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Abstract

The network topology formation in an Edge Infrastructure-as-a-Service (EIaaS) paradigm must consider the placement of Edge
Computational Nodes (ECNs) so as to minimize the delay. Existing ECN placement schemes consider redundant node density,
non-optimal location selection, and distance-based association, which affect the ultra-low latency requirement(s) of applications.
Further, per ECN to IoT nodes association is key to efficient utilization of ECNs and delay minimization between IoT node(s) and
ECN. This work proposes a Cost-aware Edge Computational Node Placement (coECNP) scheme for optimal topology formation
in EIaaS paradigm with the objective of IoT nodes delay minimization. It formulates ECN placement problem as a constrained
optimization problem. Each iteration in the location discovery module of coECNP identifies optimal placement location by utilizing
IoT node’s density on an updated set of IoT nodes and hop-distance among previous iterations’ ECN locations and current candidate
locations. As a result, it maximizes the number of IoT nodes that access ECN with minimum hop-distance, leading to end-to-end
delay minimization. The assignment module of coECNP takes care of previously assigned nodes in each iteration before associating
new IoT nodes to the nearest ECN to attain balanced mapping. Thus, it alleviates total delay from IoT node to respective ECN and
enhances edge resource utilization to cater the application(s) near real-time execution requirement(s). The performance comparison
indicates that coECNP achieves promising results by reducing IoT nodes delay by 23-64%, 20-66%, and 35-73% on periodic, event-
based, and query-based data traffic scenarios, respectively, under various network settings, compared to the benchmark solutions.
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1. Introduction

The seamless integration of edge computing into various
domains such as IoT, industrial IoT (IIoT), Cyber-Physical
System (CPS), etc., results in enhanced system performance
and reduced operational cost [1] [2] [3] [4]. Edge comput-
ing paradigm enables the computation at the network edge and
store, process, analyze most of the data generated by IoT nodes
close to, or at the edge [5].

Edge computing solutions mitigate the network latency,
bandwidth, data storage, security, and other compliance issues
associated with cloud infrastructure [4] [5] [6] [7] [8]. The edge
varies according to the required goals. Broadly, edge is cate-
gorized into three categories named as thick edge, thin edge,
and micro edge [9] [10]. The thick edge consists of power-
ful computing and large storage space (such as data centers,
cell tower data centers etc.) responsible for bulk processing
(such as factory level data storage and analysis). The thin edge
provides the moderate level computation and storage facilities
(such as single-board computer(e.g. Raspberry Pi), industrial
PC equipped with Intel i-series processor etc.). Micro edge con-
sist of sensors which are responsible for data generation and/or
actuation.
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With local computation and faster decision-making the edge
complements the power of the cloud to build a cost-effective,
powerful IoT solution termed as Edge Infrastructure-as-a-
Service (EIaaS). An EIaaS setup is a network of computational
nodes named as Edge computational Nodes (ECNs) capable of
hosting and executing application components. These appli-
cation components take inputs from various data sources and
process them to cater the needs of the system.

The EIaaS paradigm has applicability into a wide range of
applications such as intelligent factories, smart plants, prognos-
tic and health management, smart homes, etc. [2] [3] [4]. It
enables the application providers to deploy services efficiently
and instantly. Most of these applications are latency-sensitive
such as monitoring (latency < 1s), supervisory control (latency
< 100ms), safety alarming (latency < 1s) etc [11][9]. For in-
stance, shop floor applications in a smart factory are latency-
sensitive, which require their treatment at various components
along the chain.

The successful completion of these applications require-
ment(s) depends on various components such as, topological
arrangement of IoT nodes, computational hardware, number of
ECNs and their placement, association of IoT nodes to relevant
ECN (EIaaS topology), etc. Sometimes it includes a higher
degree of interconnection, cognitive automation, shifting infor-
mation collection, and processing into cloud-based applications
[12][9]. Specifically, when the application(s) interacts with the
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environment, both end-to-end delay from IoT node to ECN and
processing delay at ECN play a paramount role, and it depends
heavily on the aforementioned components. Thus, data trans-
mission and decision making process should be optimized as
timely as possible to enhance system performance [3].

This work does a systematic review of the related research
in a pursuit to investigate the role of ECN placement and IoT
nodes mapping among ECNs for topology formation in EIaaS
paradigm. Most studies [13] [14] [15] [16] [17] in this direction
take a reactive approach and focus on offloading schemes under
the assumption of already deployed Edge Servers/Edge Nodes
(ESs/ENs) in the network. The question of how to place ESs
in a given resource-constrained IoT network to optimize net-
work performance, is less targeted. The ES placement strategies
for Mobile Edge Computing (MEC) and Wireless Metropolitan
Area Network (WMAN) environment broadly focus on two as-
pects: communication metric and workload balancing. Along
with placement, the number of ESs also impacts the deploy-
ment cost and QoS requirements. The number of ESs in the de-
ployment is a trade-off between operator/manufacturer budget
constraints and required application performance. The trade-
off is optimized using budget or QoS requirement based ap-
proaches [18]. The budget based approach places a fixed num-
ber of ESs (determined by operators budget constrains) such
that delay between node-ES pair is minimized, whereas, QoS
based approach determines the minimum number of ESs which
satisfies the given QoS parameter (such as maximum tolerable
access delay for a node is h-hop). The proposed work assumes
a fixed number of ECNs followed by majority of the surveyed
studies discussed in [18].

Authors discussed various approaches to minimize the ac-
cess delay between end devices and ESs/cloudlets [19] [20] [21]
[22] [23] [24] [25] [26] [27]. The above mentioned schemes
do not address the balanced workload assignment among ESs
that impact edge resource utilization. However, balanced work-
load assignment among ESs with access delay minimization
is addressed by few studies [18] [28] [29] [30] [31]. Liang
et al. [28] discussed a device remapping based load balanc-
ing scheme that results in higher energy consumption of end
devices and increased delay. Whereas, historic workload in-
formation is required in [18][29]. Moreover, these schemes
[18] [28] [29] are restricted to use in direct (one-hop) commu-
nication scenario and utilize Euclidean distance to assign end
nodes to respective ESs. In contrast, in resource-constrained
IoT networks, multi-hop communication is preferred and hop
distance is used as a decision parameter in end nodes assign-
ment to minimize delay and energy consumption [32]. Density
based placement schemes [31] [33] [34] suffer from issues such
as redundancy, non-optimal location selection, and unbalanced
node-ECN mapping.

Further, most of these schemes modeled end-to-end delay as
total delay and processing delay at ES is ignored. Moreover,
MEC solutions focus on performance issues associated with
consumer of data, while in above discussed network set-up,
performance issues associated with data transmission and end
device association with appropriate ES need to be addressed
[10]. Further, under the assumption that each IoT node loca-
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(See section 4.2) 
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(See section 4.1) 

Figure 1: coECNP mechanism’s levels of abstraction

tion as candidate location for ECN placement and each ECN as
candidate for mapping the IoT nodes, the number of possible
placement and mapping strategies are combinatorial. There-
fore, EIaaS topology formation by selecting an optimal place-
ment and mapping strategy among a large set of choices, which
minimize the delay and maximize the efficient utilization of
edge resources, is challenging. It initiates the requirement of
a heuristic solution to cope with efficient placement and map-
ping problem in reasonable time.

This paper takes up the ECN placement and IoT nodes
to ECN mapping problem for topology formation in EIaaS
paradigm and formulates as a constrained optimization prob-
lem. We propose a Cost-aware Edge Computational Node
Placement (coECNP) scheme for topology formation in EIaaS
paradigm for delay minimization in order to satisfy near real-
time demands of application(s). Fig. 1 depicts the modu-
lar functional architecture of coECNP scheme. The bottom
most layer represents the physical view of an industrial plant
equipped with IoT nodes (such as sensors). The remaining
layers represent the logical abstraction of modules of coENCP
scheme.

Key contributions of this work are as follows:

• We propose a Cost-aware Edge Computational Node
Placement (coECNP) scheme for topology formation in
EIaaS paradigm for latency-sensitive applications. co-
ECNP scheme is structured around three modules: loca-
tion identification for ECN placement, mapping of IoT
nodes among ECNs, and EIaaS topology configuration.

• To identify optimal locations for ECNs placement, we pro-
pose a location discovery mechanism that considers hop-
distance and eliminates redundant nodes for density com-
putation in the process of optimal location identification.
A mapping scheme is proposed named as Minimum Set
Assignment First that minimizes the difference of mapped
nodes among ECNs. Further, we extend the mapping
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Table 1: Summary of ES and cloudlet placement schemes

References Mechanism Delay Balanced assign-
ment

Limitations

[19] [20]
[22] [23]
[24] [25]
[27]

ILP, PSO, Online algorithm,
Dominating set and simu-
lated annealing, Benders de-
composition, Binary based
differential evolution cuckoo
search, heuristic approach

Yes No Balanced workload/node assignment is not ad-
dressed that affects response time and edge re-
source utilization.

[21] [28]
[30]

k−means Yes, Yes, Yes No, No, Yes Euclidean distance is preferred over hop dis-
tance in IoT nodes mapping.

[18] [29] PACK, MIP Yes, Yes Yes, Yes Restricted to use for direct (one-hop) communication
scenario.
Prior historic workload information is
required.

[31] HAF Yes No HAF scheme did not address redundancy is-
sue.

DBC Yes Yes DBC scheme randomly selects optimal loca-
tion among candidate ones.

[26] k− clustering Yes No Random selection of initial k cluster centers
among candidate ones leads to higher delay
and reduced edge resource utilization, redun-
dancy factor is not considered in selection of
initial cluster centers.

[35] Discrete differential evolu-
tion algorithm

No Yes The response time is modeled as function of
computing delay and impact of communica-
tion delay on response time is ignored.

[36] Binary gray wolf genetic
scheme

No Yes The scheme ignores the delay aspects.

[33] Density based multi-sink
placement

Yes No Randomly selects sink placement location
among candidate ones and limited to direct
communication scenario.

[34] Density based clustering Yes No Restricted to use in direct communication sce-
nario.
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scheme to handle the critical cases in node-ECN mapping.

