in an LPS,
we conduct an in-depth security analysis of ECC, including domain parameter
selection criteria and address implementation issues and attacks on them. By
following this, we enhanced our security analysis by discussing the security cri-
teria for key pair selection and describing the definition and theorem for security
attacks on digital signatures and hash functions used in LPS.

5.1. Selection of Domain Parameters

To implement a secure cryptographic algorithm based on elliptic curves, a
list of domain parameters is required to construct a concrete curve on which
computations can be performed. These parameters are much more sophisti-
cated than the algorithms of finite field methods such as DSA. The selection
of such parameters emphasises the importance of implementing the algorithms
from both a computational and a security standpoint, necessitating a focus on
security attacks and execution errors. Further, the selection of particular do-
main parameters also resulted in the development of guidelines for designing
secure protocols or algorithms, each of which has its own set of security condi-
tions for the curves and frequently specifies concrete curves for certain security
levels [43].

The domain parameter selection in ECDSA is crucial to ensuring its overall
security, which can be achieved for a single user or an entire group of users as
interest grows in the application of ECDSA to the various groups of rational
points on an elliptic curve over a finite field. As a result, the number of different
types of attacks on ECDSA has been increased for some types of curves. For
ECDSA, the domain parameters consist of an elliptical curve E appropriately
selected and determined by a finite field Fp with characteristic p and the base
point G = E (Fp).

A selection of domain parameters must follow the following security require-
ments inherent to the elliptic curves based explicitly on the discrete logarithm
problem. These security requirements follow the standard of elliptic curve E
over the prime field Fp due to its popularity in most cryptographic algorithms.

5.1.1. Generator Order

An important requirement of selecting the domain parameters for an elliptic
curve-based algorithm is the order of generation in which they are generating.
As generating order is an important requirement, therefore in this regard, many
algorithms have been proposed, such as Pollard’s rho algorithm and Pohlig-
Hellman that works for different cyclic groups. For example, the Pohlig-Hellman
algorithm worked on the cyclic group for composite order, which divides the
entire group into different subproblems to achieve the fastest computation.
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Definition 1. Let G is a cyclic group of order n, k is a sub-problem size, P is
a prime order subgroup {p1, p2, p3, . . . , pk}, l is a positive integer.

Here is an example of how the Pohlig-Hellman algorithm works [44]: Firstly
compute prime factorization of n prime numbers such as pe11 .pe22 .pe33 , . . . , pekk as
computed in Eq. 10.

n =
k
∏

i=1

peii (10)

Then, compute l as li = l mod pekk for all 1 ≤ i ≤ k.
A Chinese remainder theorem is used to calculate the l as a linear equation.

Here, p1, p2, p3, . . . , pk are mutually coprime set of prime order subgroup for
which gcd(pi, pj)=1. The positive integer l is obtained by computing the linear
equation using the Extended Euclidean Algorithm.

Each lk can be computed with the base point p as in Eq. 11.

lk = x0 + x1p+ x2p
2 + · · ·+ xe−1p

e−1 (11)

where xi ∈ [0, p-1].
For complexity point of view, the worst-case time for group of order n is

O(√n) and for in relatively smooth case is O(logn+
√
pk) if the order is prime.

5.1.2. Anomalous Curves

Another important requirement for selecting the domain parameters is the
selection of anomalous curve, which can also be computed as prime field curves
in the following Eq. 12.

|E(Fp)| = p (12)

To compute the discrete logarithm on an anomalous curve, a polynomial-
time algorithm is a commonly used algorithm. In other words, a polynomial-
time algorithm is also called additive transfer that allows converting the hard
elliptic curve discrete logarithm problem into simple discrete logarithm problem
over the additive group of Fp.

5.1.3. Multiplicative transfers

A transfer is a process of converting the elliptic curve discrete logarithm
problem into the simple discrete logarithm problem. As the anomalous curve is
mostly worked on the concept of additive transfer of a group of Fp. However,
in multiplicative transfer, elliptic curve discrete logarithm problem on every

curve
E

Fp

is converted into discrete logarithm problem over the group of F∗
pt
.

A F
∗
pt

is an extension of the original curve Fp over multiplication. The degree
of multiplicative transfer can be defined as follows:
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Definition 2. Let e is a embedding degree, l is a generator order, Fp is a finite
field, and N is a set of natural number, where e ∈ N then it can be computed by
using Eq. 13:

l|px − 1 (13)

The embedding degree e is also stated as the order of p over Zl. Unlike
to anomalous curves, the probabilistic polynomial time is computed for multi-

plicative transfer work by defining the relation between
E

Fp

subgroup of G and

subgroup of lth roots of Fpt
.

By following this, there is an attack on the multiplicative transfers called
MOV attack, which occurred due to sub-exponential times calculated for the
index-calculus [45].

5.1.4. Extension Field Curves

Besides the binary fields F(2m) and prime fields F(p), there has been in-
creased interest in use of Optimal extension fields F(pm) that offers offer con-
siderable computational advantages in software by selecting p and m specifically
to match the underlying hardware used to perform the arithmetic operations.
Besides, efficient methods have been devised for speeding up field arithmetic
for elliptic curves over general extension fields [46]. The benefits of defining the
extension on existing curves are to solve the ECDLP by using the index-calculus
methods on the group of rational points. An example of multiplicative curve
overextension of optimal field curve can be defined as follows:

Definition 3. Let F(pm) is an optimal extension field, m is size of the expo-
nent of the field, p is the characteristic of field, on which extension field for
multiplicative group is as shows in Eq. 14.

ExtensionF ield = F
∗
m (14)

5.1.5. Discriminant Size

A discriminant size is an important parameter in selecting domain param-
eters that can greatly enhance the speedup process of the discrete logarithm
problem over different curves. For example, a choice of small discriminant size
is computationally efficient, which can speed up the scalar-multiplication algo-
rithm. However, the choice of this discriminant can also lead to the compu-
tational complexity of the discrete logarithm computation that greatly affects
the security of the ECDLP on the curve. A multiplication discriminant of an
elliptic curve over prime field is defined as follows:

Definition 4. Let E is a elliptic curve, Fp is a prime field, M is a non-negative
integer representing multiplication discriminant and thus can be computed as in
Eq. 15:

4p = t2 − s2M (15)

Where s ∈ N and —E (Fp)— = p + 1 - t.
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5.2. Attacks on Domain Parameters Implementation

Apart from meeting security criteria when selecting domain requirements
for different cryptographic algorithms based on ECDLP, there are still adherent
complexity concerns when implementing ECDLP over different curves, resulting
in a variety of different types of attacks; therefore, must be tackled in order to
ensure secure implementation of cryptographic algorithms [43]. The following
are the most common types of attacks on domain parameter implementation,
each defined in detail.

