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Abstract. Sampling a network with a given probability distribution has been identified as a useful 
operation. In this paper we propose distributed algorithms for sampling networks, so that nodes are 
selected by a special node, called the source, with a given probability distribution. All these algorithms 
are based on a new class of random walks, that we call Random Centrifugal Walks (RCW). A RCW is 
a random walk that starts at the source and always moves away from it. 
Firstly, an algorithm to sample any connected network using RCW is proposed. The algorithm assumes 
that each node has a weight, so that the sampling process must select a node with a probability 
proportional to its weight. This algorithm requires a preprocessing phase before the sampling of nodes. 
In particular, a minimum diameter spanning tree (MDST) is created in the network, and then nodes' 
weights are efficiently aggregated using the tree. The good news are that the preprocessing is done only 
once, regardless of the number of sources and the number of samples taken from the network. After 
that, every sample is done with a RCW whose length is bounded by the network diameter. 
Secondly, RCW algorithms that do not require preprocessing are proposed for grids and networks with 
regular concentric connectivity, for the case when the probability of selecting a node is a function of its 
distance to the source. 
The key features of the RCW algorithms (unlike previous Markovian approaches) are that (1) they do 
not need to warm-up (stabilize), (2) the sampling always finishes in a number of hops bounded by the 
network diameter, and (3) it selects a node with the exact probability distribution. 

1 Introduction 

Sampling a network with a given distribution has been identified as a useful operation in many contexts. For 
instance, sampling nodes with uniform probability is the building block of epidemic information spreading 
[13,12]. Similarly, sampling with a probability tha t depends on the distance to a given node [3,17] is useful 
to construct small world network topologies [14,7,2]. Other applications tha t can benefit from distance-
based node sampling are landmark-less network positioning systems like NetICE9 [16], which does sampling 
of nodes with special properties to assign synthetic coordinates to nodes. In a different context, currently 
there is an increasing interest in obtaining a representative (unbiased) sample from the users of online 
social networks [9]. In this paper we propose a distributed algorithm for sampling networks with a desired 
probability distribution. 

R e l a t e d Work One technique to implement distributed sampling is to use gossiping between the network 
nodes. Jelasity et al. [12] present a general framework to implement a uniform sampling service using gossip-
based epidemic algorithms. Bertier et al. [2] implement uniform sampling and DHT services using gossiping. 
As a side result, they sample nodes with a distribution tha t is close to Kleinberg's harmonic distribution 
(one instance of a distance-dependent distribution). Another gossip-based sampling service tha t gets close to 
Kleinberg's harmonic distribution has been proposed by Bonnet et al. [3[. However, when using gossip-based 
distributed sampling as a service, it has been shown by Busnel et al. [5] tha t only partial independence 
(e-independence) between views (the subsets of nodes held at each node) can be guaranteed without re-
executing the gossip algorithm. Gurevich and Keidar [11] give an algorithm tha t achieves e-independence in 
0(nslogn) rounds (where n is the network size and s is the view size). 



Another popular distributed technique to sample a network is the use of random walks [18]. Most random-
walk based sampling algorithms do uniform sampling [1,9], usually having to deal with the irregularities of 
the network. Sampling with arbitrary probability distributions can be achieved with random walks by re-
weighting the hop probabilities to correct the sampling bias caused by the non-uniform stationary distribution 
of the random walks. Lee et al. [15] propose two new algorithms based on Metropolis-Hastings (MH) random 
walks for sampling with any probability distribution. These algorithms provide an unbiased graph sampling 
with a small overhead, and a smaller asymptotic variance of the resulting unbiased estimators than generic 
MH random walks. 

Sevilla et al. [17] have shown how sampling with an arbitrary probability distribution can be done without 
communication if a uniform sampling service is available. In that work, as in all the previous approaches, the 
desired probability distribution is reached when the stationary distribution of a Markov process is reached. 
The number of iterations (or hops of a random walk) required to reach this situation (the warm-up time) 
depends on the parameters of the network and the desired distribution, but it is not negligible. For instance, 
Zhong and Sheng [18] found by simulation that, to achieve no more than 1% error, in a torus of 4096 
nodes at least 200 hops of a random walk are required for the uniform distribution, and 500 hops are 
required for a distribution proportional to the inverse of the distance. Similarly, Gjoka et al. [10] show 
that a MHRW sampler needs about 6K samples (or 1000-3000 iterations) to obtain the convergence to the 
uniform probability distribution. In the light of these results, Markovian approaches seem to be inefficient 
to implement a sampling service, specially if multiple samples are desired. 

