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Abstract

Cloud computing has rapidly emerged as model for delivering Internet-based
utility computing services. In cloud computing, Infrastructure as a Ser-
vice (IaaS) is one of the most important and rapidly growing fields. Cloud
providers provide users/machines resources such as virtual machines, raw
(block) storage, firewalls, load balancers, and network devices in this service
model. One of the most important aspects of cloud computing for IaaS is re-
source management. Scalability, quality of service, optimum utility, reduced
overheads, increased throughput, reduced latency, specialised environment,
cost effectiveness, and a streamlined interface are some of the advantages of
resource management for IaaS in cloud computing. Traditionally, resource
management has been done through static policies, which impose certain
limitations in various dynamic scenarios, prompting cloud service providers
to adopt data-driven, machine-learning-based approaches. Machine learning
is being used to handle a variety of resource management tasks, including
workload estimation, task scheduling, VM consolidation, resource optimiza-
tion, and energy optimization, among others. This paper provides a detailed
review of challenges in ML-based resource management in current research,
as well as current approaches to resolve these challenges, as well as their
advantages and limitations. Finally, we propose potential future research
directions based on identified challenges and limitations in current research.
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Figure 1: Components of Cloud computing Paradigm using Machine Learning

1. Introduction

Cloud computing has created an environment in which consumers use
software and IT infrastructure, paving the way toward the emergence of
computing as a fifth utility [1]. Resource management in data centres re-
mains a nontrivial issue in cloud computing, and it is directly dependent on
the application workload. Applications were connected to specific physical
servers in conventional cloud computing environments such as data centres,
so these servers were often overprovisioned to handle issues related to max-
imum workload [2]. As a result of the wasted resources and floor space,
the data centre was expensive to operate in terms of resource management.
Virtualization technology, on the other hand, has proven that it can make
data centres easier to handle. This technology offers a variety of benefits,
including server consolidation and higher server utilisation. Large IT giants
like Google, Microsoft, and Amazon have massive data centres with compli-
cated resource management. Servers, virtual machines (VMs), and various
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management roles are all part of the resource management of these massive
data centres, according to [3]. A server host is allocated multiple VMs with
varying workload types and amounts in these data centres. This variable
and unpredictable workload may result in a server being over-utilized and
underutilised, resulting in an imbalance in resource utilisation assigned to
VMs on a specific hosting server. This could lead to issues including in-
consistent quality of service (QoS), unbalanced energy use, and service level
agreements (SLA) violations, according to [4]. According to a survey on
unbalanced workload, the average CPU and memory utilisation was 17.76%
and 77.93%, respectively, and a similar study in the Google data centre found
that the CPU and memory utilisation of a Google cluster could not exceed
60% and 50%, respectively [5]. As a consequence of the imbalanced workload,
a data center’s productivity suffers, resulting in increased energy consump-
tion. It is proportional to the data center’s operational costs and financial
loss. This excessive energy consumption has a direct impact on carbon foot-
prints, which should be reduced because an ideal machine absorbs more than
half of the maximum energy consumption [6]. According to an EIA (Energy
Information Administration) survey, data centres consumed around 35 Twh
(Tera Watt hour) of energy in 2015, and this figure is expected to rise to 95
Twh by 2040.

The resource use can be balanced by reducing the number of active
servers; thus, the optimal mapping between VMs and servers must be dis-
covered [7]. This is a challenging and NP-complete problem class. As a
result, an intelligent resource management strategy is needed to meet QoS
requirements while also increasing data centre benefit [8]. The intelligent
mechanisms will generate future insights, which can aid applications in map-
ping to machines with better resource utilisation [9]. However, the nonlinear
and variable behaviour of workloads for VMs creates a significant challenge
when estimating future insights. However, this future insight can be ob-
tained using two different approaches: historical workload based prediction
methods, which generate insight by learning trends from historical workload
data, and homeostatic based prediction methods, which provide an upcom-
ing future workload insight by subtracting the previous workload from the
current workload [10]. Furthermore, the previous workload’s mean may be
static or dynamic. Both methods have advantages and disadvantages, but
historical-based forecasts are considered simpler and are well-known in this
field.

Thus, by conducting effective and intelligent resource provisioning, intel-
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ligent resource management will play a critical role in optimising the data
center’s SLA, energy usage, and operating costs. Resource management in
data centres encompasses a variety of activities, including resource provi-
sioning, reporting, workload scheduling, and a variety of other functions
[11]. Many of these activities revolve around resource provisioning. The
aim of resource provisioning is to assign cloud resources to VMs based on
end-user requests while maintaining a minimum of SLA violations, such as
availability, reliability, response time limit, and cost limit [12]. It should
assign resources in accordance with end-user demands and prevent over or
under provisioning, such as allocating more or less resources to VMs. This
resource allocation technique can be carried out in two ways: proactive and
reactive. In proactive approaches, resource provisioning is focused on work-
load prior prediction, which is estimated by learning trends from historical
workload, while reactive approaches are carried out after resource demand
arrives. As a result, it’s inferred that historical-based prediction methods’
expertise can be effectively incorporated in proactive approaches to provide
intelligent dynamic resource scaling, which contributes to intelligent dynamic
resource management. In addition, other functions, such as VM consolida-
tion, task scheduling, and thermal management, can be performed based on
forecasts to optimise resource utilisation, energy consumption, and increase
QoS. Machine learning (ML) techniques are widely used in a variety of fields,
including computer vision, pattern recognition, and bioinformatics. Large-
scale computing systems have benefited from the advancement of machine
learning algorithms [13]. Google recently released a report detailing their
efforts to optimise electricity, reduce costs, and improve efficiency [14]. ML
has drawn attention to dynamic resource scaling by providing data-driven
methods for future insights, which is regarded as a promising approach for
predicting workload quickly and accurately.

As a result, this article focuses on the review based on challenges dis-
covered in state-of-the-art research in resource management by using ML al-
gorithms including various resource management tasks such as provisioning,
VM consolidation, thermal prediction, and other management approaches.
Then we’ll talk about identified the advantages and limitations of various
state-of-the-art research studies in resource management that use machine
learning algorithms. We will also discuss about the experimental settings
along with used data sets and performance improvements. Finally, we pro-
pose future research directions based on identified challenges and limitations
in current research. Fig 2 depicts the cloud computing components while
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using machine learning.

1.1. Motivation of Research

In cloud operations, resource management is a difficult task because
multi-tenant end-users demand nonlinear workloads, which can lead to many
over- and underutilised servers. It has a direct effect on whether electricity
is over- or under-utilized, resulting in a high operating cost. As a result, in-
telligent resource management can benefit from a prior estimate of workload
based on historical data. Static policies are often used in cloud computing
systems to manage resources, and they have two flows: they are based on
a static threshold value that is adjusted in offline mode, and they appear
to require reactive behaviour, which may result in excessive overheads and
delay customer responses.These strategies fail in a dynamic context, for ex-
ample, when load reaches the static threshold and rapidly drops, indicating
that VM migration is unnecessary in the case of VM consolidation. Further-
more, they are unable to capture the dynamics of technology and workload in
complex dynamic environments (such as Cloud and Edge) and therefore fail
to move through [11]. To address these disadvantages, machine learning has
supplanted static heuristics with dynamic heuristics that adapt to the real
production workload. [15, 16]. Predictive management is made possible by
machine learning techniques, which provide future insight based on historical
data. As a result, A data-driven Machine Learning (ML) model in an ML-
centric RMS can forecast future workload demand and control auto-scaling
of resources accordingly. Such strategies are extremely beneficial for both
consumers and service providers who want to improve their QoS and keep
their competitive edge in the market. For cloud resource management, ML
has been shown to make more reliable predictions than more conventional
approaches, such as time-series analysis [17, 18]

Several ML algorithms have been developed to predict prior workload for
intelligent resource management. Furthermore, a number of IT behemoths
have begun to investigate machine learning-based resource management in
production [19, 20]. Google optimises fan speeds and other energy kobs using
a neural network [20]. Microsoft Azure makes use of a framework resource
central to provide online forecasts of different workloads using various ML
Gradient Boosting Trees [3]. Despite these previous attempts and oppor-
tunities, the best way to incorporate machine learning into cloud resource
management is currently uncertain. As a result, it has become critical to
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present research that addresses current challenges and suggests potential fu-
ture research directions while also highlighting the benefits and limitations
of current research.

