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ABSTRACT 

From smart homes to smart cities and Industry 4.0 to Transportation Systems, Internet of Things 

(IoT) is a domain which promises incredible growth coupled with great impact, in numerous fields. 

IoT networks are composed of numerous different Things, arranged in diverse topologies with 

diverse needs. This diversity is partially due to the numerous areas where IoT applications are 

utilized, which at their entirety can be referred as the IoT ecosystem. The IoT ecosystem suffers 

from numerous vulnerabilities, due to reasons such as design flows, hardware limitation or simply 

human error and is subject to various attacks targeting IoT services, platforms and networks. These 

attacks can have significant consequences such as economic losses, service disruption or data leaks. 

Cyber-attacks are an unavoidable and must be faced in tandem with the global growth of IoT 

networks. An approach that can assist in developing robust, intelligent Cyber-security tools for IoT 

is using Artificial Intelligence. In the following paper, a mechanism is presented that automatically 

selects appropriate mitigation actions in an optimal way to countermeasure attacks faced by IoT 

networks. This is achieved by using an novel Artificial Intelligence mechanism based on a Deep 

Neural Architecture called Pointer Networks to optimize security-related KPIs. Experimental results, 

show that the proposed method produces equal or better Pareto optimal solutions, performs faster 

compared to state-of-the-art (SoA) algorithms and scales better. 

1. INTRODUCTION 
The number of devices with internet connectivity, has 

been rapidly increasing with some estimations claiming 

that approximately 50 billion Internet of Things (IoT) 

devices are connected by the end of 2020 (Tahsien et al., 

2020) . Internet of Things (IoT) networks can be composed 

of numerous different "Things" e.g. sensors, gateways, 

protocols, network or application servers applied in use 

cases such as healthcare, transportation systems, cities, 

supply chains, environmental monitoring, manufacturing 

etc. which at their entirety can be referred as the IoT 

ecosystem. 

Along with the expansion of the IoT devices and the 

related network infrastructures, came an increase of 

security related risks and issues, threatening the continuity 

of provided services and posing privacy dangers in terms of 

data availability, integrity and confidentiality both at the 

user or infrastructure or service provider level. The 

application of standard cyber-security methodologies can 

be challenging due to the heterogeneity of IoT networks 

(Pal et al., 2020). Additionally, IoT ecosystems with time 

sensitive services have emerged e.g., intelligent 

transportation systems, smart manufacturing or medical 

care (Khadr et al., 2019).  
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In this context, cyber-attacks need to be detected in a 

timely manner allowing for prompt mitigation, since the 

realization of a security failure can cause severe 

consequences ranging from ∗monetary damages to physical 

harm. Implementing effective secure IoT platforms and 

networks has value for both the industry and the end-

users. 

To combat the emerging plethora of the various attacks 

targeting the dynamic environment of IoT networks and 

devices, it is critical to develop novel, smart tools that can 

handle the diverse nature of such attacks and block or 

counter them. A solid basis for such tools can be Artificial 

Intelligence (AI) based methods (Zhang and Tao, 2020; Yan 

et al., 2020). 

In the last decade the AI field has experienced explosive 

growth, partially due to Deep Learning (DL) and Deep 

Neural Networks (DNN) with ground-breaking applications 

in multiple domains. Combining AI and IoT networks and 

devices, is a subject that has attracted the attention of both 

academic and private research interests (Zhang and Tao, 

2020), while the application of AI algorithms to the IoT 

domain has been described as Artificial Intelligence-of 

Things (AIoT) (Lai et al., 2021). A few examples of the 

successful application of Deep Learning based AI methods 

in the IoT domain include either use-case or device specific 

applications such as wearable devices (Ravì et al., 2017), 

patient rehabilitation systems (Fan et al., 2014) and smart 

energy meters (Alahakoon and Yu, 2016). AI methods have 

also been used in applications that manage and affect the 

functionality of the IoT network. Examples of this category 

include using AI for routing protocol handling (Al-Janabi 
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and Al-Raweshidy, 2018), Data placement oriented 

towards privacy preservation Xu et al. (2018), to empower 

a Anomaly Detection module (Protogerou et al., 2020), 

malware detection Toldinas et al. (2021), intrusion 

detection Awan et al. (2021), threat analysis Ali et al. (2022) 

or for the resource allocation handling of an IoT network  

(Ramírez et al., 2020). Apart from Deep Learning based AI, 

another category of AI algorithms that have shown robust 

performance in optimization problems related to IoT are 

nature-inspired algorithms. Their applications span from 

the optimal scaling of the architecture of an IoT network 

(Hildmann et al., 2019) to energy-efficient routing control 

(Khan et al., 2020) or the verification of the security of the 

runtime and routing policies of an SDN empowered IoT 

network (Papachristou et al., 2019). In (Kaul et al., 2021), 

an extensive review of the application on such algorithms 

in various computing systems including IoT networks is 

provided. 

Approaches using AI, can be combined with Software 

defined networking (SDN) technologies. SDN based 

architectures offer programmable networks that separate 

the traffic plane from the control plane (Bera et al., 2017), 

allowing control of the various network layers through the 

network flows (Akyildizetal.,2014). Coupling AI with SDN 

technologies can enhance the SDN capabilities, leading to 

better decision making (Latah and Toker, 2019) and more 

robust security solutions Correa Chica et al. (2020). 

Within this context, an extendable mechanism for the 

unsupervised selection of mitigation actions in IoT network 

is presented. This module uses an original AI based 

methodology that employs deep neural networks called 

Pointer Networks (Vinyals et al., 2015) to decide optimal 

strategies against threats by solving multi-objective 

problems to optimize the value of cyber-security KPIs. The 

mechanism is built to interact with SDN systems in order to 

enforce the mitigation strategies to the network. 

1.1. Key contributions 

In the following sections, we present an approach using 

novel multi-objective (MO) method, based on a Deep 

Neural architecture called Pointer Networks (Vinyals et al., 

2015) (PointerNet), for optimizing the selection of 

countermeasures of an IoT network under attack. While 

countermeasure selection using MO techniques is well 

studied in ’classic’ computer networks, it is a fairly new 

topic in the context of IoT. To the best of our knowledge, 

both an MO approach using Pointer Networks and 

application of Pointer Networks for IoT security and have 

not been yet studied in the literature. 

The problem under investigation can be stated as 

follows: Assume X devices of different types are under 

threat or an attack, each with n mitigation actions, unique 

to its type, to counter the threat or attack. Select one 

appropriate mitigation action for each device while 

optimizing a number of metrics and respecting a number 

of constrains. This corresponds to a class of problems, 

known as MO 0/1 Knapsack Problems which is known to be 

NP-Hard. The Knapsack problem belongs to the category of 

Discrete Combinatorial (DC) problems and is met in 

numerous fields: a class of algorithms known as 

Evolutionary Algorithms is considered the standard in 

solving them (Liu et al., 2020; Emmerich and Deutz, 2018). 

Pointer networks is a Deep Neural Architecture using 

Reinforcement Learning, that was first proposed by 

(Vinyals et al., 2015) to solve the Traveling Salesman 

Problem which also belongs to the DC problem class. 

Variations of Pointer networks were proposed to solve the 

Single-Objective (SO) 0/1 knapsack problem in (Bello et al., 

2017; Gu and Hao, 2018). 

In this paper, a novel approach is proposed, to solve the 

MO version of 0/1 knapsack problems resulting in a 

method that produces equal or better Pareto optimal 

solutions, performs faster compared to state-of-the-art 

(SoA) algorithms and scales better. This is shown by 

experimental results presented in section 4.2. The 

suggested process takes into account multiple aspects of 

the network and results in a set of optimal trade-off 

solutions between multiple cyber-security KPIs, a non-

trivial problem since there is no single solution that 

simultaneously optimizes each KPI. The general position of 

the proposed Mitigation Engine module in an IoT network 

is shown in figure 1: The Mitigation Engine receives 

Anomalies from an Intrusion Detection System and outputs 

its’ decisions to be applied to the network via the SDN 

controller. 

The remainder of the paper is structured as follows: 

Section 2 contains a survey of the relevant review and 

Section 3 presents the methodology used to formulate the 

proposed approach while in Section 4 experimental results 

for the proposed Mitigation Mechanism are presented. 

Finally, Section 5 concludes the articles and describes 

future work directions. 

2. Related Work
 

The following section presents the results of a literature 

survey related to the proposed approach: Initially, a brief 

literature review about threat mitigation in IoT is 

presented. Then, the subject of multi-objective (MO) 

optimization problems in the IoT domain is examined along 

with a cursory introduction on common approaches to 

solve them. The final part of this section contains the 

results of an extensive literature review on Key 

Performance Indicators (KPI) for IoT Cyber-security. Based  
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 on this survey, the KPIs that are used as targets for the 

optimization process are decided. 

2.1. Attack and Threat mitigation in IoT networks 
There are two distinct alternatives to mitigations of threats 

in cyber-systems under attack, including IoT networks: The 

first deals with the mitigation of a single attack type or 

method e.g., a sinkhole attack where the attacker causes 

large traffic flows to pass from a node he controls to obtain 

data, can be mitigated by more secure protocols. 