Contr ibut ions In this paper we present efficient distributed algorithms to implement a sampling service. 
The basic technique used for sampling is a new class of random walks that we call Random Centrifugal Walks 
(RCW). A RCW starts at a special node, called the source, and always moves away from it. 

All the algorithms proposed here are instances of a generic algorithm that uses the RCW as basic element. 
This generic RCW-based algorithm works essentially as follows. A RCW always starts at the source node. 
When the RCW reaches a node x (the first node reached by a RCW is always the source s), the RCW 
stops at that node with a stay probability. If the RCW stops at node x, then x is the node selected by the 
sampling. If the RCW does not stop at x, it jumps to a neighbor of x. To do so, the RCW chooses only 
among neighbors that are farther from the source than the node x. (The probability of jumping to each of 
these neighbors is not necessarily the same.) In the rest of the paper we will call all the instances of this 
generic algorithm as RCW algorithms. 

Firstly, we propose a RCW algorithm that samples any connected network with any probability distribu­
tion (given as weights assigned to the nodes). Before starting the sampling, a preprocessing phase is required. 
This preprocessing involves building a minimum distance spanning tree (MDST) in the network4, and using 
this tree for efficiently aggregating the node's weights. As a result of the weight aggregation, each node has 
to maintain one numerical value per link, which will be used by the RCW later. Once the preprocessing 
is completed, any node in the network can be the source of a sampling process, and multiple independent 
samplings with the exact desired distribution can be efficiently performed. Since the RCW used for sampling 
follow the MDST, they take at most D hops (where D is the network diameter). 

Secondly, when the probability distribution is distance-based and nodes are at integral distances (mea­
sured in hops) from the source, RCW algorithms without preprocessing (and only a small amount of state 
data at the nodes) are proposed. In a distance-based probability distribution all the nodes at the same dis­
tance from the source node are selected with the same probability. (Observe that the uniform and Kleinberg's 
harmonic distributions are special cases of distance-based probability distributions.) In these networks, each 
node at distance k > 0 from the source has neighbors (at least) at distance k — 1. We can picture nodes 
at distance k from the source as positioned on a ring at distance k from the source. The center of all the 
rings is the source, and the radius of each ring is one unit larger than the previous one. Using this graphical 
image, we refer the networks of this family as concentric rings networks. 5 

4 Using, for instance, the algorithm proposed by Bui et al. [4] whose time complexity is 0(n). 
5 Observe that every connected network can be seen as a concentric rings network. For instance, by finding the 

breadth-first search (BFS) tree rooted at the source, and using the number of hops in this tree to the source as 
distance. 



The first distance-oriented RCW algorithm we propose samples with a distance-based distribution in a 
network with grid topology. In this network, the source node is at position (0,0) and the lattice (Manhattan) 
distance is used. This grid contains all the nodes that are at a distance no more than the radius R from 
the source (the grid has hence a diamond shape6). The algorithm we derive assigns a stay probability to 
each node, that only depends on its distance from the source. However, the hop probabilities depend on the 
position (i,j) of the node and the position of the neighbors to which the RCW can jump to. We formally 
prove that the desired distance-based sampling probability distribution is achieved. Moreover, since every 
hop of the RCW in the grid moves one unit of distance away from the source, the sampling is completed 
after at most R hops. 

We have proposed a second distance-oriented RCW algorithm that samples with distance-based distri­
butions in concentric rings networks with uniform connectivity. These are networks in which all the nodes in 
each ring k have the same number of neighbors in ring k — 1 and the same number in ring k + 1. Like the 
grid algorithm, this variant is also proved to finish with the desired distribution in at most R hops, where R 
is the number of rings. 

Unfortunately, in general, concentric rings networks have no uniform connectivity. This case is faced by 
creating, on top of the concentric rings network, an overlay network that has uniform connectivity. In the 
resulting network, the algorithm for uniform connectivity can be used. We propose a distributed algorithm 
that, if it completes successfully, builds the desired overlay network. We have found via simulations that this 
algorithm succeeds in building the overlay network in a large number of cases. 

In summary, RCW can be used to implement an efficient sampling service because, unlike previous 
Markovian (e.g., classical random walks and epidemic) approaches, (1) it always finishes in a number of 
hops bounded by the network diameter, (2) selects a node with the exact probability distribution, and (3) 
does not need warm-up (stabilization) to converge to the desired distribution. Additionally, in the case that 
preprocessing is needed, this only has to be executed once, independently on the number of sources and the 
number of samples taken from the network. 

