
An Ontological Approach to Simulate Critical

Infrastructures

Alberto Tofania,∗, Elisa Castorinia, Paolo Palazzaria, Andrij Usovb, Cesaire
Beyelb, Erich Romeb, Paolo Servilloc

aENEA, Via Anguillarese 301- S. Maria di Galeria 00123 Roma, Italy -
www.casaccia.enea.it

bFraunhofer Institut IAIS, Schloss Birlinghoven - 53754 Sankt Augustin, Germany -
www.iais.fraunhofer.de

cCRIAI, Piazzale E. Fermi 1 - Porto del Granatello 80055 Portici (NA), Italy -
www.criai.it

Abstract

This paper presents a Knowledge Base System (KBS) as the key component
of a federated simulation framework aimed at investigating the dependencies
among Critical Infrastructures (CIs). The KBS, based on the ontological
formalism, represents the properties and the relations of each simulation do-
main and the dependency relations among different domains. Some auxiliary
data structures, necessary to model the interaction among the simulators of
different CIs, have been defined and have been populated through suitable
queries to the KBS. The adoption of the ontological formalism allowed the
definition of a common formalism to deal with the heterogeneity arising from
the presence of different domains.

Keywords: CI Protection, CI Dependency Analysis, Knowledge Base
System, Federated Simulation, Ontology

1. Introduction

The study of Critical Infrastructures Protection (CIP) has been indi-
cated by the European Commission as a fundamental research topic [1] for
the development and improvement of the European economy and society. A

∗Corresponding author
Email address: alberto.tofani@enea.it (Alberto Tofani )

Preprint submitted to Journal of Computational Science July 23, 2010



definition of European Critical Infrastructures can be found in [2]. In spite
of its high relevance, the understanding of system of critical infrastructures
with all their interdependencies is still immature. The study of these complex
infrastructure systems demands joint interdisciplinary efforts of researchers,
industrial stake-holders and governmental organisations to overcome all the
difficulties involved as availability of models and data for the single infras-
tructures, interoperable simulation of multiple infrastructures, testbeds and
benchmarks for protection solutions.

The various aspects of infrastructure networks present numerous theoret-
ical and practical challenges in modelling, prediction, simulation and analysis
of cause-and-effect relationships in coupled systems [3]. These systems com-
prise a heterogeneous mixture of dynamic, interactive, and often non-linear
entities, unscheduled discontinuities, and numerous other significant effects.
Then, modelling and analysis of these systems requires consideration of their
large-scale, non-linear, and time-dependent behaviour.

The report [4], about European CI disruptions, describes and classifies the
cascading effects among European CIs. Due to the high relevance of study-
ing, modelling and simulating CIs and their dependencies, the European
Commission has funded the Design of an Interoperable European federated
Simulation network for Critical InfraStructures (DIESIS) [5], [6] project with
the aim to establish the concepts and methodologies of an e-Infrastructure
for the modelling and simulation of CIs. In particular, the project is a feasi-
bility study for the realisation of an European Infrastructures Simulation and
Analysis Centre (EISAC)1 that should have the same aims and functionalities
of the American NISAC initiative [7].

Currently, two major general approaches [8] are used in the CIP research
field: integrated vs coupled modelling approaches. In the former case, the
approach is to create an integrated system model that attempts to model
multiple infrastructures and their (inter)dependencies within one framework.
On the other hand, within the coupled modelling approaches a series of indi-
vidual infrastructure simulations are coupled together in order to illustrate
the cascading influence between them. In both the cases, the scenario de-
scription (CI networks and their interconnections) is usually embedded in
the simulation framework and this makes the scenario representation and

1The research leading to these results is partially funded by the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement n 212830.

