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A B S T R A C T 

Cylindrical Petri dishes embedded in a rectangular waveguide and exposed to a polarized electromagnetic 
wave are often used to grow cell cultures. To guarantee the success of these cultures, it is necessary 
to enforce that the specific absorption rate distribution is sufficiently high and uniform over the Petri 
dish. Accurate numerical simulations are needed to design such systems. These simulations constitute 
a challenge due to the strong discontinuity of electromagnetic material properties involved, the relative 
low field value within the dish cultures compared with the rest of the domain, and the presence of the 
meniscus shape developed at the liquid boundary. The latter greatly increases the level of complexity of 
the model in terms of geometry and intensity of the gradients/singularities of the field solution. In here, 
we employ a three-dimensional (3D) hp-adaptive finite element method using isoparametric elements to 
obtain highly accurate simulations. We analyze the impact of the geometrical modeling of the meniscus 
shape cell culture in the hp-adaptivity. Numerical results showing the error convergence history indicate 
the numerical difficulties arisen due to the presence of a meniscus-shaped object. At the same time, the 
resulting energy distribution shows that to consider such meniscus shape is essential to guarantee the 
success of the cell culture from the biological point of view. 

1. Introduction 

A Petri dish is a cylindrical plate often used for cell cultures. 
To induce and control the growth of these cell cultures, they may 
be exposed to various electromagnetic (EM) fields. One common 
scenario is to place the Petri dish into a rectangular waveguide 
that is illuminated with a polarized wave radiating at a particular 
frequency, [1,18,17]. 

In order to ensure the proper growth of the cell cultures, it is 
necessary to guarantee the high and uniform distribution of the 
EM energy (typically measured in terms of SAR - Specific Absorp­
tion Rate-) within the Petri dish [1,20]. Some authors state that in 
addition to control the SAR, one also needs to impose some addi­
tional conditions, e.g., polarization, on the distribution of the full 

electromagnetic fields to secure the proper evolution of the cell 
culture (see [22] and references therein). Furthermore, the menis­
cus shape developed at the interface of the liquid with the dish 
provides a complex shape, whose geometry is typically expressed 
as a mathematical formula involving exponential and hyperbolic 
functions. 

Suitable numerical simulation methods for these scenarios need 
to have the following features. First, they should be able to handle 
three-dimensional geometries, including the Petri dish shape, and 
the meniscus shape. Second, they should be able to efficiently deal 
with the discontinuous material properties at the air-liquid inter­
face. Third, they should be flexible enough to enable simulation of 
all possible scenarios, including various geometries, polarizations, 
and frequencies. Finally, and more importantly, since the observed 
electromagnetic fields produced by modifications on the design 
system are often small but nonetheless important, the simulation 
software should be highly accurate for all considered models. More­
over, it should provide an error estimation in order to minimize 
uncertainty and guarantee the correctness of the solution for each 
model. 



(a) Waveguide with Petri-dish. 

(b) Top and side views of the problem. Wide side a of the waveguide ports correspond to x-axis. Side b 
corresponds to y-axis. 2-axis is along the waveguide. 
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(c) Detail of meniscus profile: h{p) = I12 + 2 Ah e c cosh f - J 

Fig. 1. Problem geometry. Dimensions expressed in millimeters: a = 95, b = 45, R0 = 16.9, L=300, hi = 27.5, h2 =30.5, Ah = 2.51. 

Several numerical methods have been employed for Petri dish 
simulations exposed to EM fields in different configurations, e.g., 
[3,20,21,16,1,22,23]. Approaches based on differential formulations 
are mainly used because of their flexibility to deal with complex 
geometrical and material configurations. Among them, the most 
common numerical technique is finite differences (FD); typically, 
in time domain. 

SAR data is obtained by averaging the energy distribution within 
a small cube shaped volume (known as voxel), which is the natu­
ral choice in FD grids. The presence of non-Cartesian geometries, 
boundary layers, and field singularities encountered on the result­
ing field solution together with internal resonances, requires the 
use of tiny voxels. Unfortunately, the use of small voxel sides ofthe 
order of one tenth (or even one hundredth) of a wavelength may 
not be enough in some cases to have confidence on the results. In 
those situations, the voxels close to the solid/liquid interface are 
skipped from the SAR distribution assessments, as it is reported in 
[22]. 