5.2.1. Side-channel Attack

Side-channel attacks on the implementation of domain parameters result in
data leakage through various side channels, the majority of which include the
timing and power consumption factors of the underlying systems, for which
direct data leakage is not possible.

In the former factor, the time required to complete the required crypto-
graphic operations often creates the side channel issues that mostly leak the
values of different secret primitives such as the private key used in operation.
A timing attack is also possible if the attacker has access to sufficiently precise
measurements of the time required to perform a given cryptographic operation,
even over a network link. However, network latency makes the attack more
difficult. However, timing attacks on systems based on elliptic curves are still
in their infancy, as an attacker can typically leak only a few bits of the private
key through timing [47].

In the latter case, the power consumption of hardware devices such as sensors
that conduct cryptographic operations may also serve as a side-channel, leaking
significantly more information than the timing side-channel does. The rationale
for impacting the power consumption side channel on elliptic curves is that,
in most cases, a power trace of the execution of a cryptographic operation
involves more details than just the time factor of the operation. Therefore,
this attack is only possible with physical access to the device performing the
cryptographic operation, such as a clone node attack. There are two types
of power analysis attacks: simple power analysis (SPA) and differential power
analysis (DPA). In simple power analysis, an attacker manually examines the
power trace to discover a cryptographic secret that was employed; however, in
differential power analysis, an attacker employs statistical techniques to retrieve
minor differences in power usage associated with hidden data through a massive
collection of power traces [48].

5.2.2. Fault Attack

In a fault attack, an attacker gains physical access to devices in the deployed
environment that are performing cryptographic operations, potentially modify-
ing their physical and logical states, such as location and time, in order to insert
incorrect code and perform malicious actions. In addition, this activity resulted
in acquiring secret information, such as private keys, in committing further ma-
licious acts on behalf of target devices. For example, an invalid curve attack is
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used as a fault attack on scalar multiplication over several curves in order to
obtain the computation results as secret values [49].

5.2.3. Small-subgroup Attack

Small-subgroup attacks are primarily directed at the Diffie-Hellman proto-
col’s implementation of cryptographic keys and thus apply to ECC. This attack
is classified into two types: key confinement and key recovery.

The small-subgroup key confinement attack can happen if an implementation
does not verify that untrusted points obtained during EC are located on the
relevant subgroup of the generated curve. Additionally, this attack requires
that the curve lacks a prime order and contains several small-order subgroups
in which small points on the curve’s order constrain the derived shared EC key
to a small subset of keys [50].

The small-subgroup key recovery attack meets the same validity criteria
as the small-subgroup key confinement attack, except that the victim’s key
cannot be amorphous. This attack is quite similar to an active Pohlig-Hellman
attack in which an attacker computes various points on small-order subgroups
to implement an elliptic curve. This attack employs the Chinese Remainder
Theorem, which reconstructs the victim’s key by repeatedly performing the
small-subgroup key confinement attack on numerous different subgroups of the
curve group [51].

5.2.4. Invalid Curve Attack

When implementing elliptic curves, affine coordinates and the short Weier-
strass equation often ignored untrusted points on the group of the intended
curve, resulting in invalid curve attacks. An adversary uses the curve point
P with different parameters as the public keys in this attack. As a result,
the attacker exploits and compares the different public critical values on the
compromised curve to the public keys on the original curves during the scalar
multiplication process to determine the collection of private keys for the victim.
Once an attacker has obtained all of the secrets, such as private keys, he may
launch an attack against various secure protocols, such as SSL/TLS, using an
elliptic curve on the targeted points [49, 52].

5.2.5. Twist Attack

The addition formulas used to implement an elliptic curve apply to the orig-
inal curve and all nontrivial quadratic twists. However, a nontrivial quadratic
twist on a curve has a different number of points than the original curve and
hence can have an entirely different group structure than the original curve [48].

As with invalid-curve attacks, an attacker can use a twist attack only if the
implementation does not verify that untrusted points are within the group of
the intended curve. This shortcoming enables an attacker to supply twist points
during the ECDH exchange, compelling the victim to compute the twist’s scalar
multiple. Consequently, if the twist’s point security is less than the original
curve’s point security, the overall security of the implementation deteriorates to
the twist’s point security [53].
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5.2.6. Co-factor Computation Attack

In a co-factor computation attack, an issue is raised when points on a curve
over a prime order subgroup with a sufficiently large prime are calculated and
improperly validated, posing severe challenges to the protocol or system’s per-
formance [43].

5.3. Selection of Key Pairs

A pair of ECDSA keys is associated with a set of EC domain parameters.
ECDSA key pairs can be guaranteed in the following steps: key pair generation,
public key validation, and proof of private key ownership, each of which ensures
the security mechanisms and meets the requirements necessary to secure the
underlying system or protocol.

5.3.1. Key Pair Generation

In our proposed LPS, the key pair for each device (e.g., prover, verifier,
gateway) is associated with a specific set of EC domain parameters D = (q,
FR, a, b, G, n, h). This association can be accomplished by cryptographically
secure certificate authorities or context requirements requiring all entities to use
the same domain parameters. In domain parameters, each individual must be
certain that the domain parameters are acceptable to all before generating keys.

Each entity in the LPS, such as prover P, verifier V, and gateway G, must
generate their public key (Q) and private key (d) according to the steps below.

• Choose a pseudo-random integer d from the range [1, n-1].

• Compute Q = dP

The mechanism by which keys are generated is also described in detail in
algorithm 1.

5.3.2. Validation of public key

Public key validation guarantees that a public key has the necessary arith-
metic properties but does not indicate that someone has computed the private
key or has asserted ownership. Public key Validation should be performed to
avoid inserting wrong keys and catch programming errors and omissions. Since
the use of an invalid public key nullifies all intended security properties, several
suggested methods for validating the public keys given to each individual in the
LPS.

• A public key Q is generated for each entity, which is certified by a trusted
authority TA.

• A trusted authority TA produces a public key Q for each entity in the
system, which is then transmitted through a secure communication chan-
nel.

