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A B S T R A C T 

Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge 
about the environment with other individuáis to get optimal solutions. Such co-operative model differs 
from competitive models in the way that individuáis die and are born by combining information of alive 
ones. This paper presents the particle swarm optimization with differential evolution algorithm in order 
to train a neural network instead the classic back propagation algorithm. The performance of a neural 
network for particular problems is critically dependant on the choice of the processing elements, the 
net architecture and the learning algorithm. This work is focused in the development of methods for 
the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and 
structure of connectivity for these networks. 

1. Introduction 

Natural sciences, and especially biology, represent a rich source 
of modelling paradigms. Well-defined áreas of artificial intelligence 
(genetic algorithms, neural networks), mathematics, and theoret-
ical computer science (L systems, DNA computing) are massively 
influenced by the behaviour of various biological entities and phe-
nomena [1]. In the last decades, new emerging fields of so-called 
natural computing identify new (unconventional) computational 
paradigms in different forms [2]. There are attempts to define new 
mathematical and theoretical models inspired by nature. Moreover, 
computational paradigms suggested by biochemical phenomena 
[3] are object of study. 

Particle swarm optimization (PSO) [4,5] is a global optimization 
algorithm for dealing with complex problems. Optimal solution to 
these problems is represented as a surface in an n-dimensional 
space. Hypotheses are plotted in this space and seeded with an 
initial velocity, as well as a communication channel between 
the particles [2]. Particles then move through the solution space, 
and are evaluated by some criteria after each step. Particles 

accelerate upon time towards other particles which have better 
fitness valúes [3]; this process occurs within the communication 
group.This idea shows an improvement when compared with other 
global minimization strategies such as simulated annealing; for 
example, the large number of members that in the particle swarm 
make the technique resilient to the problem of local minima [4,6,7]. 

Grammatical swarm (GS) adopts a particle swarm learning 
algorithm which is linked to a grammatical evolution (GE) [8] 
genotype-phenotype mapping to genérate programs in an arbi-
trary language. Grammatical evolution (GE) [9] is an evolutionary 
algorithm that can evolve computer programs in any language, and 
can be considered as a form of grammar-based [10] genetic pro-
gramming. Ratherthan representing programs as parse trees [11], 
a linear genome representation is used. A genotype-phenotype 
mapping is deployed for each individual binary string variable; it 
keeps the information to select production rules from a Backus 
Naur Form (BNF) grammar. This information is stored in codons 
(groups of 8 bits). The grammar allows to build programs in an 
arbitrary language and guarantees syntax correction. This method 
is used as a generative grammar, as opposed to the classical use 
of grammars in compilers to check syntactic correctness of sen-
tences. 

Neural networks are usually seen as a method to implement 
complex non-linear mappings using simple elementary units inter-
related through connections with adaptive weights. 



2. Neural networks Let the following symbols represent properties of a partióle: 

Neural networks are non-linear systems whose structure is 
based on principies observed in biological neuronal systems. A neu­
ral network may be considered as a system capable of answering 
quedes or providing inputs to given outputs. The in/out combina-
tion, i.e. the transfer function of the network is not programmed 
but obtained through a "training" process on empiric datasets. 

The network builds the function that relates "input" to "output" 
by processing correct input/output pairs. For each input the net­
work returns an output which is not exactly the desired output, so 
the training algorithm modifies some parameters of the network 
in the desired direction. Henee, every time an example is input, the 
algorithm adjusts its network parameters to the optimal valúes for 
the given solution: in this way the algorithm tries to reach the opti­
mal solution for all the examples. These parameters are essentially 
the weights or linking factors between each neuron that forms our 
network. 

Neural networks application fields are typically those where 
elassie algorithms fail because of their inflexibility (they need pre­
cise input datasets) [12]. Usually problems with imprecise input 
datasets are those whose number of possible inputs datasets is 
so big that they cannot be classified. For example, in the image 
recognition field probabilistic algorithms have a lower efficieney 
than neural networks (even lower than the low flexible neural 
networks). Classic algorithms have also troubles in analysis of phe-
nomena that do not respond to mathematical rules. 

There are indeed rather complex algorithms which can anal-
yse these phenomena; however, neural networks turn out to be 
the most efficient [13,14] by far. These algorithms use Fourier's 
transformation to divide phenomena in frequential components; 
that is the reason why the results are highly complex (they only 
extract a few number of harmonics by generating a big number of 
approximations). A neural network trained with complex phenom-
ena's data is able to estímate also frequential components, However 
there is a big problem to solve when implementing one of these 
neural networks: The election of a valid architecture. This must be 
carefully chosen in order to obtain better results. 

