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Abstract

Multi-access Edge Computing (MEC) is an enabling technology to leverage
new network applications, such as virtual/augmented reality, by providing
faster task processing at the network edge. This is done by deploying servers
closer to the end users to run the network applications. These applications
are often intensive in terms of task processing, memory usage, and commu-
nication; thus mobile devices may take a long time or even not be able to
run them efficiently. By transferring (offloading) the execution of these ap-
plications to the servers at the network edge, it is possible to achieve a lower
completion time (makespan) and meet application requirements. However,
offloading multiple entire applications to the edge server can overwhelm its
hardware and communication channel, as well as underutilize the mobile de-
vices’ hardware. In this paper, network applications are modeled as Directed
Acyclic Graphs (DAGs) and partitioned into tasks, and only part of these
tasks are offloaded to the edge server. This is the DAG application partition-
ing and offloading problem, which is known to be NP-hard. To approximate
its solution, this paper proposes the FlexDO algorithm. FlexDO combines a
greedy phase with a permutation phase to find a set of offloading decisions,
and then chooses the one that achieves the shortest makespan. FlexDO is
compared with a proposal from the literature and two baseline decisions,
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considering realistic DAG applications extracted from the Alibaba Cluster
Trace Program. Results show that FlexDO is consistently only 3.9% to 8.9%
above the optimal makespan in all test scenarios, which include different
levels of CPU availability, a multi-user case, and different communication
channel transmission rates. FlexDO outperforms both baseline solutions by
a wide margin, and is three times closer to the optimal makespan than its
competitor.

Keywords: Multi-access Edge Computing, DAG applications, Offloading

1. Introduction

The rise of new network applications and services in recent years, such
as mobile social networks (Hu et al., 2015; Huang et al., 2017), live video
streaming (Aliyu et al., 2018; Yaqoob et al., 2020; Jedari et al., 2021), and the
metaverse (Wang et al., 2023), for example, imposes increasingly demanding
communication and computing requirements on user devices in order to pro-
vide a fully connected, immersive, and low-latency experience (Parvez et al.,
2018). These stringent processing, memory, and bandwidth requirements are
in general not met by the mobile devices that run those applications.

Even where user devices, such as smartphones and tablets, are capable
of running such applications, this can come at great cost: having a time-
consuming execution, slowing down the response time to user commands,
heating up the device, and depleting the battery (Wu et al., 2018). One
possible solution to this problem is to transfer (offload) the applications to
a high-end server at the network core (Salaht et al., 2020), away from the
end user. However, latency-sensitive applications can suffer from long trans-
mission times if the server is located too far, resulting in a low quality of
experience (Mao et al., 2017).

An additional problem with relying on central cloud servers is the ever-
increasing computing and communication demands of applications. The more
stringent their requirements and the number of mobile users running them,
the greater the burden on the current network infrastructure and existing
servers. Cisco (2020) estimated that nearly 300 million mobile applications
will be downloaded by the end of 2023, including social media, business, and
gaming. Also according to Cisco (2020), there will be over 13 billion mobile
devices and connections by year end. The high number of mobile users de-
manding applications and data transmissions from/to cloud servers imposes
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a real challenge in terms of bandwidth availability, transmission times, and
end-to-end delay, which are critical for latency-sensitive applications (Salaht
et al., 2020).

Multi-access Edge Computing (MEC) is thus key to enable the upcom-
ing demand for new applications and services (Shi et al., 2016; Mao et al.,
2017). MEC is a networking paradigm that brings part of the computational
(memory, CPU) and transmission resources available in high-end servers at
the network core, such as cloud data centers, to edge servers located at the
network edge, usually connected to access points and close to the user (Shi
et al., 2016). However, if there are many users fully depending on a single
edge server, this may slow down the edge server and yield poor results in
terms of reducing the completion time, also called makespan, of a latency-
sensitive application.

To lighten the load on the edge server, it is possible to use it more effi-
ciently, letting the mobile devices run parts of the applications. Since network
applications are in general not monolithic and can be characterized as a set
of multiple processing parts, called tasks, they are often described as Di-
rected Acyclic Graphs (DAGs) (Jia et al., 2014) and task computation can
be divided between mobile device and edge server. When a task runs on an
edge server, it is said to have been offloaded to that server. This is a known
research problem in MEC (Lin et al., 2020), called the DAG Application
Partitioning and Offloading (DAPO) problem.

Many articles have already addressed this problem (Jia et al., 2014; Wang
et al., 2016; Guo et al., 2019). However, there still remain three under-
explored problems in the literature. First, CPU limitations on both mobile
and edge devices, bandwidth sharing in data transmission, and task depen-
dencies are often neglected (Salaht et al., 2020). Second, realistic data for
DAG applications with more complex structures (Zhang et al., 2013) includ-
ing more than a dozen tasks (Yang et al., 2020; An et al., 2022) are rarely
found in the literature, and even the proposed solutions found in the liter-
ature fit only specific scenarios (Salaht et al., 2020). Finally, the so-called
one-climb policy (Zhang et al., 2012; Yang et al., 2016; An et al., 2022) is
always taken as being true. This policy says that the optimal offloading
decision should never have non-offloaded tasks between offloaded tasks. In
this paper, and to the best of our knowledge for the first time, this policy is
shown to be not necessarily true.