1.2. Our Contributions

The following are the main contributions of our work:

• We present a review of ML-based resource management approaches
in cloud computing based on identified challenges in the state-of-art
research.

• We identify the advantages and drawbacks of these methods, as well
as their experimental configuration, data sets used, and performance
improvements.

• We propose potential future research directions based on identified chal-
lenges and limitations in the state-of-art research to strengthen the
resource management

1.3. Related Surveys

A few studies have been published on machine learning-based resource
management in cloud computing. [21] provided a detailed survey of the
most important research activities on data centre resource management with
the aim of improving resource usage. After that, the article summarises
two major components of the resource management platform and addresses
the benefits of predicting workload accurately in resource management. [22]
focused on resource provisioning, resource allocation, resource mapping, and
resource adaptation, among other essential resource management techniques.
[23] surveyed the state of the algorithms, organised them into categories, and
addressed closely related topics such as virtual machine migration, forecast
methods, stability, and availability.

These articles do not go into great detail about machine learning-based
resource management, nor do they go into great detail about the challenges
and issues that exist in the existing state-of-the-art and future research di-
rections. As a result, it is now important to present a thorough survey that
addresses various machine learning algorithms used in the resource manage-
ment scenario for a data centre, as well as their shortcomings, challenges,
and potential directions, as per our vision. Hence, this article can help re-
searchers evaluate the current machine learning scenarios in cloud resource
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management and their shortcomings before moving forward with their new
ideas in this direction.

1.4. Article Structure

The remaining sections of the paper are organised as follows: The back-
ground details and definitions for cloud computing components and machine
learning are given in Section 2. Section 3 discusses the challenges of machine
learning-based resource management in cloud computing systems, as well as
the benefits and drawbacks of current research. Section 4 proposes future
research directions based on the challenges and limitations pointed out in
state-of-the-art research, and Section 5 concludes the paper.

2. BACKGROUND AND TERMINOLOGIES

2.1. Cloud Computing

Cloud computing refers to the provisioning of resources over the Internet,
such as memory, CPU, bandwidth, disc, and applications/services. The Na-
tional Institute of Standards and Technology (NIST) [24] states that “Cloud
computing is a model for providing on-demand network access to a common
pool of configurable computing resources (e.g., networks, servers, storage,
software, and services) that can be quickly provisioned and released with
minimal management effort or service provider involvement. There are five
core features, three service models, and four deployment options in this cloud
model”. Based on the literature, two more characteristics have been included.

This computing model uses a client-server architecture to allow for cen-
tralised application deployment and computation offloading. Cloud com-
puting is cost-effective in application delivery and maintenance on both the
client and server sides, as well as flexible in resource provisioning and detach-
ing services from related technologies. Cloud computing and its supporting
technology have been investigated for years, and many advanced computing
systems have been released to the market, including Alibaba Cloud, Microsoft
Azure, Adobe Creative Cloud, ServerSpace, Amazon Web Services (AWS),
and Oracle Cloud.

2.2. Core features of cloud computing

• On-demand self-service: A client can query one or more services as
needed and pay using a ”pay-and-go” system without interacting with
living beings via an online control center.
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• Broad network access: Resources and services in different cloud provider
areas can be accessed from a number of locations and provisioned by
incompatible thin and thick clients using standard mechanisms. This
trait is often referred to as “easy-to-access standardised mechanisms”
and “global reach capability” [25, 26].

• Resource pooling: It offers a set of resources that act as if they were
one blended resource [27]. In other words, the client is not aware of
the location of the provided services and is not expected to be. This
strategy enables vendors to dynamically include a variety of real or
virtual services in the cloud.

• Rapid elasticity: Elasticity is just another word for scalability; it refers
to the ability to scale resources up or down as required. Clients can
demand as many services and resources as they want at any time. Ama-
zon, a well-known cloud service provider, named one of its most popular
and commonly used services the Elastic Compute Cloud because of this
consistency [28].

• Measured service: Various facets of the cloud should be automatically
controlled, monitored, optimised, and documented at several abstract
levels for both vendors and customers.

• Multi-Tenacity: The Cloud Security Alliance proposes this idea as the
fifth cloud characteristic. Multi-tenacity implies that models for policy-
driven compliance, segmentation, separation, governance, service lev-
els, and chargeback/billing for various customer categories are needed
[29].

• Auditability and certifiability: It is important that services plan logs
and trails in order to assess the degree to which laws and policies are
followed [25].

2.3. Cloud computing service models

• Software as a Service (SaaS) [30]:Using this service model, a client
can access the service provider Cloud-hosted applications. Web portals
are used to access applications. Since providers have access to the
applications, this model has made production and testing easier for
them.
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• Platform as a Service (PaaS) [31]: In this service model, the service
provider provides basic requirements including network, servers, and
operating system to enable the client to build acquired applications
and manage their configuration settings.

• Infrastructure as a Service (IaaS) [32]: The user has created all of
the necessary applications and only requires a simple infrastructure.
Vendors may include processors, networks, and storage as facilities with
customer provisions in such cases.

2.4. Deployment models for cloud computing

• Public cloud [33]: This is the most popular cloud computing model,
in which the cloud owner, in the majority of cases, provides public
services over the Internet based on predetermined rules, regulations,
and a business model. With a significant number of commonly used
resource base, providers can provide consumers with a range of choices
for choosing appropriate resources while maintaining QoS.

• Private cloud [34]: A private cloud is created and configured to provide
a company or institute with the majority of the advantages of a public
cloud. Setting up such a system would result in less security problems
due to the use of corporate firewalls.The high costs of establishing a
private cloud are a fatal flaw because the business that manages it is
accountable for all facets of the scheme.

• Community cloud [35]: A variety of organisations form a group and
share cloud computing with their community members’ customers based
on common criteria, concerns, and policies. The required cloud com-
puting infrastructure can be provided by a third-party service provider
or a group of community members. The most important benefits of a
community cloud are cost savings and cost sharing among community
members, as well as high protection.

• Hybrid cloud [36]: Combining two or more independent public, private,
or community clouds resulted in the creation of a new cloud model
known as hybrid cloud, in which constituent services and infrastruc-
ture maintain their special features while also requiring standardised
or agreed-upon functionalities to enable them to communicate in terms
of application and data interoperability and portability.
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2.5. Machine Learning

The study of training machines to make predictions or recognise items
without being explicitly programmed to do so is known as machine learning
[37]. One of its basic assumptions is that using training data and statistical
techniques, it is possible to construct algorithms that can predict potential,
previously unseen values. Machine learning has come a long way in the last
two decades, from a research project to a widely used commercial technology.
Machine learning has emerged as the preferred tool for designing functional
apps for computer vision [38], speech recognition [39], natural language pro-
cessing [40], robot control [41], self-driving cars [42], effective web search
[43], purchase recommendations [44] and other applications in the field of
artificial intelligence (AI). Many AI system developers now understand that,
for many applications, training a system by showing it examples of desired
input-output actions is much simpler than programming it manually by pre-
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dicting the desired answer for all possible inputs. This success is primarily
owing to the accessibility of massive data and increased efficiency in the pro-
cessing power of servers and GPUs [45]. Based on the modelling objective
and the problem at hand, machine-learning algorithms are categorised as
supervised learning, semisupervised learning (SSL), unsupervised learning,
and Reinforcement Learning (RL). Unsupervised learning is categorised as
clustering and dimension reduction [46, 47, 48], among other things, while
supervised learning is categorised as the classification problem (e.g., sentence
classification [49, 50], image classification [51, 52, 53], etc.) and regression
problem.

• Supervised Learning [54]: Every data sample in supervised learning is
made up of several input features and a name. The learning process is
designed to get as close as possible to a mapping function that links the
features to the label. Following that, the mapping function can be used
to make predictions of the label for the data given new input features.
This is the most widely used machine learning scheme, and it’s been
used for a lot of things. The classification task, which involves classify-
ing an object based on its characteristics, such as classifying mobile by
its brand name and specifications, is an example of supervised learning.
This is a regression task if the supervised learning task is to forecast
a continuous variable like stock pricing. As shown in Fig. 1b, we can
further categorise supervised learning based on the model form.

