
Modular zk-Rollup On-Demand

Submitted version of paper accepted at Journal of Network and Computer
Applications

Thomas Lavaura,b, Jonathan Detcharta, Jérôme Lacana, Caroline P. C. Chanela

aISAE-SUPAERO, University of Toulouse, Toulouse, 31400, France
bUniversity Toulouse III Paul Sabatier, Toulouse, 31062, France

Abstract

The rapid expansion of the use of blockchain-based systems often leads to a choice between customizable private
blockchains and more secure, scalable and decentralized but expensive public blockchains. This choice represents the
trade-off between privacy and customization at a low cost and security, scalability, and a large user base but at a high
cost. In order to improve the scalability of secure public blockchains while enabling privacy and cost reduction, zk-
rollups, a layer 2 solution, appear to be a promising avenue. This paper explores the benefits of zk-rollups, including
improved privacy, as well as their potential to support transactions designed for specific applications. We propose an
innovative design that allows multiple zk-rollups to co-exist on the same smart contracts, simplifying their creation
and customization. We then evaluate the first implementation of our system highlighting a low overhead on existing
transaction types and on proof generation while strongly decreasing the cost of new transaction types and drastically
reducing zk-rollup creation costs.

Keywords:
zk-rollup, SNARK, STARK, validium, rollup, blockchain, layer 2, scaling, groups

1. Introduction

First in the field of finance, Bitcoin, a blockchain-based
system, has been proposed as a decentralized alternative
to traditional currencies [1]. Furthermore, during the last
decade, the rise of the blockchain has been gaining more
and more momentum. More recently, they have even be-
gun being applied in other fields (e.g., the energy sector,
[2]). Their use in these various other fields is primarily
motivated by the properties of blockchains such as se-

Email address: thomas.lavaur@isae-supaero.fr (Thomas
Lavaur)

curity, decentralization, immutability, confidentiality and
anonymity [3].

However, the use of blockchains is not a panacea and
their use brings its own limitations and problems. Firstly,
we have the limitation in the number of transactions per
second (TPS) and the cost of these transactions when the
blockchain is highly decentralized. A trilemma of balance
between scalability, decentralization and security is often
mentioned (see [4]). Since 2019, the use of rollups has
been growing and is becoming increasingly popular as an
effective solution to the problems arising with the use of
blockchains [5]. A rollup is a layer 2 solution for out-
sourcing the execution of transactions and then verifying

Preprint submitted to Journal of Network and Computer Applications June 6, 2023

ar
X

iv
:2

30
6.

02
78

5v
1 

 [
cs

.C
R

] 
 5

 J
un

 2
02

3



them on the blockchain. This allows for the same level of
security as on the blockchain 1.

Optimistic rollups are layer 2 scalability solutions [6]
where all transactions are considered valid, a priori, al-
lowing for a simple and fast system. They rely on fraud
proofs for their security, which can bring delays to the
finality of transactions. In constrast, zk-rollups can sig-
nificantly increase the number of TPS on the blockchain
while maintaining the same level of security as the un-
derlying blockchain and with instant finality [7]. Zero-
knowledge protocols, used in zk-rollups, are still new and
improvements are being discovered rapidly [8] in order
to reduce their complexity of computation. These solu-
tions provide a significant reduction in transaction costs
in exchange for a costly smart contract deployment. Cur-
rently, only a few major companies offer the use of per-
missionless rollups, or validium/zk-rollup services. How-
ever, their solutions imply the centralization of zk-rollup
ownership which, while not decreasing security, increases
the risk of censorship and decreases customization oppor-
tunities for users.

In this paper, we claim that zk-rollup technology can
technically allow for the replacement of most private
blockchains by rollups. They allow for the same prop-
erties such as privacy, whitelist management and a higher
number of TPS with the same security as the underlying
blockchain. Therefore, by using zk-rollups, we can pro-
pose the same customizable solutions as those envisaged
with the use of a private blockchain while taking advan-
tage of the security, the currency and the connected com-
munity of a large and secure public blockchain.

The purpose of this article is to propose this kind of on-
demand zk-rollup scheme, where users can easily create
their own zk-rollups, without having to design them nor
implement and deploy their own smart contract on layer
1 (i.e. the blockchain). As previously argued, this service
could replace the creation of a private blockchain where
users could create their own zk-rollups, using their own
definitions of valid transactions and accessing the prop-
erties of a public blockchain. In detail, our proposal fa-
cilitates access to the security of the blockchain by giv-
ing users control over their zk-rollups, and the ability to
make them permissioned and hide transactions from the
blockchain if they wish. In this sense, users can control
all the important aspects of their system and choose the
form in which transactions will be stored on their layer

2. Additionally, users can benefit from the security and
community of a public blockchain via its tokens and the
validation of their transactions on it.

This paper is organized as follows. A brief introduc-
tion to the blockchain, rollup and zk-rollup concepts is
given in Section 2. In Section 3, a detailed description of
our motivations, the difficulties we had to solve and our
proposal are presented. Finally, Section 4 presents an im-
plementation of our proposal, discusses the choices that
were made and presents the results related to its evalu-
ation. The paper concludes with a discussion of future
work perspectives in Section 5.