The rest of the paper is structured as follows. In Section 2 we introduce concepts and notation that will 
be used in the rest of the paper. In Section 3 we present the RCW algorithm for a connected network. In 
Sections 4 and 5 we describe the RCW algorithm on grids and concentric rings networks with uniform con­
nectivity. In Section 6 we present the simulation based study of the algorithm for concentric rings topologies 
without uniform connectivity. Finally, we conclude the paper in Section 7. 

2 Definitions and Model 

Connected Networks In this paper we only consider connected networks. This family includes most of 
the potentially interesting networks we can find. In every network, we use N to denote the set of nodes and 
n = |N\ the size of that set. When convenient, we assume that there is a special node in the network, called the 
source and denoted by s. We assume that each node x e N has an associated weight w(x) > 0. Furthermore, 
each node knows its own weight. The weights are used to obtain the desired probability distribution p, so 
that the probability of selecting a node x is proportional to w(x). Let us denote r) = E, 'ejvw( i)- Then, 
the probability of selecting I G Wis p(x) = w(x)/r). (In the simplest case, weights are probabilities, i.e., 
w(x) = p(x), Vx and r\ = 1.) 

RCW in Connected Networks As mentioned, in order to use RCW to sample connected networks, some 
preprocessing is done. This involves constructing a spanning tree in the network and performing a weight 
aggregation process. After the preprocessing, RCW is used for sampling. A RCW starts from the source. 
When the RCW reaches a node x G N, it selects x as the sampled vertex with probability q(x), which we 
call the stay probability. If x is not selected, a neighbor y of x in the tree is chosen, using for that a collection 
of hop probabilities h(x,y). The values of q(x) and h(x,y) are computed in the preprocessing and stored at 
x. The probability of reaching a node x G N in a RCW is called the visit probability, denoted v(x). 
6 A RCW algorithm for a square grid is easy to derive from the one presented. 



Concentric Rings Networks We also consider a subfamily of the connected networks, which we call 
concentric rings networks. These are networks in which the nodes of N are at integral distances from s. In 
these networks, no node is at a distance from s larger than a radius R. For each k G [0, R], we use Rfc ^ 0 
to denote the set of nodes at distance k from s, and n^ = |Rfc|. (Observe that Mo = {s} and no = 1.) These 
networks can be seen as a collection of concentric rings at distances 1 to R from the source, which is the 
common center of all rings. For that reason, we call the set Rfc the ring at distance k. For each x G Rfc and 
k G [1, R], ^k(x) > 0 is the number of neighbors of node x at distance k — \ from s (which is only 1 if k = 1), 
and 6k(x) is the number of neighbors of node x at distance k + 1 from s (which is 0 if k = R). 

The concentric rings networks considered must satisfy the additional property that the probability distri­
bution is distance based. This means that, for all k G [0, R], every node x G Rfc has the same probability pk to 
be selected. We assume that each node x G Rfc knows its own p/.. These properties allow, in the subfamilies 
defined below, to avoid the preprocessing required for connected networks. 

Grids A first subfamily of concentric rings networks considered is the grid with lattice distances. In this 
network, the source is at position (0,0) of the grid, and it contains all the nodes (i,j) so that i,j G [-R, R] 
and |i| + \j\ < R. For each k G [0, R], the set of nodes in ring k is Rfc = {(i,j) • \i\ + \j\ = k}. The neighbors 
of a node (i,j) are the nodes (i — 1, j), (i + 1, j), (i,j — 1), and (i,j + 1) (that belong to the grid). 

Uniform Connectivity The second subfamily considered is formed by the concentric rings networks with 
uniform connectivity. These networks satisfy that 

Vfce [l,R],Vx,y €Rk,6k(x) = 6k(y) Ajk(x) =jk(y). (1) 

In other words, all nodes of ring k have the same number of neighbors Sk in ring k + 1 and the same number 
of neighbors 7fc in ring k — 1. 

RCW in Concentric Rings Networks The behavior of a generic RCW was already described. In the algorithm 
that we will present in this paper for concentric rings networks we guarantee that, for each k, all the nodes 
in Rfc have the same visit probability Vk and the same stay probability </fc. A RCW starts from the source. 
When it reaches a node x G Rfc, it selects x as the sampled vertex with stay probability q%. If x is not 
selected, a neighbor y G Rfc+i of x is chosen. 

The desired distance-based probability distribution is given by the values pk, k G [0,R], where it must 
hold that ^2k=onk x Pk = 1- The problem to be solved is to define the stay and hop probabilities so that 
the probability of a node x G Rfc is pk-

Observation 1 If for all k G [0,R] the visit Vk and stay qk probabilities are the same for all the nodes in 
Rfc; the RCW samples with the desired probability iff Pk = vk • Ik-

3 Sampling in a Connected Network 

In this section, we present a RCW algorithm that can be used to sample any connected network. As men­
tioned, in addition to connectivity, it is required that each node knows its own weight. A node will be selected 
with probability proportional to its weight. 