• Unsupervised Learning [55]: Unsupervised learning, in comparison to
supervised learning, is when we only have input features but no names
to go with them. As a result, the purpose of unsupervised learning is to
learn the data distribution and demonstrate how the data points vary
from one another. The clustering problem, which is to discover data
groupings, such as grouping VMs based on their resource use patterns,
is a good example of unsupervised learning.

• Semi-supervised learning [56]: It is a branch of machine learning that
attempts to integrate these two activities. SSL algorithms usually try
to increase efficiency in one of these two tasks by incorporating knowl-
edge from the other. When dealing with a classification problem, for
example, additional data points with unknown labels may be used to
help in the classification process. On the other hand, knowing that
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some data points belong to the same class will help with the learning
process for clustering methods.

• Reinforcement Learning [57]: In several ways, RL varies from super-
vised and unsupervised learning. It is not necessary to use labelled
input/output pairs or explicit correction on sub-optimal options when
using reinforcement learning to train an agent. Instead, the agent at-
tempts to find an equilibrium between exploration and exploitation by
interacting with the environment. The translator rewards the agent for
successful decisions or behaviour. Otherwise, it would be sanctioned.
Reinforcement learning is commonly used in robot and computer game
agent science.

2.6. Optimization objective in machine learning

All machine-learning algorithms are optimization problems with the goal
of evaluating the extremum of an objective function. The development of
models and logical objective functions is the first step in machine-learning
methods. The determined objective function is normally used with appro-
priate numerical optimization methods to solve the optimization problem.

2.6.1. Optimization in Supervised Learning

The aim of supervised learning is to find an optimal mapping function
F (X) that minimises the training samples’ loss function.

F (X) = min
β

1

N

N∑
i=1

l(Y i, F (X i, β)) (1)

where N are training samples, β is the mapping function parameter, X i is
ith samples’ feature vector, Y i is the related label to the data sample, and l
is the loss function.

In supervised learning, there are a variety of loss functions, including
the square of Euclidean distance, cross-entropy, contrast loss, hinge loss,
information gain, and so on. The best way to solve regression problems is
to use the square of Euclidean distance as the loss function, reducing square
errors on training samples. However, this type of empirical failure does not
always work well in terms of generalisation. Structured risk minimization is
another popular form, with the support vector machine as the representative
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system. Regularization items are typically applied to the objective function
to prevent overfitting, such as in the l2-norm case.

min
β

1

N

N∑
i=1

l(Y i, F (X i, β)) + γ||β||22 (2)

The compromise parameter, γ, can be calculated using cross-validation.

2.6.2. Optimization in Unsupervised Learning

Clustering algorithms [46, 58, 59, 60], divide data into several classes
that are either identical or dissimilar. The k-means clustering algorithm’s
optimization problem is formulated as minimising the following loss function:

min
D

K∑
i=1

∑
X∈Di

||X − Ci||22 (3)

where K denotes the number of clusters, X the sample feature vector, Ci the
cluster i center, and Di the cluster i sample set. The aim of this objective
function is to minimise the sum of all cluster variances.

The dimensionality reduction algorithm ensures that the original infor-
mation from data is retained as much as possible after projecting it into
low-dimensional space. A common dimensionality reduction method is prin-
cipal component analysis (PCA) [61, 62, 63]. The goal of PCA is to minimise
the reconstruction error as much as possible.

min
N∑
i=1

||X̃i −Xi||22, where X̃i =
M ′∑
j=1

yij.fj, M >> M ′ (4)

where N are total samples, Xi is a M-dimensional vector, and Xi is the
reconstruction of Xi. y

i is the projection of xi in M ′-dimensional coordinates.
fj is the standard orthogonal basis under M ′ -dimensional coordinates.

2.6.3. Optimization in Reinforcement Learning

In contrast to supervised and unsupervised learning, RL [64, 65, 66] aims
to find an optimal strategy function whose performance differs with the en-
vironment. The learning goal for a deterministic strategy is the mapping
function from state S to action A. The learning goal for an unknown strat-
egy is the likelihood of performing each action. A = π(S), where π(S) is
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the policy function, determines the behaviour in each state. In RL, the op-
timization problem can be stated as maximising the cumulative return after
performing a series of actions determined by the policy function.

max
π

Pπ(S), where Pπ(S) = Q

[
∞∑
i=0

δiut+i|S ′t = S

]
(5)

where, u is the reward, and δ ∈ [0, 1] is the discount factor and π(S) is the
value feature of state S under policy π.

2.6.4. Optimization in Semisupervised Learning

SSL is a supervised-unsupervised learning approach that includes both la-
belled and unlabeled data during the training phase. It can handle a variety
of tasks, such as classification [67, 68], regression [69], clustering [70, 71], and
dimensionality reduction [72, 73]. Self-training, generative models, semisu-
pervised support vector machines (S3VM) [74, 75], graph-based methods,
multilearning methods, and others are examples of SSL methods. To demon-
strate SSL optimization, we use S3VM as an example.

min ||Γ||R

[
l∑

i=1

ηi +
∑
j=l+1

N min(∆i, zi)

]
subject to Y i(W.X i + b) + ηi ≥ 1, η ≥ 0, i = 1, ...l

WXj + b+ ∆j ≥ 1,∆ ≥ 0, j = l + 1, ..., N

−(W.Xj + b) + zj ≥ 1, zj ≥ 0

(6)

where C is the penalty coefficient, X and Y are the data sample and its
label, and ηi is the slack variables. If the true label of the unlabeled instance
is positive, ∆i represents the misclassification error, and zj represents the
misclassification error if the true label is negative.

3. Challenges, state-of-art research and their limitations

In this section, we discuss challenges identified in ML-based resource man-
agement in state-of-art research. In addition, we explore current approaches
to addressing these challenges, as well as their advantages and limitations.
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3.1. Performance and online profiling of workload

The main components of large commercial providers’ workloads are not
well addressed in cloud resource management research. For example, they
don’t look into VMs’ lifetime virtual resource consumption. The majority
of research focuses on offline workload profiling, which is infeasible because
the input workload may not be available until the VMs are not running in
production. Online profiling, on the other hand, is challenging because it
is difficult to determine when a random VM has exhibited representative
behaviour. If the different workload characteristics are accurately predicted
with minimal time complexity, resource management can be more effective.
As a result, prediction algorithms face another challenge in terms of accuracy
and time complexity.

On Microsoft Azure compute fabric, [3] presented a machine learning-
based prediction system. Through a rest API, this system is capable of
learning behaviour from historical data and providing predictions online to
various resource managers, such as Server health manager, migration man-
ager, Container scheduler, and energy capping manager. They also released
detailed Microsoft Azure real-world workload traces from this system, which
show that several VMs consistently have peak CPU utilisation in various
ranges. In the event of oversubscribed servers, they changed Azure’s VM
scheduler to use RC benefit predictions. This forecast-based schedule helps
to avoid overuse and exhaustion of physical resources. However, (1) they did
not consider memory utilisation in released traces or in the predictive sys-
tem RC, despite the fact that memory utilisation plays a significant role in
physical resource exhaustion. (2) They analysed CPU utilisation time series
to determine whether a VM is interactive or delay-insensitive, categorised
the workload into these two categories, and used Extreme Gradient Boosting
Tree (EGBT) to perform supervised classification of these VM workloads.
They did not, however, consider the case of a distributed data centre, where
data is dispersed and may only have partial labels for these two classes; in
this case, there will be insufficient labels to train this algorithm.
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Table 1: A summary of machine learning types, along with their optimization objectives,
advantages, and disadvantages

Type
of
ML

Optimisation Function Advantage Disadvantage

SL minβ
1
N

∑N
i=1 l(Y

i, F (X i, β)) It assists in
using experience

to refine
performance

criteria, It aids
in the solution
of a variety of

real-world
computation

problems

Good and
numerous

examples are
needed during

training, It
takes a lot of

computing time
to train for
supervised
learning

UL minD
∑K

i=1

∑
X∈Di

||X − Ci||22 It does not
require any

labeling of data
for

classification, It
is a simple way
to reduce the

number of
dimensions in a

dataset

Since we don’t
have any input
data to train

from, the
outcome could

be less accurate,
The complexity

rises as the
number of

features grows
RL maxπ Pπ(S) It doesn’t

necessitate a
large number of

labelled
datasets, This

model of
learning is
remarkably
similar to

human learning

An excess of
states will result
from too much
reinforcement

learning,
lowering the

quality of the
results, It’s not

recommended to
use it to solve
basic problems

SSL min ||Γ||R
[∑l

i=1 η
i +

∑
j=l+1N min(∆i, zi)