2



the analysis tasks very difficult.
In this work, which summarises some of the results achieved in the DIESIS

project, we propose the separation of the scenario representation (Scenario
Definition Phase) from the simulation framework (Federated Simulation
Phase). The main idea is to develop a Knowledge Base System (KBS) based
on ontologies and rules providing the semantic basis for the federated simu-
lation framework [9], [10]. In particular, a federation of simulators can be
considered as a System of Systems where each simulator represents an in-
dependent entity with its own behaviour and purpose. The super-system
considers the interaction of these entities and puts in evidence an emergent
behaviour that does not reside in any component system [11]. Therefore, in
a federated simulation, the stand-alone simulators must be linked together
so that an understandable and meaningful information exchange could be
performed. This requires that simulators could interact and cooperate. In
order to achieve this kind of interoperability we propose the adoption of
ontologies which allow both an uniform modelling of heterogeneous infras-
tructures and the easy representation of inter-domain dependencies. This
work is organized as follows. After some considerations about the literature
related to the proposed approach, we introduce the KBS architecture in sec-
tion 3. Then, a graph formalization of the knowledge represented in the KBS
is proposed in section 4. The graph formalization allows to easily define the
basic procedures to query the KBS used within the DIESIS framework and
the main data structures that allow the semantic interoperability among the
considered CI domains. A description of the DIESIS framework main com-
ponents and data structures could be found in section 5. The distributed
simulation framework is described in section 6. The section 7 summarizes
the conclusions of the paper.

2. Related works

Several approaches have been explored to model CI interdependencies to
enable federated simulations. In particular, the HLA (High Level Architec-
ture) standard [12] and the MSI (Multi-Simulator Interface) program [13],
currently are among the most relevant works in this field. However, these
approaches do not seem to be suitable for simulations in the infrastructure
domain. The coupling of simulators is based on a common data model that
has to be implemented by all involved simulators. However, this data model
is on a purely syntactical level and does not provide semantic information

3



about the modelled domain. HLA makes also difficult to integrate different
timing models. The work proposed in [9] is conceptually similar to the ap-
proach presented in this paper. In fact, both address the issue of knowledge
reuse and both are based on an ontological framework able to realise a se-
mantic layer between CI concepts and computer systems, independently from
technology, architecture and applications. Unlike the work presented in [9],
that uses simulation models, our approach refers to infrastructure domain
models. This allows to gain more generality in relation to the software sim-
ulator to be used, increasing the reuse potentiality of such models for other
simulators. Another similar approach is investigated in [14], where ontologies
are used to face the problem of semantic inaccessibility when different simu-
lation tools are used in a federated environment. This approach allows sig-
nificant increases in the quality of information sharing and communications
for distributed modelling and simulation application. The requirement to use
pre-existing ontology models implies the need to perform a complex compar-
ative ontology analysis including the management of concept mismatches.
Our work proposes a KBS able to create an abstraction of the considered
domains, to represent and formalise parameters and dependencies, which are
relevant for the problems to be investigated. The strength and innovation
of our approach lies in the creation of a common level of abstraction for the
systems involved, where the semantic of dependencies can be formalised in
a simulator-independent fashion. Moreover, the work presented in this pa-
per realises a real integration of the ontological framework inside a federated
simulation framework, by introducing further components interfacing specific
domain simulators and managing/synchronising the federated simulation ses-
sion. Moreover, the proposed approach has been validated using a realistic
scenario that involved three CI domains (electrical, telecommunication and
railway) and a flood simulator as generator of external events. In particular,
the select scenario concerned a specific district of Rome.

3. KBS

The KBS establishes a common formalism, for scenario and domain knowl-
edge experts, to represent the main aspects, elements and properties of the
considered domains and their interconnections. The KBS is based on the On-
tology Web Language (OWL) and the ontologies are defined through proper
specifications of classes, properties and individuals (instances of classes). The
individuals represent the physical/logical entities that form the universe of

4



a specific domain. For instance, a specific electrical load is an individual of
the electrical ontology. The OWL allows to group individuals in classes that
define the properties shared by all their individuals. The properties can be
used either to specify relationships between individuals and data type values
(Datatype Properties) or to describe relationships among individuals (Object
Properties). Then, if we denote with Pr the set of properties we have

Pr = DP ∪OP , with DP = {p | p Datatype Property}

and OP = {p | p Object Property}

The KBS architecture includes the following ontology definitions:

• World ONTology (WONT);

• Infrastructure domain ONTologies (IONTs);

• Federation ONTology (FONT).