• The simulation experiments show that coECNP scheme
outperforms the benchmark solutions in terms of delay
and energy consumption of IoT nodes under various net-
work settings and data traffic scenarios, respectively. co-
ECNP scheme reduces delay and energy consumption by
23-64%, 20-66%, 35-73%, and 11-58%, 13-58%, 29-55%,
respectively, on periodic, event-based, and query-based
data traffic scenarios under various network settings.

In the following we discuss related work in section 2 fol-
lowed by system model and problem formulation in section
3. The coECNP scheme for ECN deployment and IoT nodes
mapping is discussed in section 4. Section 5 discusses the pro-
posed scheme’s theoretical analysis with respect to benchmark
schemes. Section 6 presents the experimental results. Section 7
discusses the theoretical analysis of coECNP with various net-
work centrality measures followed by conclusion in section 8.

2. Related Work

This section discusses some notable recent work addressing
ES placement schemes as Table 1 provides a summary. The
problem at hand shares some similarities with ES placement
strategies in MEC, WMAN, and cloudlet placement schemes in
WMAN.

Ilias Gravalos et al. [19] proposed a linear programming
based gateway placement mechanism in IoT network to min-
imize gateway access cost from end devices while taking care
of the essential QoS requirements. Yuanzhe Li et al. [20] pro-
posed a solution for energy-aware ES placement in MEC envi-
ronment. Authors adopted particle swarm optimization (PSO)
technique to determine the placement locations. Meng at el.
[22] discussed a cloudlet placement problem to minimize delay
between users and cloudlets. Authors considered task transmis-
sion delay as total completion delay. Yang at el. [24] discussed
a cloudlet placement and task allocation problem in MEC us-
ing benders decomposition to minimize delay and energy con-
sumption. Zeng at el. [23] devised a cost-effective ES place-
ment scheme using simulated annealing and dominating set to
minimize the number of ESs while ensuring QoS requirement.
Wang et al. [25] proposed a binary-based differential evolution
cuckoo search algorithm to minimize the latency and deploy-
ment cost for optimal cloudlets deployment in IoT. Fan at el.
[27] devised a cost aware cloudlet placement scheme in MEC
to minimize cloudlet cost and average end to end delay using
a heuristic solution. These schemes [19] [20] [22] [23] [24]
[25] [27] are designed to minimize access delay and ignore the
balanced end nodes assignment that causes poor utilization of
edge resources. Further, the schemes [19] [20] [22] [23] [27]
ignore data processing delay at ESs.

Liang et al. [28] discussed a location-aware service deploy-
ment scheme to minimize cloud service access latency. Authors
adopted k-means clustering to form the device cluster and select
Edge Cloud Server (ECS) nearest to cluster center for service
instance deployment. Further, a load balancing mechanism is

proposed that remapped the mobile devices of overloaded ECS
to under-loaded ECS. It increases the number of hops in com-
munication paths that results in higher delay and energy con-
sumption. Li et al. [21] designed an ES placement scheme us-
ing k-means algorithm to reduce the average completion time of
the system. Guo et. al [30] utilized k−means algorithm to place
a fixed number of ESs with the objective of communication de-
lay minimization and balance the workload. Wang et al. [29]
described an efficient ES placement strategy in MEC to mini-
mize workload difference among ESs and access delay between
end user devices and ESs using Mixed-Integer Programming
(MIP). The scheme requires prior information about workload
of the base station. Lahderanta et al. [18] discussed an ES
placement algorithm in edge computing infrastructure, named
PACK, to minimize distance between server and their associ-
ated access points and takes care of load balancing. Although,
in absence of historic workload information the objective func-
tion is reduced to end-to-end latency minimization only. These
schemes [18] [28] [29] utilized Euclidean distance as a deci-
sion parameter in end node assignment and restricted to direct
(one-hop) communication scenario that leads to higher energy
consumption and delay in resource-constrained networks.

Jia et al. [31] discussed a cloudlet placement scheme in
WMAN to address access delay and optimal user to cloudlet as-
signment. Authors devised Heaviest Access Point First (HAF)
and Density based Clustering (DBC) schemes. HAF selects the
location of heavily loaded access points for the placement of
cloudlets. DBC selects access points with dense user area to
place cloudlets and achieves optimal user to cloudlet assign-
ment using relative distance. DBC addresses redundancy fac-
tor to determine placement locations. However, it randomly
selects optimal placement location among candidate ones that
leads to non-optimal cloudlet placement that results in higher
energy consumption and delay in resource poor networks.

Chin et al. [26] proposed a k-clustering algorithm for queu-
ing model-based ES placement in mobile cloud network to min-
imize the network traffic. The k− clustering scheme selects
k nodes having the highest request as ESs for initial cluster
formation. It utilizes shortest hop distance to assign the re-
quest of remaining nodes among ESs. Next, in each cluster
a new node is selected as ES, and requests of remaining clus-
ter nodes are assigned to the corresponding node. This process
runs iteratively until the traffic load difference between previous
and current iteration is less than a predefined threshold. This
scheme selects the initial cluster center without considering re-
dundancy factor that leads to higher access delay and reduces
the edge resource(s) utilization. Moreover, the optimal initial
k ES selection (if more than k nodes having same highest re-
quest) is not addressed. Random selection of initial ESs causes
higher delay and reduces edge resource utilization. Wang et al.
[35] discussed a fog node deployment scheme in a smart fac-
tory using discrete differential evolution algorithm to minimize
the response time and achieve load balancing. The schemes
assumes that communication delay between fog node and ter-
minal device(s) is constant. However, in realistic wireless net-
work scenario, communication delay is defined as function of
distance/hop-count and has major impact on response time. The
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assumption of constant communication delay converts the re-
sponse time minimization and load balancing cost function to
only load balancing. Wang et al. [36] discussed a binary-based
gray wolf genetic scheme for ES placement scheme in intel-
ligent manufacturing to achieve cost reduction and load bal-
ancing. However, authors did not consider the communication
and data processing delay that directly affects the system per-
formance. The delay should be minimize in order to cater the
near-real time system requirements. Kasi et al. [37] perform the
comparative analysis of local search algorithms (hill climbing
and simulated annealing) with genetic algorithm for ES place-
ment in IIoT and cellular network. The analysis indicates that
genetic algorithm outperforms the considered local search al-
gorithms.

Density based clustering schemes are also utilized in WSN to
reduce latency and energy consumption [33] [34]. Veeramani et
al. [33] proposed a heuristic solution that selects maximum de-
gree nodes for multi-sink placement. Peng et al. [34] discussed
a density based network clustering and selects initial Cluster
Heads (CHs) using node’s residual energy. Since, initially each
node has same energy level that leads to random CH selection.
It relocates CHs role among other nodes over course of time
based on some parameters. On the other hand, ECN placement
location needs to be determined optimally since a fixed number
of ECNs (high cost and resource-rich devices compared to IoT
nodes) are placed at these locations at once and do not support
location migration flexibility like CHs. These schemes only
considers the direct communication scenario and balanced as-
signment issue remains unaddressed.

The proposed work collectively addresses the ECN place-
ment and balanced IoT-ECN mapping problem compared to the
above-discussed schemes. The proposed coECNP scheme de-
termines the optimal locations for ECN placement by taking
care of the above-discussed shortcomings of existing works to
minimizes the maximum hop distance between IoT-ECN pair.
It takes care of redundancy issue and utilizes hop distance be-
tween candidate locations and previously placed ECNs to de-
termine optimal location(s) for ECN placement that mitigates
the close placement of ECNs and leads to reduced access cost
between IoT-ECN pair (see section 4.1). Next, it maps the
IoT nodes among ECNs in a balanced fashion using a mapping
mechanism (see section 4.2) to accomplish balanced IoT-ECN
mapping. Thus, coECNP minimizes IoT nodes delay and uti-
lizes edge resources efficiently.

3. System Model and Problem Formulation

The EIaaS is abstracted as an un-directed graph G(V, E),
where,V is the set of n IoT nodes defined asV = {v1, v2, ..., vn},
and E is the set of links among them. The number of ECNs
(k) are determined using Elbow method [38] [39]. The Elbow
method is used to determine the appropriate number of clusters
in clustering analysis. The cost function for the same is defined
as,

J =

k∑
i=1

∑
a∈Ci

|a −Ci|
2 (1)

Where, a is the element of cluster Ci and k is the number of
clusters (|Ci|). The curve between cost function (J) and num-
ber of clusters (k) follows the shape of elbow and the k value
corresponding to elbow point is selected as appropriate number
of clusters.

Each IoT node (v(i|i=1,2,...,n) ∈ V) is enabled with sensing
and limited processing, storage, communication functionalities
(such as Arduino/TelosB board equipped with low storage and
micro-controller). Each ECN (u( j| j=1,2,...,k) ∈ U) is a full func-
tional EIaaS device equipped with more processing and storage
capabilities (such as single board computer (example Raspberry
Pi), industrial PCs etc.) than IoT nodes. Two arbitrary IoT
nodes, vi and v j are said to be neighbor if EUD(vi, v j) ≤ Rmax.
IoT nodes communicate with respective ECN either directly or
using a multi-hop path over wireless channel. It is assumed that
network gateway is aware of location and IDs of IoT nodes.

In EIaaS enabled IoT network, each IoT node produces a
significant amount of data that requires to be processed at re-
spective ECN in near real-time fashion to minimize the overall
delay so as to meet the applications’ requirements. The total
delay in this process is caused due to end-to-end (E2E) delay
from IoT node to the respective ECN and the data processing
delay at that ECN [4]. The total delay (Dvi

u j ) between ith IoT
node (vi|1≤i≤n ∈ V) and respective jth ECN (u j|1≤ j≤k ∈ U) is
characterized by Eq. 2.

Dvi
u j

= DP
E2E(vi, u j) +Dvi

proc(u j) (2)

Where, DP
E2E(vi, u j) and Dvi

proc(u j) are the end-to-end delay
from ith IoT node to jth ECN along path P and data processing
delay at jth ECN for ith IoT node, respectively.

End-to-End delay between an IoT node and ECN consists of
link delay (transmission and propagation delay) and forward-
ing delay at intermediate IoT nodes. Let path P between ith IoT
node (vi) and jth ECN (u j) consist of a set of links and inter-
mediate nodes (including vi and u j) defined as E(P) andV(P).
Assume DP

L(vi, u j) and DP
F(vi, u j) represents the link delay on

a link e ∈ E(P) and data forwarding delay at an intermediate
node v ∈ V(P). TheDP

E2E(vi, u j) is given by Eq. 3.