• Each entity obtains confirmation from a trusted authority TA that it has
followed certain explicit public key validation protocols specified in [52].
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5.3.3. Proof-of-ownership of a private key

Proof-of-ownership of a private key is a technique for establishing that the
sender of a message holds a particular key. This process is used to determine
that the intended recipient sent the message, assuming that the sender is the
only one who possesses the key.

This concept is demonstrated in our LPS in the following way: suppose an
attacker compromises the P and creates a clone node C, then a clone node
C can verify the prover P ’s public key Q using its public key, then C will
claim that P ’s signed messages originated from C as well. To avoid this from
occurring in any system, especially those that use public-key cryptography, the
trusted authority TA should require all individuals involved in the system to
demonstrate ownership of the private keys associated with their public keys
before certifying the public key as belonging to an entity. There are two widely
used methods for providing proof-of-ownership of a private key d, which are as
follows:

• Each entity in the system is needed to demonstrate ownership of a private
key d through signatures; however, this method adds additional computa-
tion overhead to the system, especially for those using resource-constrained
IoT devices.

• Additionally, zero-knowledge proofs can be used to establish ownership
when the trusted authority TA acquires no new knowledge about the en-
tity’s private key d.

5.3.4. Key-only Attack

The key-only attack is a type of attack on the public key of an entity in
which an attacker obtains the public key of the signer party, which is then used
to verify the valid signatures of the signer party.

To explain the idea of a key-only attack, consider our suggested LPS. In this
system, prover P ’s public key Q is publicly accessible, and adversary A takes
advantage of this aspect by attempting to replicate prover P ’s signature sigo
and sign messages (m1, m2, m3, . . . , mk) that prover P does not intend to sign.

5.4. Attacks on Signatures

A digital signature is a cryptographic technique that combines the compu-
tational capabilities of hash functions to verify the message’s authenticity and
provide non-repudiation, meaning that the sender cannot deny endorsing the
document. Although the digital signature is valuable for protecting sensitive
information, it is unfortunately highly vulnerable to various attack vectors. For
example, an adversary A has the following goals associated with the digital
signature mechanism to break any signature scheme.

• Total break: In total break, an adversary A successfully obtains secrets
such as the public key Q and the private key d of any prover P, allowing
him to forge any signature sigi on any message mi of his choosing.
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• Selective Forgery: In selective forgery, an adversary A has a high prob-
ability of producing a valid signature sigr on any selective message mr

chosen at random.

• Existential Forgery: In existential forgery, an adversary A generates
at least one message/signature pair, such as (message, signature) defined
as (m, sig), where m has never been signed by the valid signer. The
adversary can freely choose m from a list of messages (m1, m2, m3, . . . ,
mk) that have no valid meaning. The adversary has prevailed in creating
an existential forgery as long as the pair (m, sig), is valid.

Attacks on digital signatures can be classified into three different types:

5.4.1. Chosen-message Attack

In a chosen-message attack, the adversary can choose the messages that the
signer party wants to sign, and the adversary is aware of both the messages and
their associated signatures. The chosen message attack is further divided into
three different categories of attacks as described below.

• Generic Chosen-message Attack: The adversary uses this approach to
trick the signer party into digitally signing the messages without knowing
the signer party’s public key. The term “generic” refers to the fact that
the attacker is unaware of the public keys, and an entire list of messages
is created and chosen before digitally signing them.

Definition 5. Let A is an adversary who has access to the prover’s P
valid signatures for a list of messages (m1, m2, m3, . . . , mk) before at-
tempting to crack the prover P’s overall signature scheme. The entire set
of messages for which digital signatures are produced is chosen randomly
and is completely independent of public keys.

• Directed Chosen-message Attack: The directed chosen-message at-
tack is very similar to the generic chosen message attack in which the
adversary choose the messages before creating the signatures for the tar-
get entity. However, the only difference is that the adversary knows the
target’s public key before signature generation. Thus, the term “directed”
means that the attack is against a specific entity for which the public key
is known.

Definition 6. Let assume that adversary A has full knowledge of targeted
prover P’s public key Q and obtains P’s signature sigo on the list of mes-
sages (m1, m2, m3, . . . , mk) and tries to substitute the original message
mo with the message mt that adversary A intends to have targeted prover
P sign thus keeping P’s signature unchanged.

• Adaptive Chosen-message Attack: Like a directed chosen-message
attack, an adaptive chosen-messages attack targets an entity’s signature
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after obtaining his public key; however, the difference is that an adversary
can select the message for signature after observing a list of messages
and their associated signatures. Additionally, the adversary who obtains
signatures for messages sent to his target cannot subsequently counterfeit
the signature of a single message.

Definition 7. Let an adversary A has targeted any prover P after in-
specting k valid signatures for the message (m1, m2, m3, . . . , mk) chosen
adaptively. An adversary A also knows the public key Q of prover P. For
an adaptive chosen-message attack, the adversary obtains a list of signa-
tures (sig1, sig2, sig3, . . . , sigk) for its chosen list of messages (m1, m2,
m3, . . . , mk), but an adversary A can also request an additional signature
sigri for message mri which is depend on previously signature mri−1.

5.4.2. Known-message Attack

In a known-message attack, the adversary has access to specific existing
signatures against a known collection of messages; however, unlike in a chosen
message attack, the adversary does not choose the messages. In encryption, this
attack is analogous to a well-known attack called a plain text attack.

Definition 8. Let an adversary A has a limited number of previous messages
(m1, m2, m3, . . . , mk) and their corresponding signatures (sig1, sig2, sig3,
. . . , sigk) of prover P. Now adversary A attempts to forge prover P’s signature
sigo on a message mo that prover P does not wish to sign using the brute force
method of examining previous messages (m1, m2, m3, . . . , mk) in order to
replicate prover P’s signature sigo.

5.5. Attacks on Hash Functions

Hash functions are complex computational functions that are deliberately
designed to be used in a one-way manner. For example, it is trivial to compute
the hash value of any given messages; however, if someone has computed the
hash value of some messages, it should be challenging to determine the original
messages that produced the same hash value. Cryptographic hash functions are
known to be one of the most complicated parts to break from a cryptography
perspective [54].

Let H is defined as a hash function that is a member of the hash function
family. Suppose, H: X × Y → O where X and O are finite non-empty sets
and Y and O are sets of strings. O is the output of the hash function H for
which O = {0, 1}n where n > 0 and n is expressed as the length of the hash
function value. A random message m is choose from the infinite set S for
uniform distribution and expressed as m ← S . For random message m, if m
∈ Y then {0, 1}|m| ⊆ Y. A hash function H for which hash value is calculated
is expressed as Hx(m) = H (x, m) for all m ∈ Y and x ∈ X.