This paper proposes the Flexible DAG Offloading (FlexDO) algorithm.
FlexDO generates a reduced set of offloading decisions, each specifying which
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device processes each task of a DAG application. The offloading decisions are
generated by combining two steps. In the first, a greedy approach is followed
to offload some tasks. To do this, FlexDO avoids transmitting large amounts
of data by offloading tasks in pairs, since there is no transmission when two
tasks run on the same device. In the second step, all possible offloading
decisions of the remaining tasks are generated and the one resulting in the
shortest makespan for the DAG application is selected.

The main contributions of this paper are as follows.

• The DAPO problem is formulated taking into account CPU and chan-
nel bandwidth sharing to calculate makespan.

• The one-climb policy is shown not to be a requirement for the optimal
offloading decision on general DAGs, contrary to the common belief
expressed in the literature. In fact, our results show that about 17% of
optimal decisions for over a thousand DAG applications do not support
this belief.

• The FlexDO heuristic is introduced to efficiently solve the problem by
providing an offloading decision in reasonable time and reducing ap-
plication makespan. Our results show that FlexDO achieves makespan
values only 3.9% to 8.9% above the optimal in all test scenarios, which
include single-user and multi-user cases, as well as multiple transmis-
sion data rates.

• Over a thousand realistic DAG applications are extracted from the
Alibaba cluster trace and used to compare the performance of FlexDO
with two baseline solutions and the main competitor from the literature.
FlexDO outperforms all of them.

The remainder of this paper is organized as follows. Section 2 presents
the state of the art of task offloading in MEC. In Section 3, the DAPO prob-
lem is defined. Section 4 discusses the proposed FlexDO heuristic solution.
Section 5 shows how realistic DAG applications are obtained for experimen-
tation and their composition. Our results are discussed in Section 6. Finally,
Section 7 concludes this paper.
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2. Related work

Efficiently distributing the execution of computational tasks across dif-
ferent devices is a common concern in many computing systems (Lee et al.,
2013; Zhang et al., 2013; Yu, 2016; Zhang et al., 2019). Regarding edge
computing, challenges arise within the DAPO problem, such as complex ap-
plication structure, application partitioning (Lin et al., 2020), shortage of
computing resources in mobile and edge devices, and highly dynamic trans-
mission conditions (Shi et al., 2016). Many surveys have already reviewed
general aspects of application offloading in the Internet of Things (IoT), as
well as in multi-access edge and cloud computing (Dinh et al., 2013; Fernando
et al., 2013; Khan et al., 2014; Yi et al., 2015; Mach and Becvar, 2017; Mao
et al., 2017; Abbas et al., 2018; Parvez et al., 2018; Roman et al., 2018; Lin
et al., 2020; Shakarami et al., 2020; Feng et al., 2022).

Kuang et al. (2019) use Lagrangian decomposition and convex optimiza-
tion to jointly reduce energy consumption and execution delay in the of-
floading problem for MEC applications. Liao et al. (2021) propose a genetic
algorithm for application offloading in a MEC-enabled ultra-dense cellular
network, allowing applications to be offloaded and queued in a remote base
station for sequential-only processing in order to reduce completion time and
energy consumption. Wang et al. (2016) investigate optimization techniques
in a computation offloading problem to minimize both completion time and
energy consumption, exploring dynamic voltage and frequency scaling to
lower the energy consumption of mobile devices. However, these works do
not consider the partitioning of applications into smaller components (Kuang
et al., 2019; Liao et al., 2021). Applications are offloaded in their entirety
and this coarser granularity can burden the mobile device or edge server with
full application executions. Even when partial offloading is considered, this
is done by dividing the application into a number of bytes to be processed
on the mobile device and the remainder to be processed on the edge server
(as in Wang et al., 2016), but application partitioning cannot be done at
any point (Mao et al., 2017), due to the structure of its internal components
(tasks), state variables, and memory usage.

The following papers consider application partitioning into tasks and the
data transmission between them in the offloading problem. An et al. (2022)
address the offloading of sequential DAG applications and resource allocation
in a MEC-assisted IoT system, reducing both the energy consumption of IoT
devices and makespan under different channel conditions. Duan and Wu
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(2021) propose an optimal partitioning decision for tree-based Deep Neural
Networks (DNN) modeled as DAGs, to reduce DNN inference time of IoT
applications. Jia et al. (2014) propose an offloading algorithm for sequential-
only or parallel-only DAG applications, exploring data transmission load
balancing in a mobile cloud scenario to reduce application makespan. These
publications are among those that rely on overly simplified DAG structures:
sequential and parallel tasks in Zhang et al. (2013); Jia et al. (2014); Duan
and Wu (2021), DAG applications with only a few tasks (e.g., ten tasks
in An et al., 2022), and purely synthetic DAGs related to no real application
in Yang et al. (2020).