DP
E2E(vi, u j) =

∑
e∈E(P)

DP
L(vi, u j) +

∑
v∈V(P)

DP
F(vi, u j) (3)

It is evident from Eq. 3 that link and forwarding delay fol-
lows a proportionality relationship to the path length(hop dis-
tance) from node to respective ECN. The hop distance from
IoT node to ECN varies as per ECN placement strategies. Fur-
thermore, the data processing delay of ith IoT node (vi) at Jth

ECN (u j) is given by Eq. 4.

Dvi
proc(u j) = max

(
0,Dv j,i

proc(u j)
)

+Dvi
pra(u j) (4)

Where, max
(
0,Dv j,i

proc(u j)
)

and Dvi
pra(u j) represents the waiting

time of vi at u j and data processing time of of vi at u j after
getting ECN resources. The waiting time varies as per mapping
schemes and Dvi

pra(u j) depends on computation requirement to
process the data. Moreover, IoT nodes mapping among ECNs
also impacts E2E delay and edge resource utilization.
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Table 2: Notations

Symbol Descriptions
Ci Cluster center
a Element of Ci

J Elbow method cost function
V Set of IoT nodes vi|i=1,2,...,n

V
′

Set of unassigned IoT nodes
E Set of link among IoT nodes
U Set of edge computational nodes u j| j=1,2,...,k
NB(vi) Set of neighbors of ith IoT node
S j Set of IoT nodes mapped to jth ECN (u j)
IND Set of IoT nodes having denmax

INDi ith element of set IND
S
′

Set of S j| j=1,2,...,k
NH Set of next-hop neighbors of IoT nodes
NHCMN Set of common next-hop IoT nodes
NHU Set of unique next-hop IoT nodes
Rmax Maximum transmission range of IoT nodes
EUD(vi, v j) Euclidean distance between IoT nodes vi and v j

HD(vi, v j) Hop distance between vi and v j

den(vi) Density of ith IoT node
|X| Cardinality of set X
denmax Value of maximum density
distmax

hop Hop distance of candidate IoT node, having denmax located at maximum
hop distance from locations of previous ECNs

indexmax Index of node having maximum density
loc(vi) Location of ith IoT node
D

vi
u j Total delay between ith IoT node and jth ECN
DP

E2E(vi, u j) End-to-End delay from ith IoT node to jth ECN along path P
D

vi
proc(u j) Data processing delay at jth ECN for ith IoT node
DP

L(vi, u j) Link delay along path P from ith IoT node to jth ECN
DP

F(vi, u j) Data forwarding delay at intermediate nodes along path P from ith IoT
node to jth ECN

D
vi
pra(u j) Data processing delay for ith IoT node at jth ECN after getting resources

Υi j,Ψi j Binary variables for mapping and placement
ECNLoc

Dis ECN location discovery module
IoT ECN

Map IoT nodes mapping module
EIaaS con f EIaaS topology configuration module
ECNMin

|S | Minimum set assignment first mapping scheme
EECNMin

|S | Extended ECNMin
|S | scheme

S D Standard deviation

The above discussion formulates the foundation to con-
sider ECN placement and IoT nodes mapping among ECNs
for topology formation in EIaaS paradigm to serve latency-
sensitive applications. The list of important symbols used in
this work is summarized in Table 2.

3.1. Problem Formulation

The ECN placement and IoT nodes mapping among ECNs
play a pivotal role in total delay minimization of IoT nodes.
This work formulates the IoT nodes delay minimization prob-
lem as follows. Given the set of n IoT nodes and k ECNs, deter-

mine the k optimal locations (loc1, loc2, ..., lock) to place ECNs
and map IoT nodes among ECNs such that total delay of IoT
nodes is minimized, i.e.

Minimize
1
n

n∑
i=1

k∑
j=1

Dvi
u j

Υi j (5)

Subject to constraints

k⋃
j=1

S j = V (6)
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k⋂
j=1

S j = φ (7)

∑
j∈k

Ψi j = 1,∀i ∈ n (8)

n∑
i=1

k∑
j=1

Ψi j = k (9)

Eq. (5) represents the cost function with the objective of de-
lay minimization. Constraint (6) and (7) assure that each IoT
node is served and by exactly one ECN. Constraint (8) repre-
sents that each ECN is deployed at only one location, while
constraint (9) assures the placement of k ECNs in the network.
Υi j and Ψi j are binary variables given by Eq. (10) and Eq. (11).

Υi j =

1, i f ith IoT node (vi) is mapped to jth ECN (u j)
0, otherwise

(10)

Ψi j =

1, i f ith ECN is placed at location of jth IoT node
0, otherwise

(11)

4. The coENCP mechanism

This section discusses the proposed mechanism executed at
the network gateway. coECNP scheme is composed of: (i)
ECN Location Discovery (ECNLoc

Dis ), (ii) IoT nodes Mapping
(IoT ECN

Map ) , and (iii) EIaaS topology configuration (EIaaS Con f )
modules, as depicted in Fig. 2. ECNLoc

Dis and IoT ECN
Map modules

determine optimal locations for ECNs placement and optimal
mapping of IoT nodes among ECNs such that IoT nodes to-
tal delay is minimized. Finally, EIaaS Con f module configures
the EIaaS topology by establishing a connection between IoT
nodes and respective ECN.

4.1. ECN Location Discovery

ECNLoc
Dis module is responsible for discovering optimal loca-

tions to place the ECNs in the network. Algorithm 1 describes
ECN location discovery procedure. The module accommodates
a location discovery function f that associates each element of
set U to a unique element of set that consists of IoT nodes lo-
cations, defined as, f : U → loc(V). For instance, if location
discovery function selects location of ith IoT node to place jth

ECN then f (u j) = loc(vi).
These locations are determined based on density of IoT

nodes, where, density is defined as number of neighbors of IoT
node (line 7-9) given as:

den(vi) =
∑
j∈V′

θ(EUD(vi, v j) − Rmax) (12)

Algorithm 1: ECN location discovery
Input :V,U, loc(vi|i=1,2,...,n), k
Output: ECNs placement locations

1 begin
2 count =1,V

′

=V, S j| j=1,2,...,k= φ
3 while count ≤ k do
4 distmax

hop = 0, denmax = 0
/* Highests density IoT node

determination (line 5-20) */

5 for each vi|i=1,2,...,|V′ | ∈ V
′ do

6 den(vi) = 0
7 for each v j| j=1,2,...,|V′ | ∈ V

′ do
8 if EUD(vi, v j) ≤ Rmax then
9 den(vi) = den(vi) + 1, NB(vi) = v j

10 end
11 end
12 if den(vi) > denmax then
13 denmax = den(vi)
14 var = 1, IND = φ

15 end
16 else if den(vi) == denmax then
17 var = var + 1,
18 end
19 INDvar = i
20 end

/* Location determination for ECN

placement (line 21-35) */

21 if count = 1 then
22 loc(ucount) = loc(vINDcount )
23 S count = NB(vINDcount )
24 end
25 else
26 for each vr|r=1,2,...,|IND| ∈ IND do
27 disthop = HD(ucount−1, vr)
28 if disthop ≥ distmax

hop then
29 distmax

hop = disthop

30 indexmax = r
31 end
32 end
33 loc(ucount) = loc(v(indexmax))
34 S count = NB(v(indexmax))
35 end

/* IoT node set update */

36 V
′

= V
′

− S count

37 count = count + 1
38 end
39 end

Where, θ(EUD(vi, v j) − Rmax) = 1 if (EUD(vi, v j) − Rmax) ≤ 0,
and θ(EUD(vi, v j) − Rmax) = 0, otherwise.

In first iteration, ECNLoc
Dis module assigns the IoT nodes to

set V
′

and calculates the density of each IoT node. ECNLoc
Dis

determines the highest density IoT node in V
′

(line 12-20).

7
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Figure 2: Illustration of proposed coECNP scheme

It selects location of highest density node to place first ECN.
Next, ECNLoc

Dis assigns highest density IoT node and its one-hop
neighbors to a corresponding set S 1 at first ECN (line 21-34).

For example, in Fig. 2 suppose the total number of ECNs to
be placed are two (k = 2). ECNLoc

Dis selects v4 as highest density
node and loc(v4) to place first ECN (u1). It also assigns v4 and
its one-hop neighbors to corresponding set S 1. Thus, at the end
of first iteration, ECNLoc

Dis returns the optimal location to place
first ECN (u1) and set S 1 that consists of highest density IoT
node and its one-hop neighbors.

In next iteration, ECNLoc
Dis calculates the new highest density

IoT node to identify the placement location of next ECN. There
can be a situation where IoT nodes mapped to ECN(s) in the
previous iteration(s) can again participate in density determina-
tion during the location discovery process for next ECN. This,
in turn, leads to redundant density calculation for IoT nodes.

For instance, in Fig. 2, v6 and v9 become the maximum den-
sity IoT nodes with density value 5. The neighbor set of v6
consists of three redundant neighbors v4, v5, and v7, which are
already assigned to S 1. Similarly, the neighbor set of v9 con-

tains v6 as redundant neighbor. To avoid such redundancy in
density calculation, ECNLoc

Dis determines the new highest den-
sity IoT node(s) on an updated set of IoT nodes. It obtains the
set of updated IoT nodes by removing the nodes which are al-
ready assigned to ECN(s) from total IoT nodes (line 36).

ECNLoc
Dis obtains V

′

={v8, v9, ..., v22} and selects loc(v9),
loc(v16), and loc(v19) as candidate locations to place second
ECN (u2). ECNLoc

Dis selects the location of IoT node situated at
maximum hop distance from the location of previous ECN(s)
among candidate locations to place next ECN (line 26-31).
ECNLoc

Dis module selects loc(v19) to place u2 (see Fig. 2). One-
hop IoT nodes assignment to corresponding set and calculation
of updated set of IoT nodes follows the same procedure as first
iteration. This module returns the optimal ECN placement loca-
tions and set of one-hop IoT nodes assigned to respective ECNs.