The WONT is a general template providing the basic structures and rules to
define CI domains. In particular, the WONT allows the definition of CI domain el-
ements (through the WONT class Component), their physical and logical intercon-
nections (through the WONT object property isConnected) and the dependencies
among different CI domains (through the WONT object property dependsON).

The IONTs inherit the basic template from the WONT and represent the spe-
cific knowledge of the critical infrastructure domains. For instance, the electric
IONT class Load (that models the electric load element) and the telecommuni-
cation IONT class Switch (that models the telecommunication switch element)
are subclasses of the WONT class Component. In addition, the railway IONT
property isLinked that models the connection between two railway stations is a
sub-property of the WONT property isConnected; similarly, the telecommunica-
tion IONT property transmits that models the connection between a transmitter
and a receiver is another sub-property of the WONT property isConnected. Anal-
ogously, all dependencies among the considered CI domains are modelled through
ad-hoc designed sub-properties of the WONT property dependsON.

In the following, given a CI domain Xi, Ci indicates the set of all components
of Xi and Pri indicates the set of properties related to the components of Xi.
Then, a generic IONT can be represented as IONTi = {Ci, P ri}.

Once the IONT has been defined to model a particular domain, it is possible to
create individuals (instances of IONT classes) to represent actual network domains
(for example the electrical power network or the telecommunication network of a
specific city district). Similarly to the IONT definitions, we indicate with C∗

i the
set of the all instantiated components belonging to the domain Xi and with Pr∗i

5



the set of instantiated properties related to Xi. Then, the IONT instance IONT ∗
i

can be expressed as IONT ∗
i = {C∗

i , P r∗i }.
The FONT includes all IONTs of the domains involved in the considered sce-

nario (our scenario entails the electrical, the telecommunication and the railway
domains). The FONT properties (sub-properties of the WONT property depend-
sON) allow to model dependencies among components of different domains (e.g.
the FONT property feedsTelco models the electrical supply of telecommunication
nodes). The sets of the FONT properties and of the FONT instantiated properties
are defined respectively as:

FPr = {sp(a, b) | sp sub-property of dependsON, a ∈ Ci, b ∈ Cj , i 6= j} and

FPr∗ = {sp(a, b) | sp sub-property of dependsON, a ∈ C∗
i , b ∈ C∗

j , i 6= j}

The Figure 1 summarizes the proposed KBS architecture

Ontological definitions

Scenario definition

CIs knowledge representation
(basic concepts and properties derived from the WONT)

IONT A

IONT B

IONT C

IONT D

IONT A*

IONT B*

IONT C*

IONT D*

FONT

Kno
wled

ge
 re

pre
se

nta
tio

n l
ay

er

Sce
na

rio
 re

pre
se

nta
tio

n l
ay

er

FONT*

WONT

Figure 1: KBS architecture.

6



The FPr∗ allows the definition of FONT rules that express the semantic de-
pendency. The FONT rules, expressed using the Semantic Web Rule Language
(SWRL), have been actually translated into their JAVA counterpart and imple-
mented through ”if-then-else” constructs embedded within the Federation Man-
agers which incapsulate the simulators of each CI domain (Federation Managers
are explained in Section 5). As explanatory example, we can consider the FONT
rule which models the dependency of the functioning status {ON ‖ FAULT} of a
railway signal (Signalrw) on the functioning status {ON ‖ OFF} of the communi-
cation channel (Channeltlc) used to tele-control the signal:

rwIONT : signal(?x) ∧ tlcIONT : node(?y) ∧ wont : dependsOn(?x, ?y)

∧wont : hasFunctioningStatus(?x,wont : off)

→ wont : hasFunctioningStatus(?y, wont : fault)

This rule, based on the FONT property teleControl, is implemented as follows:

if (Channeltlc == OFF ) then Signalrw = FAULT

The DIESIS distributed simulation framework and the proposed data struc-
tures (see Section 5) allow the components (involved in the defined FONT prop-
erties) to exchange the functioning status values.