2. Background

2.1. Blockchains
A blockchain is a distributed and replicated ledger in

a network of nodes. The addition of new information in
this ledger is regulated by a set of rules common to the
nodes that guarantee security. The addition of informa-
tion is called a transaction and is done linearly without
ever erasing the information stored previously. For this,
transactions are most often grouped in a structured for-
mat and included in what is called a block. A block con-
tains the transactions and all the information necessary
for their verification and addition to the blockchain. In
order for a transaction to be validated, the sender signs it
cryptographically and sends it to the entire network. If a
transaction is validated based on the correct signature and
the ability of the user to perform the desired action, it is
added to the next block. The node in charge of forming
the blocks and adding them to the blockchain is desig-
nated by the blockchain consensus. All blocks are cryp-
tographically linked each other to form the blockchain.
This is often a cryptographic nor game theory protocol
that avoids including invalid transactions. Each node can
therefore verify whether this new block is valid or not, by
checking the transactions within the block. If two valid
versions of the blockchain are received at the same time,
the longer one is usually considered valid. Depending on
the context, it is possible to configure who can write and
read on the blockchain, in other words to define whether
it is permissionless or permissioned 1.

The first blockchain, Bitcoin, was proposed by
Nakamoto in 2009 with the idea of offering a decentral-
ized alternative to traditional currencies [1]. In the case

2



of Bitcoin, transactions are limited to the exchange of a
valuable asset: the bitcoin. The bitcoin token is created
directly on the blockchain as a reward to nodes that add
new blocks. This blockchain is public: anyone can be-
come a node, read and write to the blockchain.

In order to expand the capacity of blockchains, cur-
rency transactions have been extended to support the exe-
cution of programs directly on the blockchain while main-
taining security. This is made possible by smart contract
technology, which allows for the deployment of code in
a first step, which can be executed afterward by all the
nodes of the network. When a transaction requests the ex-
ecution of a function of this code, it is run by the whole
network once included in a block to check that the pro-
gram was processed correctly. Ethereum, whose currency
is the ether, allows for the use of smart contracts written in
Solidity [9]. Its programs can be run in the Ethereum Vir-
tual Machine (EVM) environment [10], an environment
deployed on all nodes. Most of the blockchains enabling
the use of smart contracts are based on the EVM.

The main properties of blockchains are security, de-
centralization, immutability, privacy and anonymity [3].
Security is ensured by the consensus that elects the next
node, encouraging it to act honestly. Most consensuses
require that a majority of participating nodes are honest
so that no invalid transactions are included (usually 50%
or 70% of participants). If a large number of nodes par-
ticipates in the consensus, then a high degree of security
is ensured. When few nodes participate, there is a risk of
centralization meaning that an attack is more likely to oc-
cur. Immutability derives from the fact that data can only
be added to the register. Anonymity comes from the use
of asymmetric keys for authentication and the validation
of transactions, allowing for the decorrelation of users’
identities from their blockchain accounts (represented by
their public key).

In the case of Bitcoin and Ethereum, the nodes respon-
sible for the creation of new blocks are incentivized to be
honest through rewards in the form of cryptocurrencies
managed by the blockchain. The choice of the transac-
tions to include in the next block is often based on the
same principle: users who submit a transaction include
a commission fee for the node which includes it in the
blockchain. The block creators will therefore choose the
transactions that carry the highest commission fees for
them. In the case of a private blockchain, or one dedi-

cated to a particular application, the incentive may not be
financial. The popularity and high security of Bitcoin and
Ethereum generate high transaction costs due to the low
number of TPS on these blockchains and the large number
of users who are looking to quickly include their transac-
tions. Bitcoin and Ethereum have low throughput in terms
of TPS: they only support an average of 7 TPS for Bitcoin
and 15 TPS for Ethereum. This is largely insufficient for
many applications (for comparison, the Visa network can
handle 65,000 TPS [11]). To compensate for these diffi-
culties, the use of private blockchains, i.e. where access
is restricted, is often preferred. This allows each applica-
tion to create a unique blockchain whose properties and
uses are chosen according to the application’s specifici-
ties. However, these blockchains involving only a limited
number of nodes are often poorly secured, tokens are of-
ten not representative of what they are supposed to rep-
resent (especially those that are supposed to represent a
currency or crypto-currency) and the community is lim-
ited by design.

2.2. Sidechains
Because of the small number of TPS supported by these

blockchains, solutions have been invented to support large
data and/or transaction flows [5]. Blockchains that can
handle many TPS often do so at the expense of security
or decentralization. Indeed, in order to get more TPS, it is
necessary to be able to process transactions faster and en-
courage nodes to do so faster. Therefore, nodes should be
encouraged to continue processing them for lower fees per
transaction and by allocating more of their storage space.
Consensus to efficiently handle large numbers of TPS is
often less secure and might not scale when the number of
nodes gets larger [12].