A cryptographically secure hash function must possess the following prop-
erties:
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• Preimage Resistance: Preimage resistance is a property of a hash func-
tion that specifies that it should be computationally infeasible to find an
input that maps to a given element in the hash function’s range and that
it should be difficult to invert.

Definition 9. Let m' is a pre-image such that H(m') = n where any n is
given for which the corresponding input is unknown.

• Second Preimage Resistance: Second preimage resistance is another
important property of a hash function that specifies that it is computa-
tionally impossible for someone to find a second input from a hash function
that produces the same output as the first input.

Definition 10. Let m1 is a given input for which hash is determined as
H(m1); it should be difficult to find another input (i.e. second preimage)
m2, i.e. m1 6= m2, for which H(m1) = H(m2).

• Collision Resistance: Collision resistance in hash function implies that
it is difficult to find two distinct inputs that produce identical hash values.
For instance,

Definition 11. Let m1 and m2 are any two distinct input values, which
hash to the same output, such that H(m1) = H(m2).

5.5.1. Preimage Attack

In a preimage attack, the attacker attempts to locate a message that contains
a particular hash value. For instance, with a preimage attack, one tries to find a
message with a particular hash, such as finding a hash that leads to a preimage
for a hash.

Theorem 1. Let H: X × Y → O be a hash function, n be a number such that
{0, 1}n ⊆ Y and A be an adversary, then such as:

APreimage
H

(P ) = [Preimagex← X;m1 ← {0, 1}n;O← Hx(m1);m2 ← P (x,O) :

Hx(m2) = O]

APreimage
H

(P ) = max
O∈Y

{Second− Preimage[x← X;m1 ← P (x) : Hx(m1) = O]}

APreimage
H

(P ) = max
x∈X

{Second− Preimage[m1 ← {0, 1}n;O← Hx(m1);

m2 ← P (O) : Hx(m2) = O

Where P is the prover in LPS, x ∈ X : for any fixed hash function H: Y →
O with |Y | > |O | that generates the hash values for an input m1 for which H

is used to determine its value.
The above three are the different definitions of second-preimage resistance

representing as simple second-preimage resistance, everywhere second-preimage
resistance, and always second-preimage resistance.
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5.5.2. Second Preimage Attack

In a second preimage attack, the adversary’s goal is to find a second message
for which the first message is given, and their hashes values are equal. In other
words, an adversary already has an input and is attempting to determine the
second input whose hash values are identical.

Theorem 2. Let H: X × Y → O be a hash function, n be a number such that
{0, 1}n ⊆ Y and A be an adversary, then such as:

ASecond−Preimage
H

(P ) = Second− Preimage[x← X;m1 ← {0, 1}n;
m2 ← P (x,m1) : (m1 6= m2) ∧ (Hx(m1) = (Hx(m2))]

ASecond−Preimage
H

(P ) = max
m∈{0,1}n

{Second− Preimage[x← X;

m2 ← P (x) : (m1 6= m2) ∧ (Hx(m1) = (Hx(m2))]}

ASecond−Preimage
H

(P ) = max
x∈X

{Second− Preimage[m1 ← {0, 1}n;

m2 ← P (m1) : (m1 6= m2) ∧ (Hx(m1) = (Hx(m2))]}

Where P is the prover in LPS. x ∈ X : for any fixed hash function H: Y →
O with |Y | > |O | that compares the hash values for two inputs m1 and inputs
m2 that determines their values are equal.

The above three are the different definitions of second-preimage resistance
representing as simple second-preimage resistance, everywhere second-preimage
resistance, and always second-preimage resistance.

5.5.3. Collision Attack

A collision attack on a cryptographic hash function attempts to discover
two inputs that produce the same hash value referred to as a hash collision.
The collision attack is in contrast to a conventional hash attack, in which an
attacker attempts to discover a single hash value and has no effect on previously
computed hashes.

In our proposed LPS, the collision attack is defined as follows: Let an ad-
versary A discover two distinct messages. m1 and m2 in such a way that H(m1)
= H(m2).

Theorem 3. Let H: X × Y → O be a hash function and A be an adversary,
then such as:

ACollision
H

(P ) = Collision−Resistance[x← X; (m1,m2)← P (x) :

(m1 6= m2) ∧ (Hx(m1) = (Hx(m2))]

Where P is the prover in LPS, x ∈ X : for any fixed hash function H: Y →
O with |Y | > |O | that generates the hash values for two inputs m1 and inputs
m2 that collide under H.
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6. Evaluation Framework and Performance Analysis

To examine the applicability and robustness of our proposed system for
detecting cloned node attack on the IoT environment, we built the evaluation
framework of our proposed scheme by using a C language. We deployed a
cluster system having ten machines including one master and nine computing
machines. Each machine has 20 cores and each core run with the 2.11 GHz and
8 GB of memory. We deployed a cluster system comprised of ten machines, one
of which served as the master and nine of which served as computing nodes.
Each machine contains twenty cores, each of which operates at a CPU of 2.11
GHz and has eight GB memory capacity. In addition, we created a simulation
of each machine using the 40 IoT devices. Thus, to simulate the concept of
multiple IoT devices, we used multi-threading to simulate the environment of
multiple IoT devices, in which multi-threading divides a single processor into
multiple required threads. Since each thread corresponds to one sensor node,
mainly defined for the required task. We communicate with other machines in
the cluster system via the MPI library available for C. For batch verification
using ECDSA*, we utilised the prime curve (P-256), in which all parameters
evaluated for experimentation are NIST-recommended traditional values.

We evaluated a network with between 100 and 500 IoT devices in our ex-
periment. From these devices, we choose 350 that need to be verified as clone
nodes in the network. We allocate 30 verifiers to the batch verification tasks.
The remaining devices are deliberately deployed as clone nodes to determine the
detection rate for various test cases. We conducted a series of experiments to
assess the performance of our proposed scheme for detecting cloned nodes and
analysed the findings using a variety of evaluation parameters. These param-
eters include the attack detection probability, detection time, computational
overhead, communication overhead, and storage overhead. We compared our
experimental findings, and overhead with two existing state-of-the-art mech-
anisms [34] and [55]. The results analysis shows that our proposed scheme
outperforms detecting clone node attack on IoT networks with a high detec-
tion rate in a reasonable amount of time. Additionally, our proposed scheme
has a lower computational, communication, and storage overhead than existing
techniques [34] and [55].