Numerous studies contain comprehensive reviews of such 

approaches, for example (Ahemd et al., 2017; Mahmoud et 

al., 2015). 

The second alternative is to use a scheme to select the 

appropriate countermeasures to the threats or attacks 

faced by the system based on the values of some Key 

Performance Indicators. This approach offers a holistic 

treatment of threat mitigation in the sense that it allows 

the selection of countermeasures for attacks from multiple 

sources, with multiple possible steps. This approach was 

chosen to be followed in the presented Mitigation Engine 

implementation. 

We distinguished solutions falling under the second 

category further, to four separate classes: The first class 

includes approaches with no automation that measure the 

values of one or more KPIs. However, no optimization 

methods are applied and no suggestions or automated 

responses for the appropriate mitigation strategy are 

offered. An example, is the framework suggested by 

Gonzalez-Granadillo et. al (Gonzalez-Granadillo et al., 

2015), in which the values for some KPIs, corresponding to 

multiple sets of different mitigation action choices, are 

presented numerically and visually to the Security operator 

of the system and then she must reach a decision on which 

actions to deploy. 

The second class involves the automated mitigation of 

attacks using Heuristic methods based on thresholds for 

the values of KPIs. Based on predefined scenarios and 

values, the system chooses from a list of predefined actions 

to react to the threats. This approach can lead to complex 

patterns of different cases and values that can be difficult 

to scale up. An example of such an approach can be found 

in (Kotenko and Doynikova, 2016). 

The third class includes approaches where the selection 

of mitigation actions is based on the optimization of the 

value a single KPI or transforming the problem to a single 

objective (SO) problem e.g. (Chehida et al., 2020) where 

the authors select countermeasures based on minimizing 

the cost to deploy them. 

Finally, the fourth class includes the approaches where 

the selection of mitigation actions is based on the 

optimization of the values of multiple KPIs which might be 

antagonistic to each other but better describe the impact  

 

Fig. 1: High level overview of the position of the proposed Mitigation Engine module in an IoT network. 
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of the action on the system. This approach was chosen 

for the proposed Countermeasure selection module. Table 

1 presents the results of the literature review performed 

along with details on the methods used. 

2.2. Multi-objective optimization in the context of 

IoT networks and approaches to solve such 

problems 
Optimizing the solution of problems based on multiple 

objectives (MO) has been effectively applied in many 

diverse fields such as economics, multi-modal analysis, or 

engineering (Kalamaras et al., 2014). Additionally, it has 

been used to efficiently solve various IoT related problems 

such as IoT network design (Huang et al., 2015), IoT 

wireless 

 

network spectrum allocation (Han et al., 2018) or IoT 

quality of service handling (Prasanth and Jayachitra, 2020). 

MO approaches have been used to select a number of 

countermeasures from a predefined set of such actions in 

the context of cyber-security as shown in Table 1. In the 

context of IoT networks specifically, KPI optimization for 

mitigation action selection has become a recent topic of 

interest. Three solutions involving SO approaches for 

mitigation selection have been identified, either in generic 

IoT networks (Chehida et al., 2020; Garzia et al., 2017) or 

smart energy grid systems (Zonouz and Haghani, 2013). 

Two IoT specific studies using MO have been identified i.e. 

(Rachedi and Benslimane, 2016) where the authors 

optimize multiple KPIs to secure a Sensor Network while in 

(Hasan et al., 2018) MO is used in an industrial energy 

delivery system based on IoT. 

Another manner to solve the problem of mitigation 

action selection is using tools from game or auction theory, 

e.g., the approach used in (Rontidis et al., 2015). However, 

while related to MO optimization, these tools assume prior 

expert knowledge about the specific workings of the 

systems such as user payoffs or user/attacker profit and 

loss margins and more important they assume competing 

agents that are linked to different objectives thus are not 

considered to be in the scope of this paper. 

An approach commonly used to solve MO problems, is 

the utilization of the so-called decomposition techniques 

such as scalarization where the multiple objectives are 

transformed into a single objective problem, usually using 

arbitrarily decided weights to account for the importance 

of each objective function. 

Another approach, is to use so called Evolutionary or 

Nature Inspired Algorithms which are subset of 

evolutionary computation. Along with techniques and 

methods such as fuzzy logic, swarm intelligence or artificial 

neural networks, Evolutionary algorithms belong to 

Computational Intelligence field of study, also known as 

soft computation, a subdiscipline of the Artificial 

Intelligence field (Back et al., 1997). 

Evolutionary Algorithms share the following common 

characteristics: they can effectively represent numerical 

knowledge, easily adapt to changes of the input data while 

efficiently producing solutions in computationally hard 

problems (Siddique and Adeli, 2013). In general, these 

algorithms evolve a population of candidate solutions 

towards an optimized solution space. The fitness of each 

individual belonging to the population, is computed 

through use of problem specific objective functions. The 

individuals with the highest function scores are used as the 

basis of a new generation of the population. However, it is 

known that Evolutionary algorithms suffer when scaling up 

to larger problems is required (Sloss and Gustafson, 2020). 

In MO problems, optimizing the value of a single KPI 

can result in undesirable effects with respect to the values 

of the other KPIs of interest. Instead, the desired solutions 

need to satisfy the KPI objectives without being dominated 

by other solutions, i.e., solutions where none of the values  

Table 1  

Literature review results on the selection of mitigation actions 

for cyber-attacks 

Approach Category Approaches 
No automation N=3, Visualization 

(Gonzalez-Granadillo et al., 
2015; Granadillo et al., 2012; 

Gonzalez-Granadillo et al., 

2017) 
Heuristic Approach N=3, (Chung et al., 2013; 

Kotenko and Doynikova, 2016; 

Doynikova and Kotenko, 2018) 

Single-objective Optimization N=8, Ant Colony (Wang et 
al., 2013), Bellman 

Method (Zonouz et al., 2009; 
Zonouz and Haghani, 2013; 

Miehling et al., 2015), 
Genetic Algorithm 

(Poolsappasit et al., 2012; 
Garzia et al., 2017; Li et al., 
2018; Chehida et al., 2020) 

Multi-objective Optimization N=10, Branch & Bound 
Integer Optimization (Roy et 

al., 2012),Genetic 
Algorithm (Poolsappasit et 

al., 2012), NSGA-II 
algorithm (Dewri et al., 2012; 

Rachedi and Benslimane, 
2016; Lee et al., 2017; Hasan 

et al., 2018; Enoch et al., 
2019), Single Additive 

Weighting & Weighted 
Product method 

(Shameli-Sendi and 
Dagenais, 2015; 

Shameli-Sendi et al., 2018), 
Tabu Search algorithm 

(Viduto et al., 2012) 
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 of the objective functions examined can be improved 

without the value of some other objective deteriorating. 

Solutions with this property are called non-dominated or 

Pareto optimal. The final result is a set of optimal trade-off 

solutions between multiple KPIs, often referred to as the 

Pareto Front (Emmerich and Deutz, 2018). 

2.3. Key performance Indicators for IoT Cyber-

security countermeasures 
To assess the Key Performance Indicators most 

commonly used to measure the efficiency of mitigation 

actions and countermeasures, an extensive literature 

review was performed. Based on it, as shown in Table 2, 

four major KPI categories where distinguished: 

• KPIs measuring the "Positive impact of a 

countermeasure chosen on the security of the 

system" e.g., in terms of risk of an attack averted or 

using a custom-defined Security Level. 

• KPIs measuring the "Negative impact of a 

countermeasure chosen on the security of the 

system" e.g., the down time that might be caused by 

a countermeasure for some parts of the system or 

the possible residual damage despite the application 

of a mitigation action. 

• KPIs measuring the "Cost to prepare and deploy 

selected countermeasures" in terms that might 

include but are not strictly monetary, e.g., the cost 

that occurs from the system resources consumed 

when a mitigation action is applied. 

• KPIs measuring the "Monetary profit gained or Loss 

averted by deploying selected countermeasures" 

which are strictly measured in monetary units or 

percentage of monetary gain/loss. 

2.4. Security Related Key Performance Indicators 

for the selection of Mitigation Actions 
The following section presents the four Key 

Performance Indicators (KPIs) selected to be used in this 

report, as the metrics to be optimized, towards choosing 

which mitigation actions should be deployed to secure the 

network. The choice was made based on the review 

presented in Section 2.1. 