Guo et al. (2019) extend the prior work in Guo et al. (2018) and is the
main related work regarding the scope of the present paper, as the authors
consider real-world DAG applications, CPU shortage, and communication
channel capacity in the DAPO problem. They formulate a Mixed Integer
Linear Programming (MILP) problem to offload DAG applications in a MEC
scenario. Then a congestion-aware heuristic is provided to solve this prob-
lem in reasonable time. Transmissions are scheduled on a First In, First
Out (FIFO) basis and upcoming transmissions may be delayed in order to
avoid parallelism in multi-user scenarios. A CPU assignment scheme is also
provided, with task processing being allowed only if there are CPUs available.

Despite the contributions in Guo et al. (2019), CPU shortage is accounted
for only on the edge server, thus assuming that mobile devices always have
more CPUs than executable tasks at any moment. Another issue is that
their algorithm gives up trying to offload when, at some point, the calculated
makespan is greater than the makespan of the solution that runs entirely on
the mobile device (without offloading). This can hinder the efficiency of their
algorithm, because makespan reduction is not always monotonic.

This paper aims to solve the DAPO problem while considering the de-
pendencies between tasks, the limitations of channel capacity for parallel
transmissions, and the limitations of concurrent task processing with scarce
CPUs. This is done in order to reduce the completion time (makespan) of
real DAG applications taken from a data set with more complex structures
than those found in the literature.

3. Problem definition

The MEC system model in this paper is described by Fig. 1, which de-
picts a single-user scenario. Applications run on end-user mobile devices,
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Fig. 1. MEC system model in the DAPO problem.

such as smartphones. These applications can be of any nature (Parvez et al.,
2018), such as video streaming, augmented reality, virtual reality, e-health,
e-learning, etc. Furthermore, applications can be partitioned into tasks, se-
quential or parallel, which are individual pieces of code to be executed on
the mobile device or sent for remote processing on a nearby server at the
network edge. Here it is assumed that both the mobile device and the edge
server are capable of fully executing the applications.

Data transmission uses the wireless radio channel between the mobile
device and the edge server. Still referring to Fig. 1, the application in the
example has six tasks, and a possible offloading decision is shown. Tasks 2, 3
and 4 are offloaded to the edge server, while tasks 0, 1 and 5 remain assigned
to the mobile device for local processing. Data transmissions are performed
whenever task processing is offloaded and can occur from mobile device to
edge server or in the opposite direction. The data transmitted correspond
to the input parameters required to run a task, such as variables, which are
passed from a preceding task to a succeeding task.

3.1. DAG application
Applications can be described as DAGs G(V,E), where vertex set V is

the set of tasks and directed-edge set E is the set of data transmissions
(dependencies) between tasks. A task i ∈ V can run on either the mobile
device or the edge server. The number of parallel tasks that can be executed
concomitantly, either on the mobile device or on the edge server, is not
limited by the number of CPUs of each device. It is up to the scheduler of
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each machine to allocate CPUs, as the tasks can share the same CPU, which
means that a CPU does not necessarily run the same task 100% of the time.
Also, with each task i a binary offloading decision oi is associated, where
oi = 0 represents task execution on the mobile device and oi = 1 represents
execution on the edge server. The set {oi,∀i ∈ V } is the offloading decision
D for this application. Since a task is considered an indivisible part of an
application, its processing cannot be interrupted and then migrated from one
device to the other: a task must run entirely on the mobile device or on the
edge server. In the same way, it is not possible to run a task on two or more
CPUs at the same time to speed up processing.

An edge (i, j) ∈ E indicates that the data passed from task i to task j are
input parameters necessary for the execution of task j. A task can only start
being executed if all data from all its incoming edges are received. In the
case of multiple outgoing edges, as soon as a task i finishes its processing, it
starts transmitting in parallel the corresponding data for each of those edges,
requiring bandwidth sharing of the communication channel.

For the sake of simplicity, two assumptions are made. First, data trans-
missions cannot be interrupted and always finish successfully. Second, it is
assumed that the underlying undirected graph is connected, and that there
is only one task with no incoming edges (known as the initial task) and only
one without outgoing edges (known as the ending task). These two tasks
represent application start-up and result consumption. Both run necessarily
on the end user’s mobile device, as the application is started by the mobile
device and the result of executing the application must be returned to it (Shu
et al., 2017). Thus, neither the initial nor the ending task can be offloaded.
Since the offloading decisions for these two tasks are already made in ad-
vance, the outgoing edges from the initial task and the incoming edges to the
ending task are called anchors. The set of anchors is a subset of E.

Considering an application with N offloadable tasks, tasks t0 and tN+1 are
the initial and ending tasks, respectively. Application makespan is the total
time elapsed from the beginning of t0 to the end of tN+1, when all tasks are
done processing and there is no ongoing data transmission. Task processing
times and data transmission times are defined next.

3.2. Task processing time
Task processing time is given by the time it takes a task to be fully

executed on a single CPU. However, it may take longer if its allocated CPU
is shared with other tasks. In fact, both the mobile device and the edge

8



server can host more tasks running in parallel than their number of CPUs.
A new task starts processing immediately after receiving all data from all its
incoming edges, regardless of the number of tasks already running. It is up
to the task scheduler to run them evenly.