In here, we propose to employ a highly accurate method that 
works under all the above scenarios and provides an error esti­
mation that guarantees the correctness ofthe solution. It is based 
on a Finite Element Method (FEM) that utilizes "adapted" meshes 
to both the geometry of the problem domain and its solution. A 
sequence of adapted meshes is generated in an automatic fashion 
by refining a given mesh in certain areas of the domain. Simul­
taneous h and p refinements, i.e., local variations of the element 
size h and the polynomial order of approximation p throughout the 
mesh are supported (the so called hp-adaptivity [5,6]). Preliminary 
results of the 3D implementation of the hp-adaptivity proposed by 
the authors [9] applied to the Petri dish problem were presented in 
[10], where the cell cultures were modeled as a circular dielectric, 
i.e., the meniscus shape was not included in the geometry. In this 
paper, the meniscus shape is included in the computational model. 
The main focus of this work is to analyze: (a) the numerical effect of 
the geometrical refinements in the hp-adaptivity due to the presence 
of a meniscus-shaped object, and (b) the differences obtained in the 
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Fig. 2. Convergence history for the empty waveguide with different initial meshes. 

physical results due to the presence of such complex geometrical 
object. 

2. Mathematical modeling and formulation 

We consider a Petri dish filled with a cell culture and placed 
inside a rectangular waveguide, as depicted in Fig. 1. Dimensions 
of the waveguide and dish are described Fig. 1. The meniscus shape 
is modeled as described in [20]. Its mathematical expression is 
displayed in Fig. 1 (we selected c = 2.01 mm). The waveguide is elec-
tromagnetically excited with its fundamental mode, known as TEio 
(details can be found in any of the numerous books in the subject, 
e.g., [4]). Operating frequency i s / = ^ = 2.368 GHz. 

The EM phenomena are governed by Maxwell's equations. By 
combining the two curl Maxwell's equations in the frequency 
domain the following double curl vector wave equation for the 
electric field E is obtained: 

1 
fir 

V x E • k^srE -. 0 (1) 

where sr = sjso and fir = fijfio being s, fi the electric permittivity 
and magnetic permeability, respectively, of the medium, and k0 = 
oj^/sol-io- The subindex "0" is used to denote the vacuum medium. 
Symbol a> denotes angular frequency. Losses are modeled with a 

equal to a = 2.3 Qrx m_ 1 that in our problem corresponds to an 
imaginary part of the relative permittivity equal to 17.46. The Petri 
dish itself is assumed to have the same electrical properties as that 
of the air; the dish has a relative permittivity much lower than 
that of the liquid contained within the dish, and its effect can be 
neglected, [14]. 

The excitation of the problem is imposed via a boundary condi­
tion at the incident port (boundary rj,nc; left port in Fig. 1), namely: 

1 
flr 

: E + j ^ ° n : 
fir 

n x E = U i n ,a t the port boundaries 

(2) 

where fiw is the propagation constant for the TE10 mode (equals to 
V57t/(2a) for the considered frequency) and Uin = 2j(ySio/'Mr)n x 

n x Ein with Ein the incident electric field of mode TEio at the inci­
dent port. Symbol fi stands for the outward unit vector normal to 
the port. Boundary condition at the output port is given by the 
homogeneous version of Eq. (2). 

The metallic walls of the waveguide (boundary TD) are modeled 
as perfect electric conductors (PEC) by imposing the following 
Dirichlet boundary condition: n x E = 0. 

The variational formulation is obtained by multiplying Eq. (1) 
with a test function F. After integration by parts, it is obtained: 

Find E s W such that 

(VxF)- ( f V x E ) dQ.-kl / F-e rEd^ + 

Jfiw 

jfiw 
fir r •'En 

( n x F ) - ( n x E ) d r 

: 2 J - ^ / ( n x F ) - ( n x U i n c ) d r VF e W, W := {A s H(curl, £2), n x A = 0onTD} 
l-^r Jpinc 

non-null electrical conductivity a that is introduced in the model 
through a complex permittivity, i.e., real parameter e turns into a 
complex parameter sc = s -ja/co. 