Preprocessing for the RCW Algorithm The RCW algorithm for connected networks requires some 
preprocessing which will be described now. This preprocessing has to be done only once for the whole 
network, independently of which nodes act as sources and how many samples are taken. 

Building a spanning tree. Initially, the algorithm builds a spanning tree of the network. A feature of the 
algorithm is that, if several nodes want to act as sources for RCW, they can all share the same spanning 
tree. Hence only one tree for the whole network has to be built. The algorithm used for the tree construction 
is not important for the correctness of the RCW algorithm, but the diameter of the tree will be an upper 
bound on the length of the RCW (and hence possibly the sampling latency). There are several well known 
distributed algorithms (see, e.g., [6] and the references therein) that can be used to build the spanning tree. 



1 task Weight _Aggregation[i) 
2 if i is a leaf then 
3 send WEIGHT(w{i)) to neighbor x 
4 receive WEIGHT(p) from neighbor x 
5 Ti(x) <-p 
6 else 
7 repeat 
8 receive WEIGHT(p) from x € neighbors (i) 
9 Ti{x) <-p 

10 foreach y € neighbors^) \ {x} do 
11 if received WEIGHT() from neighborsii) \ {y} then 
12 send WEIGHT(w(i) + E , e „ e i 9 h 6 o „ W \ { w } ?*(*)) to j, 
13 end foreach 
14 until received WEIGHT(-) from every x € neighborsii) 

Fig. 1. Weight aggregation algorithm. Code for node i. 

In particular, it is interesting to build a minimum diameter spanning tree (MDST) because, as mentioned, 
the length of the RCW is upper bounded by the tree diameter. There are few algorithms in the literature 
to build a MDST. One possible candidate to be used in our context is the one proposed by Bui et al. [4]. 
Additionally, if link failures are expected, the variation of the former algorithm proposed by Gfeller et al. [8] 
can be used. 

Weight aggregation. Once the spanning tree is in place, the nodes compute and store aggregated weights 
using the algorithm of Figure 1. The algorithm executes at each node i G N, and it computes in a distributed 
way the aggregated weight of each subtree that can be reached following one of the links of i. In particular, 
for each node x that is in the set of neighbors of i in the tree, neighbors(i), the algorithm computes a value 
Ti(x) and stores it at i. Let (i,x) be a link of the spanning tree, then by removing the link (i,x) from the 
spanning tree there are two subtrees. We denote by stree(x, i) the subtree out of them that contains node x. 

Theorem 1. After the completion of the Weight Aggregation algorithm (of Figure 1), each node i G N will 
store, for each node x G neighbors(i), in Ti{x) the value J2vestree(x i) w{v)-

Proof. Consider stree(x, i) a tree rooted at x. We prove the claim by induction in the depth of this tree. 
The base case is when the tree has depth 1. In this case x is a leaf and, from the algorithm, it sends to i its 
weight w(x), which is stored at i as Ti(x). If the depth is k > 1, by induction hypothesis x ends up having 
in Tx(y) the sum of the weight of the subtree stree(x,y), for each y G neighbors(x) \ {i}. These values plus 
w(x) are added up and sent to i, which stores the resulting value as Ti(x). 

The values Tj(x) computed in this preprocessing phase will later be used by the RCW algorithm to 
perform the sampling. We can bound now the complexity of this process in terms of messages exchanged and 
time to complete. We assume that all nodes start running the Weight Aggregation algorithm simultaneously, 
that the transmission of messages takes one step, and that computation time is negligible. 

Theorem 2. The Weight Aggregation algorithm (of Figure 1) requires 2(n — 1) messages to be exchanged, 
and completes after D steps, where D is the diameter of the tree. 

Proof. It is easy to observe in the algorithm that one message is sent across each link in each direction. Since 
all spanning trees have n — 1 links, the first part of the claim follows. 