]
Provides little
supervision to

unlabeled data,
It increases
efficiency in

terms of
accuracy

The outcomes of
iteration are not

consistent, It
does not apply
to data at the
network level
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Table 2: A summary of state-of-art ML-centric resource management approaches

Study Year Author Organisation
[3] 2017 Bianchini et al. Microsoft
[76] 2020 Haghshenas et al. University of Tehran
[77] 2019 Shaw et al. National University of

Ireland
[78] 2021 Ilager et al. University of Melbourne
[79] 2017 Heiu et al. Aalto University
[80] 2014 Yang et al. Beihang University
[81] 2014 Garg et al. University of Tasmania
[82] 2014 Calheiros et al. University of Melbourne
[83] 2016 Verma et al. University of Hyderabad
[84] 2015 Subirats et al. Barcelona

Supercomputing Centre
[85] 2016 Messias et al. University of Sao Paolo
[86] 2014 Cao et al. Shanghai Jiaotong

University
[87] 2016 Shyam et al. Reva Institute of

Technology and
Management

[88] 2015 Ismaeel et al. Ryerson University
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3.2. Multiple Resource Usage in VM Consolidation

VM consolidation approaches attempt to consolidate more VMs on a
smaller number of hosts in order to turn off the remaining hosts and save
energy. Most researchers used current CPU utilisation to determine whether
a host was overloaded or not in this process. This may result in unnecessary
VM migration and host power mode transition, lowering the consolidation
process’ efficiency. The destination host for migrating VMs is the host with
the highest CPU utilisation, but due to the lack of future estimation, this may
result in overutilisation. As a result, future resource utilisation estimation
can address this issue. Aside from CPU utilisation, other resource consump-
tion, such as memory and disc, can cause the host to become overloaded,
making the consolidation process difficult and challenging.

[76] proposed an intelligent VM consolidation technique to reduce energy
consumption. Based on historical data, this technique predicted resource
utilisation in the past and used that prediction to choose a host with higher
utilisation in advance for VM migration. A dynamic consolidation procedure
was used to address this issue. To predict the future usage of all VMs, a
machine learning method called Linear Regression (LR) was used. This task
was carried out using real workload traces from PlanetLab VMs. They used
the CloudSim toolkit [89] to model a data centre and implement their VM
migration strategy to save energy. Their work had the main benefit of taking
into account time overheads while lowering energy consumption on a larger
simulated benchmark with 7600 hosts. However, if this approach is used
in real-world workload production, the time overhead is a significant factor
that is also affected by the ML algorithm’s data training time. However,
they considered the LR method, which relies on various features to predict
the target variable, making it time consuming and potentially affecting the
data center’s response time.

3.3. Cloud Network Traffic

The current research in VM allocation involves many solutions to allocate
a single VM to a host and allocates various VM resources by ensuring that
every host is having sufficient capacity to run the workload. This approach
leads to inefficient resource utilisation as the application workload varies time
to time with a mix of high and low resource utilisation. The challenges arise
when different applications exhibit different resource demands and are allo-
cated to suitable VMs in data centers that cause varying resource demand
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patterns. Moreover, many VM placement solutions consider only current re-
source utilisation like CPU demands, however, varying workload continuously
poses a challenge to such solutions. Future resources like CPU demand can
be more effective for VM placement strategies. In addition to CPU resource
demand, cloud network bandwidth is also becoming another challenging fac-
tor in efficient resource management in data centers [90][91]. As [92] reported
that there will be 51,774GB/sec amount of internet traffic would be produced
because of computing as a service via cloud computing and this would affect
cloud network as well. And this key factor affects the VM migration time in
case of dynamic VM placement and violates SLAs [93].

[77] proposed a network-aware predictive VM placement heuristic to re-
duce energy consumption and SLA violations by considering CPU demand
along with the network bandwidth. The main advantage of their work was to
design a dynamic VM placement strategy which was based on the prediction
of both CPU utilisation and network bandwidth because estimating network
bandwidth in case of large VM migration contributes in making decisions
with improved scheduling and makes VM placement efficient and reliable.
Thus, VM placement strategies should consider future insights of resources
to balance limited resource availability and for energy efficient management.
However, they did not not consider another aspect, disc throughput, that
may also affect VM migration time [94].

3.4. Host Temperature

In modern cloud data centers, minimizing host temperature is a chal-
lenging issue. This is caused by the released heat in the process of energy
consumption by the host. The cooling systems are deployed to rid of this
dissipated heat to keep the host’s temperature below the threshold. This
increased temperature directly affects the cost of the cooling system and has
become a challenging issue to resolve in resource management systems. It
also creates host spots in the system and is responsible for several system
failures. Thus, thermal management is necessary and challenging due to this
dynamic behaviour of the host’s temperature.

[78] proposed a thermal aware predictive scheduling approach to reduce
the peak temperature of a host and energy consumption. Since mostly data
centers and servers are having monitoring sensors to record several param-
eters such as resource usage, energy consumption, thermal reading, and fan
speed readings, hence this kind of data was collected from University of
Melbourne’s private cloud data center. They predicted host temperature
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by using several machine learning algorithms and proposed a thermal aware
scheduling algorithm to minimize the peak temperature of hosts while mi-
grating VMs to the fewest hosts to reduce energy consumption as well. In
this approach, the prediction model is invoked to predict the host tempera-
ture and further scheduling is guided. The main advantage of their work is
that they reduce the peak temperature up to 6.5◦ and 34% energy consump-
tion in comparison to existing algorithms, and it was reported by [20] that
reducing even one degree in temperature can save up to millions of dollars
in a large-scale data center. They consider the host’s ambient temperature
for prediction instead of CPU temperature that combines inlet temperature
and CPU temperature, however, it may increase the algorithm overhead.

3.5. False Host Overloaded Detection

The current resource utilisation prediction causes unreliable overloaded
host detection, especially in the case of when a current resource utilisation
exceeds a threshold value. The challenge arises in deciding whether VMs
allocated to this host should be migrated or not because the load decreases
rapidly after a very short period of time that leads to a false hot detection
point, i.e., false overloaded host detection. However, when the duration of
load degradation is large enough, then VMs needs to be migrated to avoid
over utilisation. Such kind of VM consolidation mechanism poses a unique
challenge to the resource management system to avoid unnecessary VM mi-
gration overhead.

[79] proposed a VM consolidation strategy based on multiple usage pre-
diction and multi-step prediction for limiting the unnecessary VM migrations
to avoid overheads and wasted energy consumption in data centers. Thus,
this mechanism was computed to estimate the long-term utilisation of several
resources such as CPU, memory based on the historical data for a particular
PM. In VM consolidation, the main task it to detect overloaded and un-
derloaded host. Thus, they considered both current and predicted resource
utilisation to identify the overloaded and underloaded hosts. An efficient
multiple usage prediction algorithm was presented to compute the long-term
utilisation of different resource types based on local historical data. Further-
more, a VM consolidation based on multiple usage prediction was proposed
to reduce energy consumption by limiting the unnecessary VM migrations
from overloaded hosts. Hence, the combination of current and predicted
resource utilisation plays an important role in reliable overloaded and under-
loaded host detection. According to this, a host is considered overloaded if
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it follows two constraints: (1) if the host is overloaded in both current and
predicted resource utilisation, and (2) if the host is in normal condition and
will be overloaded in a future period of time. And VM consolidation was
performed based on the detected overloaded hosts by following these two
constraints. However, they did not consider the case, if a host is overloaded
in a current period of time but will not be overloaded in the future period
of time, then what about the overloaded host in the current period of time.
This point should be considered in VM consolidation scheme.

