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We  discuss  the  use of  time  adaptivity  applied  to the  one  dimensional  diffusive  wave  approximation  to  the
shallow  water  equations.  A simple  and  computationally  economical  error  estimator  is  discussed  which
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size to  achieve  a  user  specified  bound  on the  discretization  error  and  allows  time step  size variations  of
several  orders  of magnitude.  In  particular,  the one  dimensional  results  presented  in this  work  feature  a
change of  four  orders  of  magnitudes  for  the  time  step  over  the  entire  simulation.

© 2011  Elsevier  B.V.  All  rights  reserved.
verland flow

. Introduction

The diffusive wave approximation of the shallow water (DSW)
quations is used to model overland flows such as floods, dam
reaks, and flows through vegetated areas. The shallow water equa-
ions (SWEs) are obtained from the full Navier–Stokes equations
y introducing the following simplifying assumption: the verti-
al momentum scales are small relative to those of the horizontal
omentum, that is, due to depth restrictions the velocity struc-

ures in the horizontal direction are much larger than the ones in
he vertical one. This assumption reduces the vertical momentum
quation to a hydrostatic pressure relation, which is integrated in
he vertical direction and results in a two dimensional system of
quations known as the shallow water equations. Further details
nd discussion of the scaling assumptions made can be found in
1].

The DSW equation is a further simplification of the shallow
ater equations (or St. Venant equation in one spatial dimension).

he velocity term in the continuity equation is replaced with an
mpirical relationship, such as Manning’s equation [2],  from open
hannel flow. The horizontal momentum equations are then used
o further reduce the system under the simplification that the
lope of the water surface does not vary much from the slope of

he bathymetry. The DSW equation is applicable to overland flow
hich is fully turbulent and driven mainly by gravitational forces.

he DSW equation reduces to a scalar equation which resembles

∗ Corresponding author.
E-mail address: nathaniel.collier@gmail.com (N. Collier).

877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jocs.2011.07.004
nonlinear diffusion. While the nonlinearities present challenges,
the DSW equation is a simpler framework with which econom-
ically simulate shallow flows. The properties of solutions to the
DSW equations have been studied [3–5]. In the more recent paper
[3], convergence of the numerical scheme was  studied numerically
and error estimates are derived.

In this paper, we  address computational aspects of solving the
DSW equation, specifically we  focus on time integration and adap-
tivity. We  use the generalized-  ̨ method for time integration, which
is a second-order accurate method with controlled dissipation for
high frequencies [6,7]. We  describe a simple and robust error esti-
mator which can be used to guide time adaptivity. Time adaptivity
in the solution of DSW is useful for two reasons. First, the adaptivity
aides in determining the initial time step. After selecting an initial
step size, the algorithm will automatically reduce it to acceptable
tolerances, relative to the quality of the error estimator. Second,
a significant amount of computation may  be avoided by allowing
the time step to change, while keeping the error under a user-
prescribed tolerance. Our numerical results show that in 1D tests,
the time step can change several orders of magnitude over the sim-
ulation time. In particular, the simulations presented herein, after
the initial time-step size adjustment, the time-step size varies by
four orders of magnitude.
2. DSW equations

The DSW strong form is obtained by special assumptions which
simplify the shallow water equations, leading to the following

dx.doi.org/10.1016/j.jocs.2011.07.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:nathaniel.collier@gmail.com
dx.doi.org/10.1016/j.jocs.2011.07.004
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nitial/boundary value problem on the domain  ̋ for times
 ∈ [0, T] [3],

u̇ − ∇ · (�(u, ∇u)∇u) = f on  ̋ × (0,  T]
u = u0 on  ̋ × {t = 0}
(�(u, ∇u)∇u) · n = BN on �N × (0,  T]
u = BD on �D × (0,  T],

(1)

here u is the water height, u̇ is its time derivative, f is a forcing
unction such as rainfall acting as a source or infiltration acting as

 sink, u0 is the initial condition, BN and BD are the Neumann and
irichlet conditions, respectively, and the diffusion coefficient � is
iven by

(u, ∇u) = (u − z)˛M

Cf |∇u|1−�M
.

he bathymetry is represented by the function z, and ˛M and �M

re constants which specify the empirical method used to obtain
he DSW equation. Following [3] we use parameters correspond-
ng to Manning’s formula, ˛M = 5/3 and �M = 1/2. The function Cf
epresents Manning’s coefficient which is also known as a fric-
ion coefficient. Typical values are experimentally measured and
vailable in the literature, but for the sake of simplicity we assume
f = 1.