4. Scenario Graph

Using the KBS, it is possible to derive a directed graph G = (V,E) where
V is the set of nodes that represent all the individuals and E is the set of edges
that represent all the physical and dependency connections. Considering the IONT
instance IONT ∗

i corresponding to domain Xi, we denote with xji the jth individual
of the IONT ∗

i .
The set of edges E is partitioned in two subsets P and D (P ∪ D = E,

P ∩ D = ∅). The edge (vi, vj)p ∈ P represents a physical or logical connection
between the components vi and vj of a domain Xi. The edge (vi, vj)d ∈ D rep-
resents the dependency connection between the components vi and vj belonging
to different IONT instances: for example, considering the telecommunication do-
main, an edge (vi, vj)p may represent a physical link between a router vi and a
workstation vj . On the other hand, if a medium voltage power electric station vi
feeds a telecommunication base station vj , this kind of dependence is represented
through an edge (vi, vj)d.

The set of edges E is derived using the definition of the properties isConnected
and dependsON in the KBS (see Section 3). The procedures to derive the P and

7



D sets are shown in Figure 2 and Figure 3 respectively. These procedures use the
following definitions. If S is a property, the predicate S(a, b) is true for all the
pairs of individuals (a, b) that satisfy the property S. Moreover, E(S) denotes the
set of all the individual pairs in E that satisfy S i.e.

E(S) = {(a, b) | (a, b) ∈ E,S(a, b) ≡ true}

get P GraphEdges
P := ∅
for all sub-properties Sn of the properties isConnected do

for all pairs of individuals (a, b) ∈ E(Sn) do
P := P ∪ (a, b)p

end for
end for

Figure 2: The get P GraphEdges procedure.

get D GraphEdges
D := ∅
for all sub-properties Sn of the properties dependsON do

for all pairs of individuals (a, b) ∈ E(Sn) do
D := D ∪ (a, b)d

end for
end for

Figure 3: The get D GraphEdges procedure.

Finally, given a scenario graph G = (V,E) and the set D of the dependency
connections among components of different IONT instances, for each vi ∈ V it is
possible to define the following sets of vertices:

Definition The set of Source Vertices SV for vi is defined as the set of vertices
that are connected to vi through incoming dependency connections i.e.
SV(vi) = {vk | ∃ (vk, vi)d ∈ D}.

Definition The set of Target Vertices TV for vi is defined as the set of vertices
that are connected to vi through outgoing dependency connections i.e.
TV(vi) = {vk | ∃ (vi, vk)d ∈ D}.

8



The sets Source and Target Vertices, that are defined considering only the
dependency connection edges, are fundamental to the definition of particular data
structures (described in Section 5) that allow the correct exchange of information
among the different CI domains.

5. DIESIS architecture and data structures

The DIESIS federated simulation framework consists of domain simulators,
Federated Managers and the Federation Control Module (FCM). Each IONTi de-
fined in the KBS corresponds to a domain simulator that has to be embodied
within a specific Federation Manager to be compliant with the behaviour defined
for the DIESIS federated simulation environment. The Federation Manager is in
charge to interface the specific domain simulator with the Federation Managers of
the other domain simulators, with the KBS and with the Federated Control Mod-
ule which is a centralised component that manages and synchronises a federated
simulation session. The synchronisation and federated simulation management
procedures are described in Section 6.