3.6. Energy metering at Software-Level

Modern servers have multiple energy metres to monitor energy usage, but
they are unable to monitor the energy of a single virtual machine, which is
difficult to do since measuring energy at the software level is difficult. And,
according to the energy budget in data centres, energy consumption has be-
come a difficult factor to consider for a successful VM consolidation phase.
The previous study only looked at server resource utilisation for VM con-
solidation, which contradicted the energy capping mechanism by increasing
across the levels of certain servers during the process, which violated energy
constraints. The term ”energy capping” refers to a process introduced at
the hardware level. As a result, by lowering the CPU frequency, it reduces
the energy consumption of the combined server, which is in violation of the
energy constraints. As a result, lowering the server’s CPU frequency due to
the load of one VM affects all other operating VMs at the same time. As a
result, efficiency in workloads running in VMs degrades, breaching SLAs and
the isolation property of virtualization. VM consolidation and energy cap-
ping are the two most common methods in data centres, but neither allows
for accurate monitoring of energy usage for individual VMs.

[80] proposed the iMeter energy consumption prediction model, which
is based on the Support Vector Regressor machine learning method (SVR).
They used principle component analysis (PCA) to identify the most asso-
ciated components that influenced VM energy consumption and projected
individual VM and multiple consolidated VM energy consumption for vari-
ous workloads. However, predicting the energy consumption of a single VM
is difficult due to the various types of cloud resources residing in the VM,
such as CPU, memory, and IO, and the fact that different cloud end users can
demand different volumes of the same resources at the same time. Further-
more, the resource manager must make individual decisions for VMs, which
slows down end-user response time and violates QoS.
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3.7. SLA-based VM Management
Over-provisioning has long been used in data centres to prevent the worst-

case scenario of peak load utilisation while still meeting SLA obligations.
During regular hours, however, the hosts use very few energy, resulting in re-
source waste. [95] studied actual workload traces of VMs’ resource utilisation
from the Google data centre and found that the average CPU and memory
utilisation were less than 60% and 50%, respectively. Overprovisioning of
services, as a result, results in additional maintenance costs in host cooling
and administrative activities [21]. The aim of research has been to solve this
difficult problem by using dynamic resource provisioning of resources in vir-
tualization technology, but it primarily focuses on a particular form of SLA
or application, such as transactional workload. However, computationally
intensive applications are increasingly becoming a part of enterprise data
centres, which run multiple types of applications on multiple VMs without
taking into account SLA criteria, such as the deadline that results in an
under-utilized host. In the case of resource estimation, this factor presents a
unique challenge.

[81] suggested a novel resource management approach that took into ac-
count various types of SLA specifications for various applications operat-
ing on various VMs. This approach addresses two types of applications:
non-interactive compute-intensive jobs and transactional applications. Both
types of applications had a wide range of SLA criteria and specifications.
The key benefit of their work was that they used historical CPU utilisation
data combined with SLA penalties to forecast potential insight, allowing
them to make complex placement decisions in response to shifts in transac-
tional workload and scheduled jobs, taking into account CPU cycles in case of
under-utilisation during usual or off-peak periods. The sample of VM CPU
usage was used to train an artificial neural network (ANN) to predict VM
CPU usage for the next two hours, with the result plotted against actual
usage. The X-axis was distributed at a regular interval of 5 minutes. We saw
some shortcomings in their work at this point: (1) When there is a wide vari-
ance in preparation, the ANN forecast deviates from the actual value in some
situations, (2) In a few instances, it also predicts low CPU utilisation from
the actual value, (3) They didn’t take into account highly non-linear data.
The testing data had no non-linear variation, and non-linearity in workload
is a major issue nowadays, as data centres have very high non-linearity in
workload, which leads to a variety of issues such as high energy consumption,
inconsistent QoS, and SLA violations [5].
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3.8. QoS-Aware Resource Provisioning

The pattern of evaluating applications deployed on running VMs in mod-
ern data centres varies from time to time, i.e., many users attempt to access
the application at the same time. As a result, in the cloud, static resource
allocation to SaaS applications has been shown to be inefficient because it
results in non-linear resource use during periods of low demand and high
utilisation. When demand is low, available resources are wasted, resulting in
excessive overheads and costs for the cloud service provider; when demand
is high, available resources can be inadequate, resulting in weak QoS. This
problem can be solved with dynamic resource provisioning, but in this case,
the difficulty is determining the correct number of resources to deploy in
a given period of time to satisfy QoS requirements when varying workload
is available. This challenge is being addressed in two ways: reactively and
proactively. The latter has been significantly modified because it is depen-
dent on future load variations prior to their occurrence, i.e., estimating the
QoS parameters in advance.

[82] proposed an ARIMA-based workload prediction model. The main
benefit of their work was that the expected requests were used to dynamically
provision VMs in an elastic cloud environment while taking into account QoS
parameters such as response time and rejection rate. The accuracy of forecast
user requests was also assessed in order to see how it affected resource use
and QoS parameters. However, we would like to draw your attention to
the following limitation in this work. They gathered historical web request
data from the Wikimedia Foundation and fed it into a component of their
proposed model called Workload Analyzer. The ARIMA model was used in
this component to provide a future estimation for a specific time interval
that can be adjusted for a specific application. The time interval should be
long enough to allow for the placement of a new VM for optimal system
utilisation. This static time interval may cause issues if a VM deployment
time is less than this static time interval, as the extra remaining time may
affect QoS parameters such as response time.

3.9. Varying Patterns of a Service Tenant in Resource Allocation

Resource demand prediction in a multi-tenant service cloud environment
requires historical data to learn the past profiles of service tenants, which
is challenging due to the need to update the prediction model on a regu-
lar basis because the profiles or trends of service tenants change. AAnother
challenge is maintaining the amount of resources required by a service tenant
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to conduct its operations, which is dependent on many factors, including (1)
the operation type, (2) the specific period when the operation is conducted,
and (3) the load faced by the service tenant at a specific time. As a result,
it presents a challenge because a service tenant’s resource requirements can
shift. This is a critical topic to address when dealing with resource provision-
ing using proactive methods for a single service tenant as well as multiple
service tenants.

In multi-tenant service clouds, [83] proposed a dynamic resource demand
prediction and provisioning approach to assign resources in advance. They
divided the service tenants into groups based on whether or not their re-
source use would rise in the future. As a result, the proposed system forecast
resource demand with priority for only those service tenants whose resource
demand was expected to increase, reducing the time required for prediction,
which in turn may affect the total time of all operations, thereby affect-
ing QoS. Furthermore, the proposed mechanism used the Best-fit decreasing
heuristic method to determine the efficiency of maximum PMs utilisation by
combining the service tenants with the matched VMs and allocating them
to physical machines (PMs). The most significant aspect of this research is
that it classifies service tenants based on a binary issue of whether resource
demand will increase or not, and then predicts resource demand for tenants
whose resource demand will increase, resulting in a decrease in computa-
tional time and cost of prediction. However, (1) we are unable to determine
on what basis they mark binaries (0,1) with the service tenants’ characteris-
tics, despite the fact that labelling data is needed in order to classify it using
supervised learning techniques. (2) If we presume that the service tenants’
features were labelled with binaries based on some condition, then labelling
the data in a large-scale multi-tenant cloud would be time consuming and
would increase the prediction cost. (3) Some data may be accessible without
labels in a large-scale distributed multi-tenant cloud, in which case supervised
classification would not work.

3.10. Single ML model in energy consumption prediction

The majority of cloud service providers’ tools calculate and estimate the
energy usage of a host or a group of hosts in offline mode, but performing this
role in real-time running applications is a challenge. Furthermore, because
of the non-linear workload in various hosts, a single ML algorithm cannot be
considered to perform this task well. According to [95], a Google cluster or
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node does not use more than 60% and 50% of its CPU and memory, respec-
tively. As a result, ensemble learning can be a key component of providing
accurate predictions in a cloud architecture.

[84] introduced an ensemble learning method for forecasting future energy
efficiency in virtual machine resources, such as CPU utilisation, infrastruc-
ture, and service levels in a cloud computing environment.Ensemble learning,
which uses four different prediction approaches such as moving average, ex-
ponential smoothing, linear regression, and double exponential smoothing, is
the key benefit of their work.They predict the next use of VM resources, such
as CPU consumption, in each time iteration and calculate the mean absolute
error (MAE) of all iterations to pick the best performing model predictions
for measuring and forecasting energy efficiency and ecological efficiency in an
IaaS setting in real time. They do not, however, take into account metrics
like Last-level-cache (LLC) and disc throughput for prediction, which have
an effect on a host’s energy consumption at the VM level [96]. Furthermore,
the accuracy of the chosen model is workload specific, i.e., interactive and
batch workloads, rather than being generalised for all data.