One potential solution, proposed in 2014, is to create a
separate blockchain and implement a bidirectional bridge
system, also known as a cross-chain protocol, or as main-
chain and sidechain 1 when a new blockchain is built on
top of an existing one, to perform transactions between
them [13]. This would enhance customization and give
the ability to have custom consensus, rules and security
controls through a dedicated blockchain, while being able
to communicate with other blockchains. This increases
the number of TPS on the overall system and thus can
address specific needs. However, this advantage is ac-
companied by a decrease of decentralization since many

3



Figure 1: Representation of different Layer 1s and Layer 2s

users must decide on which blockchain they want to par-
ticipate in, due to storage, network throughput or compu-
tation power limitations, thus decreasing overall security.

2.3. Rollups

Rollups are layer 2 solutions 1, meaning that they are
based on a pre-existing blockchain in the manner of a
sidechain. However, rollups can take several forms and
are not necessarily blockchains. The principle of rollups
is to externalize the execution of transactions outside the
blockchain. This allows for an increase in the number
of TPS since they do not need to be executed by the
blockchain. At the same time, transaction size can be
reduced before being posted on the blockchain, reduc-
ing fees (i.e. the signature being no longer necessary for
the blockchain and other elements being summarized, see
[7]). The creation of a rollup is done through the de-
ployment of one or more smart contracts and therefore
requires a compatible blockchain. The smart contracts
will allow the blockchain’s users to send or retrieve in-
formation (like tokens) to and from the rollup, and more
generally, to interact with it.

The addition of information to the rollup is done by
an entity, or a few of them, hence it is often centralized.
This entity collects the transactions sent directly to the
rollup by users, verifies them and forms a batch. This ac-
tor updates the state of the rollup and sends new states
and batches of transactions through smart contract calls.
The state is then updated on the blockchain as well with-
out having to execute the state transitions that result from
the transactions. To help the reader understand, we will
call this actor in charge of the creation and verification
of transaction batches the validator1. The state of the
rollup is represented via one or more Merkle Trees [14]
and stored on the smart contract of the rollup through its
root. This method is similar to the state of Ethereum ac-
counts where the root of the Merkle Patricia tree is stored
in the header of each block [10]. In both cases, the trees
can be reconstructed by consulting the blockchain history

1This name differs according to the companies proposing rollups and
among others, we can find validator from Matter Labs and Aztec, op-
erator from Starkware and Consensys, sequencer and aggregator from
Polygon, relayer from Loopring, relayer and sequencer from Scroll, etc.

4



of transactions for blockchain state, or transaction sum-
maries in the case of rollups.

However, to inherit the security of the underlying
blockchain, the blockchain must verify the correct execu-
tion of the transactions. To our knowledge, it is possible
to classify all rollups into two distinct categories accord-
ing to this verification characteristic: optimistic rollups,
where the transactions are all considered valid but can be
challenged during a dispute period, and zk-rollups which
cryptographically prove the validity of all transactions.

2.3.1. Optimistic rollups
In the case of optimistic rollups, all transactions are

considered valid, a priori. They can be disputed (i.e.
their validity can be questioned) by any user present on
the blockchain, by making a request to the smart con-
tract. The validator must then provide the complete trans-
action to the blockchain in order to verify the signature
and produce a Merkle proof attesting to the availability
of the tokens or the necessary rights. If no users dispute
a transaction, then it is considered valid after a fixed pe-
riod of time called the dispute period. As the validation
of an optimistic rollup transaction on the blockchain is
more costly than a native transaction, the system encour-
ages the denunciation of invalid transactions by users and
proper publication by the validator, and discourages false
claims of invalid transactions [6].

2.3.2. Zk-rollups
In contrast, zk-rollups prove the validity of all trans-

actions using zero-knowledge cryptographic proofs. The
zero-knowledge property allows the blockchain to check
the validity of the rollup state update without having
to read the transactions while making sure that they
are correct and that they are indeed those posted [7].
The transactions are therefore immediately validated by
the blockchain and a dispute phase is thus unnecessary.
Moreover, the validator cannot include invalid transac-
tions. A dishonest validator can only partially censor the
transactions but their execution can be forced using the
blockchain.

2.3.3. Validium
Since the transactions are validated without being read,

it is possible to avoid posting the transactions on the
blockchain. In this case, these are referred to as validiums

[7] and not zk-rollups. To ensure security for validiums,
the data must be accessible outside the blockchain guar-
anteeing access to funds or users’ information in case of a
untrustworthy validator. A database is generally set up by
known actors who sign blocks of transactions attesting to
the receipt of transaction batches and promising to make
them available. It is possible to build privacy on validiums
by restricting access to the database to authorized parties
while preserving the same security.

3. Proposition

3.1. Motivations

As presented in Section 2, the use of zk-rollups is
an excellent solution to reduce per-transaction costs and
increase the maximum number of TPS on a public
blockchain without compromising on security. In paral-
lel, many companies and multiple applications are con-
sidering the use of private blockchains to gain more pri-
vacy, to obtain a secure private network or to reduce costs.
However, the low number of participants in such private
blockchains leads, in most cases, to a weakening of secu-
rity. Moreover, some consensuses, like PBFT, are regu-
larly used on private blockchains and do not allow scaling
up when the number of nodes increases [15].