The equation is doubly degenerate in that the diffusion disap-
ears in cases where u = z or when ∇u becomes large such as in
egions where the solution represents a wave front. This creates
ifficulties in developing a numerical solution technique which can
andle these difficulties. These properties are discussed in detail in
3].

The weak form for the DSW equation is to find u ∈ V such that
or every ∀w ∈ W,

(w, u) =
(

w,
∂u

∂t

)
˝

+ (∇w, �(u, ∇u)∇u)˝ + (w, f )˝ = 0, (2)

here (· , ·)˝ refers to the L2 inner product and the trial, V,
nd weighting, W, spaces are appropriately chosen for Eq. (2)
o be well defined [3].  A discrete approximation to the solution
s obtained constructing a Galerkin approximation appropriately
hoosing proper subspaces of Vh and Wh of V and W, respectively
9,10]. The discrete function space chosen in the numerical exam-
le described in Section 4 is obtained using 1024 linear elements,
hile the L2 inner product over the the domain is approximated
sing Gaussian quadrature, where four Gauss points per element
re used.

. Time discretization

We advance in time using the generalized-  ̨ method [6,7]. The
ethod was originally developed in [6] for structural dynamics,
hich is of second order in time. Subsequently it was  extended for
rst order problems in time in [7].  This time-stepping methodol-
gy has been successfully applied to several nonlinear problems
uch as, turbulent simulations [7,11],  and more recently first time
daptive technique was proposed for the Cahn–Hilliard equations
12] and subsequently used in [13] to model bubble formation and
volution.

The generalized-  ̨ method for first order in time problems is
tated as follows: given (un, u̇n), find (un+1, u̇n+1, un+˛f

, u̇n+˛m ),
uch that

(un+˛f
, u̇n+˛m ) = 0, (3)
n+˛f
= un + ˛f (un+1 − un), (4)

˙ n+˛m = u̇n + ˛m(u̇n+1 − u̇n), (5)

n+1 = un + �t((1 − �)u̇n + �u̇n+1), (6)
onal Science 4 (2013) 152–156 153

where the Ath component of the residual vector RA = B(NA, uh),
where uh represents the finite element solution, �t = tn+1 − tn and
˛f, ˛m, and � are real-valued parameters. It has been shown
in [7] that for a linear model problem, unconditional stabil-
ity is attained if ˛m ≥ ˛f ≥ (1/2), and second order accuracy can
be achieved with � = (1/2) + ˛m − ˛f. The method can be stated
as a one-parameter method, where ˛m, ˛f and � can all be
expressed in terms of a parameter known as spectral radius, �∞.
We select ˛m = 5/6 and ˛f = � = 2/3 which correspond to �∞ = 1/2.
The generalized-  ̨ algorithm is detailed in Algorithm 1. The algo-
rithm is a predictor/multi-corrector method where the corrector
steps are indicated by a superscript index inside of parenthesis.

Algorithm 1. Generalized-  ̨ method
1: Compute predictors [7,12] u(0)

n+1 = un and u̇(0)
n+1 = �−1

� u̇n

2: i = 1
3: while i < maximum iterations do

4:  u(i)
n+˛f

= un + ˛f

(
u(i−1)

n+1 − un

)
5: u̇(i)

n+˛m
= u̇n + ˛m

(
u̇(i−1)

n+1 − u̇n

)
6: R(i)

n+1 = R(u(i)
n+˛f

, u̇(i)
n+˛m

)

7: K (i)
n+1 = ˛m

∂R(u(i)
n+˛f

,u̇(i)
n+˛m

)

∂u̇n+˛m
+ ˛f ��t

∂R(u(i)
n+˛f

,u̇(i)
n+˛m

)