6.1. Attack Detection Analysis

We analysed the detection of clone node attack in our proposed scheme using
two parameters: detection probability and detection time. The detection prob-
ability estimates the probability that cloned or replica nodes will be accurately
detected. In contrast, the detection time indicates the time required to detect
clone nodes attack on our network successfully. Each of which is discussed and
measured in more detail in the following sub-sections:

Further, we considered two different types of environments when configuring
the clone nodes setup.

• Sparse Environment: The network is built and operated using a lim-
ited number of IoT devices in a sparse device environment. We choose
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Figure 5: Detection Time - Sparse Environ-
ment
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Figure 6: Detection Time - Dense Environ-
ment

20 devices from the total number of available devices on the network to
operate as clone devices in our setup.

• Dense Environment: The number of clone devices in a dense setup
ranges between 25 and 50.

6.1.1. Detection Probability

The detection probability can be described as the proportion of success-
fully detected cloned nodes divided by the total number of cloned nodes in the
deployed IoT ecosystem.

Since our proposed scheme detects clone node attack based on context infor-
mation collected by both the prover and the verifier and then stored in LBS for
verification purposes. Each prover must prove its location by creating location
proofs at varying intervals, which are then validated by the network’s selected
trusted nodes known as verifiers. The verification step verifies the sensed con-
text information to the data stored at the LBS. The proposed scheme deter-
mines whether or not a device has been compromised by successfully verifying
and matching such information. The detection of clone nodes resiliency in our
proposed scheme is based on two scenarios:

• Case I: An adversaryA compromises a random prover P, replicates it and
creates a clone node P’ of it by extracting all of the prover’s credentials,
including the context information CI, and deploying it in several locations
throughout the network. In a network model, all network nodes are rep-
resented as an undirected graph G = (V, E ), where V and E denote a
collection of nodes and edges, respectively. To detect clone node attack,
suppose a verifier V generates and sends a location proof request to a
prover P. When the adversary A receives a location proof request at clone
node textitP, it generates the signature for the location proof Psign and
sends it to the verifier V for verification. Once the verifier V receives the
Psign, it performs the ECDSA* on the location proof and, if the signature
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does not include context information, V determines that the prover P has
been compromised.

• Case II: An adversary A compromises a random prover P, replicates it
and creates a clone node P’ of it by collecting all of the prover’s credentials,
including the context information CI, and deploying it in various locations
throughout the network. To identify clone nodes, consider that a verifier
V makes a location proof request and sends it to the cloned node P’.
When the clone node P’ received a location proof request, the verifier
V compared the cloned context information CCI to the CI stored at
LBS. However, because the location information of the original nodes been
changed during the cloning process, CI 6= CCI, the verifier V can infer
that prover P’ is the compromised node in the network.

By considering both cases for clone node attack detection on our proposed
LPS, we demonstrate that our proposed detection scheme achieves the max-
imum detection resiliency and provides the highest probability of clone node
attack detection. However, the latter situation is more computationally effi-
cient because it simply requires verifying and matching the information with
the information stored in the LBS, as opposed to the other case, which requires
verifiers to perform ECDSA* batch verification to validate the signatures. As a
result, we can confidently assert that our proposed scheme achieves the highest
detection probability of 100% in both cases. Finally, we compare the detection
probability of our proposed scheme to that of the existing schemes [34] and [55],
which have detection rates of 90% and 92.5%, respectively.

6.1.2. Detection Time

The detection time is required for the protocol or system to identify the
network’s clone nodes successfully. The detection time in our proposed scheme
is the time consumed from generation to verification of location proofs to detect
clone node attack. We determine the detection time for both sparse and dense
environments. Fig. 5 illustrates the detection time of a clone node attack in a
sparse environment, demonstrating the significantly faster detection of an attack
when employing the ECDSA*. Fig. 6 illustrates the detection time for clone
nodes in a dense environment.

The detection time analysis reveals that our proposed scheme delivers a
more efficient detection rate for clone node attack detection when compared to
conventional ECDSA.

6.2. Computational Overhead

Another significant factor in determining the efficiency of our proposed
scheme is the computation time. A computational time is defined in our pro-
posed scheme as the time required to perform various operations such as key
generation for provers and verifiers, signature generation for provers to generate
location proofs, and verification time for verifiers to verify the location proofs.
Our proposed scheme is based on the assumption that LBS is a trustworthy
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entity capable of performing cryptographic operations without processing or
storage constraints. The computation time required to perform each operation
in the proposed scheme is detailed below.

6.2.1. Key Generation

In our proposed scheme, we generate a pair of ECDSA keys with the P-256
(secp256k1) curve for signing and verifying location proofs to detect clone node
attack in the IoT environment. Even though our LPS is based on the batch
verification process for ECDSA*, the key generation process for both ECDSA
and ECDSA* is identical. The process of generating ECDSA* keys is described
in detail in the algorithm 1. The length of keys is specified in bits, and the
time required to generate them is calculated in seconds. Thus, the security
requirements of ECDSA are met proportionately by a shorter key length, and
similar levels of security are achieved by other cryptographic algorithms such
as RSA. A significant benefit of a smaller key size is that computations can
be performed more quickly, reducing storage space, processing power, power
consumption, and bandwidth.
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Figure 7: Public and Private Keys (Provers)

We calculate the time required to generate the public and private keys for
the provers and verifiers in LPS. Each device is required to generate and verify
location proofs. For example, the prover’s private key is used to generate loca-
tion proofs as a signature, verified using the prover’s public key. Fig. 7 specifies
the time in seconds required to generate the public and private keys of provers.
The analysis demonstrates that private keys take less time to generate than
public keys. Public keys are generated by multiplying the respective private key
with an elliptic curve generator point. Similarly to the generation of public and
private keys of provers, Fig. 8 illustrates the time in seconds required to gen-
erate public and private keys of verifiers. Similarly to the generation of public
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and private keys of provers, Fig. 8 illustrates the time required in seconds to
generate the public and private keys of verifiers.

Additionally, we determine the cost of crucial generation in terms of the
total number of N provers and verifiers, which is O(N).