A DIESIS simulation session is formed by a number of domain simulators
that have to be federated in order to obtain a global realistic scenario simulation.
The proposed KBS (and the related scenario graph G) plays a central role in the
definition and setting of this environment.

5.1. Dependency lists

In order to manage the dependencies among the considered CI domains, suit-
able data structures for Federation Managers have been defined. The state of a
component in a domain Xi can influence (in this case it is a source) and/or be
influenced (in this case it is a target) by the state of components belonging to
other domains. To force such a dependency behaviour, the Federation Managers
use the Source Dependency List (SDL) and the Target Dependency List (TDL)
data structures. The SDL and TDL data structures are based on the definitions
of Source and Target Vertices of Section 4. The procedures to create the SDL and
TDL data structures are described in Figure 4 and in Figure 6.

6. Federated simulation controller

6.1. Definition and tasks

A CI simulator used to represent a particular domain in the federated simu-
lation network is usually a stand-alone application which uses its own fixed time
model as well as a fixed structure of the CI model and works completely inde-
pendent from other domain simulators. The federated simulation controller is an

9



createSDL(Xi, G)
begin
SDLi := ∅
VXi :=getVerticesOfDomain(Xi)
for all vj ∈ VXi do

for all vk ∈ SV(vj) do
SDLi:=SDLi ∪ vk

end for
end for
end

Figure 4: The createSDL(Xi, G) procedure.

adapter which connects a particular CI simulator (a “federate”) to other federation
nodes (other simulators or technological components like KBS and the federation
controller module). Its primary task is to manage and synchronise the common
simulation time and event forwarding between the simulators in a network. Fur-
thermore it allows extending the simulator model by additional components if they
are needed for the definition of dependencies between the CIs. Another important
property of the federation simulation controller is the ability to encapsulate and
automate any kind of communication required for the management of a feder-
ated simulation. The adapters can communicate directly via TCP/IP as well as
via the additional communication layer which is used for the demonstrator and is
described in [15]. Figure 5 shows a simulation node (in the middle) and its com-
munication channels (links) to the technological federation nodes. The creation
of data links to other federates (to submit the simulation data) is automatically
done by a federation adapter and is based on the dependency lists acquired from
the KBS via the link “GetDependencies”.

Immediately before the federated simulation is started the federation simula-
tion controller receives a list of other node locations (IP addresses and the appli-
cation IDs) from the FCM. This allows it to open direct peer-to-peer connections
to other federates during the simulation. Moreover it queries the KBS to load the
proper source and target dependency lists for its domain. Altogether the federation
simulation controller disposes of the following important variables:

1. A node locations list to establish peer-to-peer connections to other federates.

2. A list of local state variables which can be affected by events produced
by other federates and has to be synchronised with the simulator’s model
elements.

3. A target dependency lists for the simulated domain in order to send the

10



Simulation Node

Time Management 
Module

Federation Control 
Module

Visualisation 
Module Start / stop / log

Send logs

Register

Knowledge Base 
System

Get dependencies

Wish time step

Set next time step

RegisterRegister

Figure 5: Links and services provided by a federation adapter.

changes of local variables (detected by monitoring the local variables’ list)
to proper dependent domains.

4. A cache for the changed values of foreign state variables and a source de-
pendency list to ensure completeness of the received information about the
external events.

5. A clock for the federation-wide simulation time. This clock has to be syn-
chronised with the internal simulator’s time as well as with the external
common simulation time.

The next section shows how this data is used by a federation simulation con-
troller to manage and synchronise the simulation time and non-local events.