The second claim can be shown as follows. Let us consider any node i as the root of the spanning tree. 
Let d be the largest distance in the tree of any node from i. We show by induction on k that all nodes at 
distance d — k from i have received the aggregated weight of their corresponding subtrees by step k. The 
base case is k = 1, which follows since the leaves at distance d send their weights to their parents in the 
first step. Consider now any (non-leaf) node j at distance d — k + 1 from i. Assume that y is the parent (at 



1 task RCW[i) 
2 when RCW_MS'G(s) received from x 
3 candidates <— neighbors(i) \ {x} 

4 with probability q(i) = m ( i ) + £ itLat^M d° 
5 select node i and report to source s 
6 otherwise 
7 choose a node y € candidates with probability h(i, y) = -^ * „ , , 

2-^ z£ candidates 1 i \ z ) 

8 send RCW_MSG(s) to y 

Fig. 2. RCW algorithm for connected networks. Code for node i. 

distance d — k) of j in the tree rooted at i. By induction hypothesis j has received all the aggregated weights 
of the subtrees by step k — 1. Then, when the latest such value was received from a neighbor x (Line 8), 
the foreach loop (Lines 10-13) if executed. In this execution, the condition of the if statement at Line 11 is 
satisfied for y. Then, the aggregated weight w(j) + J2zeneighbors(j)\{y}

 TAZ) i s s e n t t o V by s t e P k-1. This 
value reaches y in one step, by step k. Then, i receives all the aggregated weights by step d. Since the largest 
value of d is D, the proof is complete. 

RCW Sampling Algorithm In this RCW algorithm (Figure 2) any node can be the source. The spanning 
tree and the precomputed aggregated weights are used by any node to perform the samplings (as many as 
needed). The sampling process in the RCW algorithm works as follows. To start the process, the source s 
sends a message RCW _MSG(s) to itself. When the RCW _MSG(s) message is received by a node i from 
a node x, it computes a set of candidates for next hop in the RCW, which are all the neighbors of i except 
x. Then, the RCW stops and selects that node with a stay probability q(i) = w(i\+y TJZ) (Line 4). 
If the RCW does not select i, it jumps to a neighbor of i different from x. To do so, the RCW chooses 
only among nodes y in the set of candidates (that move away from s) using h(i, y) = ^ ^v' T ,-. as hop 

^ ze candidates 1 ^\Z ! 

probability (Line 7). 

Analysis We show now that the algorithm proposed performs sampling with the desired probability distri­
bution. 

Theorem 3. Each node i G N is selected by the RCW algorithm with probability p(i) = ^ p . 

Proof. If a node i receives the RCW_MSG(s) from x, let us define candidates = neighbors(i) \ {x}, and 
T(i) = w(i) + ^2zecandidates Ti(z). We prove the following stronger claim: Each node i e i V i s visited by the 
RCW with probability v(i) = -^- and selected by the RCW algorithm with probability p(i) = ^^-. 

We prove this claim by induction on the number of hops from the source s to node i in the spanning 
tree. The base case is when the node i is the source s. In this case x is also s, candidates = neighbors(s), 
and T(s) = r\. Hence, v(s) = —^ = 1 and q(s) = ^p-, yielding p(s) = ^ ^ . 

The induction hypothesis assumes the claim true for a node x at distance k from s, and proves the claim 
for i which is at distance k + 1. We have that Pr[visit i] = v(x) (1 — q(x)) TIX\_WIX\, where 1 — q(x) is the 

T(i) 
I probability of not selecting node x when visiting it, and TIX\_WIX\ is the probability of choosing the node 

in the next hop of the RCW. The stay probability of x and i are q(x) = w(x)/T(x) and q(i) = w(i)/T(i), 

respectively (Line 4). Then, * ( 0 = T-f ( l - £ $ ) ^ ^ = T-f ( ^ f > ) ^ ^ = T-f and 

Pr[select»]=,(0 ( /W = ^ ^ i = !f1 . 

4 Sampling in a Grid 

If the algorithm for connected networks is applied to a grid, given its regular structure, the construction 
of the spanning tree could be done without any communication among nodes, but the weight aggregation 



process has to be done as before. However, we show in this section that all preprocessing and the state data 
stored in each node can be avoided if the probability distribution is based on the distance. RCW sampling 
process was described in Section 2, and we only redefine stay and hop probabilities. From Observation 1, the 
key for correctness is to assign stay and hop probabilities that guarantee visit and stay probabilities that are 
homogenous for all the nodes at the same distance from the source. 
Stay probability For k G [0, R], the stay probability of every node (i,j) G R^ is defined as 

nk-Pk nk-Pk /n, 
<ft = ^ f l = " ^J—1 • (2) 

EJ=fc nj -Pj 1 - Ej=o ni • Pj 
As required by Observation 1, all nodes in R^ have the same qk. Note that </o = Po and qn = 1, as one 

may expect. Since the value of pk is known at (i,j) G B.k, nk can be readily computed7, and the value of 
E - o rij • pj can be piggybacked in the RCW, the value of qk can be computed and used at (i,j) without 
requiring precomputation nor state data. 