 

Table 2  
KPIs used in literature to measure mitigation and countermeasure efficiency for cyber-security 

KPI Category/Name 
Number of appearances in literature 

and other names used 

Positive impact of the countermeasures 

chosen on the security of the system 
N = 21 : Positive Impact (Shameli-Sendi and Dagenais, 

2015), Benefit (Chung et al., 2013), Security Quality 
(Shameli-Sendi et al., 2018), Stateless Security (Enoch et al., 2019), Security 

Benefit (Li et al., 2018), Security level (Zonouz and Haghani, 2013; Hasan et al., 
2018), Total 

Initial Risk (Viduto et al., 2012), Security Risk (Garzia et al., 
2017), Vulnerability Surface Coverage (Shameli-Sendi et al., 2018), Weakness 

Coverage (Lee et al., 2017) 
Negative impact of the countermeasures 

chosen on the security of the system 
N = 9 : Residual Damage (Dewri et al., 2012), Negative 

Impact (Shameli-Sendi and Dagenais, 2015), Intrusiveness 
(Chung et al., 2013), Impact (Roy et al., 2012), Security 

Performance (Shameli-Sendi et al., 2018), Negative Impact on QoS (Li et al., 
2018), System Downtime(Wang et al., 

2013), CVSS score (Wang et al., 2013; Chung et al., 2013) 
Cost to prepare and deploy selected 

countermeasures 
N = 8 : Service Cost (Shameli-Sendi et al., 2018), Cost 

(Enoch et al., 2019; Wang et al., 2013; Chung et al., 2013; Miehling et al., 2015), 

Security Control Cost (Dewri et al., 2012; Poolsappasit et al., 2012) , Deployment 

Cost (Li et al., 2018) 

Monetary profit gained / Loss averted by 

deploying selected countermeasures 
N = 8 : ROI (Chung et al., 2013), RORI (Kheir et al., 2010; 

Granadillo et al., 2012), Loss/Gains(Poolsappasit et al., 
2012), Benefit of implementation (Doynikova and Kotenko, 2018), Recovery Cost 

(Zonouz and Haghani, 2013), Total Investment (Viduto et al., 2012), Monetal Cost 

(19) 
Hypervolume of users, channels, resources N = 3 : (Garcia-Alfaro, 2017; Gonzalez-Granadillo et al., 

2017, 2015) 
System Throughput N = 2 : (Hasan et al., 2018; Varga et al., 2018) 

E2E latency N = 1: (Hasan et al., 2018) 
Detection Time N = 1 : (Varga et al., 2018) 
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2.4.1Common Vulnerability Scoring System  

 
Common Vulnerability Scoring System (CVSS) is an open 

Industry standard for assessing the severity of a 

cybersecurity vulnerability (Mell et al., 2006). A 

vulnerability has a CVSS score ∈ [0,10] with 10 representing 

the highest severity. For the calculation of CVSS scores 

predefined values and equations are used. These are 

presented in the white-paper “Vulnerability Scoring System 

version 3.1 Specification Document” (Group, 2019): Each 

vulnerability is described by two strictly defined sets of 

metrics. The first is the set of Exploitability metrics which 

reflect the characteristics of the vulnerable device or 

component. These include: 

1. Attack Vector which describes the context in which a 

vulnerability is exploited (Network, Adjacent Network, 

Local or Physical), 

2. Attack Complexity which describes the existence of any 

special conditions required (or lack of them) for a 

vulnerability to be exploited (Low, High), 

3. Privileges Required (or lack of them) describes the level 

of privileges required by the attacker for a vulnerability 

to be exploited (None, Required), 

4. User Interaction describes the existence of any user 

other than the attacker required (or lack of them) for a 

vulnerability to be exploited (None, Required), 

5. Scope, i.e. examining if impacts caused to systems 

beyond the vulnerable component (Unchanged, 

Changed) 

and the second is the set of Impact Metrics which reflect 

the effects of a successful exploitation of a vulnerability: 

1. Confidentiality reflects the impact to the confidentiality 

of the data managed by the device or application 

affected by the vulnerability to be exploited (None, Low, 

High), 

2. Integrity reflects the impact to the integrity, i.e. 

trustworthiness and veracity, of the data managed by 

the device or application affected by the vulnerability to 

be exploited (None, Low, High) and 

3. Availability reflects the impact to the availability of the 

device or application affected by the vulnerability to be 

exploited (None, Low, High) The actual formulas and values 

are omitted for the sake of brevity but can be found in 

(Group, 2019). Using CVSS, security experts can easily share 

discovered vulnerabilities via public databases such as the 

National Vulnerability Database (Booth et al., 2013). 

Moreover, any attack can be translated to a vulnerability. 

In Section 4 the following formula is used to calculate the 

CVSS score after a number of mitigation actions were 

applied: 

𝐶𝑉𝑆𝑆 = 10−𝑚𝑒𝑎𝑛 (𝐶𝑉𝑆𝑆𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) (1) 

 2.4.2  Return On Response Investment Score 

 Return on Response Investment (RORI) is a tool used 

to calculate (a self-named) an index associated to the 

mitigation actions composing a response plan. The RORI 

index is used to evaluate optimal plans (by ranking them as 

a trade-off between their efficiency in stopping potential 

attacks, and their ability to preserve, at the same time, the 

best service to legitimate users. Similar metrics such as the 

“Return of Investment” or the “Return on Security 

Investment” appear, however, RORI is a variant that has 

specifically developed for intrusions in Internet Technology 

(IT) systems. In this work, a modified formula suggested in 

(Granadillo et al., 2012) is used to calculate it using the 

following qualities: 

• Annual Loss Expectancy (ALE) refers to the financial 

cost expected from one or more threats, in the 

absence of applying a mitigation strategy. 

• RM is the Risk Mitigation which estimates the 

effectiveness and coverage of one or more actions in 

mitigating a threat. 

 

Fig. 2: An example for the calculation of Vulnerability Surface 

Coverage using four mitigation actions (cm1, ..., cm4) that cover 

eight vulnerabilities (v1  ,... ,v8) 

• Annual Response Cost (ARC) expresses the expected 

cost of applying a mitigation strategy and 

• Annual infrastructure value (AIC) is a fixed cost 

associated to the system infrastructure (e.g., cost of 

equipment, services, etc.), regardless of applying any 

mitigations. Then, 

   

*
 

ALE RM ARC
RORI Score

ARC AIC

−
=

+
(2) 

2.4.3. Vulnerability Surface Coverage 

The Vulnerability Surface Coverage (VSC) of a 

countermeasure 𝑐𝑚𝑖 is the number of vulnerabilities it 
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covers so VSC ∈ [0,1] (Shameli-Sendi et al., 2018). It can be 

found in the literature with other names such as Attack 

Surface Coverage. Disjoint VSC includes the vulnerabilities 

covered by a single countermeasure, whereas joint VSC 

refers to the vulnerabilities covered by multiple 

countermeasures. For example, as shown in Figure 2, 

disjoint 𝑐𝑚1 has VSC = 
3

8
 i.e. v1,v2,v3 out of the 8 total 

vulnerabilities, while 𝑐𝑚1 and 𝑐𝑚2 have VSC = 
6

8
. 

2.4.4. Mitigation Deployment Cost 

This KPI evaluates the deployment costs of the 

mitigation actions by considering deployment time, 

consumed resources and the importance of the device that 

is affected by the countermeasure as assessed by the 

network security operator (Li et al., 2018). To calculate it, 

three quantities are required. First, Deployment Time (DT) 

which is measured in milliseconds. This is the time required 

for a mitigation action to be deployed. It can be assessed 

using historical data and be dynamically updated. Then, the 

Device Importance (DI), which is arbitrarily assessed by the 

network security operator considering the specifics of each 

use case. A value is assigned to each device, where Device 

Importance ∈ [0,1]. This value is directly mapped to the 

Asset impact value proposed in the ETSI-TS 102 165 

standard (V5.2.3, 2017) as shown in Table 3. Lastly, 

Resource Consumption (RC) can be imputed in two 

different ways: If actual resource overhead consumption is 

available e.g., CPU or RAM or Throughput consumption, 

the following formula can be used:  

 
(3)

   

     

consumed bydevic
R

e

amoun
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t oft rl e

o

s

r
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e

u

e
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s

e

r u

ta s

c
C =  

Else, an arbitrarily chosen ranking scheme can be used 

based on the network operators’ expertise i.e 𝑅𝐶 = {Very 

Low:1, Low: 2, Medium: 3, High: 4, Very High: 5}. Finally, 

the KPI value is calculated by the following formula: 

 𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝐶𝑜𝑠𝑡 = 𝐷𝑇 ∗ 𝐷𝐼 ∗ 𝑅𝐶 (4) 

2.5. Application of the mitigation actions to the IoT 

network 
The Mitigation Engine proposed in this work, was 

designed and built to interact with an SDN controller based 

on the Open Network Operating System (ONOS) (Berde et 

al., 2014), described in detail in (Gelenbe et al., 2020). The 

controller of the SDN system uses the OpenFlow protocol 

rules (Foundation) to apply the actions outputted by the 

Mitigation Engine to the network. OpenFlow protocol is 

supported from the majority of the available SDN 

controllers (Salman et al., 2016), thus the proposed system 

can be easily be used with controllers other than ONOS. 

The actions that are available to the network operator are: 

• Block: This mitigation action blocks all traffic flows 

originating from all ports of a specific IP address for a 

time predefined by the system operator. 

• Block port: This mitigation action blocks all traffic flows 

originating from a specific port of a specific IP address 

for a time predefined by the system operator. 

• Black-list: This mitigation action blocks all traffic flows 

originating from all ports of a specific IP address until 

revoked by the system operator. 

• Redirect to Honeypot - This mitigation action is designed 

to reroute traffic between a suspicious host and another 

network component to a Honeypot in that way that the 

suspicious host thinks it still connected to the network 

component originally targeted. 

• White-list: This mitigation action allows the system 

operator to undo the effects of a Black-list mitigation 

action. 