When a task is allocated to a single CPU without sharing it with other
tasks, the processing time of task i is given by

ti =
n

fc
, (1)

where n is the task’s number of operations, f is the clock speed (in cy-
cles/second), and c is the CPU’s computing capacity (in operations/cycle).
However, by assuming CPU sharing, the processing time of a task increases
as other tasks start running on the same CPU. If there are u CPUs on a
device, up to u tasks can run in parallel without any sharing (100% CPU
occupancy for each task). As soon as a new task starts, all running tasks
receive only a fraction of a CPU, extending their remaining processing time
by the factor (u+ 1)/u, as there are more tasks than CPUs available. Like-
wise, when a task finishes processing, each remaining task receives back a
larger fraction of CPU occupancy, up to the maximum value of 100%, which
implies no more CPU sharing. Here, this instantaneous fraction is called a
CPU scale factor kp, defined by

kp = max
{
1,

p

u

}
, (2)

where p is the number of tasks currently running in parallel. Since a task
can never be sped up by using more than one CPU, kp can never be less than
1, which means that the processing time given by Eq. (1) is also the task’s
minimal completion time.

Taking Eq. (2) into account, the remaining processing time for ti, denoted
by ∆ti, is updated whenever the CPU scale factor varies (that is, a new task
starts/finishes running on that device) and the task receives a smaller/larger
CPU share. The new value for the remaining processing time ∆t′i is given by

∆t′i =
∆tik

′
p

kp
, (3)

where kp represents the previous CPU scale factor, and k′
p is the new one.

Having k′
p > kp means that a new task has begun running on that device;

k′
p < kp means a task has ended.
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It is worth noting that, as the number of tasks running on each device
varies, the processing time for a task on the mobile device can become lower
than that on the edge server due to their CPU scale factors, even if the edge
server has a more powerful hardware. Thus, offloading tasks to the edge
server whenever possible may result in a longer makespan.

3.3. Data transmission time
The wireless radio channel transmission rate (in bytes/second) is denoted

by r and assumed to be the same for both uplink and downlink transmissions.
Each edge (i, j) carries di,j bytes from task i to task j. Thus, if there is no
other ongoing transmission, the corresponding transmission time Ti,j is given
by

Ti,j =
di,j
r
. (4)

However, by assuming a shared communication channel, multiple ongoing
transmissions can take place. Channel bandwidth is shared evenly among the
number of current data transmissions kt, meaning all transmissions have the
same priority. Whenever a new transmission starts or a previous transmission
ends, the remaining time for all di,j bytes to be transmitted, denoted by ∆Ti,j,
is updated. The new value for the remaining time ∆T ′

i,j is given by

∆T ′
i,j =

∆Ti,jk
′
t

kt
, (5)

where k′
t = kt− 1 if a transmission has ended or k′

t = kt + 1 if a new one has
started.

4. Heuristic approach

Providing an optimal solution to the DAPO problem in MEC is known to
be difficult (Shu et al., 2017). Decisions based on integer linear optimization
are present in the literature and they are proved to be NP-hard (Mao et al.,
2017; Feng et al., 2022). All known exact approaches are therefore excessively
time-consuming (Lin et al., 2020), so a heuristic is needed.

4.1. Overview
The following list summarizes the key observations underlying the design

of FlexDO.
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• Makespan reduction does not occur monotonically as more tasks are
offloaded. Some offloading decisions, each one specifying where to run
each task of a DAG application, can provide worse results than having
no offloading at all. Even if offloading a task can shorten its processing
time, this shortening can be offset by the time to transmit data from/to
the task in question. For this reason, the proposed algorithm generates
a set of offloading decisions, and tests each of them to select the one
that results in the shortest makespan. As such, it does not rely on
the last decision generated or on the decision that offloads the largest
number of tasks.

• Some tasks are more relevant to makespan reduction than others, that
is, the time difference (gain) between running a task locally or on the
edge server varies from task to task in a DAG.

• Transmission times tend to weigh more heavily on makespan than pro-
cessing times, but they can be canceled out. Task processing time only
increases when there are more tasks than CPUs available (implying
CPU sharing). However, as few as two transmissions in parallel are
already enough for each one to have access to only half the available
bandwidth (evenly shared), hence longer transmissions should probably
be avoided by offloading the task pairs involved.

• The one-climb policy is not an absolute truth for the optimal offloading
decision on a general DAG.

The one-climb policy is a recurring assumption in the literature (Zhang
et al., 2012, 2013; Jia et al., 2014; Mao et al., 2017; Guo et al., 2019; Yan
et al., 2020). This policy is based on the notion of a discontinuous offloading
decision for a DAG application. If D is such a decision, then there exists
at least one path in the DAG along which at least two tasks are marked for
offloading by D while at least one other lying between them is not. That
is, task processing goes down to the mobile device and up again to the edge
server within that path. The one-climb policy states that, if D is a discon-
tinuous offloading decision, then there will always be at least one continuous
offloading decision D′ resulting in a lower application makespan than D.
Decision D′, therefore, has at most one uplink transmission and one down-
link transmission on every path in the DAG. Its proof for sequential DAG
applications can be found in Yang et al. (2016).
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Although the one-climb policy does hold for linear DAGs, in the general
case it does not because of CPU limitations on the edge server and paral-
lelism. It is possible for an edge server to be overloaded to the point where
it is faster to process the task on the mobile device. Furthermore, when an
offloading decision is forced to become continuous, it may require new data
transmissions involving the tasks that were thus offloaded. These additional
data transmissions can have an impact on the makespan.