6.2. Distributed time and event synchronisation

Though the DIESIS architecture concept offers some more flexible alternatives
to HLA’s concepts e.g. through the introduction of the lateral coupling and service
network concepts [16], the time management of DIESIS, thus far realised in the
scope of the Technical Proof of Concept (TPoC), is comparable to the conservative
time management strategy as defined in HLA [17], [18]. This concept can however
be extended through additional and alternative bridges for a pair- or group-wise
synchronisation. The following section describes the distributed time and event
synchronisation as implemented in the DIESIS TPoC. The concept of the com-
mon simulation time is mandatory for the cooperation of different simulators (the

11



createTDL(Xi, G)
begin
TDLi := ∅
VXi :=getVerticesOfDomain(Xi)
for all vj ∈ VXi do

for all vk ∈ TV(vj) do
TDLi:=TDLi ∪ vk

end for
end for
end

Figure 6: The createTDL(Xi, G) procedure.

“federates”). It ensures the correctness of the event order even if some simulators
do not use the time concept for their internal computations (as it is the case for
steady state simulators) and is also required for the visualisation and analysis.

The federation simulation controller makes the entire node working event based
from the point of view of the federation. To achieve this goal the federation
simulation controller has to be able to control the internally used simulator by
making it to perform simulation steps of a pre-defined variable length (a “step”
from the point of view of the federation may require several internal simulation
steps or runs) and to pause or stop the local simulation to wait for external results.
For the realisation of such a solution, the requirements of the simulator and its
API are: (1) the adapter should be able to pause or stop the simulation as soon as
the given internal simulation time is reached. If the simulation was stopped (and
not paused) the ability to restart the simulation using the previously computed
model state as a new initial state is required, (2) it should be possible to compute
a simulation time interval from the current time point to the next event (or a
breakpoint) in the future. Alternatively, a possibility to restore the previous model
state and to restart the simulation using it as an initial state should be supported.

This approach is applicable to a large number of the currently available CI
simulators that use various time models (like the event based model, constant time
steps, steady state, etc.) and allows the synchronisation of the controller’s clock
with the simulation time of the internal simulator. A Time Management Module
(TMM) is a special federation node which is used to synchronise the internal clocks
of all federation. For the demonstrator the TMM was implemented as an integral
part of the federation control module. Each federation node computes its desired
value for the next time step (a time to the next scheduled event) and sends it to the
time management module. If no events are scheduled a node submits a negative

12



value (this denotes that it does not care about the duration of the next simulation
step). As soon as the time management module has collected the suggested time
steps from all federates, it chooses the minimal non-negative value and sends it
back to the federates. The federation adapters increase their internal clocks by
this minimal value and are able o perform a globally identical simulation step.
Receiving only negative values by the TMM denotes a global steady state. In
this case the simulation can be automatically stopped. This mechanism forces all
federates to have identical simulation clock values at the beginning of the same
simulation step.

Figure 7 shows the algorithm of time and event synchronisation for a particular
federation node for a domain i. Here ExternalChanges represents the cache that
receives and stores the changes of the external state variables represented in the
SDLi (as described in the previous section), SimulationTime is the federation
adapter’s clock and NextStep denotes the duration of the next simulation step. The
federation simulation controller checks the ExternalChanges for new or modified
values of the external state variables. If it detects those modifications (received in
the previous simulation step) it applies the FONT rules for the simulated domain
(e.g. computes the effect of these changes to its local variables). After that, the
following two tasks will be performed in parallel:

1. Simulate the time interval given by the previously computed value of NextStep,
estimate a new value for it and report resulting changes of the local variables
to the nodes represented in its target dependency list TDLi. If no model
changes were computed, an empty change list will be submitted.

2. Wait for the model change reports from all federation nodes from the SDLi

(including the empty change lists) and store them in the list ExternalChanges.

If some external model changes in a domain from SDLi were received (Exter-
nalChanges is not empty) then this may require an immediate modification of the
local state variables. This modification may on its part cause some events which
have to be propagates to other domains from the TDLi and handled at the same
simulation time. Therefore the value of NextStep will be set to zero, otherwise all
potential events produced by the local domain will be handled by other federates
not “immediately” (e. g. at current simulation time) but “too late” (e. g. delayed
by the next non-zero time step). The last action in the simulation loop is sending
the suggestion for the next step to the TMM, receiving the federation-wide mini-
mal value, and adding it to the internal simulation clock. The simulation loop can
be interrupted at any time if a StopSimulation message from the FCM has been
received.