∂un+˛f

8: Solve K (i)
n+1�u̇(i)

n+1 = −R(i)
n+1

9: u̇(i)
n+1 = u̇(i−1)

n+1 + �u̇(i)
n+1

10: u(i)
n+1 = u(i−1)

n+1 + ��tn�u̇(i)
n+1

11: if‖R(i)
n+1‖ ≤ �˛‖R(0)

n+1‖then
12: stop
13: end if
14: i = i + 1
15: end while

3.1. Time adaptivity

Time step adaptivity is achieved by a simple error predictor for
first order methods. Given a un, u̇n, and �tn the solution at tn+1
may  be computed given the generalized-  ̨ algorithm described in
Algorithm 1. For �∞ = 1/2, we  can then use u̇n+1 to make a first order
approximation of un+1

ūn+1 = un + �tnu̇n+1. (7)

which is obtained by manipulating a first-order Taylor expansion
from un+1 to un. With this inexpensive approximation we can esti-
mate the error as

En+1 = ‖ūn+1 − un+1‖
‖un+1‖ (8)

and adapt the time-step size using the typical equation [12,14–16],

�tn+1 = �
( �

En+1

)1/2
�tn. (9)

Following [12], the factor of safety � was  chosen to be 0.9 and
the tolerance � to be 10−3. The time step is rejected if En+1 > � and
recomputed once �t  is modified. We  added an additional constraint
in the implementation of this algorithm which restricts the growth
of the time step at a given time,

1
10

≤ �tn+1

�tn
≤ 5. (10)

We found this last constraint to be useful in situations where the
step size grows and then suddenly must be reduced.

4. Numerical results

The spatial, linear finite elements, and temporal, generalized-˛

discretizations were applied to the solution of a 1D problem, which
models a fictitious dam break, arrested by a series of two dikes. The
bathymetry is shown in Fig. 1(a), indicated by grey shading. The
source of water is modeled by a Neumann boundary condition on
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F  water flow shown in blue. This sequence models the arrest of a dam break by a series of
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Fig. 2. The evolution of the time step growth over the simulation.
ig. 1. Time sequence of solutions to DSW with bathymetry shown in grey and the
ikes.  (For interpretation of the references to color in this figure legend, the reader 

he left side and a zero Dirichlet condition on the right. This example
llustrates how the solution of the DSW can benefit from adaptive
ime stepping.

Fig. 1(a)–(h) is a graphical representation of the solution
btained by our numerical simulation. As time progresses, the
ownhill flow (Fig. 1(a)–(c)) is arrested by a large dike (Fig. 1(d))
here it pools until the water level overtakes the dike (Fig. 1(e)). A

econd, smaller dike is reached after a long plain where the flow is
rrested again (Fig. 1(f) and (g)) until finally the second dike is also
vertaken (Fig. 1(h)).

Fig. 2 emphasizes the usefulness of time adaptivity in this prob-
em. From step number 2 to 50, the time step grows two  orders of

agnitude where it then remains roughly constant until step 145
Fig. 1(c)). At this point, the flow is being slowed down by the first
ike and begins to pool. The water height is not changing drasti-
ally during this phase of the simulation and so the time step grows
urther until the water begins to flow over the first dike, step num-
er 170. Large and sudden changes in the water height require a
maller step size and so the step is reduced again. As the simulation
ontinues, two other size changes are seen:

. as the flow hits the bottom of the first dike on the right side
(around step number 200)

. as the flow passes over the second dike (around step number
260).

We observe that time adaptivity is a great advantage when flow
ust pass sharp obstacles such as these dikes.
While each subfigure is titled with the time at which the solution

s displayed, these times do not correspond to real flooding events.

he frictional coefficient, Cf, in the DSW equations is taken here to
e unity. This choice allows us to focus on the time adaptive scheme
here flow velocity is controlled by topographic gradients. Notice

hat in spite of have a constant Cf the diffusivity is not constant,
due its non-linear dependence on both the water height, u, and its
gradient, ∇u.

Time step adaptivity amounts to great savings in computational
costs. The time adaptive simulation described in the above para-
graph required 275 time steps to reach completion. The smallest
time step size was on the order 10−3. A simulation running at this
constant time step size would need 48,000 steps to run to steady
state.