3.11. Prediction Accuracy in Auto-Scaling of web applications

Auto scaling determines when and how resources are allocated for cloud-
based applications. Auto-scaling is done in two ways: reactive and proac-
tive. When system events such as CPU utilisation, number of requests, and
queue length exceed a fixed threshold, the reactive approach allocates re-
sources. The proactive approach is in charge of anticipating the amount of
resources required ahead of time in order to avoid unneeded events. Further-
more, proactive approaches include predictions based on traditional statisti-
cal time-series analysis, which do not fit all cases in terms of prediction ac-
curacy, making it challenging task. Furthermore, statistical learning has the
following drawbacks: (1) Statistical Learning is based on rule-based program-
ming, which is formalised as a relationship between variables. (2)Statistical
Learning is based on a dataset consisting with a few attributes. (3)Sta-
tistical Learning relies on assumptions like normality, no multicollinearity,
homoscedasticity, and so on. (4)The majority of the ideas in statistical learn-
ing are generated from the sample, population, and hypothesis. (5)Statistical
learning is a math-intensive subject that relies on the coefficient estimator
and necessitates a thorough knowledge of a dataset.

[85] used a genetic algorithm to combine the advantages of individual ML
models in order to obtain the best performing prediction results for web ap-
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plication auto-scaling. Each time-series prediction model used in the system
is fitted with a suitable weight using a genetic algorithm. The primary ben-
efits of their work are that, (1) Auto-scaling can adapt to any new workload
as its characteristics change over time. (2) This approach is unaffected by
the type of prediction models used. (3) It’s simple to adapt to a variety of
more advanced prediction models. However, this approach has a high time
complexity, which may affect the response time of any web application hosted
in cloud infrastructure, which is in violation of SLAs.

3.12. Time-Series Prediction Data

Workload in modern data centres follows a time series pattern. As a re-
sult, models for time series prediction should be trained on historical data, as
it is presumed that future trends would be identical to those seen previously.
However, data centres experience very non-linear workload variations, which
is why new trends emerge often, making it difficult for the model to learn
precisely. Due to the lack of a single model that is suitable for all types of
time series prediction data, an ensemble approach is being used to address
this issue [97]. Furthermore, most ensemble models for time series prediction
are based on a collection of fixed predictors, either homogeneous or hetero-
geneous, which makes it difficult for the models to learn pattern change in
time series prediction.

[86] suggested a new ensemble method that can dynamically update the
predictors in the ensemble approach to quickly respond to trend changes
in time-series prediction. The ensemble method dynamically adjusts the
models, which is the key benefit of this work. It’s adaptable, as new models
can be quickly added and removed depending on how well it performs with
non-linear workload. They set a threshold value of 5 and a floor limit of
0 to determine which predictor is performing well and which is not. Every
predictor is given a score, which rises and falls in response to the predictor’s
results. This predictor is selected as a representative predictor if its score
exceeds the threshold value, and it is discarded if it meets the floor limit.
These fixed parameters, on the other hand, yield satisfactory results for their
chosen dataset, resulting in a non-generalized approach.

3.13. Data Training

In modern cloud environments, virtual resources such as virtual CPUs
(vCPUs) and memory (vRAMs) have a non-linear resource demand, result-
ing in complex resource utilisation behaviour. As a result, with this high
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amount of workload on a daily basis, optimization of virtual resource perfor-
mance is required. Large corporations such as Amazon, Alibaba, and others
have occasionally failed due to a lack of resource management planning. As
a result, predicting virtual resources (such as vCPU and vRAM) is a chal-
lenging task. Furthermore, resource forecasting presents some challenges, (1)
The prediction of these resources should be dynamic in order to respond to
changing workload patterns over time, (2) The data for training should be
chosen in such a way that it has the greatest impact on the target variable,
so that the model can learn to predict it effectively.

[87] proposed a model that took into account a variety of parameters
in a virtualized platform to reliably predict virtual resources with the least
amount of SLA violations. This method was based on a Bayesian approach
that identified various variables and took into account the best training data.
The key benefit of their work is that it detects dependencies in a variable in a
systematic manner based on the study of non-linear workloads from various
data centres such as Amazon, EC2, and Google. However, (1) they do not
take into account the combination of several application types, (2) Since it
relies on the dependencies of a specific problem, this approach lacks general-
isation, (3) For prediction, this method ignores high-level metrics including
transaction throughput and latency of underlying resources, such as vCPU
cores.

3.14. VM Multi Resources

Flexible resource provisioning frameworks are needed in cloud data cen-
tres to manage host load based on various requirements. As a result, data
centres conduct dynamic resource provisioning, which uses prediction models
to estimate the amount of resources needed in advance for varying workloads
over time. Its aim is to predict future VM request workloads by looking
at previous usage trends. However, since VM requests include a variety of
virtual resources such as CPU, memory, disc, and network throughput, it
is extremely challenging and complex to forecast demand for each form of
resource separately. In the case of choosing an ML prediction model, the
multi-resource existence of a VM presents a specific challenge. Furthermore,
different cloud users can make different requests for cloud resources. As a
result, forecasting the demand for each form of resource is difficult and im-
practical.

[88] proposed a model for dividing VM clusters into different categories
and then developing prediction models for each cluster. The key benefit of
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their work is that (1) they use Extreme Learning Machines (ELMs), which
can find the best weight for the predictor in a single step. (2) They avoid
issues like stopping conditions, learning rate selection, learning epoch scale,
and local minimums of gradient-based learning methods like NN and ANFIS
by using ELMs. (3)As it deals with non-linear processes, this work can handle
the linear behaviour of the LR method. (4) It predicts VM requests in each
cluster using a single network. (5) Every cluster can have its own prediction
network. However, in kmeans clustering, they set the number of clusters to
3, resulting in a model with a fixed number of VM clusters.

4. Future Research Directions

4.1. Performance and Online Profiling of Workload

The efficiency of the intelligent resource management system is deter-
mined by many factors, including the accuracy and time complexity of the
prediction model. Huge corporations such as Google, Microsoft, Amazon,
and others are in charge of extremely complex data centres with a wide
range of workloads. As a result, in the presence of such a highly variable or
nonlinear workload for VMs, a more accurate estimation of prior workload
is a future research direction by employing more sophisticated ML and DL
modes. Furthermore, the time complexity of an algorithm is a measurement
of its performance in terms of the time it takes to run the input code. As a
result, the algorithm should be designed to be as simple as possible in terms
of time complexity. Furthermore, online profiling is necessary to prevent
VM blackouts until they are running in development, as well as various re-
source utilisation such as CPU and memory, which are major contributors to
physical resource exhaustion and should be considered for prediction. [19, 3]
conducted online workload profiling and provided an analysis to determine
if a virtual machine is interactive or delay-insensitive. To categorise VMs
into these two groups, they used supervised classification. In this situation,
semi-supervised learning [98] may play a vital role and may be a potential
research direction to train the data with these partial labels and perform
classification with promising accuracy in large-scale distributed data centres.

4.2. Multiple Resource Usage in VM consolidation

A host is considered overloaded during the VM consolidation phase if
CPU utilisation reaches a throughput threshold, such as 80% [79]. However,
other resource utilisation, such as memory use and bandwidth use [99], leads
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to host overloading. As a result, detecting overloaded hosts using a combina-
tion of CPU, memory, and bandwidth use is a potential research direction in
the VM consolidation phase. For an efficient VM consolidation operation, the
estimation of current and future CPU, memory, and bandwidth use should be
addressed. The current study [99, 76] involves a variety of machine learning
algorithms, such as linear regression and multiple regression, in which the
model’s training is based on multiple features in order to simulate a target
variable, such as CPU utilisation. The training time of multiple features will
affect the VM migration time in the VM consolidation process, which affects
QoS and SLAs in large-scale distributed data centres where millions of VMs
are running in production. As a result, dealing with the training time of ML
models is a potential future research direction. Different deep learning (DL)
approaches, such as Long Short-Term Memory (LSTM) networks [100] and
Gated Recurrent Unit (GRU) [101], can deal with training time by avoiding
the overheads of multiple features by using a single feature, such as a vector
of CPU utilisation, as an input for training to predict its next state in the
future.