3. Proposed Solution method for Multi-

objective Knapsack Problems using Pointer 

Networks and the Normal Normalized 

Constraint Method 
This section starts with a high-level description of the 

input and output of the proposed module. Then the 

methodology used to create the proposed Unsupervised 

IoT-ready Mitigation Engine is showcased. Finally, the 

description and methodology of the KPI that were used to 

produce the experimental results are presented. 

Table 3  
Mapping of the Asset Impact proposed by ETSI to Device 

Importance 

Asset 

Impact 
Explanation Value 

Device 
Importance 

Value 
Low The concerned party is 

not harmed very 
strongly; the possible 

damage is low 

1 0 

Medium The threat addresses 
the interests of 

providers or subscribers 

and cannot be 

neglected. 

2 0.5 

High A basis of business is 
threatened and severe 
damage might occur in 

this context. 

3 1 
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3.1. I/O data for the Pointer network mechanism 
The following subsection presents the input and output 

data of the proposed implementation of Pointer networks. 

For each device type expected to be in the IoT network, a 

number of different mitigation actions exist described as 

set of rules. Each of these rules is predefined by the 

network operator based on past or known attacks and 

contains a) a unique Device Identifier, b) the Device Type, 

c) a vulnerability, d) a mitigation action appropriate to this 

vulnerability and e) values for the variables required to 

calculate the KPIs that will be used for optimization. A 

device can have multiple rules, describing different actions 

to counter an attack against a vulnerability. We assume a 

mechanism as the one described in (Foremski et al., 2020) 

is used to monitor device types and identities while 

unidentified devices are automatically assigned to an 

’unprofiled’ category. 

It is assumed one or more attacks against N
 
devices 

connected in an IoT network are detected. Let the rule 

table related to these attacks have M
 
rows. The input of 

the proposed method is an ordered matrix of size MxN 
multiple rules for multiple devices: each row is mapped one 

to one to the original table and contains N elements 

describing the device ID and the values of the variables 

required to calculate the KPIs that are used for 

optimization. 

Let 𝑀 = {𝑝1, 𝑝2 ,…,𝑝|𝑀|}, be the ordered vector corresponding 
to each row of the input matrix. Then, the output of the 
Pointer Networks is a vector 𝑃 of size equal to 𝑀,  

𝑃 = {𝑐1, 𝑐2 ,…,𝑐|𝑀|}, where 

1,if pointer  is selected as part of the solution,

0,if not.

m

m

p
c


= 


 

 

The proposed method takes into account two 

constrains a) one mandatory that enforces that only a 

single mitigation action should be applied to each device 

and b) possible constraints imposed by the operator 

concerning the values of the KPIs used. 

The input and output of the proposed method is shown 

schematically in figure 3. 

3.2. Methodology used for the Unsupervised IoT-

ready Mitigation Engine 
In the proposed method, the normalized normal 
constrained (NNC) method (Messac et al., 2003) is used as 
a general framework to generate the Pareto frontier while 
each sub-problem inside the NCC process is solved using a 
deep neural network architecture called Pointer Networks 
(Vinyals et al., 2015). First, the constrained multi-objective 
optimization problem is defined: Let 𝑥 be n items we must 
choose from, 𝑥𝑖 = 1 if an item is chosen else 𝑥𝑖 = 0, and: let 
μl be the lth KPI to be optimized. Then, the following 
minimization is the target: 

1min( ( )... ( )), 2 l
x

x x l        (5) 

 

Fig. 3: Input and Output of the proposed the Pointer network mechanism. 
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Let 𝑔𝑗 (x) and ℎ𝑘(x), be the 𝑟 and 𝑠 inequality and equality 

constrains of the problem: 

 𝑔𝑗(𝑥) ≤ 0,(1 ≤ 𝑗 ≤ 𝑟) (6) 

 ℎ𝑘(𝑥) = 0,(1 ≤ 𝑘 ≤ 𝑠) (7) 

𝑥𝑖 ∈ 0,1         (8)  

Equations (6), (7), (8) are inequality, equality and side 

constraints of the problem respectively. To proceed, 𝑛 

subproblems are be defined and solved, one for each 

objective function: 

1min ( ), (1 )
x

x i l   (9) 

 Each sub-problem is subject to equations (6), (7), (8). 

3.2.1. Solution of minimization sub-problems 

We propose the use of Pointer Networks to solve 

equation (9) : Let P= {p1, … , pn} be a sequence of n vectors 

transformed via a Linear embedding to be used as input, 

corresponding to 𝑥 = {𝑥1,...,𝑥𝑛} and 𝑌 = {𝑦1,...,𝑦𝑚} be the 

output sequence associated to P. Pointer networks are 

based on the Sequence to Sequence Model (Sutskever et 

al., 2014) with a modified attention mechanism. 

Bi-directional Long Short-Term Memory (LSTM) DNN 

are used to encode and decode the data: Let E= {e1, … , en} 

and D= {d1, … , dn} be encoder and the decoder hidden 

states of the LSTMs. Let f, g be the transformation 

functions made by the LSTM layers, 𝑐 be a context vector 

resulting by an attention mechanism q(e1,…,ej). Then, the 

conditional probability calculation can be written as  

(𝑖,𝑗 ∈ (1,…,n)): 

 1 1 1( | ,..., , ) ( , , )i i i ip y y y P g y d c− −=   (10) 

 
1 1( , , )i i i id h d y c− −=  (11) 

 
1( ,.., )jc q e e=  (12) 

 
1( , )j j je f P e −=  (13) 

In Pointer networks, the Encoder and Decoder Layer 

are connected by the attention mechanism. The context 

vector 𝑐 are calculated by the encoder hidden states and 

the attention weights values a𝑗𝑖 , 𝑖,𝑗 ∈ (1,...,𝑛) : 

 
1

,
n

i

i j j

j

c a e
=

=  (14) 

where 

1

( )
( )

( )

i

jj j

i i n
i

k

k

exp u
a softmax u

exp u
=

= =


 (15) 

and 

 

Fig. 4: Architecture of the Pointer Deep Neural Network. 
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1 2( )j T

i j iu v tanh W e W d= +    (16)  

with 𝑊1,𝑊2 and 𝑣 parameters that are learned by the 

network. Finally, 

1 1(( | ,..., , ; )) ( )i

i ip y y y P softmax u− =    (17)  

provides the conditional probability to choose the pointer 

𝑦𝑖  at a given iteration of the algorithm. 

The SoftMax normalizes the Attention Layer vector 

values j

iu  to be an output distribution over the dictionary 

of inputs. After a pointer is chosen, the constrains set by 

equations (6), (7), (8) are checked and if a violation is found 

𝑥𝑖   and 
1 1(( | ,..., , ; ))i ip y y y P −

 are assigned to zero, else 𝑥𝑖 

= 1. Figure 4 shows the implementation of the Pointer Deep 

Neural Network. 

 

3.2.2. Creation of the Pareto Front 

After solving the sub-problems defined in equation 9, 

we can define the following variables: Let * 0,1lx   be the 

optimal decision vector and * * *( ),l n

l l lx R  =   be the 

𝑙th generic optimal objective. An Utopia Point (Messac 

et al., 2003) is defined as * *

1[ ,...., ] ,u T u n

n R   =   ,while 

the solution space points *,l  each corresponding to an 

optimal objective value 𝜇𝑙∗, are called Anchor Points. The 

hyper-plane 𝑃 𝑢, defined by the anchor points *

l  is called 

the Utopia Plane. Finally, the opposite of the Utopia point, 

i.e. the point that comprises by the maximum values of the 

objective function is called the Nadir Point 𝜇𝑁, where 

1[ ,..., ]N N N T

l  =  and each point is found by 

1* *

1[ ( ),..., ( )]N n T

lmax x x  = . 

Using these quantities, the objective function can be 

normalized, using: 
*( )

,
i

i i

i

i

x

s

 


−
=  

where 

(18) 

1

.

, . .

.

N u

i

l

s

m S S

s

 

 
 
  

 = = − 
 
 
  

 

(19) 

Let kN  be the direction from *k  to *n  for 

{1,2,..., 1}k l − , as * *n k

kN  = −  . For a predefined 

number of solutions 𝑚𝑘, a normalized increment of 𝛿𝑘, is 

computed along the direction kN  , 

1
,(1 1)

1
k

k

k n
m

 =   −
−

  (20) 

The number of the solutions 𝑚𝑘, affects the distribution of 

the solutions in the Utopia plane. To ensure an even 

distribution, 𝑚1 is specified and then 𝑚𝑘  is calculated by 

 

  
1

1

|| ||

|| ||

k

k

m N
m

N
=  (21) 

The set of evenly distributed points in the Utopia plane is 

evaluated by the following: 

 
1

ˆ ,
l

k

pj kj

k

X a 
=

=   (22) 

where 

0 ≤ 𝑎𝑘𝑗 ≤ 1,  (23) 

1

1.
l

kj

k

a
=

=   (24) 

  

Finally, for each pjX , a corresponding Pareto solution is 

obtained by solving the following problem: 

min ,l
x
       (25)  

subject to the starting constraint equations 6, 7, 8 and 

additionally, 

 ( ) 0, (1 1)T

k pjN X k l −    −  (26) 

 1{ ,..., },l  =  (27) 

This is solved by using Pointer networks as shown in 

equations (10) to (17). The values for the objective 

functions can be calculated using 

 *( ), 1,2,.., .i

i i i is x i l  = + =  (28) 

It should be noted, that there are cases while the NCC 

produces solutions that cover the Pareto front, it can also 

produce non-optimal solutions especially in highly concave 

solution regions. The authors of the paper originally 

proposing NCC (Messac et al., 2003) and propose the use 

of a filtering mechanism to retain only the Pareto optimal 

points. Other mechanisms such as the Non-dominated 
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Sorting algorithm used in NSGA-II Deb et al. (2002) can also 

be used for the same purpose. 