One of the DAG applications from the data set used in this paper is
shown in Fig. 2. Tasks in blue are the ones that should be offloaded to the
edge server in the optimal offloading decision, which results in a makespan
of 139.17 s. However, there is a discontinuity in a single DAG path, high-
lighted in red in the figure. When offloading task 17, the offloading decision
becomes continuous, complying with the one-climb policy and canceling the
transmission time of edges (11, 17) and (17, 18). However, this reduction
negatively affects the total makespan of the DAG application, as it now per-
forms the data transmissions on edges (6, 17), (7, 17), (8, 17), (9, 17), (12,
17), (13, 17), (14, 17), (15, 17), (17, 19), and (17, 21). The makespan of
this continuous solution is 237.04 s, a deterioration of 70% in relation to the
optimal decision. Thus, a discontinuous offloading scheme is not necessarily
a bad decision. In fact, the results in Section 6 show that around 17% of the
optimal decisions for our data violate the one-climb policy.

4.2. FlexDO
FlexDO generates a small set of offloading decisions to reduce the makespan

of an application, beginning with the decision to offload no tasks and in the
end testing each decision and choosing the one that provides the shortest
makespan. This is done in two phases. In the first phase, it greedily searches
for the edge with the longest data transmission time and offloads its two end
tasks to obviate the data transmission between them. An important detail
here is that if an edge shares an end task with an anchor, the transmission
time with which it participates in this first phase is its original transmis-
sion time minus that of the anchors. This process continues on to the next
edge with longest transmission time, now prioritizing edges with an end task
already marked for offloading. If no edges remain connecting an offloaded
task to a non-offloaded task, the edge with the longest transmission time is
selected. As each new edge is selected in this sequence, it joins the previous
ones in forming another offloading decision for later consideration.
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Fig. 2. Implications of the one-climb policy for general DAGs.

For a DAG application with N tasks, the first phase continues until sI
tasks have been marked for offloading, where sI < N is an input parame-
ter. The second phase of FlexDO will then generate all 2sII possibilities of
offloading decisions for the remaining sII = N − sI tasks, while keeping the
offloading marks from the first phase. After the second phase, FlexDO cal-
culates the makespan associated with each decision and selects the one that
results in the shortest makespan.

An example of how the FlexDO heuristic works is shown in Fig. 3. White
tasks are marked to run on the mobile device and blue tasks to be offloaded
to the edge server. Since the first and the last tasks always run on the mobile
device and cannot be offloaded, they are grayed out. This example is for a
DAG application with 12 offloadable tasks and sI = 8; that is, the first phase
lasts until 8 tasks have been marked to be offloaded.

The first offloading decision generated by FlexDO (D1) is the No Offload-
ing decision. Now suppose edge (5, 9) has a transmission time of 80 s, the
largest in the application. Since task 9 is anchored to task 13, the trans-
mission time of edge (9, 13) must be subtracted from that of edge (5, 9). If
data transmission on edge (9, 13) takes 12 s, then the time associated with
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(a) A general DAG application.

(b) Offloading decisions generated in each phase.

Fig. 3. An example of how FlexDO operates.
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edge (5, 9) for FlexDO operation is 68 s. Assuming this is still the most
time-consuming transmission over all edges, tasks 5 and 9 are both marked
for offloading (D2). Now the only available edge connected to tasks 5 or 9
is edge (2, 5), resulting in task 2 being marked for offloading (D3). From
this point on, assume the first phase generates four more decisions (D4–D7),
marking tasks 4, 10, 11, 8, and 3 for offloading.

At this point, FlexDO takes on its second phase and generates additional
24 = 16 other offloading decisions in regard to tasks 1, 6, 7, and 12. First-
phase D7 is one of them, so only 15 are actually generated. The makespan
of each of D1–D22 is calculated, and the one yielding the shortest makespan
is output by FlexDO.

Note that it is possible that there are not enough edges to go through
in the first phase until the threshold sI is reached. This happens when the
DAG has many tasks associated only with anchor edges, as in the case of
task 1 in the example. When this happens, an offloading gain is calculated
for each task not yet marked for offloading, given by

Gk = tmk − tek −
∑

(i,j)∈E|
k∈{i,j}

Ti,j (6)

for task k, where tmk and tek are the processing times of task k on the mobile
device and on the edge server, respectively, and Ti,j is the transmission time
of edge (i, j), provided k = i or k = j. Then, tasks are marked for offloading,
from the highest gain to the lowest, which generates additional offloading
decisions, until the threshold sI is reached and the second phase begins.
Pseudocode for FlexDO is given in Algorithm 1.

4.3. Computational complexity
The time complexity of Algorithm 1 can be broken up into four compo-

nents.

1. The sorting of edges (by transmission times) and vertices (by gains),
which is implicitly assumed. Considering that |L| is O(N2), all the
necessary sorting can be done in O(N2 logN) time.