We claim that zk-rollups are an efficient solution to
meet the needs of private blockchains and the security of
a public blockchain with numerous participants. Thanks
to our proposition, they allow users to take advantage of
pre-established communities, pre-established cryptocur-
rencies and pre-audited security while offering the flex-
ibility of private blockchains designed for specific pur-
poses. The zero-knowledge proof circuit (used to gen-
erate proofs) defines the validity of transactions and can
be modified from one zk-rollup to another, making it pos-
sible to support the proof of several operations dedicated
to the rollup, whether they are native to the blockchain
or not. To support our consideration of zk-rollups, the
Ethereum blockchain itself is moving towards becoming
a highly secure blockchain relying heavily on rollups for
scalability [16].

Unfortunately, zk-rollups are deployed through multi-
ple smart contracts, which generates a significant finan-
cial cost. Setup also requires significant expertise since
one must: (i) both develop and audit a zero-knowledge

5



circuit that will correctly prove the validity of authorized
rollup operations, (ii) establish safe implementation of the
smart contracts, and (iii) set up a central server that will
play the role of validator. The use of an already deployed
zk-rollup does not replace a private blockchain since the
few zk-rollups available on the Ethereum blockchain are
controlled by a handful of companies that control their
validators. Such exclusive control does not allow for the
addition of dedicated operations or customization, like
whitelist management, and furthermore it ensures visi-
bility on all transactions to the company validator. One
solution put forward by different companies is to ex-
tend these services providing privacy and customization
through layer 3s [17] built on top of their own rollup.
However, if the layer 2 validator becomes untrustworthy,
it is not clear how this would affect the different layer 3s.
Furthermore, their validator would still have visibility on
all layer 3 transactions.

Moreover, in the case where several zk-rollups are de-
ployed, a user who wants to transfer their token or infor-
mation from one zk-rollup to another should check the
security of all smart contracts which requires knowledge
of all addresses they interact with. These steps demand a
lot of effort from the user and generates a high cost due
to the multiple transactions needed on the blockchain (i.e.
the mainnet) to perform this transfer.

3.1.1. Modular zk-rollup on-demand
In order to improve the privacy, customization and cost,

and reduce the difficulty of deployment of a zk-rollup,
we propose allowing several zk-rollups to co-exist on the
same smart contract, in an independent way, without de-
creasing the security of a single zk-rollup. To do this, we
propose including a group ID (or zk-rollup ID) system di-
rectly into the smart contracts as already evoked in [7].
Our proposition replaces the consecutive deployment of
several zk-rollups by a simple call to the smart contracts
via a function enabling the creation of a group. This dras-
tically reduces the cost of deployments following the ini-
tial deployment. The functions of the smart contracts are
shared by the different groups but it is possible to choose
a specific smart contract for proof checking in order to use
different circuits (i.e. different valid state transition) and
proof systems and thus allow for the use of different oper-
ations from one group to another. Each group can choose
to use the same smart contract as another group, or create

its own verification system.
At the same time, we propose the addition of two key

parameters specific to each group. The first one defines
whether it is a validium or a zk-rollup (i.e. if the val-
idator has to publish transaction data on the blockchain
or not) and if the smart contract has to check the signa-
tures of the actors attesting to their availability. This first
parameter makes it possible to determine the level of ex-
posure of the transactions on the blockchain without los-
ing security. The second parameter lets the user choose
between a permissionless group, open to any user, or a
permissioned group, where access and transfer rights are
limited to users on a whitelist. Each group can choose
its validator and independently store its Merkle tree root
representing the rollup state.

We advocate that this proposition solves privacy issues
while democratizing easy access to zk-rollups for wider
adoption. Interestingly, it enables the creation of mul-
tiple zk-rollups on the same smart contracts. It can be
very interesting even if they are all public and permis-
sionless. Note that most of the current zk-rollup valida-
tors are remunerated with fees because the validators also
have expenses related to the publication of data on the
blockchain, calls to smart contracts and the computation
of zero-knowledge proof. With this proposition, we can
deploy different zk-rollups with higher or lower fees and
with validators who call the blockchain at different fre-
quencies allowing for more or less quick finality on the
blockchain. Our solution is summarized in Figure 2.

It is worth recalling that users may later want to change
groups or effect an inter-group transaction. To do so, we
propose adding a new transaction type that can be inter-
preted by smart contracts. The main idea is to easily al-
low users to send/receive information or funds from one
group to another without having them to return to the
user’s address (or require additional transactions on the
mainnet). The information remains locked on the smart
contract during the entire process. This is particularly
important because it would provide the first opportunity
for applications to be deployed across multiple zk-rollups,
segmented by usage. In particular because depending on
the application, the validator may not want to charge fees
if their interest or the zk-rollup’s interest is not financial.