6.2.2. Location Proof Generation

The process of generating location proofs in an LPS is intimately linked
to the process of generating signatures, as illustrated and explained in the al-
gorithm 2. To detect clone node attack on IoT networks using an LPS, each
verifier requests proof of location from the provers to determine whether or not
the prover has been compromised. To formulate the location proof, each prover
uses its private key to sign its sensed data, referred to as context data, and sends
it to the verifier. The signature process converts the sensed context information
into a hash value using various hash functions. We used the secp256k1 curve
in ECDSA* to generate the cryptographic keys; we generated the hash value of
the context information using the SHA256 hash function. The computational
cost of generating the signatures for provers and verifiers is depicted in Fig.
9. However, the goal of our proposed scheme is to validate the location proofs
given by provers. Therefore, we are only concerned with the computational cost
of provers’ signatures.

Additionally, as indicated in the working mechanism of LPS, the location of
each device is essential for identifying between original and clone nodes, and it
is computed using the Euclidean distance specified in the location calculation
algorithm 5. We estimated the average computational time required to calculate
the locations of deployed devices such as provers and verifiers as part of their
context information in LPS. However, because the devices in the mobility net-
work constantly changed their locations, we believe that the computational cost
continually increases as the number of devices in the network increases. The
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cost of estimating the location of provers and verifiers in the LPS is illustrated
in Fig. 10.

We analyse the computational complexity of generating a location proof by
estimating its location between devices using the Euclidean distance technique
and then calculating the cost of each prover’s signature generation.

We analyse the computational complexity of generating a location proof by
estimating its location between devices using the Euclidean distance technique
and then calculating the cost of each prover’s signature generation. For ex-
ample, since each of the provers and verifiers has a coordinate (xi, yi) in a
two-dimensional space, the distance difference between them for a N devices
take linear time, followed by squares, additions, and square root, each of which
also requires the linear amount of time. As a result, the total computational
complexity of N provers and verifiers is O(N). Additionally, each prover gen-
erates its signature independently in response to a request from the verifiers
for location proofs. Thus, similar to location estimation, the signature genera-
tion procedure takes linear time, and the overall cost of generating signatures
is O(N) for N provers. To summarise, when the computational difficulty of
location estimation O(N) and signature generation O(N) are added together,
the overall computational complexity for location proof generation is O(N).
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6.2.3. Location Proof Verification

After obtaining location proofs in the form of signatures from provers, the
verifiers verify the proofs to detect clone node attack. Since our scheme used
the ECDSA* batch verification approach to validate several digital signatures
at once rather than individually. The working mechanism of location proof veri-
fication using batch verification is explained and discussed in detail in algorithm
6.

We define several batch sizes in our experiments for batch verification of
location proofs, which correspond to the number of signatures to be verified in
each batch. As stated earlier, the verification process in an LPS is performed
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by trusted verifiers; therefore, we assigned each signature to each verifier for
the sake of simplicity rather than having the base station verify each signature
individually. In addition, the ECDSA* batch verification methodology includes
operations such as point addition and scalar multiplication, which may affect
the time required to verify signatures.

We specify the total five batches for location proof verification in our exper-
iment based on the number of verifiers in the LPS. The batch size is increased
by five in each simulation; for example, 5, 10, 15, 20, 25, the computational
time in seconds is determined. We compared the batch verification time of
ECDSA* with the simple ECDSA for each batch size and concluded that batch
verification of ECDSA* is substantially more computationally efficient than the
ordinary ECDSA.

The computational time taken in seconds for verification of location proofs
utilising batch verification of ECDSA* concerning ordinary ECDSA for batch
size five validated by the verifiers is depicted in Fig. 11(a).

Fig. 11(b) illustrates the computing time in seconds required to verify loca-
tion proofs using ECDSA* versus traditional ECDSA on a batch size ten.

Figs. 11(c), 11(d) and 11(e) illustrate the computing times in seconds re-
quired to verify location proofs utilising batch verification of ECDSA* in com-
parison to standard ECDSA on batch sizes of 15, 20, and 25.

Fig. 11(f) illustrates the computational time in seconds required to verify
location proofs in the proposed scheme using the ECDSA* and conventional
ECDSA for all specified batch sizes. We conclude that batch verification is
significantly more efficient than conventional ECDSA and thus highly recom-
mended for resource-constrained IoT devices.

Additionally, we determine the computational complexity of verifiers verify-
ing location proofs in the LPS. For example, to detect clone nodes, each verifier
requests that the prover provide location proofs for verification. Each verifier
requests the total number of

√
N tracked provers, thus if the LPS has N veri-

fiers, the total computational cost of verifying each verifier’s location proofs is
O(
√
N).

6.3. Storage Overhead

We analyse the performance of our proposed scheme in terms of storage
overhead and compare it to the most applicable works. The storage overhead
associated with the mechanism for detecting clone node attack is expressed as
the average number of bytes required to store values in each node. It is defined
in our proposed scheme as the average number of detected data, such as context
information stored on IoT devices, that any detection protocol must collect to
detect clone node attack in an IoT environment successfully. To demonstrate
the feasibility of our proposed scheme from a storage overhead perspective, we
consider IoT devices to be resource-constrained devices.

Furthermore, we analyse the storage overhead of our proposed scheme con-
cerning LPS from two perspectives: individual device storage overhead and total
scheme storage overhead. Each of which is discussed in detail and measured in
the subsections that follow.
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Figure 11: Batch Verification of Difference Sizes (5,10,15,20,25)

6.3.1. Storage Overhead of Individual Device

Wemeasure the storage overhead associated with each device in our proposed
LPS as the average number of bytes required to store the context information CI
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in each device, such as the prover P and verifier V. As previously mentioned,
the context information is composed of the unique device identification ID,
the time T, the position Loc, and the activity Actv, each of which requires
two bytes, two-byte, four bytes, and eight-byte, respectively. As a result, the
context information requires eight bytes to store in each prover and verifier.
For each prover and verifier’s public and private keys, we use the 256-bit elliptic
curve (also known as secp256k1). The private key is 32 bytes in size, while the
compressed public key is 33 bytes. These public and private keys are unique to
each device and are created only once they are compromised. However, context
information is generated each time the prover device changes position, and the
verifier must identify it. Table. 3 specifies the storage requirements for an
individual device in terms of context information and key pairs, which reflects
the storage overhead associated with the prover and verifier in the proposed
scheme. Each device stores an average of 73 bytes, which is used for iterations
to detect clone nodes in the LPS. Since each device, regardless of the number
of inputs, follows the same steps to sense the same information, the objective
complexity of storage overhead for both prover and verifier is O(1).