ECNLoc
Dis module returns loc(v4), loc(v19) as ECN

placement locations, and S 1={v1, v2, v3, v4, v5, v6, v7},
S 2={v17, v18, v19, v20, v21} as set of one-hop IoT nodes, re-
spectively, for the scenario depicted in Fig. 2.
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Figure 3: IoT nodes mapping under different schemes

4.2. IoT nodes Mapping

Execution of IoT ECN
Map module is initiated after termina-

tion of ECNLoc
Dis . IoT ECN

Map module consists of a map-
ping function defined as, g : V

′

→ U. Where, V
′

is the set of IoT nodes returned by ECNLoc
Dis module af-

ter kth iteration termed as set of remaining IoT nodes
(V

′

={v8, v9, v10, v11, v12, v13, v14, v15, v16, v22} in Fig. 2). Map-
ping function associates each IoT node (vi ∈ V

′

) to a unique
ECN (u j ∈ U) to accomplish efficient EIaaS design.

Minimum Set Assignment First
(
ECNMin

|S |
)

mechanism is pro-
posed to achieve balanced mapping of IoT nodes among ECNs.
It maps next-hop IoT nodes among ECNs by taking care of pre-
viously assigned IoT nodes at each ECN. It compares sets of
IoT nodes mapped to ECNs (S j| j=1,2,...,k) and selects the ECN
with minimum IoT nodes as the candidate one for next-hop
IoT nodes mapping. ECNMin

|S | scheme updates the set of re-
maining IoT nodes by removing currently assigned next-hop
IoT nodes to candidate ECN from current V

′

. ECNMin
|S | as-

signs next-hop IoT nodes to candidate ECN in each iteration
and terminates when updated set of remaining IoT nodes be-
comes empty (V

′

= φ).
For example, Fig. 3 depicts a sample scenario of

ECNMin
|S | based mapping for two ECNs. ECNMin

|S | mech-
anism selects second ECN (at loc(v19) in Fig. 3) as
candidate ECN. It maps IoT nodes {v14, v15, v16, v22} to
second ECN and updates the set of IoT nodes at re-
spective ECN as S 2={v17, v18, v19, v20, v21, v14, v15, v16, v22}.
ECNMin

|S | obtains the updated set of remaining IoT nodes as
V
′

={v8, v9, v10, v11, v12, v13}, after removal of currently mapped
IoT nodes {v14, v15, v16, v22} at second ECN. Thus, at the end of
first iteration, seven and nine IoT nodes are mapped to first and
second ECN, respectively.

ECNMin
|S | selects first ECN (at loc(v4) in Fig. 3) as candi-

date ECN in next iteration and assigns IoT nodes {v8, v9, v10}

to it. After assigning these nodes to respective ECN, ECNMin
|S |

obtains V
′

={v11, v12, v13}. In next iteration, second ECN (hav-
ing 9 nodes) is selected as candidate ECN to assign IoT nodes
{v11, v12, v13}. After this assignment, set of remaining IoT nodes
becomes empty (V

′

= φ) that leads to the termination of
ECNMin

|S | . Thus at the end, IoT nodes mapped to first and
second ECN given as, S 1={v1, v2, v3, v4, v5, v6, v7, v8, v9, v10},
S 2={v17, v18, v19, v20, v21, v14, v15, v16, v22, v11, v12, v13}.

Fig. 3 depicts the comparison of proposed ECNMin
|S | scheme

with Shortest Distance Edge Server (ES Min
Dist) assignment

scheme. ES Min
Dist assigns next-hop IoT nodes to the nearest

ECN without taking care of previously assigned nodes. It
returns S 1={v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13} and
S 2={v17, v18, v19, v20, v21, v14, v15, v16, v22} after termination.
ECNMin

|S | and ES Min
Dist maps (10, 12) and (9, 13) nodes to first

and second ECN, respectively. It indicates that the proposed
ECNMin

|S | scheme minimizes the difference of assigned IoT
nodes among ECNs as compared to ES Min

Dist scheme that leads
to balanced mapping of IoT nodes.

CRITICAL CASE : Although ECNMin
|S | mechanism performs

better than ES Min
Dist scheme, in some cases, it may lead to un-

balanced mapping of IoT nodes among ECNs. For instance,
jth and ( j + 1)th ECN consists of |S j| and |S ( j+1)| nodes, where
|S j| > |S ( j+1)|. Next, ECNMin

|S | selects ( j + 1)th ECN as candi-
date ECN to assign next-hop IoT nodes. There can be some
nodes in the set of next-hop nodes of ( j + 1)th ECN that also
belongs to next-hop node set of jth ECN. ECNMin

|S | assigns all
nodes to ( j + 1)th ECN that reduces the number of nodes for jth

ECN, causes unbalanced assignment. For instance, IoT nodes
{v11, v12, v13} belong to next-hop nodes for both ECNs, how-
ever, ECNMin

|S | assigns these nodes to second ECN (see ECNMin
|S |

scheme based mapping of IoT nodes in Fig. 3).
To handle such unbalanced mapping of IoT nodes, an ex-

tended version of ECNMin
|S | scheme is proposed termed as

Extended-ECNMin
|S |

(
EECNMin

|S |
)
.

4.2.1. Extended-ECNMin
|S |

The core idea of the EECNMin
|S | scheme is to take care of

unique and common next-hop neighbors during the mapping of
remaining IoT nodes among ECNs. Fig. 4 depicts the ith iter-
ation instance of IoT nodes to ECN mapping. Algorithm 2 de-
scribes the steps involved in EECNMin

|S | . The EECNMin
|S | scheme

sorts the set S
′

that comprises the set of IoT nodes at ECNs(
S
′

= {S 1, S 2, ..., S k}
)

in descending order (line 3). It selects
last two adjacent elements S

′

k and S
′

(k−1) (where |k| is the car-
dinality of set S

′

) from sorted S
′

(line 6). EECNMin
|S | selects

the ECNs corresponding to S
′

k and S
′

(k−1) as candidate ECNs to
map the next-hop IoT nodes. For instance, if sorted S

′

is given
as S

′

= {S 1, S 3, S 4, S 2} then last two adjacent element S
′

k and
S
′

(k−1) represents the S 2 (set of IoT nodes at second ECN) and
S 4 (set of IoT nodes at fourth ECN), respectively.

EECNMin
|S | determines set of next-hop neighbors for candi-

date ECNs. IoT nodes that belongs to set of next-hop neighbors
of both candidate ECNs are termed as common next-hop IoT
nodes. The set of unique next-hop IoT nodes is obtained by re-

9



Algorithm 2: Extended-ECNMin
|S | scheme

Input :V
′

, S j| j=1,2,...,k
Output: Balanced IoT-ECN mapping

1 begin
2 whileV′

, φ do
3 S

′

= S ort(S j| j=1,2,...,k), m = k, c = 0
4 while m > 1 do

/*Identification of next-hop, common, and unique IoT node (line 6-17) */

5 c = c + 1, NHTm

6 Tm = S
′

m, Tm−1 = S
′

m−1

7 NHT(m−1) = NB
(
vi|i=1,2,...,|T(m−1) | ∈ T(m−1)

)
∈ V

′

/* kth comparision (k = 1) */

8 if c == 1 then
9 NHTm = NB

(
vi|i=1,2,...,|Tm | ∈ Tm

)
∈ V

′

10 NHCMN = NHTm

⋂
NHT(m−1)

11 NHU
Tm

= NHTm − NHCMN

12 end
/* kth comparision (1 < k < (k − 1)) */

13 else if c > 1 then
14 NHCMN = NHU

Tm

⋂
NHT(m−1)

15 NHU
Tm

= NHU
Tm
− NHCMN

16 end
17 NHU

T(m−1)
= NHT(m−1) − NCMN

/* Unique and common IoT nodes’ mapping (line 19-37) */

18 Tm = Tm
⋃

NHU
Tm

/* (k − 1)th comparision */

19 if m==2 then
20 T(m−1) = T(m−1)

⋃
NHU

T(m−1)

21 end
22 d = |Tm| − |Tm−1|

23 C1 = φ,C2 = φ
24 if d > 0 then
25 C1 = vi|(i=1,2,...,d∈NCMN)
26 Tm−1 = Tm−1

⋃
C1

27 end
28 else if d < 0 then
29 C1 = vi|(i=1,2,...,d∈NCMN)
30 Tm = Tm

⋃
C1

31 end
32 NCMN = NCMN −C1
33 C1 = v

i|
(
i=1,2,...,

⌈
|NCMN |

2

⌉
∈NCMN

)
34 C2 = v

i|
(
i=

⌈
|NCMN |

2

⌉
+1,...,|NCMN |∈NCMN

)
35 Tm = Tm

⋃
C1, Tm−1 = Tm−1

⋃
C2

36 S
′

m = Tm, S
′

m−1 = Tm−1
37 m = m − 1
38 end

/* IoT node set update */

39 V
′

= V
′

− S
′

40 end
41 end

10
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Figure 4: IoT nodes to ECN mapping using EECNMin
|S |

moving the set of common next-hop IoT nodes from next-hop
neighbors set at each candidate ECN (line 7-17).

EECNMin
|S | schemes selects the kth ECN (ECN corresponding

to S
′

k) and maps the respective unique next-hop IoT nodes to it
(line 18). After mapping unique next-hop neighbors to S

′

k, pro-
posed scheme calculates the cardinality difference (d) between
set S

′

k and S
′

(k−1). The value of cardinality difference (d) de-
termines the assignment policy for the nodes belonging to the
set of common next-hop IoT nodes. EECNMin

|S | maps common
nodes equally between both candidate ECNs in case of zero dif-
ference (d = 0). In other cases (when value of d , 0), proposed
scheme selects the candidate ECN having minimum nodes to
assign d nodes from common next-hop IoT nodes. Remaining
common next-hop IoT nodes are assigned equally between both
candidate ECNs (line 22-37).

EECNMin
|S | performs the similar procedure between next-hop

neighbors of S
′

(k−2) and unique neighbor set of S
′

(k−1) in next
comparison. Thus, it performs (k − 1) comparison per itera-
tion to map IoT nodes to the relevant ECNs. In each iteration’s
last comparison ((k − 1)th), the value of d is determined after
assigning unique next-hop IoT nodes to both candidate ECNs
(line 19-20). The mapping procedure of common next-hop IoT
nodes follows the same as previous ones.