Thus, with this proposition, it is possible to create a
dedicated zk-rollup at low cost, easily and on-demand,
managed by the user who creates the group. Such a zk-

6



Figure 2: Several zk-rollups on the same smart contract.

rollup can be customized to meet privacy and manage-
ment needs. With our proposal, it is possible to: (i) ob-
tain the properties of the private blockchains we are in-
terested in while also maintaining the security of a pub-
lic blockchain, (ii) exchange information from one group
to another efficiently and without difficulty as only one
transaction, at a reduced cost, is required.

4. Evaluation Methodology

In order to demonstrate the feasibility of our proposi-
tion and to measure its impact on the performance of a zk-
rollup, we modified a pre-existing zk-rollup. We chose the
Ethereum blockchain since it currently hosts the major-

ity of zk-rollups and because it has the largest number of
users. At the same time, it is the most secure blockchain
among those that can interpret smart contracts. Among all
the zk-rollups we could rely on, we chose to use zkSync
v1[18] mainly because it is open source. In the following,
we present zkSync v1 in detail.

4.1. The zkSync’ zk-rollup

ZkSync v1 is a zk-rollup developed by Matter Labs al-
ready established on the Ethereum mainnet and its secu-
rity has already been tested 2. Their code is written in
Rust, already flexible and well segmented. As of Jan-
uary 25th, 2023, Matter Labs is a key player and its zk-
rollup has the lowest transaction fees on the Ethereum
blockchain after Loopring and have the third highest
locked-in value behind dYdX and Loopring (other zk-
rollups).

The zkSync zk-rollup is operated by several actors.
The validator collects formatted and signed transactions
from users through a server. It also manages a database
in which it stores all information about the status of the
rollups. One or more provers connect and retrieve the
list of zero-knowledge proof tasks from this database and
generate the aforementioned proofs. One or more gov-
ernors are responsible for the security of the smarts con-
tracts and name the validators. After a publication delay
and an agreement, they are able to update the smarts con-
tracts. Several other actors are responsible for specific
tasks on the zk-rollups, specifically, counterattacking the
potential presence of an untrustworthy validator, enabling
a complete customization of each role.

ZkSync v1 is based on the PLONK proof system [19]
which requires a trusted setup to generate keys (keys can
be use for any circuit). These keys can be generated via
the powers of tau ceremony [20] which is a multiparty
protocol. By using this protocol, it becomes possible to
generate false proofs only if the totality of the actors who
created the key are untrustworthy and coordinate their ac-
tions. This protocol ensures strong security.

ZkSync’s zk-rollup is based on two different circuits.
The first one proves that a batch of transactions, called
a block, has been executed in order to update the rollup
state. It takes the hash of the block as its public input and

2see https://docs.zksync.io/updates/security-audits/

7

https://docs.zksync.io/updates/security-audits/


Figure 3: Illustration of accounts representation used in zkSync v1.

outputs the new state of the rollup. The second circuit is
a recursive circuit that proves that several proofs from the
first circuit were correctly and successfully verified. Thus,
the verification is done indirectly as the blockchain will
then verify the proof that one or more proofs are correct
and that consequently the transactions of several blocks
were properly executed. For our proposal, the second cir-
cuit did not need to be modified. We therefore reused the
same trusted setup employed by zkSync to prove our new
circuit (presented later).

The accounts state in zkSync v1 is represented by a
single Merkle tree [14] of depth 64. The first 32 levels
store up to 232 different accounts. The leaves store the
nonce, the Ethereum address, the zkSync public key, and
the root of an account-specific Merkle tree of depth 32
that allows up to 232 different token-related amounts to be
stored. The first 231 are reserved for fungible tokens, i.e.
ETH and ERC20. The next 231 are for NFTs (Non Fungi-
ble Tokens). This structure is illustrated in fig 3. Thanks
to this, the transactions published on the blockchain can
be summarized by replacing the Ethereum addresses and
the tokens used by their respective indexes in the Merkle
tree. The update of the accounts state is a three-step pro-
cess. First the validator must commit one or more blocks
that they want to execute and transmit the summary of the
transactions to the blockchain. Afterwards, they send the
aggregated proof of one or more transaction blocks. The

smart contract checks the proof and verifies that the public
input used corresponds to the block that was committed
(through the hash of the block). In the third step, the val-
idator triggers the execution of one or more blocks so that
the on-chain operations can be executed (like withdrawals
for example).

Another important component is smart contracts’ pend-
ing balance on the smart contracts which is in fact the
amounts of money that users have locked in the smart
contract but which is not integrated into the zk-rollup
state. This is also where users’ funds are kept inside
smart contracts before they are withdrawn. In order to
submit batches of transactions, zkSync v1 splits blocks
into chunks which are packets of 10 bytes. The current
version of zkSync v1 supports 11 types of operations [18]
which are summarized in table 1.