In our problem, the air within the waveguide has no losses (i.e., 
a = 0), and the relative permeability and permittivity are equal to 
1. The liquid contained within the Petri dish has a relative electric 
permittivity er = 77 and a relative magnetic permeability equal to 
1. Losses in the liquid are modeled with an electrical conductivity 

3. hp-FEM and automatic hp-adaptivity in 3D 

The 3D implementation of the hp-adaptivity proposed by the 
authors (see [9] and the references therein) is based on a self-
adaptive strategy devised in [19] and further improved in [15,6]. 
The hp-adaptive strategy supports anisotropic refinements on 
irregular meshes with hanging nodes, and isoparametric ele­
ments as well as exact-geometry elements. It supports geometrical 
refinements through the use of its own geometrical package 



(a) Cylinder (b) Disc 

(c) Meniscus 

Fig. 3. Meshes corresponding to energy error <0.1% (zoom). 

to accurately model the problem geometry. Hexahedral H(curl) 
conforming finite elements satisfying the commutativity of the 
so-called de Rham diagram and hence, assuring convergence and 
stability of the numerical solution, are used, [8,7]. 

The main advantage of this method is that it provides exponen­
tial convergence rates in terms of the energy-norm error vs. the 
problem size when the right distribution of h and p throughout the 
computational domain is selected by the self-adaptive algorithm 
[2]. At the same time, it minimizes the dispersion error in wave 
propagation problems due to the use of high p (see [12,11,13]). 

4. Numerical results 

We start by analyzing the effect of geometrical refinements that 
are needed to reproduce the geometry of the problem, namely, the 
Petri dish. Refinements forced to geometrically adapt to a com­
plex geometry affect to the meshes delivered by the adaptivity and 
hence have impact on the numerical error of the finite element 
solution. 

For that analysis, we consider the following four geometrical 
models: a Hexa (a waveguide without any object in its interior), a 
Cylinder (a waveguide containing a circular cylinder in the center), 
q Disc (a waveguide containing a thin disc in the center), Meniscus (a 
waveguide containing a meniscus-shaped object in the center).This 
latter geometry contains all the geometrical features needed for the 
proper modeling of the Petri dish and its liquid, while the remaining 
three geometrical models are successive approximations of the 
final model. 

First, we consider the case of an empty waveguide, i.e., we select 
er = l and 0 = 0 everywhere in the domain (including the cell cul­
ture), so the exact solution corresponds to the TE10 field inside the 
waveguide, which is a smooth solution. 

Fig. 2 shows the convergence history of the energy error cor­
responding to the four aforementioned initial geometries, which 
correspond to the same physical problem. The plot is displayed in 
a logarithmic scale in the ordinate axis, and in an algebraic scale 
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Fig. 4. Convergence history for the Petri dish (energy error). 

in the abscissa axis. More precisely, the abscissa scale corresponds 
to Nd ' f although the abscissa axis tics should be read as N^0[ in 
the plots; Ndof is the number of unknowns. According to the the­
ory developed in [2], the error associated to an optimal sequence 
of ftp-grids behaves as Cexp(-N, ' f) in 3D. Thus, a straight line in 
the considered scale indicates exponential convergence. 

Fig. 2 confirms this exponential behavior in the cases of the 
"hexa" and "cylinder" initial meshes for the entire error range 
shown in the figure. Note that the adaptivity has been pushed 
beyond the limits of practical engineering error of 1%. For the 
"disc" and "meniscus" initial meshes, the behavior is similar to 
the "hexa" and "cylinder" cases up to some error below 1%. From 
that point on, a progressive deterioration in the slope is observed. 
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(b) Mesh after a few iterations 
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(c) Intermediate mesh 
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Fig. 5. Energy distribution in the waveguide expressed as |E|2 (V2/m2). Cut yz of the waveguide. Meniscus effect included in the figures on the right. 

Fig. 3 shows the final ftp-meshes around the geometrically complex 
objects. The automatic hp-adaptive algorithm produces signifi­
cantly higher orders of approximations for the meniscus-shaped 
case. The upper limit on the order of approximation (namely, 
p = 9) existing in our implementation may explain some (but 
not all) of the observed convergence deterioration. The full rea­
sons while such large convergence differences are observed when 
considering various geometrical objects with the same mate­
rial properties are still unknown, and this is an active area of 
research. 