3.2.3. Selection of a single solution from the Pareto 

Front 

To choose a single solution, if required, a modification 

of the Simple Additive Weighting / Weighted Sum method 

is proposed: Let 
1{ ,..., }vV v v=  all the objective function 

values for the solutions found, e.g. for 𝑣𝑣   the vector is 

1{ ,..., }v v vlv  =  and 𝑤 be a vector containing weights, 

arbitrarily chosen: 
1{ ,..., }, 1,2,..,iw w w i l= =  where 

1

1
l

i

i

w
=

=  (29) 

Then, a solution can be chosen by 

,

1, 1

( )
argmin

( ) ( )

v

v

l v
v l vl

i
v V i j vl vl

min
w

max min

 

  = =

−

−
  (30) 

In Shameli-Sendi et al. (2018), it is shown that this method 
outperforms the Weighted Product and the TOPSIS 
method which are used for the same purpose. 

4. Experimental Results 
The following section presents the results of the 

experiments performed to validate the proposed schemes 

for the Mitigation Engine module. Initially, the steps to 

prepare the experiments are presented in terms of 

scenarios and underlying assumptions. Then the 

parameters used in the various algorithms are presented 

and finally the experimental results. 

4.1. Experimental setup and Algorithm Preparation 
A synthetic scenario is used to validate the mitigation 

engine, in which it is assumed that an IoT network is 

threatened by multiple attacks and some of the network 

components are already affected by malicious software. 

Additionally, it is assumed that one or more Intrusion 

Detection System components have discovered multiple 

anomalies in the traffic in various devices in the IoT 

network: SDN controllers and switches, IoT devices and a 

mini-PC. More specifically the device types we assume are 

present in the IoT network are: Routing controllers using 

the Open Network Operating System (ONOS), Virtual 

switches using the Open vSwitch, IP cameras, temperature 

control sensors and mini-PCs operating with Windows 10. 

The vulnerabilities assumed to be used for the attacks for 

the experimental scenarios, presented in detail in the 

National Vulnerability Database (Booth et al., 2013), are 

shown in table 14 available in Appendix Section B. 

To verify the run time of the various algorithms, 

another series of synthetic data sets were used. Details on 

the creation data sets are available in Section 4.6. This was 

to ensure that the various experiment runs where 

independent in terms of data used: N devices with 4 

mitigation rules each were created using random 

generators with specific range. Specific parameters are 

available in Table C in the appendix. 

For the purposes of evaluations, results for three 

algorithms, the Non-Dominated Sorting Genetic algorithm 

II (NSGA-II) (Deb et al., 2002), the Multi-objective 

Evolutionary Algorithm Based on Decomposition (Zhang 

and Li, 2007) and the Improved Harmony Search (IHS) 

(Mahdavi et al., 2007) are generated. 

All three are AI algorithms that belong to the family of 

Evolutionary algorithms. Based on the literature review 

available in Section 2, NSGA-II is the SoA for mitigation 

action selection using MO. The three algorithms respond to 

the three major approaches in evolutionary algorithms (Liu 

et al., 2020): Pareto dominance-based (NSGA-II), 

scalarizing function-based (MOEA/D), and indicator-based 

algorithms (IHS). Details on the parameters used to train all 

algorithms are available in Appendix C. 

4.2. Evaluation Results 

To evaluate the effectiveness of the proposed approach, 

several experiments were performed with data-sets of 

different sizes. To summarize, the results show that in most 

cases, the proposed method produces equal or better 

solutions than the SoA methods, with less time required by 

the Pointer Networks in most cases. All models were 

created using the parameters explained in 4.1. 

For each experiment, the modified Weighted Sum method 

procedure described in Section 3.2 is used to choose a 

single best solution. Apart from the KPI results for each 

case, values for the Hypervolume Indicator are presented: 

It is a set measure widely used to measure the diversity of 

the solutions offered by algorithms in Multi-Objective 

problems and their closeness to the Pareto Front (Liu et al., 

2020): An algorithm with a higher Hypervolume Indicator 

𝐻, 𝐻∈ [0,1], produces a more diverse solution set and thus 

offers more choices to the decision-maker. Such a metric is 

needed since MO problems do not have a single solution 

and the notion of a correct solution is not applicable, so 

metrics such as accuracy can not be applied. Hypervolume 

which is also known as the S metric is the most widely 

employed such metric in the literature (Riquelme, 2015). 

4.3. Experiment A: Small Sized Data Set, 10 Devices 

with 40 rules 
In this experiment 10 devices were assumed to be 

under attack: 2 of each type i.e ONOS SDN, Virtual switches 
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using Open vSwitch, IP cameras, Temperature control 

sensors and mini-PCs. As already mentioned in the 

introduction of this section, each experiment was repeated 

100 times. The results of a single experiment can be seen 

in Figure 5. 

The Pointer Network Solution and the NSGA - II solution 

sets both contain the solution with the highest Coverage 

and smallest Deployment Cost combination while the 

highest ROSI SCORE and smallest CVSS score is contained 

in the Pointer Network and the MOEA/D solutions set. The 

evolutionary algorithms tend to produce sets that do not 

provide mitigation actions for all attacks more often than 

the Pointer networks. 

Pointer networks on average, produce solution sets 

with a larger value of Vulnerability Coverage and ROSI 

score, smaller values for the CVSS score and mitigation 

actions for more devices compared to the Evolutionary 

Algorithms as shown in Table 4 . 

Additionally, the Pointer Network results have a larger 

Hypervolume Indicator Value compared to other 

algorithms as seen in Table 5. 

Finally, the modified Weighted Sum method procedure 

is used to choose a single best solution from each 

experiment. The aggregated results are shown in Table 6: 

On average the Pointer network approaches produces 

solutions with a lower Deployment Cost and higher ROSI 

score compares to the other methods, while always 

covering all vulnerabilities. On average the MOEA/D 

method produces solutions with lower CVSS scores, 

however, there is 0.79% percentage difference with the 

average score of the solutions produced by the Pointer 

Networks. 

 

Table 4  
Mean and Standard Deviation for the four KPIs used for optimization, number of mitigation actions for each Algorithm (n = 100 

experiment iterations). The min/max next to each metric indicates the target. 

 Algorithm \ 

Score (𝜇±𝜎) 
Deployment 

Cost (min) 
Vulnerability 

Coverage 
(max) 

CVSS Score 

(min) 
ROSI Score 

(max) 
Mitigation 

Actions (max) 

Experiment A IHS 32.647 ± 
8.168 

91.782 ± 
8.137 

3.481 ± 0.709 383.678 ± 
47.301 

9.178 ± 0.814 

MOEA/D 33.048 ± 
7.602 

85.631 ± 
10.274 

3.447 ± 0.762 368.471 ± 
48.744 

8.563 ± 1.027 

NSGA-II 32.598 ± 
7.656 

91.085 ± 
8.112 

3.522 ± 0.676 378.512 ± 
47.118 

9.108 ± 0.811 

Proposed 
Approach 

(PointerNet) 

42.886 ± 
10.497 

95.256 ± 
12.463 

3.413 ± 0.704 411.197 ± 
52.727 

9.626 ± 1.246 

Experiment B IHS 32.968 ± 
1.659 

93.915 ± 
1.439 

3.389 ± 0.119 10081.534 ± 

170.102 
234.787 ± 

3.598 
MOEA/D 32.854 ± 

1.542 
72.398 ± 

2.462 
3.365 ± 0.137 7796.169 ± 

294.415 
180.996 ± 

6.156 
NSGA-II 33.108 ± 

1.463 
87.613 ± 

1.884 
3.369 ± 0.133 9434.483 ± 

208.497 
219.032 ± 

4.711 
Proposed 
Approach 

(PointerNet) 

40.948 ± 
7.498 

96.217 ± 
11.139 

3.386 ± 0.288 10386.885 ± 

1129.744 
240.541 ± 

27.848 

Experiment C IHS 32.888 ± 
1.154 

93.627 ± 0.81 3.371 ± 0.087 20066.122 ± 

204.61 
468.135 ± 

4.049 
MOEA/D 32.265 ± 

1.171 
71.219 ± 

1.464 
3.32 ± 0.114 15353.518 ± 

329.588 
356.094 ± 

7.32 
NSGA-II 32.679 ± 

1.124 
82.582 ± 

1.472 
3.333 ± 0.1 17781.02 ± 

349.256 
412.909 ± 

7.362 
Proposed 
Approach 

(PointerNet) 

40.748 ± 
7.607 

96.221±10.879 3.347 ± 0.263 20743.963 ± 

2233.278 
481.104 ± 

54.394 

 

Table 5  
Mean and Standard Deviation for the Hypervolume 

Indicator for each Algorithm (n = 100 experiment 

iterations), for experiment 1. 