4.2. Modifications
To implement our proposition, we added a group field

of 16 bits to all transactions natively present on zkSync
v1, enabling the creation of a maximum of 216 groups on
the smart contract. Thus, users sign the group ID indi-
rectly when they sign their transactions. This ID is not in-
serted into the blockchain when committing a block since
the verification of the correct group state update is ver-
ified via zero-knowledge proofs. To make sure that the
right validator handles the right group’s transactions, we

8



Transaction Type Size in Chunk Size in Bytes Effects
Deposit 6 45 Request to deposit ETH or ERC20 on the rollup.

TransferToNew 6 40 Funds transfer to a new zkSync address inside the rollup.
Withdraw 6 47 Withdrawal of ETH or ERC20 to the Pending Balance from rollup state.
Transfer 2 20 Funds transfer to a pre-existing address inside the rollup.
FullExit 11 85 Request from the blockchain to withdraw all funds to the pending balance.

ChangePubKey 6 49 Change or set zkSync address (public key).
ForcedExit 6 51 Request from the blockchain to withdraw locked account funds.
MintNFT 5 47 Minting of an NFT inside the rollup.

WithdrawNFT 10 95 Withdrawal of an NFT to the Pending Balance.
Swap 5 46 Swap of two tokens between two accounts inside the rollup.

Table 1: List of zkSync v1 supported operations

forced the validator, who provides the proof, to give their
group ID as a public input. By replacing the block hash
with the sum of the block hash and the validator group
ID inside the public input of the first verification circuit,
there is no longer any need to modify the second proof of
the aggregation circuit.

During the first proof, the validator also provides their
group ID as a secret input and can therefore manipulate
it. However, the proof subtracts this group ID from the
public input to obtain the hash of the block. Two things
are checked in the proof to ensure that the validator does
not manipulate the group it processes. The first is that
the group ID indicated by the validator allows the recon-
struction of the transaction that was signed for each user
resulting in correct transaction signature. And the second
is that the hash of all the transactions gives the same hash
as that of the public entry from which the group ID was
subtracted. This first proof ensures that the entire block
and all of its transactions are linked to the same group. To
bind the validator to a specific group and not let them add
another group’s block to their own group, we have linked
the validators’ Ethereum addresses to their group directly
via a mapping on the main smart contract. Thus, the
blockchain rebuilds the public entry itself from the block
hash specified during the commit and from the group de-
duced from the Ethereum address of the user calling the
smart contract (presumably the validator) when verifying
the proof.

Concretely, we have modified the smart contract to in-
clude a group structure and added several fields such as
a group identifier (or zk-rollup ID), a Boolean indicating
whether the group is permissioned or not, and a mapping

to manage a whitelist. Indeed, we propose only allow-
ing users who are not on the whitelist to withdraw funds
from the rollup, which ensures continuous management
without giving the validator the ability to freeze the funds
of removed users. In order to enable permissioned zk-
rollups, we have added a parameter indicating whether
the account is authorized or not into the database and a
function to add or remove an Ethereum address from the
whitelist into the smart contract. We have not dealt with
the case of validium in our implementation leaving it for
future work.

Finally, in order to facilitate transactions between two
distinct groups, we have created two new types of trans-
actions: ChangeGroup and FullChangeGroup, inspired by
Withdraw and FullExit (see Table 1). Both of these trans-
actions enable users to exit the zk-rollup and retrieve their
funds on the blockchain (in the first case, through the val-
idator, and in the second, through the blockchain). These
new transaction types enable users to do the same things
as Withdraw and FullExit directly to an existing group.
Thus, a user who wants to make an inter-group transaction
can perform a single transaction on their original group
instead of having to withdraw and then call the smart con-
tract to retrieve their funds from the pending balance be-
fore finally depositing them on the destination group. This
only requires knowledge of the destination group’s identi-
fier, reducing the risk of human error compared to several
smart contracts. These two new transaction types have
exactly the same structure as Withdraw and FullExit but
include the original group and destination group. In or-
der to be interpreted, modifications have been made to the
block execution and FullExit functions.

9



4.3. Setup and metrics
To measure the performance of our implementation, i.e.

the impact of the addition of a group structure and the new
transaction types on users, we focused primarily on the
measurement of gas costs before and after the modifica-
tion of several operations. The gas is a unit representing
the work that a node will have to do to execute a smart
contract, and therefore does not fluctuate with the price of
the token on the blockchain. We have used the Hardhat
local network to realize the gas measurements of transac-
tions and the main functions of the smart contracts. Ad-
ditionally, we compared the performance of our new op-
erations (i.e. their gas costs) to that of a user wanting to
change zk-rollups in a case where two zkSync v1 rollups
would be deployed at different addresses and on different
smart contracts.

We also measured the number of gates (which is used
to compare complexity) in the first zero-knowledge circuit
with its execution time. To compute the proofs, we used
a computer with an Intel Xeon Platinum 8164 CPU and
400GB of RAM. For the three phases of the rollup state
update, we measured the three functions: the block com-
mit, the block proof and the block execution individually
by varying both the size of the blocks (i.e. 26, 78, 182
and 390 chunks or 260, 780, 1820 and 3900 bytes) and
the number of proofs that are aggregated (i.e. 1, 4 and 8)
- and thus the number of blocks executed and committed
at the same time).