13



simulateAndSynchronise
begin
NextStep := 0
SimulationTime := 0
ExternalChanges := ∅
repeat

if ExternalChanges 6= ∅ then
Apply FONT rules for my domain

end if
parallelised do

Perform simulation step of length NextStep
if next event can be scheduled then

NextStep := time to the next scheduled event
else

NextStep := −1
end if
for all dependent domain X represented in my TDL do

Send modified local state variables or ∅ to the federate X
end for

in parallel to
ExternalChanges := ∅
repeat

Receive external state variable changes ExtVars from other federates
ExternalChanges:=ExternalChanges ∪ ExtVars

until received messages from all domains represented in my SDL

end parallelised
if ExternalChanges 6= ∅ then

NextStep := 0
end if
Send NextStep to the time management module
NextStep := value received from the time management module
SimulationTime := SimulationTime + NextStep

until a StopSimulation message has been received from the FCM
end

Figure 7: The simulateAndSynchronise(Xi, G) procedure.

6.3. Other time and event synchronisation strategies
The federation simulation controller that has been implemented for the TPoC

of DIESIS is flexible enough to enable the coupling of a large number of currently

14



available CI simulators. The limitation of this approach is the usage of a con-
servative time management strategy and of a fixed communication concept. The
DIESIS architectural approach, however, does not prescribe the usage of a feder-
ation adapter that has been described above in this section (for details cf. [16]).
The DIESIS architecture foresees the development an individual realisation of com-
munication bridges (links) between particular simulators. A software component
like a federation adapter may facilitate the integration of new simulators into the
federation if and only if those simulators support (or can be adapted to support)
its concepts for time, events and communication. These adapters for coupling two
simulators and also the links they consist of can be reused for other scenarios and
simulation tasks, if the same simulators are involved again. However, for some
tasks it is sensible to employ another type of a federation adapter, to use it for
a set of federates (not only for a single simulator) or not to use it at all. It is,
for example, needless to create federation adapters to interconnect two simulators
both already supporting another coupling technology (like HLA). The existence
of various time models within a federation (like optimistic look-ahead schemes)
requires the development of an individual coupling solution based on the method-
ology described in [16]. This may result in partially centralised models but this is
not a requirement.

7. Conclusion

In this paper we summarise some of the main results achieved within the
DIESIS (Design of an Interoperable European federated Simulation network for
critical InfraStructures) european project. In particular, we describe the Knowl-
edge Base System (KBS) developed to model Critical Infrastructures (CIs), their
interconnections and dependencies and the procedures and data structures defined
to implement the federated and distributed simulation of CIs. The KBS is based
on the ontological framework and is used to model both the characteristics of each
CI and the interdependencies among the CIs.

The main advances w.r.t. the state of the art in CI interdependencies modelling
and simulation approaches are: (1) the creation of an abstraction of the considered
domains to represent and formalise parameters and dependencies which are rele-
vant for the problems to be investigated, (2) the proposal of a flexible federated
simulation framework supporting the explicit separation of the Scenario Defini-
tion Phase from the Federated Simulation Phase. Indeed, the proposed federated
simulation framework and the KBS have been used in actual federated simulation
experiments, to study the global behaviour of the resulting “System of System”
under different conditions and constraints (e.g. parameter variations or changes of
the environmental conditions). The proposed approach has been validated using

15



a realistic scenario that involved three CI domains (electrical, telecommunication
and railway) and a flood simulator as generator of external events. In particular,
the select scenario concerned a specific district of Rome and the population of
the KBS consisted on the instantiation of the IONT components specialised with
their actual characteristics.The electric and telecommunication IONT instances
have been populated with realistic data coming from a previous European project
[19], whereas the railway IONT has been populated by acquiring public available
data and knowledge about the domain. The proposed KBS template allowed to
define the three CI models (representing the knowledge about the domains), the
related networks (the actual network domains) and the dependencies among them.
Moreover, the proposed simulation framework allowed to effectively federate the
domain simulators and it was possible to show the propagation of the fault effects
generated by a flooding of the area where the considered domain networks are
located.