This paper proposes a grammatical swarm algorithm that 
decides the right architecture/topology to use in every case. Fur-
thermore, the training process uses particle swarm optimization. 
Then a neural network is obtained just by running these two 
processes. (Obtaining the right topology and training the neural 
networks by using the appropriate weights.) Weights are defined 
by using ideas from social intelligence. Cross-disciplinary tools are 
useful in computational sciences [15]. 

Next sections describe how to implement a model which obtains 
neural network topology and trains it. 

3. Particle swarm optimization 

Particle swarm optimization (PSO) is a fairly recent population 
based stochastic optimization technique introduced by Kennedy 
and Eberhart [16]. It belongs to evolutionary computation área 
which uses iterative progress such as development in a set of 
numbers or codes. This set is addressed as population. The pop­
ulation is being moved over a searching space by an algorithm 
that looks for a solution. A particle is an element of the popu­
lation and represents a candidate solution to the problem. The 
model is inspired, like any other evolutionary algorithm, by a social-
psychological model [5]. The case of our study is an algorithm which 
simulates the social behaviour of a group of fish or flock of birds; 
this means that particles move in swarms and thus stay relatively 
cióse together. A swarm has no leader and no one coordinates its 
behaviour. 

• x¡ is the current position of particle í, 
• vi is the current velocity of particle í, 
• PBest is the personal best position of the particle, 
• gBest is the global best particle. 

With these notations, the formula to calcúlate a particle's veloc­
ity is: 

v{(t + 1) = v{(t) + cx*rx* (pBest -xi) + c2*r2* (gBest - x¿) 

The next formula, for the new position of the particle, adds the 
newly calculated velocity to its current position: 

xí(t + l )=x í ( t ) + ví(t + l) 

T\ and r2 are randomly generated for every velocity update and 
0 < ri, T2 < 1. They should both be different at each iteration. And 
C\, c2 are user defined valúes called acceleration coefficients where 
0 < C\, c2 < 2. Their valué depends on the problem to be optimized. 

Term velocity clampinghas not been previously included, but it is 
necessary to restrain velocity updates. Without doing so, particles 
would move too far from the search space, ignoring the current 
solution. If the search space has a range [-xmax, xmax] then the 
velocity should also have a range [-vmax, vmax\. Our proposal for 
vmax is k*xmax, k being the clamping factor between 0.1 and 1. 
The máximum velocity works as a constraint to control the global 
exploration of a swarm. If the valué is too high particles might 
bypass good solution and the exploration would be poor. On the 
other hand, slow particles might only be searching locally which 
would be good for local solutions but not for finding a global one; 
this means that the exploiting process becomes poor too. Balancing 
between exploration and exploitation improves considerably PSO. 
Introducing an inertia weight, for example, would sort that out. 

Adding an inertia weight in the velocity formula is a very small 
but effective update: 

V{(t + 1) = W * V,-(t) + C! * n * (pBest -Xi) + C2*r2* {gBest - x¡) 

As shown, a relatively large w empowers the global search. On 
the other hand, small valúes for w help to search locally. The higher 
the valué is, the faster the particle moves; thus, if valúes are small 
particles will move slowly. In most cases, when w > 1, velocity will 
increase upon time, reaching the máximum velocity if clamping is 
used. If w < 1, particles will slow down. This variable helps balanc­
ing between exploration and exploitation but does not elimínate 
the need for vmax. This new formula consists of 3 parts: 

• The inertia component w * v,(t). 
• The cognitive component C\ *T\ *(PBest-x¡)'- this part represents 

the particle's common sense, its memory. With the help of this 
component the particle is encouraged to move towards or around 
its personal best position. 

• The social component c2 *r2 * (gBest-x¡)'- makessure that the par­
ticle moves towards the best región found by the whole swarm. 

Note that the behaviour also depends on the valúes of C\ and 
c2. For most optimization problems, the following valúes form a 
suitable combination: w = 0.7, c\ = c2 = 1.4. 