Hop probability In the grid, the hops of a RCW increase the distance from the source by one unit. 
We want to guarantee that the visiting probability is the same for each node at the same distance, to use 
Observation 1. To do so, we need to observe that nodes (i,j) over the axes (i.e., with i = 0 or j = 0) have 
to be treated as a special case, because they can only be reached via a single path, while the others nodes 
can be reached via several paths. To simplify the presentation, and since the grid is symmetric, we give the 
hop probabilities for one quadrant only (the one in which nodes have both coordinates non-negative). The 
hop probabilities in the other three quadrants are similar. The first hop of each RCW chooses one of the 
four links of the source node with the same probability 1/4. We have three cases when calculating the hop 
probabilities from a node (i,j) at distance k, 0 < k < R, to node («', j ' ) . 

— Case A: The edge from (i,j) to («', j') is in one axis (i.e., i = i' = 0 or j = j ' = 0). The hop probability 
of this link is set to hk((i,j), (i',f)) = j ^ i = ^ i -

— Case B: The edge from (i,j) to (i',j') is not in the axes, i' = i + 1, and j ' = j . The hop probability of 
this link is set to hk((i,j), (i + 1, j)) = 2(t

2{+|1} = aff+l) • 
— Case C: The edge from (i,j) to («', j') is not in the axes, i' = i, and j ' = j + 1. The hop probability of 

this link is set to hk((i,j), (i,j + 1)) = 2(i+jli) = WW)-

It is easy to check that the hop probabilities of a node add up to one. 

Analysis In the following we prove that the RCW that uses the above stay and hop probabilities selects 
nodes with the desired sample probability. 

Lemma 1. All nodes at the same distance k > 0 to the source have the same visit probability vk. 

Proof. The proof uses induction. The base case is k = 0, and obviously vk = 1. When k = 1, the probability 
of visiting each of the four nodes at distance 1 from the source s is vi = —j22-, where 1 — go is the probability 
of not staying at source node. Assuming that all nodes at distance k > 0 have the same visit probability vk, 
we prove the case of distance k + 1. Recall that the stay probability is the same qk for all nodes at distance 
k. 

The probability to visit a node x = («', j') at distance k+1 depends on whether x is on an axis or not. 
If it is in one axis it can only be reached from its only neighbor (i,j) at distance k. This happens with 
probability (case A) Pr[visit x] = vk(l — qk)jP^ = vk(l — qk)jj-i- If x is not on an axis, it can be reached 
from two nodes, («' — 1, j ' ) and (i',j' — 1), at distance k (Cases B and C). Hence, the probability of reaching 
x is then Pr[visit x] = vk(l - qk)"%jr^y +vk(l- qk)^y^yy = vk(l - qk)-^i- Hence, in both cases the 

visit probability of a node x at distance k + 1 is vk+\ = vk(l — qk)-^h[- This proves the induction and the 
claim. 
7 no = 1, while nk = 4k for fee [1, ii]. 



1 task RCW(x,k,Sk,Jk,Pk) 
2 when RCW_MSG(s,Vk-i,Pk-i,nk-i,5k-i) received: 
3 nk ^nk-i6-^; vk <- nk-i^-1^-1; gfc <- {£ 

yfc '4fc uk 

4 with probability qk do select node x and report to s 
5 otherwise 
6 choose a neighbor y in ring fc + 1 with uniform probability 
7 send _RCVF_MS,G(s,i'fc,pfc,nfc,(5fc) to j / 

Fig. 3. RCW algorithm for concentric rings with uniform connectivity (code for node x € Rfc, k > 0). 

Theorem 4. Every node at distance k G [0, i?] from the source is selected with probability pk-

Proof. If a node is visited at distance k, it is because no node was selected at distance less than k, since a 
RCW always moves away from the source. Hence, Pr[3x G Rfc visited] = 1 — 27-=o "-jPj • Since all the nk nodes 

in Rfc have the same probability to be visited (from the previous lemma), we have that Vk = 3-f^——. 
Now, since all the n^ nodes in R^ have the same stay probability is qk, the probability of selecting a particular 

node x at distance k from the source is Pr[select x] = Vkqk = ——— "kPk— _ ^ where it has been 
nk -^j=k niVi 

used that (1 - E ^ o njPj) = T,f=k
 njPr 

5 Sampling in a Concentric Rings Network with Uniform Connectivity 

In this section we derive a RCW algorithm to sample a concentric rings network with uniform connectivity, 
where all preprocessing is avoided, and only a small (and constant) amount of data is stored in each node. 
Recall that uniform connectivity means that all nodes of ring k have the same number of neighbors Sf. in 
ring k + 1 and the same number of neighbors 7^ in ring k — 1. 