References

[1] Council Directive 2008/114/EC of 8 December 2008.

[2] Communication from the Commission COM(2006) 786, 2006.

[3] S. M. Rinaldi, J. P. Peerenboom, T. K. Kelly: Critical infrastructure interde-
pendencies, IEEE Control Systems Magazine 21(6), 2001.

[4] E. Luiijf, A. Nieuwenhuijs, M. Klaver, M. van Eeten, E. Cruz: Empirical find-
ings on critical infrastructure dependencies in europe, CRITIS Proc., 2008.

[5] DIESIS project website: www.diesis-project.eu.

[6] E. Rome, S. Bologna, E. Gelenbe, E. Luiijf and V. Masucci: DIESIS – De-
sign of an Interoperable European Federated Simulation Network for Critical
Infrastructures, In: Proceedings of the 2009 SISO European Simulation Inter-
operability Workshop (EURO SIW ’09) – July 13-16, 2008, Istanbul, Turkey,
pp. 139–146, SCS, San Diego, CA, USA, 2009.

[7] NISAC website: www.sandia.gov/nisac.

[8] P. Pederson, D. Dudenhoeffer, S. Hartley, M. Permann: Critical infrastructure
interdependency modeling: A survey of U.S. and international research. Tech.
report, Idaho National Laboratory, 2006.

[9] T. Rathnam, C.J.J. Paredis: Developing Federation Object Models using On-
tologies, Proceedings of the 36th Winter Simulation Conference, 2004.

16



[10] R.K. McNally, S.W. Lee, D. Yavagal, W.N. Xiang Learning the critical in-
frastructure interdependencies through an ontology-based information system,
Environment and Planning B: Planning and Design, 34, pp. 1103-1124, 2007.

[11] M.W. Maier: Architecting principles for systems-of-systems, Systems Engi-
neering, 1 (4): 267-284, 1999.

[12] J. S. Dahmann, R. M. Fujimoto, R. M. Weatherly: The department of defense
High Level Architecture. Proceedings of the 1997 Winter Simulation Confer-
ence.

[13] A. Rubin, C. Hein, G. Prasad: Multi- Simulation Interface (MSI) for Complex
Simulations.

[14] B. Perakath, A. Kumar, V. Ajay: Using ontologies for simulation integration.
Proceedings of the 2007 Winter Simulation Conference.

[15] G. Görbil, E. Gelenbe: Design of a Mobile Agent-Based Adaptive Communi-
cation Middleware to Enable Federations of Critical Infrastructure Simulations,
CRITIS Proc., 2008. In: Pre-proceedings of the fourth International Workshop
on Critical Information Infrastructures Security (CRITIS ’09), Erich Rome,
Robin Bloomfield (eds.), Sankt Augustin: Fraunhofer IAIS, 2009, pp. 145–160.
Conference: Bonn, Germany, September 30–October 2, 2009.

[16] Public DIESIS deliverable available at: http://www.diesis-
project.eu/include/Documents/DIESIS Final Architectural Design.pdf

[17] R.M. Fujimoto: Time Management in the High Level Architecture, SIMU-
LATION Special Issue on High Level Architecture, vol. 71, no. 6, 388-400,
1998.

[18] C. D. Carothers, R. M. Fujimoto, R. M. Weatherly, A. L. Wilson: Design and
Implementation of HLA Time Management in the RTI version F.0, Winter
Simulation Conference, December 1997.

[19] IRRIIS project website: www.irriis.org.

17