By changing dynamically w, performance gets improved too. 
Depending on the problem, one can dynamically increase or 
decrease the inertia weight. Code and examples used in this paper 
are provided with a constant inertia weight. Fig. 1 shows the bench-
mark results when using the (Black Box Optimization Benchmark) 
with 24 noisy-free functions. 
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Fig. 1 . PSO expected running t ime (ERT, <) to reach/o p t + A / a n d median number off-evaluations from successful tr iáis (+), for A / = 10 Í + 1 ' ° '_ 1 '_ 2 '_ 3 '_ 5 '_ S } (the exponent is given 
in the legend o f / ] and/ 2 4 ) versus dimensión in log- log presentation. For each function and dimensión, ERT(Af) equals to #FEs( Af) divided by the number of successful triáis, 
where a tr ia l is successful i f /op t + A / w a s surpassed. The #FEs( Af) are the total number (sum) off-evaluations wh i le / o p t + A / w a s not surpassed in the t r ia l , f rom all (successful 
and unsuccessful) triáis, a n d / o p t is the opt imal function valué. Crosses ( x ) indícate the total number of/-evaluations, #FEs(-co), divided by the number of triáis. Numbers 
above ERT-symbols indícate the number of successful triáis. V-axis annotations are decimal logarithms. The thick light line w i t h diamonds shows the single best results from 
BBOB-2009 for A / = l O - 8 . Addit ional gr id lines show linear and quadratic scaling. 

3.1. Differentiaí evoíution and PSO 

Differential evoíution is, like PSO, a stochastic and population-
based optimization technique. It was first introduced in 1996 by 

Storn and Price [17]. Differential evoíution is capable of handling 
non-differentiable, nonlinear and multimodal objective functions 
and is fairly fast in doing so. DE has participated in the First 
International IEEE Competition on Evolutionary Optimization (¡CEO) 



and was proven to be one of the fastest evolutionary algo-
rithms. 

The DE algorithm also works with a population of potential Solu­
tions. The principie is same as PSO: a particle can gain by using 
information from other particles as well as the results of their 
own search. However, in the case of differential evolution, that 
information is sampled randomly. DE-PSO is basically a differential 
evolution algorithm mixed with ideas of particle swarm optimiza-
tion[18]. 

PSO and DE define the population in the same way. It is neces-
sary to implement population and velocities as two 2-D arrays of 
data. The higher the dimensión, the more valúes each particle has. 
In order to initialize the velocities, one can either choose random 
valúes between the predefined bounds, or zero. 

First, 3 random particles (ri, TJ, r-j) should be chosen in such a 
way that they are different from each other. The second task is to 
créate a mutated valué for each dimensión j of the particle according 
to the differential evolutionary algorithm. 

When the mutation is done for every dimensión, the mutated 
one is evaluated with the fitness function, and then compared it to 
the evaluation of the non-mutated one, i.e. the current particle. If 
it is smaller, then the mutated particle replaces the oíd one in the 
population; in other case the particle swarm optimizer is triggered. 

If the DE-part of the algorithm does not find a better solution, PSO 
is activated. A new particle is created according to PSO formulas: 
velocity and new position. A basic velocity and position clamping 
is performed as well. We then just check whether the new valúes 
(velocity, position) exceeds the threshold defined in the algorithm. 

If the newly created particle is proven to be better, it is replaced 
by the oíd one for the next generation. Both personal best and global 
best particle vectors are updated as well. This whole process occurs 
over again until the Halt condition is reached. 

More hybrid versions between particle swarm optimization and 
differential evolution have been proposed, for example the one 
proposed byjosé García, Enrique Alba andjavier Apolloni in: "Noise-
less Functions Black-Box Optimization: Evaluation ofa Hybrid Particle 
Swarm with Differential Operators" [19]. Their model is also simple 
and is proven to obtain an accurate level of coverage range. The 
algorithm also contains 2 main parts. The first one is the differen­
tial variation, in which new velocities and positions are calculated 
according to the following formulas: 

Vy(t + 1 ) = W * Vy(t) + [1+0* (gbeStj ~ Xy) 
xij(t + 1)=xij(t) + vij(t + 1) 

j is the dimensión and í = l, 2, . . . population size, JJL is a scaling 
factor (¡i = UN(0, 1)): and cp is the social coefficient (cp = LfN(0, 1)). 
The second part is the mutation, which is calculated according to 
formula of DE. It is basically a new particle position between the 
specified bounds. 

Figs. 1 and 2 show the benchmark results of both approaches 
{PSO and DE-PSO) using the BBOB20W (Black Box Optimization 
Benchmark) with 24 noisy-free functions described in the bench­
mark procedure. 