In our numerical tests, the adaptivity also did not overly affect
the solution. We  ran a simulation using a constant time step size
of 10−4 and 1024 elements. We saved the solution at 35.5 s, des-

ignating it Ū1024. Then for a series of meshes, N = {128, 256, 512,
1024}, we run the simulation using time adaptivity with � = 10−3.
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Table  1
Relative errors between time step adaptive simulations (� = 10−3) and Ū1024.

N 128 256 512 1024

EL2 5.0% 4.1% 3.7% 0.1%
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Fig. 4. The effect of � on time adaptivity.

Fig. 5. The time step size adaptivity is not sensitive to the choice of the initial
condition.

this case the adaptation reduces the time step to �t = 3 × 10−3.
Alternatively an initial time step which is too small, will quickly
Fig. 3. The effect of the spatial discretization on time adaptivity.

e compute a relative error in the L2 norm, EL2 , between the
pproximate solutions obtained, U, and Ū1024.

L2 (U) = ‖Ū1024 − U‖L2

‖Ū1024‖L2

. (11)

able 1 shows that while some error is incurred, it is on the order of
 few percent error and can be reduced by modifying the tolerance,
, discussed later.

.1. Influence of spatial error on time adaptivity

The error in the spatial discretization has a minor effect on the
ime adaptivity. We  ran the fictitious problem, varying the number
f elements N = {256, 512, 1024, 2048} used in the finite element
iscretization until a simulated time of 35.5 s. Note that this time
orresponds to the solution shown in Fig. 1g. The time adaptivity
rror tolerance was held constant for each mesh, � = 10−3. Fig. 3
isplays the time step adaptivity over the simulation time for each
esh. We  note that for coarse meshes N = {256, 512} the time

tep adaptivity oscillates. As the mesh is refined and the spatial
rror decreases, the adaptivity curve is smoothed, although the
inimum and maximum time step size remains constant for all
eshes.

.2. Influence of the tolerance parameter � on the solution

The time step adaptivity depends on a parameter �, which is an
stimated error tolerance above which a time step is rejected. This
arameter also controls the evolution of the time step size. In this
ection we study how the choice of � affects the solution. We  again
olve the fictitious problem on a series of meshes, N = {128, 256,
16}, and vary � from 10−1 to 10−5 by decades and compare the
olution at a time of 35.5 s.

Fig. 4 shows that for a large �, the error can be quite large
170%). This is because the time step size is related to the amount

f temporal error allowed in each time step, which causes the
olution to be poor. Decreasing � causes the time step size to
e smaller, allowing less temporal error to remain in the solu-
ion. At some point, the time step size becomes over-refined
and the spatial error dominates the overall error in the solu-
tion. For this series of problems, this point is � = 10−3. This means
that while the choosing of this parameter can have large effects
on the solution, there is a sufficiently small threshold that can
be chosen after which no change is seen in the approxima-
tion.

4.3. Influence of initial time step size on time adaptivity

Time adaptivity is also useful for choosing the initial time step.
In the original simulation, shown in Fig. 5, the initial time step
chosen was  �t  = 0.1 which initially is 2 orders of magnitude too
large. The adaptive step process assists in choosing this initial step
in that values which are too large are cut to acceptable sizes. In
grow. Fig. 5 shows a comparison between the evolution of two
initial step sizes, �t  = 10−1 and �t  = 10−8. In both situations, the
time-step size evolves over the solution time with good agree-
ment.
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. Conclusions

We briefly described the diffusive wave approximation to the
hallow water equations and presented a numerical strategy for
heir approximation using a Galerkin finite element procedure for
patial discretization and the generalized-  ̨ method for temporal
iscretization. We  discussed a new error estimator which can be
sed to economically enable time adaptivity. This adaptivity proves
seful even in simple 1D problems, while being robust. This work is
n initial study on solution strategies for the DSW equation for the
odeling of 2D overland flows. While nothing in the DSW equation

imits its application to 1D, extending a numerical technique into
igh dimensions is not completely trivial. In future work, we will
oth extend the numerical technique to 2D as well as incorporate
ethods for more accurately determining and utilizing accurate

rictional coefficients.
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