Thus, EECNMin
|S | scheme achieves the objective of balanced

mapping of IoT nodes among ECNs by taking care of cur-
rently assigned, unique, and common next-hop IoT nodes at
each ECN. The proposed EECNMin

|S | (see Fig. 3 for IoT nodes
mapping using EECNMin

|S | scheme) described in the following
through an example.

• EECNMin
|S | applies sorting and selects u1 (ECN at loc(v4)

in Fig. 3) and u2 (ECN at loc(v19) in Fig. 3) as the can-
didate ECNs. Further, it determines the set of next-hop
neighbors for both candidate ECNs as NHu1={v8, v9, v10}

and NHu2={v14, v15, v16, v22}.

• Set of next-hop IoT nodes NHu1 and NHu2 did not have

any common node, therefore, NHCMN = φ. Set NHu1 and
NHu2 are assigned to set of unique next-hop nodes at ECNs
as NHU

u1
and NHU

u2
.

• It assigns NHU
u1

and NHU
u2

to S 1 and S 2, respectively. In
such a way, EECNMin

|S | accomplishes two-hop IoT nodes
mapping at respective ECNs.

• Next, EECNMin
|S | maps the IoT nodes located at three-

hops distance from ECNs. It selects u1 and u2 as can-
didate ECNs and determines set of next-hop nodes as
NHu1={v11, v12, v13} and NHu2={v11, v12, v13}.

• Both ECNs have same nodes in set of next-hop IoT nodes,
therefore, NHU

u1
= φ, NHU

u2
= φ and NHCMN={11, 12, 13}.

• EECNMin
|S | determines value of d by taking cardinality dif-

ference of S 1 and S 2, before mapping common next-hop
IoT nodes.

• Since value of d is one, therefore, EECNMin
|S | maps one

node from NHCMN to S 2 and remaining nodes in NHCMN

are assigned equally between S 1 and S 2.

• EECNMin
|S | scheme returns the sets of IoT nodes

mapped at first and second ECN (u1 and u2)
as S 1={v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11} and
S 2={v17, v18, v19, v20, v21, v14, v15, v16, v22, v12, v13} af-
ter termination.

• EECNMin
|S | scheme maps 11 IoT nodes at each ECN.

It can be inferred from the above discussed illustration that
difference of IoT nodes mapped between u1 and u2 is minimum
in EECNMin

|S | compared to ECNMin
|S | and ES Min

Dist, hence, leads to
balanced mapping of IoT nodes.

Lemma 1. EECNMin
|S | minimizes total delay by reducing for-

warding delay at intermediate IoT nodes and achieves efficient
utilization of ECNs.

Proof. EECNMin
|S | scheme categorizes next-hop IoT nodes into

unique and common IoT node set before mapping to ECNs.
For example, proposed scheme selects ui and u j as candidate
ECNs in qth(1 < q ≤ hmax) iteration. EECNMin

|S | determines

next-hop nodes for ith and jth ECN as NH(q−1)
ui and NH(q−1)

u j . It
obtains the common and unique next-hop node for ith and jth

ECN as: NHCMN(q)
(ui,u j)

= NH(q−1)
ui

⋂
NH(q−1)

u j , NHU(q)
ui = NH(q−1)

ui −

NHCMN(q)
(ui,u j)

, and NHU(q)
u j = NH(q−1)

u j − NHCMN(q)
(ui,u j)

, respectively. It

associates NHU(q)
ui and NHU(q)

u j to ui and u j. Further, it associates
NHC(q)

(ui,u j)
between ui and u j such that | (|ui|)−

(
|u j|

)
| is minimized

that enhances ECNs utilization. Further, assume that vi and v j

are the (q − 1)th hop IoT nodes mapped to ECN ui and u j that
share ‘α’ nodes as common in set NHCMN(q)

(ui,u j)
. The EECNMin

|S |
schemes maps common ‘α’ nodes between ui and u j in bal-
anced manner rather than mapping them randomly to any ECN.
Hence, it reduces the data forwarding burden on respective IoT
node that leads to data forwarding delay minimization.
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Figure 5: ECN placement and IoT nodes mapping among ECNs under various schemes

4.3. EIaaS Topology Configuration

EIaaS Con f module takes care of ECN placement at identi-
fied locations (by setting Ψi j = 1) and connection establish-
ment between IoT nodes and respective ECN to configure the
EIaaS topology. Once ECNs are placed, each ECN broadcast
an ECN In f o packet that contains IoT-ECN mapping informa-
tion. On reception of ECN In f o packet from an ECN, IoT node
searches for its ID in the received message and transmits an
Ack message to the ECN after successful ID matching. Thus,
each IoT node is associated with its respective ECN (see EIaaS
topology configuration module in Fig. 2).

4.4. Complexity Analysis

This subsection discusses the computational complexity of
coECNP scheme. ECNLoc

Dis module determines IoT nodes den-
sity in O(n2) time and this procedure is repeated k times.
Thus, time complexity of proposed location discovery module
is O(kn2). EECNMin

|S | sorts S j| j=1,2,...k based on number of asso-
ciated IoT nodes that takes O(k log k) time and performs (k− 1)
comparisons in each iteration. This procedure is repeated hmax

times, where hmax is the network wide maximum hop distance
from an IoT node to its respective ECN. Thus, time complexity
of EECNMin

|S | scheme is O
(
hmax

(
k log k + (k − 1)

))
.

5. Comparative Analysis

This section discusses an example scenario to show the ef-
fectiveness of proposed scheme over HAF and DBC schemes.
Fig. 5 depicts a sample scenario for ECN placement and IoT
nodes mapping to corresponding ECN using proposed (co-
ECNP), HAF, and DBC schemes. coECNP scheme assigns
(11,11) nodes to both ECNs with ECN access cost as 35 hops.
HAF did not address the redundancy to determine ECNs place-
ment locations, hence, leads to higher access cost than proposed
scheme. Although, DBC takes care of redundancy in ECNs
placement locations determination but fails to select the opti-
mal location among candidate locations. Both HAF and DBC
assign IoT nodes to ECN located at the shortest distance with-
out taking care of previously assigned IoT nodes, which leads
to an unbalanced assignment. HAF and DBC assign (6,16) and
(7,15) IoT nodes among ECNs with ECN access cost as 66 hops
and 47 hops, respectively. Moreover, coECNP also reduces the
maximum hop distance (hmax) from 6 hops (in case of DBC)
and 7 hops (in case of HAF) to 3 hops.

It is obvious from the discussed example that the coECNP
scheme outperforms HAF and DBC schemes in terms of ECN

access cost and balanced IoT nodes mapping among ECNs,
which plays a critical role in accomplishing objective func-
tion. Furthermore, proposed scheme takes O(kn2) time in ECN
placement as same as DBC. Although, HAF performs ECN
placement in O(n2) but leads to higher access cost. Moreover,
HAF and DBC schemes perform IoT nodes mapping in O(kn),
whereas, proposed scheme achieves optimal mapping for IoT
nodes in O(hmax(klogk+(k−1))). The above discussion indicates
that proposed scheme determines optimal ECN placement loca-
tion in same computational cost as DBC and attains optimal IoT
nodes mapping among ECNs with lower computational cost in
comparison to HAF and DBC.

6. Experiments and Results

Performance of the proposed coECNP scheme is evaluated
using discrete event simulator NS-3.30 in terms of ECN access
cost, IoT nodes mapping among ECNs, energy consumption,
average total delay, and edge resource utilization.

6.1. Experimental Setup
This section describes the parameter value used in experi-

mentation. The simulation experiments are performed using
NS-3.30 running on Ubuntu 18.04 with Intel core i5 proces-
sor (3.10 GHZ) and 6GB RAM. The initial experimental set-
up consists of 50 randomly deployed IoT node in the area of
200×200 m2 (see Fig. 6a). Subsequently, a denser network is
constructed by varying the number of nodes (see Fig. 6b and
Fig. 6c) and their transmission range (see Fig. 7a and Fig. 7b).
The transmission range is initialized as 20m (lower transmis-
sion range results in disconnected graph). Table 3 summarizes
the simulation parameters. The parameters in Table 3 are set
accordingly to the specifications of TelosB sensor nodes as de-
scribed in [40]. Energy consumption in transmitting B bits from
IoT node to respective ECN is modeled using energy model dis-
cussed in [41]. We perform the simulation experiments using
periodic, event, and query based data traffic patterns to evaluate
the performance of coECNP in various scenarios. In the simu-
lation environment, we assumed a clear Line of Sight (LoS) and
did not consider any moving obstacle such as a robot, vehicle,
etc. The values for energy consumption in transmission and re-
ception of one-byte packet are approximately 40.2 µJ and 37.2
µJ, respectively. coECNP scheme is compared with k−means,
HAF, DBC, k-clustering, and Random (RND) ECN placement
schemes in terms of ECN access cost (hops), IoT nodes map-
ping among ECNs, energy consumption (Joules), average total
delay (Seconds), and edge resource utilization.
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(a) 50 IoT nodes (b) 75 IoT nodes (c) 100 IoT nodes

Figure 6: Network topology under varying number of IoT nodes

(a) 50 IoT nodes, Rmax=30 m

(b) 50 IoT nodes, Rmax=40 m

Figure 7: Network topology under varying transmission range of IoT nodes

6.2. Performance metrics

coECNP scheme is evaluated with respect to the following
parameters.

Table 3: Simulation parameters

Parameter Value
Monitored area 200 × 200 m2

Number of IoT nodes 50-100
Number of ECNs 3
Supply voltage 3 V
Sleep state current 0.001 mA
Idle state current 0.021 mA
Transmit state current 18.8 mA
Receive state current 17.4 mA
IoT node’s initial energy 5 J
Data size 200 byte
Data rate 250 Kbps

6.2.1. ECN access cost
It is defined as the function of hop distance from IoT node

to its corresponding ECN. ECN access cost is highly dependent
on the location of ECNs and varies according to the placement
strategies. Moreover, the DP

E2E(vi, u j) (refer Eq. 3) shares the
proportionality relation with ECN access cost.

6.2.2. IoT nodes mapping among ECNs
Proposed scheme uses the standard deviation (SD) as a met-

ric to evaluate the IoT nodes mapping among ECNs. IoT nodes
mapped to jth ECN (u j) is given by |S j|. The SD is given by Eq.
13.