2. The loops in lines 6 and 14, taken together, iterate sI = O(N) times,
each iteration requiring O(1) time to complete.

3. The loop in line 18, which iterates 2N−sI times, spends O(N) in each
iteration. For N − sI = O(logN), as in Section 6, this loop spends
O(N2) time.
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Algorithm 1: FlexDO.
1 let L be the set of non-anchor edges in E
2 for (i, j) ∈ L do
3 decrease Ti,j by every Tu,v such that (u, v) ∈ E \ L with u ∈ {i, j} or

v ∈ {i, j}
4 let D be the offloading decision in which no task is marked for offloading
5 D ← {D}
6 while L ̸= ∅ and fewer than sI tasks are marked for offloading in D do
7 if there exists (i, j) ∈ L such that ℓ is the only task in {i, j} not marked

for offloading in D then
8 mark ℓ for offloading in D, provided Ti,j is longest over all such edges
9 else

10 mark both i and j for offloading in D, provided Ti,j is longest over L
11 D ← D ∪ {D}
12 L← L \ {(i, j)}
13 let P be the set of tasks not marked for offloading in D
14 while fewer than sI tasks are marked for offloading in D do
15 mark task k for offloading in D, provided Gk is greatest over P
16 D ← D ∪ {D}
17 P ← P \ {k}
18 for each of the 2sII possible joint markings for offloading of the sII tasks not

marked for offloading in D do
19 D′ ← D
20 mark the sII tasks for offloading in D′ according to the joint marking being

considered
21 D ← D ∪ {D′}
22 return the decision of shortest makespan in D

4. The makespan calculations in line 22, one for each of N offloading
decisions, can be carried out for each decision as follows. Traverse
the DAG breadth-first, in O(N2) time, and build a length-O(N2) event
queue along the way. The events in this queue are the intertwined start
and stop events of task executions and data transmissions. Sorting this
queue by those events’ time tags in ascending order in O(N2 logN)
time, and then processing it in O(N2) time, yields the DAG’s makespan.
Overall, O(N3 logN) time is needed.

Adding up all four contributions yields an O(N3 logN) time complex-
ity, which is slightly higher than the O(N3) reported for HOA (Guo et al.,
2019). Of course, for DAGs with |L| = O(N logN) this gets reduced to
O(N2 log2N), and for |L| = O(N) it goes further down to O(N2 logN).
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5. Data analysis

FlexDO was developed to perform independently of DAG topology, based
on realistic data. Most recent works deal with sequential (Ning et al.,
2019; Wang et al., 2021), tree-based (Duan and Wu, 2021), or fan-in/fan-
out DAGs (Mahmoodi et al., 2019; Mazouzi et al., 2019). Others do not
even consider dependencies between the tasks of an application, targeting
instead other aspects of the DAPO problem (Tran and Pompili, 2019; Peng
et al., 2021), such as atomic tasks modeled as sequences of bits submitted in
batch.

For the present study, the DAG applications were extracted from the Al-
ibaba Cluster Trace Program from 2018.1 This data set contains information
from batch job tasks for millions of DAG applications submitted to a cluster
of more than 4 000 machines.

5.1. Data set description
The data set describes its DAG applications in two files, one for the

applications, which includes DAG topology, and another for instances, which
have the internal specification of the tasks. These files contain information
about memory size, percentage CPU utilization, start time, and end time of
each instance, for example. As the instances are part of a task (i.e., a DAG
vertex), and further details about their inner dependencies are omitted from
the data set files, we summarize all instances for a given task as a single
instance of processing time given by the average time of all instances.

Exact CPU and memory performance figures are also missing from the
data set, but hardware information can be assumed based on Alibaba Cloud’s
instance family SCCG5, a general-purpose supercomputing cluster.2 Table 1
shows the values used in this paper. Additional information about floating-
point operations (FLOPs) per cycle is available in Dolbeau (2018).

Although there is information about how much memory is used by each
task, it is not possible to infer from the data set how many bits are passed
in data transmissions between tasks. Thus, here it is assumed that the to-
tal amount of data passed on all edges incoming to a given task is chosen
randomly up to the total size of the data structure used by that task.

1 https://github.com/alibaba/clusterdata
2 https://www.alibabacloud.com/help/en/doc-detail/25378.htm#sccg5
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Table 1: Hardware information for SCCG5 machines.

CPU architecture Clock No. of CPUs RAM FLOPs/cycle*

Intel Xeon Platinum 8163 2.5 GHz 48 384 GiB 32
* https://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%208163.html

5.2. DAG preparation
The Alibaba data set contains more than 4 million DAG applications.

We selected 1 322 of them from different parts of the data set, searching it
while abiding by the following criteria.

• Include DAGs that have 18 to 28 tasks. The lower bound removes
DAGs with overly simple topologies and the upper bound is applied so
that it is still reasonable to find the optimal offloading decision through
exhaustive enumeration.

• Remove DAGs with incomplete topology information.

• Remove DAGs without memory or CPU usage information.

• Keep only DAGs that have run successfully to completion.

• Interrupt the search after it has run for an hour.

Knowing that the data set includes DAG applications running on Alibaba
clusters, it is reasonable to assume that these DAGs were submitted by users
and that the results were returned to them. Thus, after obtaining the 1 322
DAGs, two tasks are added to each DAG to mimic the behavior of an appli-
cation running on a mobile device. An initial task is connected to the tasks
that do not have incoming edges, and an ending task is connected to those
that do not have outgoing edges, as shown in Fig. 4. Neither task can be
offloaded, hence they are both assigned zero processing time (any nonneg-
ative constant would do here, as it affects the makespan of every DAG by
the same amount). Their transmission times are generated as described in
Section 5.1.