Algorithm \ Score 

(𝜇±𝜎) 
Hypervolume 

Indicator Value 
IHS 0.3784± 0.196 

MOEA/D 0.309± 0.179 
NSGA-II 0.383± 0.166 

Proposed Approach 

(PointerNet) 
0.565± 0.166 
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Fig. 5: Results of an instance of experiment 1 for a) Coverage 

Score (target is to maximize) vs Deployment Cost (target is to 

minimize) (up) and b) CVSS Score (target is to minimize) vs ROSI 

score (target is to maximize). It should be noted that figures 

include the entire solution set which contains both optimal and 

suboptimal solution if viewed from the prospective of the 

operator. 

4.4. Experiment 2: Medium Sized Data Set, 250 

Devices with 1000 rules 
In this experiment, 250 devices were assumed to be 

under attack, i.e., 50 of each type where used. Figure 

6shows the results of a single experiment: The Pointer 

Network solution set contains the solution with the highest 

Coverage /smallest Deployment Cost combination and the 

solution with the highest ROSI SCORE /smallest CVSS score. 

The Evolutionary Algorithm solutions contain almost no 

variation in terms of the Vulnerability Coverage and the 

CVSS score. Pointer networks on average, produce solution 

sets with a larger value of Vulnerability Coverage and ROSI 

score, and mitigation actions for more devices compared 

to the Evolutionary Algorithms as shown in Table 4, while 

MOEA/D results have the lowest average CVSS score and 

Deployment Cost. 

Additionally, the Pointer Network results have a larger 

Hypervolume Indicator value compared to HIS, NSGA-II and 

MOEA/D algorithms as seen Table 7. 

Finally, the aggregated results of choosing a single 

‘best’ solution via a weighted sum method are shown in  

Table 6  
Mean and Standard Deviation for the four KPIs used for optimization, number of mitigation actions for each Algorithm (n = 100 

experiment iterations), for the final solution chosen in each experiment. 

 Algorithm \ 

Score (𝜇±𝜎) 
Deployment 

Cost (min) 
Vulnerability 

Coverage 
(max) 

CVSS Score 

(min) 
ROSI Score 

(max) 
Mitigation 

Actions (max) 

Experiment A IHS 28.315 ± 
7.974 

95.455 ± 
7.038 

3.457 ± 0.699 403.788± 
41.192 

9.545 ± 0.704 

MOEA/D 30.144 ± 
7.263 

91.919 ± 
8.533 

3.401 ± 0.743 396.465 ± 
38.274 

9.192 ± 0.853 

NSGA-II 30.495 ± 
7.177 

96.364 ± 
5.042 

3.458 ± 0.665 409.354 ± 
29.109 

9.636 ± 0.504 

Proposed 
Approach 

(PointerNet) 

23.949 ± 
2.766 

100 ± 0 3.428 ± 0.659 430 10 

Experiment B IHS 31.314 ± 
1.824 

94.56 ± 1.425 3.385 ± 0.119 10150.2 ± 

168.303 
236.4 ± 3.562 

MOEA/D 32.229 ± 1.45 72.924 ± 
2.362 

3.362 ± 0.14 7854.49 ± 

283.765 
182.31 ± 

5.906 
NSGA-II 32.812 ± 1.42 88.768± 1.814 3.353 ± 0.127 9556.48 ± 

205.139 
221.92 ± 

4.534 
Proposed 
Approach 

(PointerNet) 

26.179 ± 
1.991 

99.932 ± 0.68 3.378± 0.108 10746.77± 
32.3 

249.83± 1.7 

Experiment C IHS 31.716 ± 
1.289 

94.074 ± 
0.971 

3.367 ± 0.08 20167.407 ± 

234.586 
470.37 ± 

4.853 
MOEA/D 31.854 ± 

1.149 
71.415 ± 

1.517 
3.317 ± 0.118 15391.074 ± 

339.151 
357.074 ± 

7.585 
NSGA-II 32.414 ± 

1.195 
83.481 ± 1.48 3.315 ± 0.094 17991.481 ± 

344.583 
417.407 ± 

7.402 
Proposed 
Approach 

(PointerNet) 

25.983 ± 
1.846 

100 ± 0 3.348 ± 0.089 21500 ± 
121.34 

500 ± 0 
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Table 6: Pointer networks on average, produce solution 

sets with a larger value of Vulnerability Coverage, lowest 

Deployment Cost, Highest ROSI score and mitigation 

actions for more devices compared to the Evolutionary 

Algorithms. NSGA-II results have the lowest average CVSS  

score. The percentage difference of the Pointer 

Network solutions compared to the best solutions is 0.74% 

for the CVSS score.   

 

4.5. Experiment 3: Large Size Data Set, 500 Devices 

with 2000 rules 
In this experiment, 500 devices were assumed to be 

under attack, i.e., 100 of each type where used. The results 

are very similar to those presented in section 4.4: Figure 6 

shows the results of a single experiment. The Pointer 

Network solution sets contains the solution with the 

highest coverage /smallest deployment cost combination 

and the solution with the highest ROSI SCORE /smallest 

CVSS score. 

The Evolutionary Algorithm solutions again contain 

almost no variation in terms of the Vulnerability Coverage 

and the CVSS score. Pointer networks on average, produce 

solution sets with a larger value of Vulnerability Coverage 

and ROSI score, and mitigation actions for more devices 

compared to the Evolutionary Algorithms as shown in 

Table 4, while MOEA/D results have the lowest average 

CVSS score and Deployment Cost. 

Additionally, the Pointer Network results have a larger 

Hypervolume Indicator value compared to HIS, NSGA-II and 

MOEA/D algorithms as shown in Table 8. 

Finally, the aggregated results of choosing a single 

‘best’ solution via a weighted sum method are shown in 

table 6: Pointer networks on average, produce solution 

sets with a larger value of Vulnerability Coverage, lowest 

Deployment Cost, Highest ROSI score and mitigation 

actions for more devices compared to the Evolutionary 

Algorithms. NSGA-II solutions have the lowest average 

CVSS score. The percentage difference of the Pointer  

Network solutions compared to the best solutions is 0.99% 

for the CVSS score. 

 
Table 7  
Mean and Standard Deviation for the Hypervolume Indicator 

for each Algorithm (n = 100 experiment iterations), for 

experiment 2. 

Algorithm \ Score (𝜇±𝜎) Hypervolume Indicator Value 

IHS 0.049 ± 0.0358 
MOEA/D 0.02 ± 0.0149 
NSGA-II 0.039 ± 0.028 

Proposed Approach 

(PointerNet) 
0.114 ± 0.045 

 

Fig. 6: Results of an instance of experiment 2 for (a) Coverage Score (target is to maximize) vs Deployment Cost (target is to minimize) (up) 

and b) CVSS Score (target is to minimize) vs ROSI score (target is to maximize).   Results of an instance of experiment 3 for c) Coverage Score 

(target is to maximize) vs Deployment Cost (target is to minimize) and d)  CVSS Score (target is to minimize) vs ROSI score (target is to 

maximize).  It should be noted that figures include the entire solution set which contains both optimal and suboptimal solution if viewed 

from the prospective of the operator. 

(a) 

(b) 

(c) 

(d) 
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4.6. Run-Time comparison results 
In the results presented in sections 4.3,4.4,4.5, the 

datasets contained multiple devices of each type. In this 

section, the results present the run-time of the algorithms 

using data-sets with unique devices and gradually growing 

size of [40,100,500,1000,2000] rules in total, are presented 

to ensure variations in the experiments. All experiments 

were repeated for n = 100 times and the aggregated mean 

runtime is presented. 

All the algorithms presented in the following section 

were implemented using the Python Language. Pointer 

Networks were implemented using the PyTorch 

Framework (Paszke et al., 2019), while the Evolutionary  

Algorithms were implemented using the Pygmo 

Framework (Biscani and Izzo, 2020). All experiments were  

performed using a desktop computer running Windows 10 

OS, with an Intel i5-7600 processor @ 3.5 GHz and 8 GB of 

RAM. 

The results for the run time required for each algorithm 

are shown in figure 8: For smaller data-sets, the Pointer 

Network algorithm requires less time to finish compared to 

all three Evolutionary Algorithms. However, as the data set 

size grows the run-time of the Pointer Network seems to 

approach that of the MOEA/D, which shows better Run 

Times compared to IHS and NSGA-II. Table 9 contains 

comparative results between the Pointer Network results 

and the algorithm with the second-best performance i.e., 

MOEA/D. Apart from the mean run time and the 

accompanying  s.d value the Percentage difference is 

calculated to help quantify the difference (show in Table 

10). Percentage difference is calculated by the following 

formula. 1 2

1 2

| |

0.5*( )

x x

x x

−

+
 .

Fig. 8: Mean Run Time of the Pointer Network and the 

Evolutionary algorithms used for comparison, for experiments 

with different data set sizes. 