4. Neural network training using DE-PSO 

Given a neural network architecture, every weight is coded as a 
genotype. Then we train the network by running the particle swarm 
optimization algorithm. The fitness function can be computed using 

1 UN(0,1) function provides information about the uniform distribution on the 
interval from min = 0 to mea = 1 and generates random deviates. The uniform distri­
bution has density/(x) = l/(max-mm) for min < x < max. UN(0,1) will not genérate 
either of the extreme valúes unless max = min or mea-min is small compared to 
min. 

the mean squared error of the net with the training data set. Some 
variations aim to get better fitness valúes with more generalization 
properties just by running validation and testing sets. 

Equations used in the particle swarm optimization training pro­
cess are below: C\ and Cj are two positive constants, R\ and Rj are 
two random numbers belonging to [0,1 ] and w is the inertia weight. 
These equations define how the genotype valúes change along iter-
ations; in other words this equations show how neural network 
weights change. 

vin(t +1) = wvin(t) + c^(pin -xin(t))+ (1) 

C2MPgn - Xin(t)) (1) 

xin(t + \)=xin(t) + vin(t + \) (2) 

Previous equations modify the network weights until the Halt 
condition is reached, that is to say, either a lower mean squared 
error or a máximum number of iterations is reached. Figs. 3 and 4 
show two examples of a neural network training using the DE-PSO 
algorithm, the XOR and the binary coding problems (Table 1). 

Best neural network weights with a 8-3-3 architecture and com­
puted by the particle swarm algorithm are shown in Tables 2 and 3 
. These two neural examples reveal that the DE-PSO previously 
defined can be successfully applied to the training stage in order 
to solve the convergence of the algorithm when working with high 
dimensión individuáis. The XOR example with dimensión 9 and the 
binary-coding example with dimensión 39 are a good candidates 
to start with and to combine classical neural networks with swarm 
intelligence. 

5. Grammatical swarm 

Grammatical swarm (GS) [20] relates particle swarm algorithm 
to a grammatical evolution (GE); genotype-phenotype mapping to 
genérate programs in an arbitrary language [21]. The equations 
for the particle swarm algorithm are updated by adding new con-
straints to velocity and location dimensión valúes, such tlS Vmax 
(bounded to ±255), and dimensión which is bounded to the range 
[0, 255] (denoted as cmjn and cmax, respectively). Note that this is a 
continuous swarm algorithm with real-valued particle vectors. The 
standard GE mapping function is adopted, with the real-values in 
the particle vectors being rounded up or down to the nearest inte-
ger valué for the mapping process. In the current implementation 
of GS, fixed-length vectors are used, which implies that it is possible 
for a variable number of dimensions to be used during the program 
construction genotype-phenotype mapping process. A vector's ele-
ments (valúes) may be used more than once if wrapping occurs, and 
it is also possible that not all dimensions are used during the map­
ping process. (This can happen whenever a program is generated 
before reaching the end of the vector.) In this latter case, the extra 
dimensión valúes are simply ignored and are considered as introns 
that may be switched on in subsequent iterations. 

5.1. Neural network topology using GS: first approach 

Previous PSO model applied to a fixed neural network is a good 
training solution, however it does not define any kind or topol­
ogy properties as it only obtains the best weight valúes. Following 
grammars can be used with grammatical swarm algorithms in 
order to obtain a network topology for a given problem. 

This grammar can specify a feed-forward neural network topol­
ogy with consecutive layers, that is to say, a classical multilayer 
perceptron. 

<layers> :: = <layer> | <layer>, <layers> 
< l a y e r > : : = < d i g i t > 
<digi t> : : = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Table 1 
Binary coding: neural network pattern set and best fltness valué reached. 

Input Output 

Best fltness valué: 5 . 067e -05 . 

0.0059O388182618566 0.00409949102646106 0.160407816687669 0.00670879911678114 

4.4022377268488e-09 1.03680100831SOSe-22 

20D 40D 6ÜD OÜD IODO 

5.280084027408786-06 2.47236248542657e-07 

800 IODO 200 400 600 000 1000 

Fig. 3. XOR multilayer perceptron with 2 hidden neurons and a particle swarm optimization learning with 10 individuáis (individuáis have 9 dimensions). Each column 
represents a different random initialization and each row a numberof iterations (100 and 1000). 