We have separated the costs of each transaction type
into six categories: commit base costs, prove base costs,
execution base costs, commit extra costs, execution extra
costs, and external costs. We have calculated the basic
costs of a transaction by relating the size of the operation
to the total cost of a fixed number of blocks of a given
size. For instance, if a transfer takes up 2% of the space
of a block, its basic cost is 2% of the cost of a block.
For the basic cost of a block, we measured the cost of
a block filled only with transactions of type Transfer be-
cause they do not trigger any on-chain operations during
execution. Note that, block commit overheads are related
to the collection of on-chain operations when committing
a block. Thus, an operation that will have to be executed
on the blockchain will need additional processing on the
smart contract as soon as the commit operation is per-
formed, generating an additional cost compared to an in-
ternal rollup operation. The same principle applies to the

extra costs of the execution function. Finally, the exter-
nal costs are costs payed by the user directly on-chain, for
example, to make a deposit by calling a smart contract.

Finally, our measurements have been made in a harmo-
nized way between commit, proof and execution: when
we aggregated 8 blocks, we also committed and executed
8 blocks when calling the functions. It is important to
note that these choices are flexible and that a validator
can choose an arbitrary number of aggregated blocks to
commit, a different number to prove and yet another to
execute.

4.4. Results

The addition of the two new operation types, the in-
clusion of the group in the transactions and the mod-
ification of the public input create almost no overhead
for the prover for the first circuit, the second circuit re-
maining unchanged. The size of the first circuit only in-
creases from 0.18% for the smallest blocks to 0.32% for
the largest blocks, and the difference in proof time is not
significant. These results are summarized in Table 2.

Block Chunk Size zkSync Our Proposition
26 8,526,701c 71s 8,542,124c 71s
78 16,908,690c 142s 16,952,713c 144s

182 33,672,019c 289s 33,773,242c 289s
390 67,185,536c 588s 67,401,159c 588s

Table 2: First circuit comparison (c mean constraints, s seconds).

Our measurements show that our proposal has a very
small negative impact on the execution cost of an indi-
vidual transaction when block size is the largest and the
number of aggregated proofs is the highest. In fact, in
these conditions, the cost of a deposit is only increased
by 3% for ERC20 and 2% for ETH, while the rest of the
transactions only see their costs increase by less than 1%.
However, the overall benefits of our new operations are
rather impressive as the ChangeGroup operation reduces
gas consumption by more than 49% for ETH and more
than 61% for ERC20. The gains are even more marked
when we consider that this operation allows the user to
reduce the number of actions required.

The base costs and the costs of the most used transac-
tions, described in the six categories above, are shown in
Figure 4. The other costs and respective resuts tables are

10



available with our implementation in our github reposi-
tory3. It is important to highlight that the cost of creating
a new zk-rollup, in addition to being simplified and cus-
tomizable, is drastically reduced with our proposal. In
fact, during the first deployment of the smart contracts,
our proposal leads to an additional cost of about 4%, go-
ing from 22,106,772 gas to 22,904,219 gas. However,
when we compare the cost of redeploying zkSync v1 with
the cost of creating a group with our proposal, costs are
reduced more than 99% from 22,106,772 gas (zkSync v1)
to 184,258 gas (ours).

5. Conclusion and future work perspectives

In this article, we propose an innovative design to pro-
vide an on-demand zk-rollup creation service. It is cus-
tomizable and can be used as a solution for applications
usually requiring a private blockchain while looking for
strong security and/or a pre-established community. We
propose allowing several zk-rollups to co-exist as groups
on the same smart contracts. At the same time, we pro-
pose a new type of transaction that allows simple and low-
cost transfers from one group to another. We implemented
and measured our propositions and concluded that they
did not significantly impact the proofs’ performances or
the costs of existing operations and drastically reduced
the costs of new operations introduced and the costs of de-
ployment of the smart contracts. The easy creation of zk-
rollups through smart contracts and via group partitioning
is highlighted by the reduction in the cost of setting up a
zk-rollup: by more than 99%.

However, until now, our implementation does not en-
able the creation of a group that would be a validium. This
implementation may be necessary and is left for future
work.Moreover, we have developed our implementation
over zkSync v1, and we believe it would be interesting
in the near future to apply it to a zkVM-compatible zk-
rollup, which can prove the execution of smart contracts
inside the zk-rollup. ZkSync’s zkEVM has recently been
made public and open source (unfortunately, just after the
end of our implementation).

3https://github.com/thomaslavaur/Modular-zk-Rollup-

On-Demand

Finally, many other questions deserve to be explored to
improve the speed of finality of zk-rollups. One example
is the study of the possibility of pooling the construction
of the aggregate proofs of several groups at the same
time. For instance, a group could commit and execute a
single block but only pay for one-eighth of the aggregated
proof of 8 blocks, sharing the cost among 8 groups. We
believe such an aggregation could reduce costs even
more.

This research did not receive any specific grant
from funding agencies in the public, commercial, or
not-for-profit sectors.