We now consider the actual material properties corresponding 
to the Petri dish of the disc and meniscus-shaped objects, namely 
a = 2.3 Sjm and €T = 77. 

Fig. 4 shows the convergence history of the energy norm error. 
We conclude that material properties have a negligible effect on 
this problem in terms of convergence properties, while geometrical 
effects are notorious. 

The importance of the geometry is also observed in the solution. 
Fig. 5 displays a plane cut on the yz plane of the energy distribu­
tion of the solution for various grids when considering both a disc 
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Fig. 6. Energy distribution expressed as | E |2 (V2/m2) over the Petri dish modeled as lossy medium. Meniscus effect included in the figures on the right. Cut xz at 45 fim over 
dish base. 

and a meniscus-shaped Petri dish. For the meniscus-shaped object, 
a strong edge singularity develops along the top-exterior part of 
the Petri dish, as expected due to the reentrant corner contained 
on that geometry. The strength of this singularity is significantly 
lower in the disc-shaped object. Fig. 6 shows a plane cut on the xz 
plane of the energy distribution of the solution within the culture 
for the same meshes as those considered in Fig. 5. Again, signifi­
cant differences are observed between the results corresponding 
to the disc and meniscus-shaped objects. For the later, we obtain 

a significantly larger (approx., 50% more) energy distribution, as 
needed for biological purposes. 

5. Conclusions 

We have simulated the electromagnetic problem of the irradia­
tion of a meniscus shaped cell culture within a Petri dish using an 
ftp-adaptive FEM. The proposed method delivers highly accurate 



solutions with error control. The effect of the meniscus-shaped 
geometry that develops in the air/liquid interface significantly dif-
ficults its modeling, while it heavily influences the growth of the 
cell culture. The effect of the geometrical refinements in the perfor­
mance of the adaptivity in such a complex geometrical object has 
been demonstrated. 

Acknowledgment 

The authors would like to thank Prof. GonzaTez-Garcia of Univer­
sity of Granada, Spain for providing the geometry of the waveguide 
with Petri dish. Also to Ph.D. student Adrian Amor for providing 
some numerical results used for code verification. The authors 
would like also to acknowledge the support of Ministerio de 
Educacion y Ciencia of Spain under project TEC2010-18175/TCM. 
David Pardo has received funding from the European Union's Hori­
zon 2020 research and innovation programme under the Marie 
Sklodowska-Curie grant agreement No. 644602, the Project of the 
Spanish Ministry of Economy and Competitiveness with reference 
MTM2013-40824-P, the BCAM "Severo Ochoa" accreditation of 
excellence SEV-2013-0323, the CYTED 2011 project 712RT0449, 
and the Basque Government through the BERC 2014-2017 pro­
gram and the Consolidated Research Group Grant IT649-13 on 
"Mathematical Modeling, Simulation, and Industrial Applications 
(M2SI)". 

References 

[1] L.D. Angulo, S.G. Garcia, M.F. Pantoja, C.C. Sanchez, R.G. Martin, Improving the 
SARdistribution in Petri-dish cell cultures, J. Electromagn. Waves Appl. 24(5-6) 
(2010)815-826. 

[2] I. Babuska, B. Guo, Approximation properties of the hp-version of the finite 
element method, Comput. Methods Appl. Mech. Eng. 133 (1996) 319-346. 

[3] M. Burkhardt, Numerical and experimental dosimetry of Petri dish exposure 
setups, Bioelectromagnetics 17 (1996) 483-493. 

[4] R.E. Collin, Field Theory of Guided Waves, IEEE Press, 1991. 
[5] L. Demkowicz, Computing with hp Finite Elements. I. One-and Two-

Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC Press, Taylor 
and Francis, 2007. 

[6] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, A. Zdunek, Com­
puting with hp Finite Elements. II Frontiers: Three Dimensional Elliptic and 
Maxwell Problems with Applications, Chapman & Hall/CRC Press, Taylor and 
Francis, 2008. 

[7] L.F. Demkowicz, Finite element methods for Maxwell equations, in: Encyclo­
pedia of Computational Mechanics, John Wiley & Sons, Inc, 2004. 