S D =

√∑k
i= j(|S j| − S̄ )2

k
(13)

Where, S̄ represents the average value of nodes mapped for all
ECNs. Small SD indicates more balanced IoT nodes mapping
among ECNs. This parameter impacts the total delay of IoT
node (refer Eq. 4).
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6.2.3. Average total delay
It is used to test the effectiveness of proposed scheme. It is

characterized by Eq. 5 (see section 3.1). To achieve more re-
alistic data processing time at ECN (

(
D

vi
pra(u j)

)
in Eq. 4), it is

assumed that ECN is 200 times faster than IoT node and aver-
age data processing time at IoT node is considered as 400ms
[16].

6.2.4. Edge resource utilization
It is used to measure the performance of proposed scheme in

terms of utilization of edge resources. It is measured using the
standard deviation of load distribution among ECNs. The load
among ECNs must be distributed equally so as to utilize edge
resources in a balanced fashion [2]. The lower SD value rep-
resents the balanced load distribution among ECNs, whereas,
higher SD value represents that ECNs are underutilized/over-
utilized.

6.2.5. Energy consumption
Energy is a critical resource for resource constrained IoT

nodes [42]. The overall energy consumption from IoT nodes
to their respective ECN follow the proportionality relationship
with hop distance. Hence, it can be minimized by placing ECNs
at optimal location and efficiently mapping nodes among them.
The total Energy Consumption (ECtotal) in transmitting B bits
between an IoT-ECN pair along path P is given as [41]:

ECtotal =
∑

i∈V(P)

(
ECi

trans + ECi
rcv

)
(14)

Where, V(P) represents the set of nodes along path P and
ECi

trans, ECi
rcv represent the energy consumed in transmission

and reception of B bits at node i, respectively.

6.3. ECN access cost

This subsection discusses the ECN access cost for various
ECN placement schemes under different network settings.
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Figure 8: ECN access cost under varying IoT nodes

6.3.1. ECN access cost under varying number of IoT nodes

Fig. 8 depicts that coECNP scheme obtains minimum ECN
access cost compared to benchmark ECN placement techniques
in the network of 50, 75, and 100 nodes, respectively. coECNP
reduces ECN access cost by 32%, 6%, 39%, and 44% com-
pare to k−means, DBC, HAF, and RND schemes in the net-
work of 50 nodes. coECNP adopts hop metric over distance
metric for assignment of IoT nodes. It leads to the reduction of
network wide ECN access cost. Therefore, coECNP performs
better than k−means.

HAF selects the locations of maximum density IoT nodes
to place ECNs. It does not take care of the redundancy that
occurred in the density calculation. For example, in Fig. 5,
HAF selects the location of highest density node’s (loc(v4) and
loc(v6)) to place the ECNs. In this scenario, maximum ECN
access cost is increased from 3 hops (in case of coECNP) to 8
hops. It also leads to higher network wide ECN access cost than
coECNP scheme. In this scenario, HAF returns network wide
ECN access cost as 66 hops.

DBC scheme overcomes redundancy issue occurred in HAF
by removing the already assigned IoT nodes. DBC selects
loc(v4) to place first ECN (u1) (see Fig. 5). DBC evaluates
the placement location for second ECN (u2) by removing the
one-hop nodes mapped to u1. It selects loc(v9), loc(v16), and
loc(v19) as the candidate location to place u2. However, DBC
takes care of the redundancy issue to determine the location to
place the next ECN. Still, it did not provide a mechanism that
selects the optimal location among these candidate locations.
For instance, if DBC selects loc(v9) to place u2 then it achieves
network wide ECN access cost as 47 hops and maximum ECN
access cost as 6 hops.

ECNLoc
Dis module in coECNP scheme assigns more one-hop

IoT nodes than HAF by taking care of redundancy in the pro-
cess of location identification for ECN placement. ECNLoc

Dis
module also overcomes the shortcoming of DBC scheme. It
determines the hop distance between candidate locations and
already placed ECNs. Further, it selects the IoT node situated
at farthest hop distance among candidate locations for ECN
placement. coECNP scheme selects the loc(v19) (location of
non-redundant highest density node located at farthest hop dis-
tance from location of u1) to place u2 (see Fig. 5 for coECNP
scheme). It reduces network wide ECN access cost from 47
hops (in case of DBC) to 35 hops and maximum ECN access
cost from 6 hops to 3 hops. RND placement scheme places the
ECN randomly that leads to higher ECN access cost than other
schemes.

Further, we evaluate the coECNP scheme in the network of
75 and 100 nodes. In these cases, network becomes dense com-
pare to previous scenario due to the addition of new IoT nodes.
It leads to better connectivity among IoT nodes and eliminates
the possibilities of longer paths from IoT nodes to correspond-
ing ECN. In case of 75 IoT nodes, coECNP achieves 23%, 11%,
25%, and 45% less ECN access cost than k−means, DBC, HAF,
and RND schemes, respectively. In dense network scenario,
difference of ECN access cost between proposed scheme and
DBC is increased. Moreover, in this scenario two ECN loca-
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Figure 9: ECN access cost under varying transmission range

tions selected by HAF share zero redundant nodes. It reduces
ECN access cost difference between HAF and coECNP com-
pared to network of 50 nodes. Similar to the 75 nodes net-
work scenario, 100 nodes network achieves better connectivity
among IoT nodes. The coECNP scheme reduces the ECN ac-
cess cost by 11%, 14%, 46%, and 52% than k−means, DBC,
HAF, and RND strategies.

The above discussion indicates that ECN access cost between
coECNP and k−means is reduced as the number of nodes in-
creases in the network, due to better connectivity among nodes.
As the network becomes dense, the availability of candidate lo-
cations for ECN placement also increases. Since, DBC selects a
random location among the candidate ones that leads to higher
access cost than coECNP. The difference in ECN access cost
between coECNP and HAF is affected by redundancy factor
that occurred in ECN location discovery phase.

The performance of proposed coECNP scheme is com-
pared with k−clustering scheme [26]. The performance of
k−clustering is highly dependent on the selection of initial clus-
ter centers. It does not consider the redundancy and optimal
cluster center selection aspects during the cluster center initial-
ization phase that results in higher ECN access cost. coECNP
scheme obtains 26%, 15%, and 35% lower ECN access cost
compared to k−clustering scheme in the network of 50, 75, and
100 nodes, respectively.

6.3.2. ECN access cost under varying transmission range
coECNP is further analyzed with respect to ECN access cost

under different network scenarios by varying the transmission
range of IoT nodes. Fig. 9 represents that coECNP achieves
minimum ECN access cost than benchmark mechanisms in
the network of varying transmission range. coECNP reduces
ECN access cost by 16%, 9%, 34%, and 41% than k−means,
DBC, HAF, and RND schemes, respectively at 30m transmis-
sion range. The increase in transmission range creates new
communication links among IoT nodes that enhance the con-
nectivity among nodes than previous case (20m transmission
range). It also reduces the hop distance between IoT nodes and
their corresponding ECN.

Due to the better connectivity among IoT nodes, access cost
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Figure 10: IoT-ECN mapping under varying IoT nodes

difference in proposed and k−means scheme is reduced. co-
ECNP reduces ECN access cost by 13%, 10%, 35%, and 43%
than k−means, DBC, HAF, and RND ECN placement strate-
gies with 40m transmission range. It is concluded from the
above discussion that coECNP performs better than benchmark
schemes under various network settings. The difference of ECN
access cost between coECNP and k−means is reduced as net-
work becomes dense. DBC and HAF scheme follows the same
trends of previous dense network scenarios (similar to the net-
work of 75 and 100 IoT nodes).

coECNP scheme obtains 33% and 34% lower ECN access
cost as compared to k−clustering scheme in the network of 50
IoT nodes with 30m and 40m transmission range, respectively.

6.4. IoT nodes mapping among ECNs

This subsection compares the performance of coECNP
scheme to benchmark schemes with respect to mapping of IoT
nodes among ECNs.

6.4.1. IoT nodes mapping among ECNs under varying number
of nodes

Fig. 10 represents the standard deviation (SD) value of IoT
nodes mapping among ECNs in the network of 50, 75, and 100
nodes for proposed coECNP and benchmark schemes. coECNP
achieves minimum SD value in each network setting, hence out-
performs other schemes. The mapping of IoT nodes is highly
affected by the placement location of ECNs. Improper place-
ment of ECNs causes unbalanced mapping of IoT nodes (refer
Fig. 5). ECNLoc

Dis module assures efficient placement of ECNs
that enhance the chances of balanced mapping. The DBC,
k−means, HAF, and RND schemes map nodes to the nearest
ECN without taking care of already assigned nodes at that ECN
that causes unbalanced mapping of IoT nodes.

coECNP considers both currently mapped IoT nodes and
hop distance metric(refer IoT ECN

Map module) to achieve balanced
mapping of IoT nodes. In IoT ECN

Map module, EECNMin
|S | mecha-

nism categories the next-hop IoT nodes into unique and com-
mon nodes. EECNMin

|S | scheme maps unique and common nodes
among ECNs in balanced fashion. It minimizes the difference
of mapped IoT nodes among ECNs. coECNP achieves 24%,
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Figure 11: IoT-ECN mapping under varying transmission range

20%, 25%, and 39% more balanced mapping than k−means,
DBC, HAF, and RND schemes in the network of 50 nodes. Fig.
10 indicates that as number of nodes increase the value of SD
is reduced for coECNP. This reduction occurs due to the avail-
ability of more next-hop nodes. coECNP achieves 20%, 38%,
47%, 58% and 66%, 84%, 84%, 88% more balanced mapping
of IoT nodes among ECNs compared to k−means, DBC, HAF,
and RND schemes in the network of 75 and 100 nodes, respec-
tively.

The k-clustering scheme does not take up balanced IoT-ECN
mapping into consideration, whereas the mapping module of
coECNP scheme ensures balanced IoT-ECN mapping. co-
ECNP obtains 25%, 49%, and 85% more balanced IoT-ECN
mapping than k− clustering scheme in the network of 50, 75,
and 100 nodes, respectively.