Table 3: Storage Requirement of Each Device

Context Information

ID 2 bytes
Time 2 byte

Location 4 bytes
Activity 8 byte
ECDSA Key-Pair

Private Key 32 bytes
Public Key (compressed) 33 bytes

Figs. 12(a) and 12(b) illustrate the analysis of the storage overhead of
provers and verifiers respectively in our proposed scheme in comparison to ex-
isting schemes [34] [55]. The analysis reveals that the storage overhead of each
device increases as the number of iterations (in bytes) required to detect clone
node attack in the system increases.

6.3.2. Storage Overhead of Overall Scheme

We measure the storage overhead of our proposed scheme with the existing
schemes [34] [55] concerning several iterations performed by both prover and
verifier, and an average number of bytes takes in the system to detect clone
node attack.

To detect clone node attack, a verifier must initiate the location proof mecha-
nism and send it to the prover to verify whether or not it has been compromised.
Thus, to detect clone nodes, each system (prover and verifier) must contribute
and perform iterations following the other. Fig. 12(c) depicts the proposed
scheme’s overall storage overhead to the existing schemes [34] [55] in terms of
the number of iterations (in bytes) performed by devices to detect clone node
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Figure 12: Storage Overhead of Proposed Scheme (Provers, Verifiers, Overall Scheme)

attack. According to the analysis, our proposed scheme is significantly more
efficient in terms of storage overhead and requires less space on devices than
existing schemes.

Additionally, we determine the objective complexity of our proposed scheme
in terms of its overall storage overhead. For example, in proposed LPS, each
prover P sense and store the context information CI such as unique ID, time
T, location Loc, and activity Actv which is used to generate the location proof
LP to be verified by the verifiers for detection of clone nodes in the network.
The context information is also called the detection information that needs to
be stored in a prover when the protocol for detecting node clone attacks works
in networks. Each verifier V also need to sense the context information CI
used to compare with the context information CI obtain from the prover P. For
detection of clone nodes, each verifier V need to obtain a location proof LP from
prover P which is computed from algorithm 5. Upon receiving a latest location
proof LPi from prover P, the former location proof LPi−1 is ignored, only latest
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Figure 13: Communication Overhead (No. of Messages Transmitted)

location proof LPi is stored to wait for the next location proof LPi+1. To store
all the location proofs from the prover P, a first come first served (FCFS) queue
is maintained. Therefore, a fixed length of storage space including a location
proof and queue is required for each prover. Each verifier V has the

√
N tracked

provers and every prover P has
√
N verifiers, thus the total storage cost of each
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node (prover and verifier) is O(
√
N).

The storage overhead measurement for IoT devices shows that the increase
in the number of iterations performed during the clone node detection attack is
the reason for the increase in the system’s total storage overhead.

6.3.3. Communication Overhead

In IoT-based Networks, the term “communication overhead” refers to the
data sent to or from the base station to IoT devices to conduct various network
operations. The communication overhead in our proposed scheme is defined
as the average number of iterations each node transmits and receives during
various network operations to detect clone node attack in LPS.

The networks operations included in our proposed scheme are sensing the
context information, storing the context information on some server in location-
based services, requesting and accepting location proofs between verifier and
provers and between verifiers and clone nodes, and reporting of different itera-
tions among verifiers, provers, clone nodes, and LBS as illustrated in detail in
subsection 4.3. The communication cost of these operations can be measured
by the estimated number of messages transmitted.

Fig. 13(a) illustrating the communication overhead associated with provers
and verifiers sensing context information in order to initiate the process of LPS
for detecting clone node attack in the network. This analysis of communication
overhead is highly dependent on the number of iterations and the number of
devices activated during the overall initial setup. Since these verifiers are the
primary devices in the LPS, interacting with the provers and LBS to verify the
location proofs, they perform more iterations and have a higher communication
overhead.

Fig. 13(b) shows the communication overhead associated with the verifiers
storing context information in the LBS. As with the analysis in Fig. 13(a),
the analysis demonstrates that verifiers have a higher communication overhead
than the LBS because verifiers perform more network activities than any other
device in the network.

Fig. 13(c) demonstrating the communication overhead in terms of itera-
tions required to request and generate location proofs for detecting clone nodes
attack between provers and verifiers. The analysis demonstrates that the com-
munication overhead for location proof generated on the verifiers’ side is high, as
verifiers must generate the proof request and verify it with the LBS, in addition
to notifying provers about the device breach.

Fig. 13(d) illustrates the communication overhead between clone nodes and
verifiers in terms of iterations required to detect clone nodes in the network. As
with the analysis in Fig. 13(c), this analysis demonstrates that the communica-
tion overhead for verifiers increases as the number of iterations on the various
network operations increases.

Fig. 13(e) demonstrates the overall communication overhead of our proposed
LPS in terms of iterations between the system’s devices, which include provers,
verifiers, clone nodes, and LBS. The results indicate that the verifier performs
many iterations since it is considered the main element for verifying network
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operations such as sensing information, storing it in the LBS, generating and
validating proofs, and detecting clone node attack in the system.

Apart from measuring computation overhead in terms of iterations, we also
analysed the computation overhead of our proposed scheme in terms of bytes
used by the average number of iterations when conducting various network
operations to detect clone node attack. For example, Fig. 14(a) depicts the
computation overhead of sensing context information by provers and verifiers in
terms of bytes, which clearly shows the increase in computation overhead with
the number of devices connected to the network. Furthermore, since the number
of provers in the network is more than the number of verifiers, the computation
cost is likewise more significant for the provers.

Fig. 14(b) demonstrating the communication overhead associated with stor-
ing sensing data to a server once it is obtained from the deployed environment.
This occurs between the verifiers and the LBS authority. The analysis demon-
strates that, in addition to storing context information, verifiers are also involved
in various reporting actions to other devices in the network, such as provers.
As a result, the higher the number of iterations, the greater the communication
cost in terms of bytes.

Fig. 14(c) demonstrates the communication overhead associated with vali-
dating the location proof process through iterations of generating and verifying
the location proof between the provers and verifiers to detect clone node attack.
Furthermore, as verifiers make location proof requests, they entail some addi-
tional processes for LBS, such as checking the store context information and
adding proof generation, which resulted in a more significant increase in bytes
than generating the location proof just by the prover.

The communication overhead in terms of bytes for conducting iterations of
detecting clone nodes in an LPS is illustrated in Fig. 14(d). The result analysis
demonstrates that verifier communication overhead increases as additional steps
for validating proofs with LBS are performed. It also varies on the number of
devices.