[8] L.F. Demkowicz, P. Monk, L. Vardapetyan, W. Rachowicz, De Rham diagram for 
hp finite element spaces, Comput. Math. Appl. 39 (7-8) (2000) 29-38. 

[9] I. Gomez-Revuelto, L.E. Garcia-Castillo, S. Llorente-Romano, D. Pardo, A three-
dimensional self-adaptive hp finite element method forthe characterization of 
waveguide discontinuities, Comput. Methods Appl. Mech. Eng. 249-252 (2012) 
62-74. 

10] I. Gomez-Revuelto, L.E. Garcia-Castillo, D. Pardo, High-accuracy adaptive simu­
lations of a Petri dish exposed to electromagnetic radiation, Proc. Comput. Sci. 
18(2013)1555-1563. 

11] F. Ihlenburg, I. Babuska, Dispersion analysis and error estimation of Galerkin 
finite element methods for Helmhotz equation, Int. J. Numer. Methods Eng. 38 
(1995)3745-3774. 

12] F. Ihlenburg, I. Babuska, Finite element solution of the Helmholtz equation with 
high wave number. I: The h-version of the FEM, Comput. Math. Appl. 30 (9) 
(1995)9-37. 

13] F. Ihlenburg, I. Babuska, Finite element solution of the Helmholtz equation with 
high wave number. II: the h -p- version of the FEM, SIAMJ. Numer. Anal. 34 (1) 
(1997)315-358. 

14] T. Iyama, E. Hidetoshi, Y. Tarusawa, S. Uebayashi, M. Sekijima, T. Nojima, J. 
Miyakoshi, Large scale invitro experiment system for 2 GHz exposure, Bioelec­
tromagnetics 25(2004)599-606. 

15] J. Kurtz, L.F. Demkowicz, A fully automatic hp-adaptivity for elliptic PDEs in 
three dimensions, Comput. Methods Appl. Mech. Eng. 196 (2007) 3534-3545, 
http ://dx.doi.org/l 0.1016/j.cma.2006.10.053 

16] M. Liberti, F. Apollonio, A. Paffi, M. Pellegrino, G. DTnzeo, A coplanar-waveguide 
system for cells exposure during electrophysiological recordings, IEEE Trans. 
Microw. Theory Tech. 52 (11) (2004) 2521-2528. 

17] M.A. Martinez, M.A. Trillo, M.A. Cid, J.E. Page, A. Ubeda, Respuesta citostat-
ica de celulas humanas NB69 a senales pulsadas en la banda de 2 GHz, in: 
In XXIII Simposium Nacional de la URSI, Madrid, Espana, 2008 September, 
pp. 70-74. 

18] J.E. Page, El banco de irradiacion invitro en la banda de 2 GHz del hospital 
ramon y cajal, in: XXIII Simposium Nacional de la URSI, Madrid, Espana, 2008 
September, pp. 51-55. 

19] W. Rachowicz, D. Pardo, L.F. Demkowicz, Fully automatic hp-adaptivity in three 
dimensions, Comput. Methods Appl. Mech. Eng. 195 (July (37-40)) (2006) 
4186-4842. 

20] J. Schuderer, N. Kuster, Effect of the meniscus at the solid/liquid interface on 
the SAR distribution in Petri dishes and flasks, Bioelectromagnetics 24 (2003) 
103-108. 

21 ] J. Schuderer, T. Samaras, W. Oesch, D. Spat, N. Kuster, High peak SAR exposure 
unit with tight exposure and environmental control for invitro experiments at 
1800 MHz, IEEE Trans. Microw. Theory Tech. 52 (8) (2004) 2057-2066. 

22] J.E. Varela, J.E. Page, J. Esteban, Design, implementation, and dosimetry analysis 
of an s-band waveguide in vitro system forthe exposure of cell culture samples 
to pulsed fields, Bioelectromagnetics 31 (2010) 479-487. 

23] J.X. Zhao, H.M. Lu, J. Deng, Dosimetry and temperature evaluations of a 
1800 MHz TEM cell for in vitro exposure with standing waves, Prog. Electro­
magn. Res. (PIER) 124 (2012) 487-510. 