4.3. Cloud Network Traffic

The problem of varying patterns of various types of workloads when con-
sidering current resource utilisation in VM allocation on a host is a challenge.
As a result, predicting potential resource demand, such as CPU and network
bandwidth, has proven to be an alternative approach [77].However, in ad-
dition to these resources, disc throughput is a significant factor to consider.
In VM placement heuristics, taking disc throughput into account is a new
research direction. It calculates the amount of data that can be stored, read,
and written per second. [94] published a report stating that disc tail latency,
especially reads, is a key factor when delivering online services where a user
is waiting for a response.As a result, disc throughput can play a role in VM
migration time, affecting tail latency time and violating SLAs. Therefore,
according to our vision, a prior maximum estimate of disc throughput will
play a critical role in avoiding delay.

4.4. Host Temperature

[78] proposed a scheduling algorithm to minimise the host temperature
that was driven by the host temperature prediction computed using several
ML algorithms. As a consequence, estimating host temperature ahead of
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time can help with thermal management decisions like VM migration to re-
duce host temperature, i.e., CPU temperature. [78], on the other hand, took
into account the ambient temperature for prediction, which is a combination
of CPU and inlet temperature. This could result in an increase in algorithm
overhead. Furthermore, they discovered that the host’s CPU temperature is
primarily affected by CPU load and power consumption. As a result, it is
being waited for the CPU to become overloaded, causing the temperature
to rise, resulting in additional cooling costs for the host. As a potential fu-
ture research topic, Prior CPU estimation-based resource provisioning can
prevent the CPU from becoming overloaded and save energy. Then we’ll
only have to deal with the inlet temperature, which may reduce the thermal
management algorithm’s overhead. Furthermore, several ML algorithms ne-
cessitate a significant amount of training time due to the training of multiple
features, which can slow down VM migration. It will cause VM migration
to be delayed, which will slow down host temperature degradation and add
to the cost. Thus, using an ML or DL method like GRU, where the inlet
temperature can be used as an input to train a model that can predict its
future state using single feature training, could be an alternative. Doing
so can avoid an overhead algorithm, a delay in VM migration, a delay in
minimising the host temperature.

4.5. False Host Overloaded Detection

The overloaded host detection’s static threshold can result in unreliable
VM migration. If the utilisation of a VM’s resources degrades in a short pe-
riod of time, there is no need to migrate the VM. In this case, the algorithm
should have a dynamic resource utilisation threshold that automatically pre-
vents VM migration when it reaches the fixed threshold, taking into account
near-future data. For efficient VM migration in VM consolidation, this is the
future research direction. Furthermore, VMs should be migrated if the near
future information has a long period of load degradation.

4.6. Energy metering at Software-Level

Many power management decisions, such as power capping, will bene-
fit from visibility of energy usage at the host and VM levels. At the host
level, energy consumption is simple to predict or calculate since modern data
centres have several built-in sensors that track it, but it is difficult to mea-
sure at the VM level because to measure the energy consumption induced
by memory, we must collect LLC (last-level-cache) events raised by each VM
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on each core, which is difficult to do [96, 102]. Rather than calculating or
predicting energy consumption at the VM level, clustering analysis may be
used to determine the status of VMs in terms of energy consumption, such
as low, moderate, or critical. Thus, dividing VMs by conducting clustering
analysis based on highly co-related features with energy consumption at the
VM-level is a potential research direction, and there would be no need to
obtain host-level features. ML techniques such as ChiSquare Score, Fisher
Score, Gini Index, and Correlation-based Feature Selection (CFS) can be
used to find the correlation with energy consumption [103]. Then, using a
clustering algorithm or a clustering ensemble [104], a clustering analysis can
be performed to determine which VMs are in low and critical energy con-
suming states. By doing so, a group of VMs can be managed together in
a data center’s resource management system, potentially reducing response
time and improving QoS.

4.7. SLA-based VM Management

Future research directions for avoiding non-linear resource utilisation in
modern data centres include dynamic resource provisioning and dynamic
VM consolidation, which take into account various types of VM resources
such as CPU, memory, and bandwidth, current and future resource needs,
and SLAs such as compute intensive non-interactive jobs and transactional
applications. Both of these methods rely heavily on accurate resource pre-
diction. [81], for example, provided long-term CPU utilisation forecasts that
differed significantly from actual test phase data due to a substantial shift in
CPU utilisation during the training phase, which is critical for dealing with
non-linear utilisation in modern data centres. Future research will focus on
optimising hyper parameters used in Artificial Neural Network (ANN) learn-
ing, such as mini batchsize, epochs, and number of neurons. The model is
said to work better if it is trained on the data in an optimised manner. The
observation of the validation and loss graphs estimated with these optimised
hyperparameters may indicate that the model has learned a lot when both
plots begin moving closely and consistently, and learning should be stopped
at these optimised parameters.

4.8. QoS-Aware Resource Provisioning

The aim of this study is to use constructive dynamic resource provisioning
based on workload estimation using historical data to improve QoS parame-
ters like response time and rejection rate. Future research could concentrate
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on dealing with it in a reactive manner, with resource provisioning occurring
after resource demand, such as the number of requests, has arrived. Further-
more, according to the current study [82], the error in request prediction can
be mitigated by adhoc decisions in dynamic resource provisioning, which can
help to boost poor QoS efficiency. Furthermore, there is a potential research
direction to forecast peak CPU use using more sophisticated ML models such
as XGBoost [105], LSTM [100], and GRU [101] in a correct manner that can-
not be equipped with the ARIMA model. Furthermore, no single machine
learning algorithm can suit any non-linear workload with time-series data,
necessitating an ensemble learning approach in which various ML and DL
methods can be used in the future. After that, the best-performing model
can be selected for potential use. [82], as discussed in Section 3.8, estimates
web requests based on a static time interval that can affect response time.
As a result, it can be addressed by estimating future web requests with a dy-
namic time interval that adjusts automatically based on the VM deployment
time. In such a way that the time interval of estimation can be equivalent to
the VM deployment time and the remaining time can be avoided if the VM
deployment time is much shorter than this static time interval that affects
the QoS parameter as the response time. Prior estimation of VM deploy-
ment time based on historical data should therefore be computed and used
in the above-mentioned case to satisfy the condition of equivalence with the
estimated time of the request prediction.

4.9. Varying Patterns of a Service Tenant in Resource Allocation

Clustering analysis, which does not require any data labelling, could be
used to classify service tenants as a future research direction. On the ba-
sis of historical resource demands, similar patterns of service tenants can
be automatically obtained. By observing the similarity between data us-
ing clustering, service tenants with high and low resource demand can be
distinguished, and predictions for those with high resource demand can be
provided using ML and DL regression techniques. In the case of a distributed
data centre where data is dispersed and partial labels are available, a concept
known as semi-supervised clustering [106] can be used, in which unsupervised
data is given a little supervision using partial labels and techniques such as
instance-level constraints [107] and relative distance constraints [101].
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4.10. Single ML model in energy consumption prediction

Apart from the CPU, a system power model includes memory, disc, and
network components, so these components could be considered as well. The
current study looks at the linear relationship between these metrics and en-
ergy consumption; however, non-linear relationships, such as polynomial or
exponential, could be explored in the future. In addition, in an ensemble
learning approach, the best individual model is chosen, which may or may
not be the best solution. Another option is to combine the information
provided by each individual model and analyse the results. This can be ac-
complished by estimating the average using weights based on each individual
predictor’s mean average error. Furthermore, each workload type requires its
own set of configuration parameters. The future research direction is to keep
track of the parameters value of each model from the past record that have
increased the maximum utilisation of resources and to use them in real-time
scenarios to adapt the models to the workload type of each individual VM.
In addition, the forecast accuracy is also affected by a sudden change in the
use of resources. A further future research direction is therefore to feed the
ML model with average workload performance, such as CPU utilisation.