5. Conclusions and Further Challenges 
This paper presented an automated AI based method 

that enables the decision of optimal strategies against 

threats and attacks faced by an IoT network. The timely 

application of appropriate mitigation actions against the 

threats faced by IoT networks, based on well-defined KPIs, 

is a crucial part of any such system. This is enabled by a 

beyond State-of the-Art AI mechanism that is based on 

Pointer Deep Neural Networks. 

Two serious challenges were faced during the design 

process of the proposed approach. Initially, to discover an 

appropriate method to model mitigation actions of the 

various devices in a manner appropriate to be used as an 

input to the Pointer Networks. This was overcome by using 

an approach that maps the mitigation actions to the 

vulnerabilities of the devices that are expected to be part 

of the IoT network. The second challenge was to determine 

a set of KPIs that would successfully describe the various 

positive and negative impacts of a set of mitigation actions 

which was overcome by an extensive review of the 

available literature. The resulting methodology can be 

easily used to describe the vulnerabilities of any device. 

Using this methodology, the mitigation mechanism can be 

expanded to describe more mitigation actions and 

additional KPIs. The advantage of this approach is that the 

Deep Learning solution proposed, scales better than other 

existing AI solutions while producing high-quality diverse 

solutions. An additional technical challenge was to 

ascertain a way to properly transform the problem to be 

solved by PointerNets and ensure that a well populated 

Table 8  
Mean and Standard Deviation for the Hypervolume Indicator 

for each Algorithm (n = 100 experiment iterations), for 

experiment 3. 

Algorithm \ Score (𝜇±𝜎) Hypervolume Indicator Value 

IHS 0.065043 ± 0.0342 
MOEA/D 0.029961 ± 0.0145 
NSGA-II 0.047773 ± 0.024911 

Proposed Approach 

(PointerNet) 
0.155188 ± 0.05689 

Table 9 

Comparison of mean and standard deviation of Run Time 

value for the Pointer Network and the algorithm with the 

second-best results (MOEA/D) (𝜇±𝜎) . 

Rules Pointer 
Network mean 

Run Time in 

seconds 

MOEA/D mean 

Run time in 

seconds 

Percentage 

Difference 

40 5.7896 ± 
0.072543 

27.3059 ± 
0.413316 

130% 

100 30.6114 ± 
7.331567 

44.8527± 
0.728498 

37.74% 

500 148.8513 ± 
20.168516 

158.1334 ± 
1.445462 

6.047 

1000 292.7027 ± 
32.185371 

313.7667 ± 
2.847596 

6.94 

2000 592.9054 ± 
50.300889 

622.5335 ± 
3.752541 

4.87 
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Pareto front was produced. This was overcome by 

employing the NCC method to create the final solution set. 

Experimental results validate that the proposed 

scheme is more efficient in terms of time required to run 

and in terms of quality of solutions produced in that time 

compared to three other SoA AI algorithms. The 

experiments were performed using a data set that contains 

real, recently discovered vulnerabilities. The results show a 

consistent behaviour of the proposed scheme in 

experiments with data sets of varying size. In the most 

complex scenario examined in our experiments, the results 

from the Pointer Network are better for KPI concerning the 

apart from the CVSS score where it under-performs the 

difference is small (approx. 1 %). Moreover, it is shown by 

experiments that the Pointer Network approach is at least 

4 % faster compared to the SoA methods used for 

comparison. 

The proposed method is strongly based on the 

normalized normal constrained method which while easy 

to apply is known to suffer for two major drawbacks: First, 

the method is heavily dependent on the choice of the 

Utopia Points and second is that in some cases it can 

produce non-pareto solutions that then require filtering 

which adds latency to the system. In order to overcome 

these limitations, as follow-up work, we aim to test 

additional methods with Pointer Networks for the creation 

of the Pareto front such as Decomposition Methods and 

variations of the NCC. Additionally, we plan to investigate 

the beam search procedure as proposed in other 

applications of Pointer Networks, to try and achieve faster 

convergence rates. Finally, we plan to further test the 

proposed approach by deploying and using it in real 

conditions, verifying that it can handle challenges such as 

large scale IoT networks and systems that require low 

latency even under poor resource utilization cases.  

  

 

 

 

 

Table 10  

Percentage Difference of the mean KPI results produced by 

Pointer Networks compared to the second-best results. 

KPI(target) 
Percentage Difference (%) 

Deployment Cost 

(min) 
-19.8721 

Vulnerability 
Coverage (max) 

6.01 

CVSS (min) 0.99 
ROSI (max) 6.39 
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Appendix  

A. Details on data used and performance 

achieved in the papers presented in the 

literature review concerning on the 

selection of mitigation actions for cyber-

attacks 

Table 11 presents details concerning the data and the 

experimental results of the papers shown in Table 1 

concerning the methods applied for the selection of 

mitigation actions against cyber-attacks. It should be noted 

that in many cases the Authors simply present the 

application of their proposed methods without evaluating 

it against other methods making it hard to extract 

meaningful insights concerning its’ performance.  

B. Details on the vulnerabilities and mitigation 

rules used for the experiment 
Table 12 contains the details of the vulnerabilities and 

relevant mitigation rules used for the experiments 

presented in Section 4. These parameters can be used to 

recreate the datasets used in the experiments presented in 

this paper. 

C. Details on training parameters of the 

Algorithms used for the experiments 
The DNN models were trained for 30 epochs on 100000 

examples produced by solving the SO problem using 

synthetic data. Solutions for the training data were 

produced by a simple Genetic Algorithm: In (Bello et al., 

2017)] 10000 instances were used while the authors of (Gu 

and Hao, 2018), use 1000 instances of training data. The 

number of epochs was decided based on experimentation: 

In all cases, the loss function converges to a stable value 

between 25 to 30 epochs. A simplex lattice design 

(Pescador-Rojas and Coello, 2018) with 50 number of 

points was used to generate the weights required for the 

NNC method. 

The evolutionary models for NSGA-II and MOEA/D 

were implemented using a solution population of 50, 

evolving for 150 epochs based on (Hasan et al., 2018). The 

IHS was implemented using a solution population of 10 and 

10000 generations based on the recommendations of 

(Mahdavi et al., 2007) and (Ouyang et al., 2017). The rest 

of the parameters used in training the Pointer networks 

based in (Gu and Hao, 2018) and the parameters used for 

the evolutionary algorithms are available in table 13. 

 

 

Table 13 Parameters used to train the Pointer Networks, parameters 

used for the Evolutionary Algorithms and parameters used for the 

synthetic data-sets used for the Run Time experiments. 

Case Parameters 

Pointer 

Networks 

Batch Size: 512, Epochs: 30, 

Optimizer: Adam, lr = 0.001, 

Embedding size: 128, hidden layer size: 256,  

LSTM -Layers: 2 

NSGA -II Crossover Probability: 0.95, 

Mutation probability: 0.01, 

Distribution index for mutation: 

10, Distribution index for mutation: 50 

MOEA/D Weight generation: “grid”, Decomposition method: 
“tchebycheff“, Neighbours: 20, 

Crossover parameter in the 

Differential Evolution operator: 1, 

Parameter for the Differential Evolution operator: 
0.5, 

Distribution index used by the polynomial 
mutation: 20, Chance that the neighbourhood is 

considered at each generation: 0.9 

IHS Probability of choosing from memory: 0.85, Pitch 
Adjustment: 

[0.35,0.99], Distance bandwidth: 

[1e-05, 1] 

Run Time 

Data Set 

Device Name: Unique id of length 10,  

Dev ID: Unique ID of length 5, 

Vuln ID: Unique ID of length 10, 

CVSS score: Random float between 2 and 10 with 
max 2 decimal, 
Device Importance : Random choice from the set 
[0.25,0.5,0.75,1],  
Loss : Random choice from the set 
[10,15,20,25,30,35,...100], 
Mitigation Time : Random Float between 1 and 4 
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Table 11 Details concerning the data and the experimental results of the papers shown in the literature review concerning the 

selection of mitigation actions to counter cyber-attacks. 

Paper Dataset Used Results 

Gonzalez-
Granadillo et
 al. 
(2015) 

Synthetic dataset of 11 devices describing a Critical Infrastructure 

Control System (Power Plant) and 6 different user types . 2 Attacks 

with 13countermeasures were examined. 

Proposed method was not compared to other methods. 

Granadillo et
 al. 
(2012) 

Synthetic dataset of 12 devices describing a Mobile Money Transfer 

Service. Two Attacks with 9 countermeasures were examined. 

Proposed method was not compared to other methods. 

Gonzalez -
Granadillo et
 al. 
(2017) 

Synthetic dataset of 9 device types describing a Power supply SCADA 

network is composed of 13,000 energy stations, 6,000 of which are 

controlled by a central system. Three Vulnerabilities indexed by CVE 

number along with three countermeasures were used. 

Proposed method was not compared to other methods. 

Chung 

et al. 

(2013) 

A network of 7 servers and 3 VMS was created.11 Countermeasures 

to ten Vulnerabilities indexed by CVE number were used. 

Three variants of the proposed method were compared: 

Results showed that deploying the solution on the 

network controller was more efficient in terms of 

detection delay and resource use compared to deploying 

it on a proxy or a mirror server. 

Kotenko and 
Doynikova 
(2016) 

A network of 4 servers and 6 workstations was created.4 

Countermeasures to 15 Vulnerabilities indexed by CVE number were 

used. 