5.3. DAG properties
In addition to having realistic DAG applications, it is also important that

DAGs be diverse in their structure, as the FlexDO heuristic is expected to
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Fig. 4. Addition of the two extra tasks and their associated edges (in blue).

perform well in any scenario. Figure 5 shows how the DAG applications are
distributed according to number of vertices, number of edges, and density.
Density varies between 0, when a graph has no edges, and 1, when there is
an edge for each of the N(N−1)

2
unordered pair of vertices.

As can be seen in the figure, the most common value of N is 23, which
amounts to a little less than 25% of all DAGs. The remaining 75% are
spread out less unevenly. As for the DAGs’ numbers of edges and densities,
these seem to thin out at the lower and higher values. This is reasonable, as
these extremes generally bespeak little structured DAG: too few dependencies
among tasks in the former case, too many in the latter.

6. Results

To evaluate the performance of FlexDO, three scenarios are used. The
first scenario considers the variation in the number of CPUs available on
the mobile device. The second considers this variation on the edge server.
The third considers different transmission rates for the shared communication
channel. In each of these scenarios, FlexDO is tested for three different values
of sII , namely, sII ∈ {0, log2N, log2N

2}, following sII = N−sI . These values
for sII generate 1, N , or N2 additional offloading decisions, respectively, in
the second phase of Algorithm 1. Throughout these experiments, FlexDO is
compared with the Heuristic Offloading Algorithm (HOA) from Guo et al.
(2019), and with two baseline strategies (Full Offloading and No Offloading).

HOA always assumes an unlimited number of CPUs on the mobile device.
If all CPUs on the edge server are busy, new tasks are queued until a CPU
becomes available, rather than sharing CPUs with the tasks already running.
Also, HOA does not perform more than one data transmission at a time,
scheduling transmissions according to a FIFO scheme. These differences
between the model underlying FlexDO and that underlying HOA imply that
optimal decisions can be different for the same DAG. We follow Guo et al.
(2019) faithfully as far as implementing and evaluating HOA are concerned.
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Fig. 5. Distributions of DAG properties.
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Table 2: Hardware information for the mobile device and the edge server.

Type CPU architecture Clock No. of CPUs FLOPs/cycle*

Mobile device** Qualcomm Snapdragon 865 1x2.84, 3x2.42, 4x1.8 GHz 8 8
Edge server*** Intel Xeon D-2100 2.0 GHz 16 32

* https://en.wikichip.org/wiki/flops#x86
** https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-
8-series-mobile-platforms/snapdragon-865-5g-mobile-platform
*** https://www.intel.com/content/www/us/en/products/docs/processors/xeon/d-2100
-brief.html

For the sake of fairness, results are therefore presented in terms of the
relative difference between the heuristic makespan Mheur and the optimal
makespan Mopt. FlexDO and the baseline strategies follow the modeling
described in Section 3 and are compared with the corresponding optimal
makespans. The HOA results are relative to the optimal makespans obtained
within the system modeling of Guo et al. (2019).

Since the processing times of the Alibaba DAG applications refer to a
large-scale computing cluster, these times are modified to better fit the hard-
ware of commercial edge servers and current smartphones, whose character-
istics are shown in the Table 2, according to

tmk = tek

( fece
fmcm

)
(7)

and
tek = tck

(fccc
fece

)
, (8)

where tmk , fm, and cm are the processing time of task k in seconds, clock speed
in Hz, and computing capacity in operations/cycle at the mobile device,
respectively; tek, fe, and ce are for the edge server; and tck, fc, and cc are for
the computing cluster.

6.1. Varying the number of CPUs of the mobile device
A mobile device may not have all its CPUs available for processing a DAG

application, dedicating only part of them to it. This scenario assumes the
availability of 2, 4, 8, or an unlimited number of CPUs on the mobile device,
and the availability of all 16 CPUs of the edge server. The transmission rate
of the wireless channel is assumed to be 20 Mbps, which is common in legacy
Long Term Evolution (LTE) networks (Saliba et al., 2019).
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Fig. 6. Difference in relative makespan due to variation in the number of
CPUs on the mobile device.

Figure 6 shows that FlexDO’s performance remains stable regardless of
the number of CPUs on the mobile device. FlexDO can only be meaningfully
compared to HOA when both consider an unlimited number of CPUs at the
mobile device, with FlexDO presenting results ranging from 4.3% to 5.7%
above the optimal makespan, while HOA is 15.5% above its own optimal so-
lution. It is worth noting that the fact that HOA always considers unlimited
resources makes its makespan calculations optimistic, serving as an upper
bound for the real makespan. And yet, even FlexDO-0, which tests a very
limited set of offloading decisions, performs better. As shown in Fig. 6, the
baseline solutions lead to unacceptably high makespans, since these strategies
do not take into account task processing times or transmission times.