Distributed algorithm The general behavior of the RCW algorithm for these networks was described in 
Section 2. In order to guarantee that the algorithm is fully distributed, and to reduce the amount of data 
a node must know a priori, a node at distance k that sends the RCW to a node in ring k + 1 piggybacks 
some information. More in detail, when a node in ring k receives the RCW from a node of ring k — 1, it also 
receives the probability vk-\ of the previous step, and the values Pk-i, nk-\, and 5k-i- Then, it calculates 
the values of nk, Vk, and qk- After that, the RCW algorithm uses the stay probability qk to decide whether 
to select the node or not. If it decides not to select it, it chooses a neighbor in ring k + 1 with uniform 
probability. Then, it sends to this node the probability Vk and the values pk, rik, and 6k, piggybacked in the 
RCW. 

The RCW algorithm works as follows. The source s selects itself with probability </o = Po- If it does not 
do so, it chooses one node in ring 1 with uniform probability, and sends it the RCW message with values 
vo = 1, no = 1, po, and So- Figure 3 shows the code of the RCW algorithm for nodes in rings Rfc for k > 0. 
Each node in ring k must only know initially the values 6k, 7fc and pk- Observe that n^ (number of nodes 
in ring k) can be locally calculated as n^ = nk-\5k-\j^k- The correctness of this computation follows from 
the uniform connectivity assumption (Eq. 1). 

Analysis The uniform connectivity property can be used to prove by induction that all nodes in the same 
ring k have the same probability Vk to be reached. The stay probability qk is defined as qk = Pk/vk- Then, 
from Observation 1, the probability of selecting a node x of ring k is pk = Vkqk- What is left to prove is that 
the value Vk computed in Figure 3 is in fact the visit probability of a node in ring k. 

Lemma 2. The values Vk computed in Figure 3 are the correct visit probabilities. 

Proof. Let us use induction. For k = 1 the visit probability of a node x in ring Ri is -^^ = ~Po. On the 
other hand, when a message RCW_MSG reaches x, it carries v0 = 1, n0 = 1, po, and 60 (Line 2). Then, 



Fig. 4. Node deployment and connectivity used in the simulations. 

v\ is computed as v\ = "-o v°~Po = J ^ £ a (Line 3). For a general k > 1, assume the value «fc_i is the correct 
visit probability of a node in ring k—1. The visit probability of a node in ring k is «fc_infc_i(l — q%-i)/nfc, 
which replacing </fc_i = Pk-i/vt-i yields the expression used in Figure 3 to compute v/. (Line 3). 

The above lemma, together with the previous reasoning, proves the following. 

Theorem 5. Every node at distance k of the source is selected with probability pj.-

6 Concentric Rings Networks without Uniform Connectivity 

Finally, we are interested in evaluating, by means of simulations, the performance of the RCW algorithm for 
concentric rings with uniform connectivity when it is used on a more realistic topology: a concentric rings 
network without uniform connectivity. The experiment has been done in a concentric rings topology of 100 
rings with 100 nodes per ring, and it places the nodes of each ring uniformly at random on each ring. This 
deployment does not guarantee uniform connectivity. Instead, the nodes' degrees follow roughly a normal 
probability distribution. In order to establish the connectivity of nodes, we do a geometric deployment. A 
node x in ring k is assigned a position in the ring. This position can be given by an angle a. Then, each 
network studied will have associated a connectivity angle /3, the same for all nodes. This means that x will be 
connected to all the nodes in rings k — 1 and k+1 whose position (angle) is in the interval [a — /3/2, a. +13/2]. 
(See Figure 4.) Observe that the bigger the angle /3 is, the more neighbors x has in rings k — 1 and k+1. 
We compare the relative error of the RCW algorithm when sampling with two distributions: the uniform 
distribution (UNI) and a distribution proportional to the inverse of the distance (PID). We define the relative 
error ej for a node x in a collection C of s samples as ej = \>smx~>x\ where fsimx is the number of instances 
of x in collection C obtained by the simulator, and fx = px • s is the expected number of instances of x with 
the ideal probability distribution (UNI or PID). We compare the error of the RCW algorithm with the error 
of a generator of pseudorandom numbers. For each configuration, a collection of 107 samples has been done. 

Figure 5 presents the results obtained in the UNI and PID scenarios. In both cases, we can see that 
the RCW algorithm performs much worse than the UNI and PID simulators. The simulation results show a 
biased behavior of RCW algorithm because the condition of Eq. 1 is not fulfilled in this experiment (i.e. a 
node has no neighbors, or there are two nodes in a ring k that have different number of neighbors in rings 
k- 1 or k + 1). 