Proposed method was not compared to other methods. 

Doynikova 
and Kotenko 
(2018) 

Experiments on networks sized with 10 to 500 web servers and 

firewalls were simulated. 13 Countermeasures were used. 

Proposed method was compared to a strategy where no 

countermeasures were selected, resulting to 80% less 

economical losses. 

Wang 

et al. 

(2013) 

4 device types (VOIP phones, firewalls, servers and workstations) 

with 10 vulnerabilities indexed by CVE number were simulated. 35 

countermeasures were utilized. 

Proposed method was not compared to other methods. 

Zonouz 

et al. 

(2009) 

2 device types (servers, work stations) were simulated and scenarios 

with up to 330k hosts were examined. The number of adversarial 

actions and responses was modified throughout experimentation. 

Proposed method was compared to a static greedy 

response selection method. Results show that the 

proposed method that minimize system damage and 

intrusion response cost. 

Zonouz and 
Haghani 
(2013) 

Smart Grid network with two control planes and 103 Cisco PIX 

firewall rules. Authors do not provide information concerning 

specific attacks, device types or countermeasures. 

Results show that the proposed method can match 

performance of human network security operator after 

training. 

Miehling 

et al. 

(2015) 

Synthetic dataset describing a small network with 4 devices, 12 

vulnerabilities and 4 countermeasures. 

Proposed method was not compared to other methods. 

Poolsappasi 
et al. 
(2012) 

t 6 servers, a firewall and 2 workstations with 14 vulnerabilities indexed 

by CVE number were simulated. 13 countermeasures were utilized. 

Authors propose a SO and a MO version of a Genetic 

Algorithm and show through experimentation that a 

Multi-objective approach requires less tuning and the 

relavant problem is solved faster compared to the Single-

Objective version. 

Dewri 

et al. 

(2012) 

Authors simulate a small network 3 servers, a firewall and 1 

workstation with 8 vulnerabilities indexed by CVE number were 

simulated. 19 countermeasures are demonstrated. 

A Single-Objective Genetic Algorithm (GA) is proposed to 

select optimal countermeasures. Experiments show that a 

Multi-objective approach based on the NSGA-II requires 

less tuning and is more robust under an evolving attack . 

(Garzia 

et al., 

2017) 

A synthetic dataset of 13 device types is used. No specific 

vulnerabilities or attacks are examined 

Proposed method was not compared to other methods. 
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(Roy 

et al., 

2012) 

Authors used a modelling tool called SHARPE to model the attack - 

countermeasure tree of a SCADA system and applied their proposed 

method there. Additionally some experiments where performed on a 

network with 2 attacker hosts, 7 target hosts and a set of 12 

vulnerabilities per host. 

The authors show that a technique called Integer 

programming can compete with a Simple GA in the run-

time required to find the optimal solution Set. 

(Chehida 

et al., 

2020) 

The authors present a list of 11 attacks and 10 countermeasures along 

with their cost and other security related parameters and then try to 

find a optimal policy balanced between cost and risk in a finite time 

duration. 

Proposed method was not compared to other methods. 

Li et al. 

(2018) 

A Synthetic dataset of 12 devices (Servers, Workstations, Routers, 

Firewalls). The devices suffer by 13 different vulnerabilities indexed by 

CVE. No specific countermeasures are examined. 

The authors experimentally show that the countermeasure 

selection is better than a random selection of solutions. 

Rachedi and 
Bensli- 

mane (2016) 

A Synthetic dataset describing a Wireless Sensor Network Data. No 

attack is assumed. The authors try to solve the problem of balancing 

various Security parameters and the Quality of Service (QoS) 

parameters. 

Proposed method was not compared to other methods. 

Lee et al. 

(2017) 

Authors use a synthetic dataset comprised of 500 security 

countermeasures, each with an assigned cost and contribution to 

decrease Risk to the system. No attack is modeled, instead the 

problem of balancing cost vs Risk decrease is examined. 

The proposed method based on the MO NSGAII algorithm 

is shown to outperform a SO GA in terms that it produces 

set of solutions that include and dominate the solution 

produced by the GA. 

Hasan 

et al. 

(2018) 

A Synthetic dataset describing a Energy Delivery system using SDN 

comprised by 6 different component types. No attack is assumed. The 

authors try to solve the problem of balancing multiple security and QoS 

parameters. 

Proposed method was not compared to other methods. 

Enoch 

et al. 

(2019) 

A simulation of a network varying size (10 to 300 hosts) was used, 

comprised by 5 different device types with 12 vulnerabilities indexed 

by CVE number were simulated. 13 countermeasures were utilized. 

Proposed method was not compared to other methods. 

The authors carried a series of experiments that show that 

the nature based algorithm used (NSGA-II) required tuning 

concerning both the number of generations and the 

population size in order to produce a Pareto solution set. 

ShameliSendi 
and 
Dagenais 

(2015) 

A network with 11 servers and approx. 150 users is simulated. The 

Network is under 4 different attacks linked to CVE ids that can be 

countered by 30 measures. 

Proposed method was not compared to other methods. 

ShameliSendi 
et al. 

(2018) 

Demonstration on a network comprised of 9 cloud servers of 3 

different types connected by Openstack. Servers suffer by 15 different 

vulnerabilities indexed by CVE ids that are countered by 59 security 

measures. 

The authors examine three methods to select a single 

solution for a MO solution set: Simple Additive Weighting, 

Weighted Product method and the TOPSIS method and 

show that the first method outperforms the rest. 

Viduto 

et al. 

(2012) 

Authors model a non-specific network that suffers by 10 different 

vulnerabilities indexed by CVE ids that can be exploited by 5 different 

attacks and countered by 24 security measures. The authors try to 

balance two objectives: Risk and Cost. 

Experiments show that using a Tabu Search Algorithm can 

obtain 50% of the Pareto front solution in a fraction of the 

time required to perform an exhaustive search, however it 

fails to find the entire Pareto front even after a large 

number of iterations. 
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Table 12 Mitigation Actions and relevant information required to calculate the KPIs shown in the experimental results 

Device 

Name 

Device 

Import. 

Loss CVSS ID Description CVSS Mitigation 

Action 

Mit. Re- 

sources 

Mit. 

Time 

Dep. 

Cost 

Open 

VSwitch 

50 40 CVE 

2017 

9265 

Buffer over-read issue that can 

enable an attacker to cause a 

denial of service attack (DOS). 

7.5 Honeypot 2 0.25 25 

Block 1 0.2 10 

Blacklist 1.5 0.2 15 

Block Port 1.8 0.2 18 

CVE 

2018 

17205 

This allows a flow update action 

causing an assertion failure, that 

leads to incorrect flows or DOS. 

5 Honeypot 2 0.25 25 

Block 1 0.2 10 

Blacklist 1.5 0.2 15 

Block Port 1.8 0.2 18 

IP cam 25 20 CVE 

2018 

19080 

This allows the attacker to 

inject scripts through a Cross 

Site Scripting attack. 

4.3 Honeypot 2 0.25 12.5 

Block 1 0.2 5 

Blacklist 1.5 0.2 7.5 

Block Port 1.8 0.2 9 

CVE 

2018 

19081 

This allows the attacker to 

gain total control of the camera 

including execution of OS 

commands. 

10 Honeypot 2 0.25 12.5 

Block 1 0.2 5 

Blacklist 1.5 0.2 7.5 

Block Port 1.8 0.2 9 

CVE 

2018 

19082 

This allows the attacker to 

conduct stack-based buffer 

overflow attacks via the 

IPv4Address field. 

7.5 Honeypot 2 0.25 12.5 

Block 1 0.2 5 

Blacklist 1.5 0.2 7.5 

Block Port 1.8 0.2 9 

ONOS 75 40 CVE 

2018 

1000615 

This allows the remote 

crashing of services offered, via 

a normal or forged switch 

connected in the network. 

5 Honeypot 2 0.25 37.5 

Block 1 0.2 15 

Blacklist 1.5 0.2 22.5 

Block Port 1.8 0.2 27 

CVE 

2018 

12691 

This allows attackers to bypass 

network access control via data 

plane packet injection. 

4.3 Honeypot 2 0.25 37.5 

Block 1 0.2 15 

Blacklist 1.5 0.2 22.5 

Block Port 1.8 0.2 27 

Windows PC 100 60 CVE 

2019 

1368 

Erroneous Windows 

security configurations related to 

debugging can lead to security 

feature bypass. 

2.1 Honeypot 2 0.25 50 

Block 1 0.2 20 

Blacklist 1.5 0.2 30 

Block Port 1.8 0.2 36 

CVE 

2019 

1359 

Vulnerability caused by 

improper handling of objects in 

memory allowing remote code 

execution. 

9.3 Honeypot 2 0.25 50 

Block 1 0.2 20 

Blacklist 1.5 0.2 30 

Block Port 1.8 0.2 36 

Temp. 

Controller 

25 60 CVE 

2017 

14020 

This allows arbitrary code 

execution by not sanitizing user 

input, which is exploited to 

execute malicious code. 

9.3 Honeypot 2 0.25 12.5 

Block 1 0.2 5 

Blacklist 1.5 0.2 7.5 

Block Port 1.8 0.2 9 
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