0.448928449507574 0.380432955845818 0.166155810190459 0.0857910229358835 

0.254269716684872 

200 

0.0718653921693906 

100 150 200 250 300 

300 

0.0865752460809145 0.000314184787007479 

Fig. 4. Binary coding neural network form 8 inputs to 3 outputs. First row is a neural network with 3 hidden neurons and second row a neural network with 5 hidden neurons. 
Mean squared error (fltness ofthe particle swarm optimization) decreases asthe numberof iterations (100-400) increases. 



Table 2 
Binary coding: neural networkweights, fromthe input layertothe hidden layer, taking into account the bias term. 

weight i, hidden neuron 1 hidden neuron 2 hidden neuron 3 

input neuron 1 
input neuron 2 
input neuron 3 
input neuron 4 
input neuron 5 
input neuron 6 
input neuron 7 
input neuron 8 
Bias 

0.1156528 
-0.3683220 

1.5325933 
0.4830886 

-1.5133460 
-1.7465932 

1.0519552 
0.3397246 
0.7092471 

1.097272 
25.945492 
-9.765752 
26.536611 
0.790667 

-3.369892 
-4.920479 
-1.924014 
-5.304714 

-0.946379977 
-1.703378035 
-0.636187430 
0.002121948 

-0.131921926 
0.987214704 
0.005404300 
3.273439670 

-0.331283300 

Table 3 
Binary coding: neural network weights, from the hidden layer to the output layer with the bias term. 

weight i, output neuron 1 output neuron 2 output neuron 3 

hidden neuron 1 
hidden neuron 2 
hidden neuron 3 
Bias 

1.261584 
148.541038 

-162.388447 
0.090192 

-4.759320 
-1.054461 
-2.017318 

1.207254 

0.9853185 
-3.1161444 
-3.4691962 

1.9260548 

Next grammar is able to genérate feed-forward connections not 
only with one consecutive layer but also with more than one con-
secutive layer. Such connections are defined by the <connections> 
non-terminal, where the <digi t> means the n-consecutive layer. 

< l a y e r s > : : = < l a y e r > | < l a y e r > , < l a y e r s > 
< l a y e r > : : = < d i g i t > - < c o n n e c t i o n s > -
< c o n n e c t i o n s > : = < d i g i t > | < d i g i t >, < c o n n e c t i o n s > 
< d i g i t > : : = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

The whole algorithm is summarized as follows: 

1 Créate an initial population of genotypes. 
2 For genotype i 

(a) Using genotype and grammar to obtain a neural architecture. 
(b) Compute fitness of genotype. 

• Apply previous PSO algorithm to train the genotype net­
work. 

(c) Modified the best individual if appropriate. 
3 Update velocity of genotype i. 
4 Update position of genotype i. 
5 If stop condition is not satisfied go to step 2. 

This neural network model is a powerful one since only with 
the input and output pattern sets a network topology is chosen 
and also trained. Both tools, topology and training, are based on 
grammatical swarm and particle swarm optimization respectively, 
see Fig. 5. 

Another useful approach could be to define a grammar with the 
weight valúes of neural networks connections instead of training 
the topology using a PSO algorithm. 

6. Related work and experimental results 

This work is focused in the development of methods for the evo-
lutionary design of artificial neural networks. This paper focuses 
in optimizing the topology and structure of connectivity for these 
networks. 

Artificial neural networks are well-established tools used with 
success in many problems such as pattern recognition, classifi-
cation problems and optimization. The use of genetic algorithms 
in the evolution of neural networks has been widely used in the 
literature. However, in most cases limited experimental results 
are presented. In evolving a neural network using a genetic 

algorithm, two main approaches are used. In the first approach, the 
network topology and the network weights are evolved simulta-
neously [6,22-24], while in the second approach only the network 
topology is evolved and the parameters are estimated using a 
standard approach such as a gradient based optimization method 
[13,14]. Other approaches of defining the network's topology other 
than using genetic algorithms include pruning algorithms [13,14], 
simulated annealing based algorithms [13,14] and particle swarm 
optimization techniques [25-27,18]. 

The representation of the neural network is another important 
aspect of the evolutionary approach. Three major approaches are 
adopted in the bibliography. In the first, a binary coding of the 
topology and weights is used. In the second approach, a table struc­
ture is used to represent the connectivity between the neurons 
and the network's weights. The third approach is considered the 
most sophisticated since it involves using a higher-level language 
such as a grammar to describe the network topology. The latter 
approach gives better control to the network architect since he 
can use créate node layers and better describe complex topolo-
gies. 