11

https://github.com/thomaslavaur/Modular-zk-Rollup-On-Demand
https://github.com/thomaslavaur/Modular-zk-Rollup-On-Demand


Figure 4: Costs of the main transaction types.

12



References

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic
cash system, Decentralized Business Review (2008)
21260.

[2] M. B. Mollah, J. Zhao, D. Niyato, K.-Y. Lam,
X. Zhang, A. M. Ghias, L. H. Koh, L. Yang,
Blockchain for future smart grid: A comprehensive
survey, IEEE Internet of Things Journal 8 (1) (2020)
18–43.

[3] J. Abou Jaoude, R. G. Saade, Blockchain
applications–usage in different domains, IEEE
Access 7 (2019) 45360–45381.

[4] A. S. Surya Viswanathan, The scalability
trilemma in blockchain, https://aakash-

111.medium.com/the-scalability-

trilemma-in-blockchain-75fb57f646df,
accessed: 2023-01-31 (2018).

[5] A. I. Sanka, R. C. Cheung, A systematic review
of blockchain scalability: Issues, solutions, analysis
and future research, Journal of Network and Com-
puter Applications 195 (2021) 103232.

[6] L. T. Thibault, T. Sarry, A. S. Hafid, Blockchain
scaling using rollups: A comprehensive survey,
IEEE Access (2022).

[7] T. Lavaur, J. Lacan, C. P. C. Chanel, Enabling
blockchain services for ioe with zk-rollups, Sensors
22 (17) (2022) 6493.

[8] E. Ben-Sasson, A Cambrian Explosion of Crypto
Proofs, https://nakamoto.com/cambrian-

explosion-of-crypto-proofs/, accessed:
2023-01-31 (2020).

[9] V. Buterin, et al., A next-generation smart contract
and decentralized application platformAccessed:
2023-01-31.

[10] G. Wood, et al., Ethereum: A secure decentralised
generalised transaction ledger, Ethereum project
yellow paper 151 (2014) (2014) 1–32.

[11] H. Guo, X. Yu, A survey on blockchain technology
and its security, Blockchain: Research and Applica-
tions 3 (2) (2022) 100067.

[12] M. Castro, B. Liskov, et al., Practical byzantine fault
tolerance, in: OsDI, Vol. 99, 1999, pp. 173–186.

[13] A. Back, M. Corallo, L. Dashjr, M. Friedenbach,
G. Maxwell, A. Miller, A. Poelstra, J. Timón,
P. Wuille, Enabling blockchain innovations with
pegged sidechainsAccessed: 2023-01-31 (2014).

[14] R. C. Merkle, A digital signature based on a con-
ventional encryption function, in: Conference on the
theory and application of cryptographic techniques,
Springer, 1987, pp. 369–378.

[15] S. Alqahtani, M. Demirbas, Bottlenecks in
blockchain consensus protocols, in: 2021 IEEE
International Conference on Omni-Layer Intelligent
Systems (COINS), IEEE, 2021, pp. 1–8.

[16] V. Buterin, A rollup-centric ethereum roadmap,
https://ethereum-magicians.org/t/a-

rollup-centric-ethereum-roadmap/4698,
accessed: 2023-01-31 (2020).

[17] Starkware, Fractal scaling: From l2 to l3,
https://medium.com/starkware/fractal-

scaling-from-l2-to-l3-7fe238ecfb4f,
accessed: 2023-01-31 (2021).

[18] Matter Labs, zksync: scaling and privacy engine for
ethereum, https://github.com/matter-labs/

zksync, accessed: 2023-01-31 (2018).

[19] A. Gabizon, Z. J. Williamson, O. Ciobotaru, Plonk:
Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge, Cryptology
ePrint Archive (2019).

[20] S. Bowe, A. Gabizon, I. Miers, Scalable Multi-party
Computation for zk-SNARK Parameters in the Ran-
dom Beacon Model, Cryptology ePrint Archive, Re-
port 2017/1050, accessed: 2023-01-31 (2017).

13

https://aakash-111.medium.com/the-scalability-trilemma-in-blockchain-75fb57f646df
https://aakash-111.medium.com/the-scalability-trilemma-in-blockchain-75fb57f646df
https://aakash-111.medium.com/the-scalability-trilemma-in-blockchain-75fb57f646df
https://nakamoto.com/cambrian-explosion-of-crypto-proofs/
https://nakamoto.com/cambrian-explosion-of-crypto-proofs/
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://medium.com/starkware/fractal-scaling-from-l2-to-l3-7fe238ecfb4f
https://medium.com/starkware/fractal-scaling-from-l2-to-l3-7fe238ecfb4f
https://github.com/matter-labs/zksync
https://github.com/matter-labs/zksync

	Introduction
	Background
	Blockchains
	Sidechains
	Rollups
	Optimistic rollups
	Zk-rollups
	Validium


	Proposition
	Motivations
	Modular zk-rollup on-demand


	Evaluation Methodology
	The zkSync' zk-rollup
	Modifications
	Setup and metrics
	Results

	Conclusion and future work perspectives