6.4.2. IoT nodes mapping among ECNs under varying trans-
mission range

coECNP scheme is further investigated under various net-
work settings by varying the transmission range of IoT nodes in
the network of 50 nodes. Fig. 11 depicts the SD of IoT nodes
mapping for network of 50 nodes with 20m, 30m, and 40m
transmission range, respectively. The SD of IoT nodes mapping
among ECNs remains same for k−means scheme in each trans-
mission range setting (due to Euclidean distance based assign-
ment). In this case, SD values reflect less deviation compare to
network scenario of varying nodes due to the less availability of
next-hop nodes. coECNP achieve less SD values in case of 30m
transmission range than 20m due to better connectivity among
nodes. coECNP assigns 80% nodes in ECNLoc

Dis module and get
less next-hop nodes that increases SD value compared to previ-
ous network settings (20m and 30m) in case of 40m transmis-
sion range.

coECNP obtains 37%, 44%, 52%, 58%, and 13%, 30%, 39%,
49% more balanced mapping of IoT nodes in case of 30m and
40m than k−means, DBC, HAF, and RND schemes. It can be
inferred from the above results that the difference of SD values
between coECNP and benchmark scheme is reduced as network
approaches from multi-hop (for 20m and 30m) to one-hop (case
of 40m) scenario.

SD value of IoT nodes mapping among ECNs in Fig. 10
and 11 depicts that coECNP scheme achieves more balanced
IoT node’s mapping than benchmark mechanisms under vari-
ous network scenarios. SD values follow a decreasing trend in
the network of varying IoT nodes. Further, SD value increases
as network approach from multi-hop to one-hop scenario (case
of 40m transmission range) under varying transmission range.
Although, the SD value trend (increasing/decreasing/random)
also depends on network topology for different scenarios .
EECNMin

|S | mechanism in IoT ECN
Map module assures that proposed

scheme always achieves more balanced mapping of IoT nodes
than benchmark schemes.

coECNP scheme achieves 49% and 21% more balanced map-
ping as compared to k−clustering in the network of 50 nodes
with 30m and 40m transmission range, respectively.

Under the assumption that each IoT node generates constant
traffic periodically, the number of IoT nodes assigned to corre-
sponding ECN can be treated as the load of that ECN. In such
scenario, SD of IoT nodes mapping can be interpreted as SD
of load among ECNs. The above discussion indicates that pro-
posed coECNP scheme achieves minimal SD. Hence, it also
leads to more balanced load assignment among ECNs. Further,
the balanced load assignment among ECNs leads to better edge
resource utilization. Under the above-mentioned assumption
coECNP achieves balanced load distribution among ECNs that
reduces the possibility of over/under loading of ECNs.

6.5. Scalibility analysis
The scalability of a scheme is defined as the measure of its

ability to maintain the network performance efficiency as some
parameters of the network increases. We consider optimal
scalability aspect for analysis with respect to a triplet defined as
:Environment, Independent parameter(s), and Observed metric(s).
The environment consists of parameters that define operational
condition of the network such as network area, initial distribu-
tion of nodes etc. Independent parameters are the number of
nodes and transmission range. The observed metric(s) is the
quantity of interest measure in the network such as ECN access
cost and IoT-ECN mapping (measured using SD of mapped
nodes among ECNs) in our case. The environment initially
consists of a randomly deployed network of 50 IoT nodes
(refer Fig. 6a).

We discuss the optimal scalability analysis of coECNP
scheme with respect to benchmark schemes (HAF, DBC, k-
means, k-clustering) on the observed metrics. A scheme is
termed as optimally scalable with respect to a given triple if no
other method is more scalable with respect to the same triple.

During the ECNs location discovery process Gateway (GW)
node determines the density of every node. For a node, density
is defined as the number of one-hop neighbors (see Eq. 12).
GW node uses nodes location information to find the one-hop
neighbors of each node. Upon finding the density of all the
nodes, the location of the node with the highest density value is
selected as the location for first ECN placement. This procedure
of determining the location for first ECN is common for HAF,
DBC, and coECNP scheme. Hereafter the procedure for subse-
quent placement of ECNs differ for these schemes. This vari-

16



ation in respective mechanisms influence the observed metrics
(ECN access cost and SD of mapped IoT nodes among ECNs).

The HAF scheme selects the locations for (k − 1) ECNs in
greedy manner based on the decreasing density values of nodes.
As network moves from sparse to denser, where, density of
network is given by the actual number of edges among nodes
divided by the total number of possible edges in network. It
implies that a denser network approaches towards maximum
network density value (one). Therefore, for a denser network
it is likely that the nodes will have higher node densities. In
case of denser network the probability of a node having higher
density is more if it is a neighbor of a high density node. There-
fore, in denser networks the probability of one-hop neighbors
(with respect to highest density node) having next higher den-
sity is more. This leads to close placement of ECNs that results
in higher ECN access cost and unbalanced IoT-ECN mapping
indicated by high SD values.

The DBC scheme excludes the highest density node and its
one-hop neighbors in each iteration for selecting the next ECN
location. This enhances the ECN placement location compared
to HAF schemes. However, in case of multiple candidate loca-
tions with the same density value, the DBC scheme randomly
selects one. In such scenario, it leads to higher ECN access cost
and higher SD values for IoT-ECN mapping.

The performance of k-clustering scheme highly depends on
the selection of initial cluster centers. The k-clustering scheme
selects the initial cluster centers in greedy manner (as similar
to HAF) and does not consider optimal cluster center selection
among candidate ones (as similar to DBC) that leads to higher
ECN access cost and higher SD value for IoT-ECN mapping.

The coECNP scheme selects the optimal location for ECN
placement in each iteration by determining the hop distance
between ECN locations of previous iterations and current it-
erations candidate locations. It selects the next ECN location
among the candidates having maximum hop distance from the
ECN locations of previous iterations. The coECNP scheme per-
forms better compared to HAF and DBC in terms of optimal
placement of ECNs thus better ECN access cost and balanced
IoT-ECN mapping (indicated by the lower SD values).

From the above discussion we conclude that coECNP
scheme performs better when network scale up. The HAF and
DBC schemes does not scale well with respect to ECN access
cost and IoT-ECN mapping and an increasing trend is seen in
the observed metrics (see Fig. 8 and Fig. 10 ). The pro-
posed coECNP shows a significant improvement with respect to
HAF and DBC schemes, and marginal with respect to k-means
scheme. Thus, the coECNP scheme overally scales well with
denser networks in terms of the observed metrics.

6.6. Average total delay

This subsection discusses the performance of coECNP
scheme with benchmark schemes in terms of average total de-
lay (see Eq. 5) of IoT nodes. The total delay depends on ECN
placement and mapping of IoT nodes among ECNs (refer sec-
tion 3). It is evident from the above discussion that proposed
coECNP scheme achieves optimal ECN placement (see section

6.3) and balanced mapping of IoT nodes (see section 6.4) com-
pared to benchmark schemes.

This work evaluates the performance of coECNP scheme
in an industrial use case scenario. Edge computing solutions
enhance overall operational efficiency in industrial use case(s)
by minimizing the delay. The data traffic pattern between IoT
nodes and ECNs varies as per application requirements. These
data traffic patterns are divided into three categories as (i) pe-
riodic data traffic, (ii) event-based data traffic, and (iii) query-
based data traffic [42].

IoT nodes transmit data to respective ECN over a fixed in-
terval in periodic data traffic scenario. In case of event-based
data traffic scenario, IoT nodes of event-region(s) transmit more
data traffic than normal nodes. Whereas, IoT nodes transmit
data based on the demand of end-user(s) in query-based sce-
nario. For instance, in an industrial equipment health moni-
toring application, IoT nodes (such as sensors installed on ma-
chine equipment) transmit data to respective ECN (according
to the above-mentioned data traffic pattern(s)). ECN processes
the received data to keep track of the current health status of
machine and take decision(s) accordingly that ensures overall
operational efficiency.

We conduct the experiments to test the performance of co-
ECNP scheme in terms of IoT nodes delay under various net-
work settings on periodic, event-based, and query-based data
traffic scenarios. IoT nodes transmit data to respective ECN
over an interval of one second in periodic data traffic scenario.
Event and query based data traffic scenarios are generated by
varying the data generation interval at IoT nodes (nodes hav-
ing lower data generation interval indicates the event traffic)
and amount of data transmitted from IoT nodes (in query-based
scenario end user can demand varying amount of data from dif-
ferent IoT nodes).

Fig. 12 depicts an instance of event and query based traffic
scenarios for the network of 100 IoT nodes. Fig. 13 depicts
IoT node’s average total delay under periodic, event-driven,
and query-based scenarios for the network of 50, 75, and 100
nodes, respectively. coECNP scheme achieves minimum delay
in each network setting for each data traffic scenario compared
to benchmark schemes. coECNP scheme determines the op-
timal ECN placement locations and assures efficient mapping
of nodes among ECNs using location discovery and mapping
modules. The location discovery module obtains the optimal
locations for ECN placement that minimizes the maximum hop-
distance between IoT node and respective ECN (see section
6.3). As a result, the E2E delay between IoT node-ECN pair
is minimized. The mapping module maps the IoT nodes to the
nearest ECN and minimizes the difference of mapped IoT nodes
among ECNs (see section 6.4). It alleviates E2E delay between
IoT node and respective ECN, and data processing delay at that
ECN. Thus, proposed coECNP scheme leads to total delay min-
imization for IoT nodes than its counter part schemes.

coECNP reduces the average total delay by 53%, 11%, 69%,
71%, and 37%, 23%, 42%, 66%, and 23%, 26%, 53%, 65%
compared to k−means, DBC, HAF, and RND schemes in the
network of 50, 75, and 100 IoT nodes, respectively. In case
of event-based data traffic, coECNP achieves 45%, 11%, 75%,
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(a) An instance of event-based data traffic scenario
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(b) An instance of query-based data traffic scenario

Figure 12: Sample scenario of event and query based data traffic
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(a) Periodic data traffic scenario
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(b) Event-based data traffic scenario
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(c) Query-based data traffic scenario

Figure 13: IoT nodes’ average total delay under periodic, event, and query based data traffic scenarios

78%, and 36%, 13%, 59%, 64%, and 36%, 25%, 56%, 61%
average total delay reduction than k−means, DBC, HAF, and
RND schemes for the network of 50, 75, and 100 nodes, re-
spectively. coECNP reduces the average total delay by 72%,
10%, 64%, 86%, and 80%, 40%, 87%, 90%, and 26%, 40%,
51%, 57% in comparison to k−means, DBC, HAF, and RND
schemes under query-based data traffic in the network of 50,
75, and 100 nodes, respectively.