Evolutionary neural networks have been widely used in solv-
ing various problems. Proposed method is tested against neural 
networks that are trained with various algorithms: 

• RPROP [23] which is an improved versión of the well-known back 
propagation method local optimization method. 

• A Powell's variant of the well-known BFGS [28] local optimization 
method. 

• A global optimization method namely MinFinder [29] which is 
capable under some conditions, to find all the local mínimums of 
a function. 

• Using and a genetic algorithm to estímate the neural net­
work's initial parameters and the BFGS [30,31 ] local optimization 
method for fine tuning using a local search. This method is similar 
with the one described in [24]. In all cases, the function to be min-
imized in the case of neural networks is the train error. In almost 
all cases, the proposed method outperforms its competitors. 

The datasets used for evaluating the proposed method, are 
known datasets that are available for download from the Internet 
and refer to both classification and regression problems. The num-
ber of datasets that are presented and evaluated are 9 classification 
problems and 9 regression problems. 



-.. 

• -, 
, 

^ N s 

'-
X 

& V 

^_ s 
\ vil ' • S • 1 

«. • i 

**, i> 
V-

V ' -N 

\ *• M v-} 1 
* s . , n -, . 

- . 1 " — — 

Fig. 5. Neural network topologies and training results obtained with a grammatical swarm for the topology and particle swarm optimization to train the net - XOR probiem 
- y axis: mean squared error vs. x axis: iterations. 

6.1. Cíassification dataseis 

• Wine: The wine recognition dataset (WINE) contains data from 
wine chemical analysis. It contains 178 examples of 13 attributes 
each that are classified into three classes. 

• Glass: This dataset (GLASS) contains glass component analysis 
for glass pieces that belong to 6 classes. The dataset contains 214 
examples with 10 attributes each. 

• Pima Indians Diabetes: The PIMA dataset contains 768 examples 
of 8 attributes each that are classified into two categories: healthy 
and diabetic. 

• Wisconsin Diagnostic Breast Cáncer: The Wisconsin Diagnostic 
Breast Cáncer dataset (WDBC) contains data for breast tumours. 
It contains 569 training examples of 30 attributes each that are 
classified into two categories. 

• Circular Artificial data: The circular artificial dataset (CIRCULAR) 
contains 1000 examples that belong to two categories. The data 
in the first class belong to a circle and the data of the second class 
belong to a circular disc outside the first circle. Each example vec­
tor has two attributes. It is expanded by adding 3 more attributes 
generated randomly (noise) using a normal distribution. 

• Spiral Artificial data: The spiral artificial dataset (SPIRAL) con­
tains 1000 examples that belong to two classes (500 examples 
each). The data in the first class are created using the following 
formula: x = 0.5 tcos(0.08t),y = 0.5rcos(0.08 + 7T/2), and the second-
class data using: x = 0.5rcos(0.08r + 7r), y = 0.5rcos(0.08r + 37r/2), 
The original features vector has two attributes (x, y). 

• Spiral Artificial data 2: The second spiral dataset (SPIRAL2) is cre­
ated as the first dataset. Its difference is that its primitive set is 
expanded by adding 3 more noisy attributes using normal distri­
bution. 

• Liverdisorder: This dataset contains blood analysis data from peo-
pie with liver disorders. It consists of 345 examples of 6 attributes 
each. 

• Ionosphere dataset: The ionosphere dataset contains data from 
thejohns Hopkins Ionosphere datábase. It contains 351 examples 
of 34 attributes each that are split into two classes. 

6.2. Regression dataseis 

• BL: This dataset can be downloaded from StatLib (http://stat.cmu. 
edu/datasets/). It contains data from an experiment on the affects 
of machine adjustments on the time to count bolts. 

FA: The FA dataset contains percentage of body fat, age, weight, 
height, and ten body circumference measurements. The goal is to 
fit body fat to the other measurements. 
LW: This dataset is produced from a study that was to identify risk 
factors associated with giving birth to a low birth weight baby 
(weighing less than 2500 g). Data were collected on 189 women, 
59 of which had low birth weight babies and 130 of which had 
normal birth weight babies. 
NT: This dataset contains data from a paper in the Journal of the 
American Medical Association that examined whether the true 
mean body temperature is 98.6°F. 
PO: This dataset is available from StatLib (http://stat. 
cmu.edu/datasets/). It contains pollution data. 
PW: This dataset contains numeric prediction data using 
instance-based learning with encoding length selection. 
SN: This dataset contains data on a viticultural experiment that 
was conducted to investígate different methods of trellising and 
pruning. 
MB: This dataset is available from Smoothing Methods in Statis-
tics (http://stat.cmu.edu/datasets/). 
BK: This dataset comes from Smoothing Methods in Statistics 
(http://stat.cmu.edu/datasets/). 