Fig. 14(e) illustrates the overall communication overhead of our proposed
LPS when the average number of iterations occurs between different devices
such as provers, verifiers, clone nodes, and LBS. The communication overhead
between such devices is measured in bytes. This analysis demonstrates that the
communication overhead of verifiers is more significant than that of all other
devices because verifiers are the core devices responsible for conducting the net-
work’s primary activities such as sensing information, generating and verifying
location proof requests, and also providing a means of communicating with the
LBS for confirming context information. Additionally, the communication cost
for provers and clone nodes is significantly lower than the cost for verifiers,
which is the primary objective of the proposed scheme.

Along with analysing the communication overhead of our proposed scheme,
we perform a worst-case analysis to determine its objective complexity in terms
of communication overhead. For example, provers and verifiers incur a network
cost of O(N) message transmission when sensing context information. Similarly
to sensing context information, storing such information to the LBS incurs O(N)
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Figure 14: Communication Overhead (No. of Bytes Required)

message transmission costs across the network. We consider a tree to generate
location proofs requests for provers, with the root acting as a verifier that prop-
agates location proofs to the provers functioning as leaf nodes. The amount of
location proofs sent to provers is proportional to the size of a tree. Assume that
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P trees are generated for the network’s provers and have a moderate degree of
Pd. As a result, the total number of iterations executed by the tree is calculated
using Eq. 16.

h
∑

i=1

P i
d =

P h+1
d − 1

Pd − 1
(16)

Where h is the height of the tree for the provers and is denoted as:

⌊

logPd(
N

KP
)

⌋

N is the total number of devices, K denotes the average size of a subset of
the tree, and the network generates a total of N

K
sub-trees. As a result, the

location proof message transmission takes N
KP

in the tree structure, resulting in

a total message transmission rate of O(N
K
) in the network.

The transmission of iterations in a tree is identical to the creation of the tree,
except that each root incurs an additional cost for transmitting a final subset
iteration to the root node, such as a verifier. Thus, the iteration transmission
overhead in the network is O(P

√
N + N

K
).

As a result, the objective complexity of our proposed scheme in terms of
network communication overhead is estimated by combining the costs of all
iterations required to perform various network operations necessary to detect a
clone node in the network using Eq. 17.

O(N) +O(N) +O(N
K

) +O(P
√
N +

N

S
) = O(N) (17)

In contrast to other schemes that constantly collect and relay huge amounts
of data to the base station, our proposed scheme has a lower communication
overhead on the network since it is only needed to check the neighbour node’s
position evidence. Since communication cost in an LPS is proportional to the
number of trusted verifiers, we argue that the proposed scheme is appealing due
to its mobile nature and lower communication overhead.

Table. 4 compares the computational complexity of evaluation parameters
such as computation overhead, storage overhead, and communication overhead
in our proposed system to existing state-of-the-art schemes. According to the
analysis results, our scheme has a lower overhead in all computational complex-
ities.

7. Conclusion and Future Work

The majority of sensors embedded into IoT devices lack tamper-resistant
hardware, which is the primary cause of IoT device compromise or hijacking and
frequently results in device cloning and replication. Considering these security
concerns, it is vital to have a robust detection mechanism to secure against
clone node attack. This paper proposes an efficient mechanism for detecting
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Table 4: Comparison of Evaluation Parameters with Existing Schemes

Evaluation Parameters

Schemes
Computation

Overhead

Storage

Overhead

Communication

Overhead

[34] O(N) + O(N) N/A O(N2)
[55] N/A O(N) O(N)
[10] O(N) N/A O(N2)

Our Proposed
Scheme

O(N) + O(N) + O(
√
N) O(

√
N) O(N)

clone node attack in IoT networks to leverage their context-aware information.
We develop a secure LPS that uses the context information of IoT devices as
location proofs in conjunction with batch verification of ECSDA* to accelerate
the verification process at the proposed selected trustworthy nodes model. Using
the algorithms and sequence diagram, we discussed each component of the LPS
and illustrated the working of the proposed scheme. Furthermore, we conducted
an extensive security analysis, outlining the prerequisites and several security
needs for ECC and the possibility of several types of attacks on the signatures
and hashes used in our proposed scheme. Finally, we design a prototype of an
LPS in order to validate the performance and overhead of our various proposed
algorithms. The experimental results are compared to existing schemes and
conclude that our system provides a robust and considerable attack detection
rate for clone node attack in IoT networks while minimising computing, storage,
and communication overhead. In our future work, we intend to develop our
prototype in a real-time IoT-based scenario to assess its applicability for large
industrial setups, focusing on energy usage, network latency, and message drop
ratio, etc.
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[43] J. Jančár, Security considerations for elliptic curve domain parameters se-
lection, Tech. rep., Bachelor’s Thesis, Masaryk University Faculty of Infor-
matics (2015).

[44] M. L. Sommerseth, H. Hoeiland, Pohlig-hellman applied in elliptic curve
cryptography, Tech. rep., Technical Report, University of California Santa
Barbara (2015).

[45] F. Luca, D. J. Mireles, I. E. Shparlinski, et al., Mov attack in various
subgroups on elliptic curves, Illinois Journal of Mathematics 48 (3) (2004)
1041–1052.

[46] X. Zhang, K. Wang, D. Lin, On efficient pairings on elliptic curves over
extension fields, in: International Conference on Pairing-Based Cryptogra-
phy, Springer, 2012, pp. 1–18.

[47] D. Hankerson, A. J. Menezes, S. Vanstone, Guide to elliptic curve cryptog-
raphy, Springer Science & Business Media, 2006.

[48] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Ver-
cauteren, Handbook of elliptic and hyperelliptic curve cryptography, CRC
press, 2005.

57



[49] I. Biehl, B. Meyer, V. Müller, Differential fault attacks on elliptic curve
cryptosystems, in: Annual International Cryptology Conference, Springer,
2000, pp. 131–146.

[50] L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M. Hastings, J. A.
Halderman, N. Heninger, Measuring small subgroup attacks against diffie-
hellman., in: NDSS, 2017.

[51] C. H. Lim, P. J. Lee, A key recovery attack on discrete log-based schemes
using a prime order subgroup, in: Annual International Cryptology Con-
ference, Springer, 1997, pp. 249–263.

[52] A. Antipa, D. Brown, A. Menezes, R. Struik, S. Vanstone, Validation of
elliptic curve public keys, in: International workshop on public key cryp-
tography, Springer, 2003, pp. 211–223.
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