We compare the performance of coECNP scheme with
k−clustering in the network of 50, 75, and 100 nodes on pe-
riodic, event-based, and query-based data traffic, respectively.
coECNP scheme reduces the average total delay by 41%, 27%,
42% for periodic data traffic. It obtains 44%, 15%, 46% lower
average total delay than k−clustering under event-based data
traffic. In case of query-based data traffic scenario, coECNP
scheme reduces average total delay by 43%, 55%, 47%, respec-
tively.

coECNP assumes that each event/query has same priority
and probability of occurrence of event/query at each IoT node
is equal. However, application-specific requirements (such as
temporal requirement based on event/query type) can be accom-
plished by designing the suitable task(event/query) scheduling
mechanisms over the proposed EIaaS paradigm. The schedul-

ing involves the decision making procedure about how data
should be transmitted, and how edge resources are utilized by
taking care of event/query types (such as, critical task, normal
task, query with strict temporal requirements etc.) in order to
meet the application-specific requirements [2].

6.7. Edge resource utilization
This work utilizes the standard deviation of load distribution

among ECNs as an indicator to measure the efficacy of coECNP
scheme in terms of edge resource utilization. The smaller SD
value indicates the balanced edge resource utilization, whereas,
higher SD value represents the over/under utilization of edge
resources. Fig. 14 depicts the standard deviation of load dis-
tribution among ECNs for coECNP, k-means, DBC, HAF, and
RND schemes in various network settings under different data
traffic scenarios.

coECNP scheme obtains minimum SD values of ECNs load
distribution than benchmarks schemes in periodic traffic sce-
nario. It indicates that proposed scheme utilizes the edge re-
sources in balanced fashion. Each IoT node transmit same
amount of data periodically to respective ECN in periodic traf-
fic scenario. On the other hand, in event/query based scenario
data traffic variation among ECNs depends on various factors
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(a) Periodic data traffic scenario
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(b) Event-based data traffic scenario
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(c) Query-based data traffic scenario

Figure 14: SD of ECNs’ load distribution under periodic, event, and query based data traffic scenarios
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(a) Periodic data traffic scenario
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(b) Event-based data traffic scenario
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(c) Query-based data traffic scenario

Figure 15: IoT nodes energy consumption under periodic, event, and query based data traffic scenarios

such as number of IoT nodes in event/query region, amount of
transmitted data etc. coECNP scheme also achieves better or
approximately equal (see coENCP and DBC schemes SD val-
ues in Fig. 15b, and coENCP and k−means schemes SD values
in Fig. 15c) edge resource utilization due to optimal mapping
of nodes. Data traffic in event/query based scenario does not re-
flect the consistent pattern as a periodic traffic scenario. There-
fore, it requires an efficient inter-ECN communication mecha-
nism to achieve balanced load distribution among ECNs.

The mapping module ofcoECNP scheme takes care of bal-
anced IoT-ECN mapping that leads to balanced utilization of
edge resources as compared to k−clustering scheme on differ-
ent data traffic patterns under various network settings.

6.8. Energy consumption
Energy is a critical resource for resource constrained IoT

nodes [42]. This subsection discusses the energy consumption
of IoT nodes for various ECN placement schemes in various
network settings under various data traffic scenarios. Energy
consumption of IoT node depends on the number of hops be-
tween IoT node and respective ECN that varies according to
ECN placement and mapping schemes. coENCP scheme per-
forms optimal ECN placement (see section 6.3) and balanced
mapping (see section 6.4) that minimizes the energy consump-
tion of IoT nodes compared to benchmark schemes.

Fig. 15 depicts the average energy consumption of IoT nodes
under various data traffic scenarios in the network of 50, 75,
and 100 nodes for coECNP and benchmark schemes, respec-
tively. coECNP achieves minimum energy consumption among

various ECN placement schemes due to optimal ECN place-
ment and efficient mapping of nodes among ECNs. coECNP
achieves 38%, 6%, 43%, 53%, and 24%, 11%, 28%, 56%, and
15%, 17%, 57%, 62% less energy consumption compared to
k−means, DBC, HAF, and RND schemes in the network of 50,
75, and 100 nodes under periodic data traffic, respectively. In
case of event-based data traffic, coECNP scheme reduces en-
ergy consumption by 38%, 11%, 44%, 55%, and 18%, 14%,
38%, 54%, and 13%, 19%, 60%, 62% than k−means, DBC,
HAF, and RND schemes for the network of 50, 75, and 100
nodes, respectively. Further, coECNP reduces the energy con-
sumption by 37%, 9%, 28%, 55%, and 21%, 8%, 48%, 56%,
and 29%, 40%, 56%, 62% in compared to k−means, DBC,
HAF, and RND schemes for query based traffic in the network
of 50, 75, and 100 IoT nodes, respectively.

Fig. 15 depicts that coECNP scheme obtains lower energy
consumption in comparison to k−clustering in the network of
50, 75, 100 nodes under different data traffic patterns. coECNP
scheme reduces energy consumption by 36%, 21%, 52% for
periodic data traffic. coECNP obtains 36%, 33%, 53%, and
22%, 30%, 49% lower energy consumption as compared to
k−clustering scheme on event and query-based data traffic, re-
spectively.

7. Theoretical Analysis

This section represents the theoretical analysis of proposed
coECNP scheme with respect to various network centrality
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Figure 16: ECN placement under different centrality measure schemes

measures to indicate the efficacy of coECNP schemes. This
work adopts the degree centrality measure with certain exten-
sions (refer section 4.1) to identify the optimal ECN placement
locations. Closeness centrality measure defines the closeness
of a node to all other nodes in the network. On the other hand,
eigenvector centrality measures the importance of node by con-
sidering the degree of both node and its neighbors.

Lemma 2. coECNP scheme identifies optimal ECN placement
locations compared to closeness-centrality scheme.

Proof. The results in Fig. 16 indicates that the nodes located
at the center of graph have more closeness centrality than other
nodes. Closeness-centrality based scheme selects k nodes hav-
ing maximum closeness centrality values (in descending order)
for ECN placement as n{i|i=1,2,...,k}

closenessCen in the network of n nodes.
On the other hand, coECNP iteratively selects the location of
k nodes

(
n{i|i=1,2,...,k}

coECNP

)
as optimal ECN placement locations that

have maximum density and satisfy
⋂k

i=1 n{i|i=1,2,...,k}
coECNP = φ. Close-

ness centrality scheme only consider the distance measure in
ECN placement, whereas, coECNP maximizes the number of
nodes that access respective ECN with minimum distance. Fur-
ther, it also takes care of appropriate mapping of IoT nodes
among ECNs taking hop distance and balanced assignment into
consideration for delay minimization.

Lemma 3. coECNP scheme maximize the number of nodes that
access respective ECN with in one-hop compared to eigenvec-
tor centrality scheme.

Proof. Given the network of n nodes, assume coECNP and
eigenvector centrality based scheme assigns n1−hop

coECNP and
n1−hop

eigenCen nodes as 1-hop neighbors to ECNs. n1−hop
coECNP is

the union of one-hop nodes assigned to different ECNs i.e.
n1−hop

coECNP =
⋃k

i=1 n1−hop
i , where, ni is the set of one-hop nodes

associated to ith ECN. Further, coECNP scheme takes redun-
dancy issue into account in identification of maximum den-
sity nodes i.e.

⋂k
i=1 n1−hop

i = φ. However, eigenvector cen-
trality scheme selects ECN placement locations by consider-
ing density of nodes and its neighbors but did not considers
redundancy issue that leads to

{(
n − n1−hop

eigenCen

)
>

(
n − n1−hop

coECNP

)}
.

Further, ECN placement without addressing redundancy issue
also leads to unbalanced nodes assignment among ECNs (re-
fer eigenvector centrality scheme in Fig. 16). Therefore, it can
be concluded that ECN placement location determined by co-
ECNP maximize the number of nodes that access respective
ECN with in one-hop to minimize delay.

Lemma 4. coECNP scheme determines ECN placement loca-
tion

(
n
k

)
times faster than closeness centrality and eigenvector

centrality schemes.

Proof. coECNP schemes takes O(kn2) computational time to
determine the optimal ECN placement locations in the network
of n nodes. Whereas, closeness centrality and eigenvector cen-
trality schemes identify the optimal locations for ECN place-
ment in O(n3). It indicates that proposed scheme achieves opti-
mal results with

(
n
k

)
times reduced computational cost.

8. Conclusion

This work investigates the role of ECN placement and map-
ping of IoT nodes among ECNs for topology formation in
EIaaS paradigm to serve latency-sensitive applications. We
propose a solution, coECNP, that collectively addresses ECN
placement and IoT nodes mapping issues to minimize the de-
lay of IoT nodes and enhance edge resource utilization in or-
der to accomplish an optimal topology formation in EIaaS
paradigm. coECNP consists of three modules. The loca-
tion discovery function in ECNLoc

Dis module selects the opti-
mal locations for ECNs placement to minimize E2E delay be-
tween IoT node and respective ECN with O(kn2) computational
cost. Further, we propose ECNMin

|S | and EECNMin
|S | mapping

schemes under IoT ECN
Map module that minimizes the difference

of mapped IoT nodes among ECNs with computational cost
of O

(
hmax

(
k log k

))
. These schemes minimize the total delay

of IoT nodes and enhance edge resource utilization. Finally,
EIaaS con f module accomplishes the EIaaS topology formation
by utilizing the information received from ECNLoc

Dis and IoT ECN
Map

modules. We conduct the simulation experiments to test the ef-
fectiveness of coECNP scheme with benchmark schemes. Sim-
ulation results indicate that coECNP outperforms benchmark
schemes in terms of average total delay, energy consumption,
and edge resource utilization on various data traffic scenarios
under various network settings.

Future work includes the extension of coECNP scheme in
EIaaS paradigm by designing efficient mechanism(s) such as an
intelligent inter-ECN coordination mechanism that maximizes
balanced utilization of edge resources and satisfies application-
specific requirements.
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