4.11. Prediction Accuracy in Auto-Scaling of web applications

Machine learning models, rather than statistical methods, may be used
to predict workload in the future, which has many advantages: (1) Machine
Learning learns from data without the need for explicit programming. (2)
Machine Learning has the ability to learn from billions of observations and
features, (3) Machine Learning relies less on assumptions and, in most cases,
disregards them. (4) Machine Learning emphasizes predictions, supervised
learning, unsupervised learning, and semi-supervised learning (5) Machine
Learning uses iterations to identify patterns in a dataset, requiring far less
human effort. The training of multiple features is needed to predict the target
variable, which increases the time complexity of machine learning methods
like regression. As a result of the existence of redundant features, ML meth-
ods suffer from latency and computational complexity problems when pro-
cessing multiple features. In such datasets, the number of functions, feature
dependency, number of records, feature types, and nested feature categories
all substantially increase the processing time of ML methods. As a result, fu-
ture research should concentrate on using suitable feature selection methods,
such as wrappers, filters, embedded methods, and enhanced versions [108], to
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effectively overcome the computation speed versus accuracy trade-off when
processing large and complex datasets.

4.12. Time-Series Prediction Data

The development of a generalised ensemble framework for any type of
dataset in cloud time series workload data is a future research direction. Deep
learning (DL), in general, is a rapidly expanding and broad research field that
involves novel architectures. However, researchers are never sure when they
need to adapt which methods to which situations. [109] used global NN mod-
els, which are prone to outlier errors in some time series. As a result, novel
models incorporating both global and local parameters for individual time
series must be developed in the form of hierarchical models. These models
can be combined with ensembling, which involves training multiple models
with the same dataset in different ways. Furthermore, CNNs have long been
used for image processing, but they are now being used to forecast time se-
ries data. According to [110, 111], traditional RNN models are ineffective at
modelling seasonality in time series forecasting. As a result, they combine
CNN filters for local dependencies and a custom attention score function for
long-term dependencies. In order to capture seasonality patterns, [110] has
also tried recurrent skip connections. [112] developed Dilated Causal Con-
volutions to effectively capture long-range dependencies along the temporal
dimension. They’ve recently been used in conjunction with CNNs to solve
problems involving time series forecasting. Temporal Convolution Networks
(TCN), which combine dilated convolutions and residual skip connections,
have also been introduced as more advanced CNNs [113]. According to [114]
TCNs are promising NN architectures for sequence modelling tasks, in addi-
tion to being efficient in training. As a result, using CNNs instead of RNNs
could provide a competitive advantage for forecasting practitioners. As a
consequence, these potentially advanced neural networks could be used in
the future to forecast workload time series in cloud infrastructure.

4.13. Data Training

The aim of optimising machine learning hyperparameters is to find the hy-
perparameters for a particular machine learning algorithm that achieves the
best performances on validation data. The hyperparameters are set by the
engineer before the training, contrary to the model parameters. The number
of trees in a random forest, for example, is a hyperparameter, whereas the
weights in a neural network are model parameters learned during training.
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Size and decay are support vector machine hyperparameters (SVM) and k in
k-nearest neighbours (KNN), respectively. Furthermore, hyperparameter op-
timization returns an optimal model that reduces a predefined loss function
and, as a result, improves the accuracy on given independent data by finding
a combination of hyperparameters. Hyperparameters can thus have a direct
effect on machine learning algorithm training. It is therefore critical to un-
derstand how to optimise them in order to achieve maximum performance.
This points to a future research direction of optimising the hyperparame-
ters of ML algorithms for achieving optimal dataset training. This can be
accomplished by employing some common heuristics such as Grid Search,
Random Search, Bayesian Optimization, Gradient-based Optimization, and
Evolutionary Optimization [115].

4.14. VM Multi Resources

As stated in Section 3.14, there is a future research direction to cate-
gorize the VMs and develop a prediction model for each cluster to address
the multi-resource demand challenges. However, the use of a clustering al-
gorithm such as kmeans can limit the number of clusters available, causing
a VM to be placed in the incorrect cluster. A clustering ensemble can be
a better approach than clustering because it aims to combine multiple clus-
tering algorithms to produce a final consensus solution that is more robust
and accurate than a single clustering algorithm [116]. This literature [117]
mentions a number of clustering ensemble methods. Furthermore, in a re-
cent work [104], two additional evaluation criteria such as time complexity
and resource usage (CPU and memory usage) were considered to evaluate the
novel clustering ensemble, in addition to clustering accuracy. Thus, advanced
clustering methods such as clustering ensemble can be used in the future to
achieve the best clusters with the highest precision, least time complexity,
and least resource consumption.

5. SUMMARY AND CONCLUSIONS

In this paper, we discuss the challenges of machine-learning-based re-
source management in a cloud computing environment, as well as the vari-
ous approaches that have been used to solve these challenges in recent years,
along with their benefits and drawbacks. In recent years, there has been a
significant increase in the number of studies looking at how to use machine
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learning techniques to conduct workload prediction, energy consumption pre-
diction, and other tasks. Different ML methods are used in these techniques
to deal with various types of problems. Finally, based on the challenges
and drawbacks identified in the state-of-the-art work, new potential future
research directions are proposed to strengthen the current ML methods for
resource management in cloud-based systems. The overall knowledge pro-
vided in this paper aids cloud researchers in comprehending cloud resource
management and the significance of machine learning techniques.

Our findings show that machine learning models can be used in cloud
computing systems to achieve various optimization goals and deal with com-
plex tasks. The use of ML approaches also opens up a new avenue for in-
telligent resource and application management. This article illustrates the
progress of machine learning approaches in current research and helps read-
ers understand the research gap in this field. To improve system efficiency,
one promising way is to use advanced machine learning techniques such as
reinforcement learning and deep learning to perform intelligent resource man-
agement. .
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cos José Santana, Regina Carlucci Santana, and Stephan Reiff-
Marganiec. Combining time series prediction models using genetic
algorithm to autoscaling web applications hosted in the cloud infras-
tructure. Neural Computing and Applications, 27(8):2383–2406, 2016.

[86] Jian Cao, Jiwen Fu, Minglu Li, and Jinjun Chen. Cpu load prediction
for cloud environment based on a dynamic ensemble model. Software:
Practice and Experience, 44(7):793–804, 2014.

[87] Gopal Kirshna Shyam and Sunilkumar S Manvi. Virtual resource pre-
diction in cloud environment: a bayesian approach. Journal of Network
and Computer Applications, 65:144–154, 2016.

[88] Salam Ismaeel and Ali Miri. Using elm techniques to predict data
centre vm requests. In 2015 IEEE 2nd International Conference on
Cyber Security and Cloud Computing, pages 80–86. IEEE, 2015.

[89] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1):23–
50, 2011.

48



[90] Thiago AL Genez, Luiz F Bittencourt, Nelson LS da Fonseca, and
Edmundo RM Madeira. Estimation of the available bandwidth in inter-
cloud links for task scheduling in hybrid clouds. IEEE Transactions on
Cloud Computing, 7(1):62–74, 2015.

[91] Martin Duggan, Jim Duggan, Enda Howley, and Enda Barrett. A
network aware approach for the scheduling of virtual machine migration
during peak loads. Cluster Computing, 20(3):2083–2094, 2017.

[92] Cisco Visual Networking. Cisco global cloud index: Forecast and
methodology, 2016–2021. White paper. Cisco Public, San Jose, 2016.

[93] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pmapper: power
and migration cost aware application placement in virtualized sys-
tems. In ACM/IFIP/USENIX International Conference on Distributed
Systems Platforms and Open Distributed Processing, pages 243–264.
Springer, 2008.

[94] Eric Brewer, Lawrence Ying, Lawrence Greenfield, Robert Cypher, and
Theodore T’so. Disks for data centers. 2016.

[95] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz,
and Michael A Kozuch. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing, pages 1–13, 2012.

[96] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A Bhat-
tacharya. Virtual machine power metering and provisioning. In Pro-
ceedings of the 1st ACM symposium on Cloud computing, pages 39–50,
2010.

[97] Rich Wolski. Dynamically forecasting network performance using the
network weather service. Cluster Computing, 1(1):119–132, 1998.

[98] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised
learning. Synthesis lectures on artificial intelligence and machine learn-
ing, 3(1):1–130, 2009.

[99] Amany Abdelsamea, Ali A El-Moursy, Elsayed E Hemayed, and Hes-
ham Eldeeb. Virtual machine consolidation enhancement using hybrid

49



regression algorithms. Egyptian Informatics Journal, 18(3):161–170,
2017.

[100] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[101] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
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