6.3. Results 

Results from the application of the proposed method against the 
methods RPROP, BFGS and MinFinder are Usted, see Tables 4 and 5 
. Each method was tested for different topologies of the resulting 
neural network (e.g. the number of hidden neurons) and the topol­
ogy with the best results was selected. The genetic algorithm's 
parameters have been estimated experimentally after observing 
that the algorithm converges faster using these parameters. The 
parameters are: máximum number ofgenerations: 500, population 
size: 500, chromosome length: 100, crossover rate: 0.95, mutation 
rate: 0.05, tournament size: 10. 

The method proposed in this paper uses grammatical evolu-
tion in order to construct a neural network and particle swarm 
optimization to train it. The proposed method encodes in the gram-
mar the network topology. The method is evaluated on 9 known 
cíassification and 9 known regression problems and compared 
against the state of the art methods: RPROP, BFGS and MinFinder. 
An accurate comparison of the four methods is presented that 
uses 10-fold cross validation and 30-fold experiment replication. 

http://stat.cmu
http://stat
http://cmu.edu/datasets/
http://stat.cmu.edu/datasets/
http://stat.cmu.edu/datasets/


Table 4 
Test error for the classifications problems. All mentioned methods are compared against the proposed method, combination of grammatical swarm and particle swarm 
optimization (GS + PSO). 

WINE GLASS PIMA WDBC CIRCULAR SPIRAL SPIRAL2 LIVER IONSPHERE 

RPROP 0.5993 0.7137 0.3319 0.3271 0.4494 0.4906 0.5022 0.4356 0.1578 
BFGS 0.4886 0.5393 0.3656 0.2091 0.0795 0.4531 0.4847 0.3886 0.1708 
MINFINDER 0.1178 0.4941 0.3004 0.0489 0.0857 0.4343 0.4704 0.3559 0.1627 
GENETIC 0.1426 0.4801 0.3216 0.0687 0.0784 0.4358 0.4815 0.3584 0.1699 
GS + PSO 0.0541 0.5145 0.2133 0.0512 0.0811 0.4490 0.4880 0.3118 0.0999 

Bold valúes represent the best obtained mean squared error. 

Table 5 
Mean squared error for the regression problems. All mentioned methods are compared against the proposed method, combination of grammatical swarm and particle swarm 
optimization (GS + PSO). 

PO BL FA LW PW NT 

Bold valúes represe nt the best obtained mean squared error. 

SN MB BK 

RPROP 0.34 0.57 0.94 0.51 0.17 0.56 1.08 0.49 0.54 
BFGS 0.25 0.33 0.44 0.91 0.21 3.14 2.31 0.68 4.44 
MINFINDER 0.26 0.21 0.25 2.41 0.27 1.72 1.13 57.94 3.06 
GENETIC 0.29 0.26 0.29 2.01 0.22 2.81 2.04 8.45 13.64 
GS + PSO 0.21 0.08 0.12 0.11 0.10 0.05 0.46 0.28 0.09 

The experimental results show that the proposed method outper-
forms the other methods, see Tables 4 and 5. Two major advantages 
of proposed model is that it is significantly faster than MinFinder 
by several orders of magnitude and is natively parallel. This gives 
it an edge over traditional methods since it can take advantage of 
distributed computing technologies. 
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particle. They use a randomized method (e.g. mutation in evolu-
tionary computations) for either to maintain particles velocities 
or to accelerate them. Although such improvements work well 
and have ability to avoid falls in the local óptima, the prob­
lem of early convergence by the degeneracy of some dimensions 
still exists, even when local óptima do not exist. Henee the PSO 
algorithm does not always work well for the high-dimensional 
function. 

Usually, neural network parameters are in a high-dimensional 
space and then PSO algorithms are not very efficient ones when 
dealing with such individuáis. Best solution could be the integra-
tion of PSO and GA in a new model GPSO taking advantages of both 
models, or at least to improve the impact of the high dimensional 
individuáis in the PSO algorithm. 
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