Still referring to Fig. 6, it must be noted that only in the Full Offloading
case does the performance worsen as the number of CPUs increases on the
mobile device. This is due to the fact that the increased number of CPUs
does not benefit the Full Offloading decision, but rather only reduces the
makespan of the optimal solution.
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6.2. Varying the number of CPUs of the edge server (multi-user case)
This scenario investigates the impact on makespan of the number of CPUs

available on the edge server. In a scenario with multiple mobile devices
associated with a single edge server, a reduced number of CPUs at the edge
may be available to process the DAG applications. This reduction is therefore
a useful proxy to emulate the multi-user case.

Here, an unlimited number of CPUs on the mobile device is assumed for
compatibility with HOA. On the edge server side, there are 1, 2, 4, or 16
CPUs (out of the 16 existing CPUs) available to a user. The transmission
rate is kept 20 Mbps, as before.

Figure 7 shows the consistency of the three FlexDO versions, which are
5.5% to 6.8% above the optimal makespan when only one CPU is available
on the edge server. These results become even better as more CPUs become
available, achieving a makespan value only 4.3% to 5.7% above the optimal
when all 16 CPUs are available. On the other hand, HOA’s performance
worsens relative to its optimal solution as more CPUs are available, going
from 12.6% above the optimal makespan in the single-CPU case to 15.5%
in the 16-CPU case. This contrast is due to the fact that FlexDO is more
successful at choosing an offloading decision by testing a set of decisions, and
insisting on the offloading process instead of going back to a baseline solution
such as No Offloading. Also, both baseline solutions perform significantly
worse than HOA or FlexDO.

In addition to the relative makespan results, it is worth delving deeper into
the absolute makespan for this multi-user case. Table 3 shows the average
makespan for all 1 322 DAG applications. Since these DAGs are quite diverse,
ranging from quite simple to processing/transmission-intensive applications,
a high deviation is expected. However, it is possible to see that, on average,
FlexDO achieves better makespan values than HOA even with a smaller
number of CPUs on the edge server. With 16 CPUs, HOA has an average
makespan of 348.53 s, while FlexDO reaches 333.78 to 341.95 s with as few
as two CPUs.

6.3. Varying the data transmission rate
Transmission rates may be reduced due to channel conditions (Mao et al.,

2017), legacy equipment, and high demand in a crowded cell. On the other
hand, higher transmission rates are expected in 5th Generation (5G) net-
works. So variation in data transmission has a potential to impact the of-
floading decision process. Here, an unlimited number of CPUs on the mobile
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Fig. 7. Difference in relative makespan due to variation in the number of
CPUs on the edge server.

device is considered while all 16 edge server CPUs are available to the DAG
application. The transmission rates are 10 Mbps (degraded/crowded chan-
nel), 20 Mbps (legacy), and 100 Mbps (end-user data rate for 5G as in Parvez
et al., 2018).

The transmission-avoidance aspect of FlexDO provides the most benefit
from different transmission rates. Since FlexDO prioritizes offloading task
pairs in order to nullify higher data transmissions between them, edges with
fewer data to be transmitted are good candidates for migrating task process-
ing from/to the edge server. Figure 8 shows how close FlexDO gets to the
optimal solution. For a rate of 10 Mbps, FlexDO is 3.9% and 4.7% above the
optimal makespan. With 100 Mbps, this performance remains stable, being
only 5.2% to 8.9% above the optimal makespan. For HOA, on the other
hand, the tendency is to move further and further away from the optimal
makespan as the transmission rate increases, deviating by up to 24.4% from
the optimal makespan with a transmission rate of 100 Mbps.
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Table 3: Absolute makespan for HOA and FlexDO in the multi-user scenario.

1 CPU 2 CPUs 4 CPUs 16 CPUs
HOA 385.95 ± 41.48 354.52 ± 36.49 349.05 ± 35.73 348.53 ± 35.68

FlexDO-0 370.60 ± 40.33 341.95 ± 36.72 334.12 ± 35.86 333.31 ± 35.78
FlexDO-N 366.27 ± 39.35 337.67 ± 35.91 329.77 ± 35.04 329.05 ± 34.96
FlexDO-N2 361.53 ± 38.55 333.78 ± 35.48 326.37 ± 34.70 325.79 ± 34.65

Considering the evolution of future networks in terms of transmission
rate, a greater separation from the optimal solution as the rate increases
may lead to poor offloading decisions by HOA. This behavior is due to the
fact that HOA seeks a monotonically decreasing makespan reduction, and
then resorts to the No Offloading decision immediately when this monotonic
reduction does not occur.

7. Concluding remarks

Given the results, it is clear that limiting FlexDO to neither the one-
climb policy nor the monotonic reduction of makespan, and moreover gen-
erally not offloading tasks one by one, are beneficial in terms of obtaining
average makespans lower than those of HOA in all scenarios. Furthermore,
even though FlexDO does not calculate the impact of parallel transmissions
or concurrent processing while generating decisions, these factors are duly
considered when testing a small set of offloading decisions and selecting the
decision that provides the shortest makespan. Also, FlexDO tries to offload
those tasks that contribute most to reducing makespan, which has to do with
the difference in processing time on the mobile device and on the edge server.
It also cancels the highest data transmission times by keeping task pairs to-
gether on either the mobile device or the edge server. All these features refer
back to the design principles behind FlexDO in Section 4, highlighting the
importance of, as far as possible, considering all aspects that can possibly
influence performance.
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