Assignment Attachment Points (AAP) Algorithm To eliminate the errors observed when there is no uniform 
connectivity, we propose a simple algorithm to transform the concentric rings network without uniform 
connectivity into an overlay network with uniform connectivity. 
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Fig. 5. UNI and PID scenarios without uniform connectivity. 

I function AssignAttachmentPoints(x,k) 

" nk 

3 C 4— Nfc+i(ai) /* neighbors of x in ring k+1 */ 
4 Ax 4— 0 /* Ax is a multiset */ 
5 loop 
6 choose c from C 
7 send ATTACH_ MSG to c 
8 receive RESPONSE_ MSG from c 
9 if RESPONSE_ MSG = OK then 

10 ap 4— ap — 1 
11 add c to Ax /* c can be in Ax several times 
12 else C 4- C\{c} 
13 until (ap = 0) V (C = 0) 
14 if (ap = 0) then return Ax 

15 else return FAILURE 

Angle % success 

15° 0% 
30° 0% 
45° 3% 
60° 82% 
75° 99% 
90° 100% 
150° 100% 
180° 100% 
360° 100% 

Fig. 6. Assignment Attachment Points (AAP) Function (left side). Success rate of the AAP algorithm as a function 
of the connectivity angle (right side). 

To preserve the property tha t the visit probability is the same for all the nodes in a ring, nodes will 
use different probabilities for different neighbors. Instead of explicitly computing the probability for each 
neighbor, we will use the following process. Consider rings k and k+1. Let r = LCM(nk,rik+i), where LCM 
is the least common multiple function. We assign ^ - attachment points to each node in ring k, and ^J— 
at tachment points to each node in ring k + 1. Now, the problem is to connect each at tachment point in ring 
A; to a different at tachment point in ring k+1 (not necessarily in different nodes). If this can be done, we 
can use the algorithm of Figure 3, but when a R C W is sent to the next ring, an at tachment point (instead 
of a neighbor) is chosen uniformly. Since the number of at tachments points is the same in all nodes of ring 
k and in all nodes of ring k + 1, the impact in the visit probability is tha t it is again the same for all nodes 
of a ring. 

The connection between at tachment points can be done with the simple algorithm presented in Figure 
6, in which a node x in ring k contacts its neighbors to request available at tachment points. If a neighbor 
tha t is contacted has some free at tachment point, it replies with a response message RESPONSE_MSG 
with value OK, accepting the connection. Otherwise it replies to x notifying tha t all its a t tachment points 
have been connected. The node x continues trying until its ^ - at tachment points have been connected or 
none of its neighbors has available at tachment points. If this latter situation arises, then the process failed. 
The algorithm finishes in 0(maxfc{nfc}) communication rounds. (Note tha t r < n^ • rik+i and \C\ < rik+i). 
Combining these results with the analysis of Section 5, we can conclude with the following theorem. 
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Fig. 7. UNI and PID scenarios without uniform connectivity, using the AAP algorithm. 

Theorem 6. Using attachment points instead of links and the distributed RCW-based algorithm of Figure 
3, it is possible to sample a concentric rings network without uniform connectivity with any desired distance-
based probability distribution pu, provided that the algorithm of Figure 6 completes (is successful) in all the 
nodes. 

Figure 7 shows the results when using the AAP algorithm. As we can see, the differences have disappeared. 
The conclusion is that, when nodes are placed uniformly at random and AAP is used to attach neighbors to 
each node, RCW performs as good as perfect UNI or PID simulators. 

In general, the algorithm of Figure 6 may not be succesful. It is shown in the table of Figure 6 (right 
side) the success rate of the algorithm for different connectivity angles. It can be observed that the success 
rate is large as long as the connectivity angles are not very small (at least 60°). (For an angle of 60° the 
expected number of neighbors in the next ring for each node is less than 17.) For small angles, like 15° and 
30°, the AAP algorithm is never successful. For these cases, the algorithm for connected network presented 
in Section 3 can be used. 

7 Conclusions 

In this paper we propose distributed algorithms for node sampling in networks. All the proposed algorithms 
are based on a new class of random walks called centrifugal random walks. These algorithms guarantee that 
the sampling end after a number of hops upper bounded by the diameter of the network, and it samples 
with the exact probability distribution. As future works we want to explore sampling in dynamic networks 
using random centrifugal walks. Additionally, we will investigate a more general algorithm that would also 
concern distributions that do not only depend on the distance from the source. 
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