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a  b  s  t  r  a  c  t

Scattered  data  interpolation  and  approximation  techniques  allow  for  the  reconstruction  of a  scalar  field
based  upon  a finite  number  of  scattered  samples  of the  field.  In general,  the fidelity  of  the  reconstruction
with  respect  to the  original  scalar  field  tends  to  deteriorate  as  the number  of  samples  decreases.  For  the
situation  of  very  sparse  sampling,  the  results  may  not  be acceptable  at all.  However,  if it is  known  that  the
scalar  field  of  interest  is  correlated  with  a  known  flow field  – as  is  the  case  when  the scalar  field  represents
the  value  of an oceanographic  tracer  that  propagates  under  the  influence  of the  ocean’s  flow  –  then  this
knowledge  can  be exploited  to enhance  the  scattered  data  reconstruction  method.  One  way  to  exploit
flow  field  information  is to  use  it to  construct  a modified  notion  of  distance  between  points.  Replacing
ross-correlation-based parameter
ptimization
ceanographic reconstruction problems

the  standard  Euclidean  distance  metric  with  a flow-field-aware  notion  of distance  provides  a  method  for
extending standard  scattered  data  interpolation  methods  into  flow-based  methods  that  produce  superior
results  for  very  sparse  data.  The  resulting  reconstructions  typically  have  lower  root-mean-square  errors
than reconstructions  that  do  not  use the  flow  information,  and  qualitatively  they  often  appear  physically
more  realistic.

© 2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Many physical datasets involve measurements of a scalar field
hat are collected at scattered locations in space. In order to ana-
yze the underlying phenomena, it is generally desirable to know
he corresponding scalar field, at least approximately, across its
ntire natural domain. Furthermore, in order to visualize the scalar
eld using computer graphics, it is generally necessary to compute
alues on a regular grid. For these purposes, scattered data interpo-
ation (or approximation) is typically used in order to reconstruct
he underlying scalar field on the domain of interest, based upon
nly the known set of scattered samples.

As an example, consider the problem of reconstructing scalar
elds representing oceanographic quantities such as 18O/16O and
3C/12C isotope ratios for the oceans of the distant past. Stable iso-

ope data are obtained from measurements on benthic foraminifera
btained from deep sea core samples taken from the ocean floor [1].
hile these samples provide valuable data about the past ocean,
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they form a very sparse scattered dataset for which accurate inter-
polation can be a challenge, as is illustrated in Fig. 1. In particular,
note the existence of large regions of the Atlantic for which no data
are available at all.

Many different methods have been proposed for the recon-
struction of scalar fields based on scattered observations [2–9].
Regardless of method, the quality of the results obtained depends
upon the density of scattered samples available. If this density is
sufficiently large, these methods typically work quite well. On the
other hand, if the available sample set is sparse with respect to the
spatial variation of the scalar field, such as in Fig. 1, the fidelity of
reconstruction may  not be acceptable both in quantitative terms (as
measured by root-mean-square agreement with the original field,
for example) and in qualitative terms (as assessed by whether the
reconstruction preserves significant features of the original field).

Although in general the sparsity of samples represents a funda-
mental limitation on the reconstruction quality that is possible, in
some circumstances additional information can be used in proper
context in order to obtain an improved result. One example of such
a situation is the case of sparse scattered data interpolation of a

scalar field that is associated with a flow field. The typical physical
situation is that of a tracer quantity in a fluid; the spatial correlation
of the scalar field representing the tracer concentration is related
to the vector field specifying the fluid flow. Given this scenario,
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ig. 1. Core locations in the Atlantic Ocean, from Marchal and Curry, 2008 [1]. (a) Sh
he  scatter with respect to latitude and ocean depth.

s an alternative to simply waiting for more data to become avail-
ble we instead attempt to formulate an enhanced scattered data
econstruction scheme that can exploit these correlations in order
o obtain a better result for sparse sample sets than would other-
ise be attainable.

This paper describes a new scattered data reconstruction tech-
ique that utilizes a non-Euclidean distance measure to exploit
nown or assumed correlations between the scalar field being
econstructed and another known vector or scalar field. In a typi-
al setting, the known field is a vector field representing flow and
he scalar field being reconstructed represents a tracer quantity
eing transported under the influence of this flow. The physical
haracteristics of such a case lead to the intuitive assumption that
oncentrations of the tracer quantity will be more highly correlated
n the flow direction than perpendicular to this direction. Hence, the
roposed reconstruction method introduces an alternative, non-
uclidean way to measure distance between points in the spatial
omain that is defined in reference to the streamlines of the flow
eld. Because this prototypical case serves as the motivating prob-

em for the development of the method and because the majority
f test cases described in the paper are of this type, we call the
echnique “flow-based.”

We emphasize that although our primary application of the
ethod lies in the oceanographic domain, for which the known

ector field represents ocean flow, the method itself is generally
pplicable to a wide variety of problems involving multi-field data
hen correlations exist between fields. Many applications that

nvolve fluid flow fall into this category. In these cases, correla-
ions between points in a scalar field typically are stronger along
he streamlines of flow than in other directions, and the particular
on-Euclidean distance measure used reflects this basic property.
or example, the method could be applied to atmospheric problems
r to problems involving mantle convection.

Other situations are possible as well. For example, if a scalar
eld is related to a vector field in such a way that correlations
re strongest across its streamlines instead of along them, then

 different non-Euclidean distance measure would be used. The
athematical form of the distance function would be similar. Only

he values of the parameters that define the specific incarnation of
he distance function would be different.
Moreover, the existence of a physical flow is not required for
he method to be applicable, but rather just the existence of a cor-
elation between a scalar field and a vector field. In fact, it is not
ven necessary to have a vector field at all. The proposed technique
he scatter of core locations with respect to latitude and longitude, while (b) shows

is useful also for cases in which a scalar field of interest is corre-
lated with another scalar field. In such cases, the isocontours of the
known scalar field take the place of the streamlines of the vector
field.

The layout of the paper is as follows. After describing some
related work from the literature, we proceed to a discussion of
background information regarding scattered data interpolation
and distance metrics. We  then describe our method of combin-
ing non-Euclidean distance measures with existing scattered data
interpolation techniques. Next, we  present results that illustrate
the usefulness of the method for performing scattered data inter-
polation (or approximation) for data sampled from scalar fields
that are correlated with flow fields. Finally, we describe ideas for
possible future enhancement of the method.

2. Related work

The problem of scattered data interpolation has a long history,
and a large variety of methods have been proposed for its solu-
tion [2]. One of the earliest approaches, proposed by Shepard [3],
used inverse distance weighting to weight the scattered samples.
Another approach is to use radial basis functions, such as in the
method proposed by Hardy [4].

Both inverse-distance-weighted methods and radial-basis-
function methods are naturally formulated as global methods,
meaning that all available data points are used in computing the
reconstruction for any given point in the spatial domain. For large
data sets, global methods can be computationally prohibitive in
practice. For this reason, local versions of these methods have been
developed [2]. These restrict the number of data points that are
used to compute each point of the reconstructed field. In addition,
hierarchical methods for scattered data interpolation have been
proposed [5]. These methods seek to combine the benefits of local
and global approaches.

Other methods are fundamentally local in nature. For example,
Sibson’s method of natural-neighbor interpolation [6] employs the
concept of Voronoi tessellation to define a weighting in terms of
a given point’s natural neighbors in the sample set. Moreover, this
weighting is robust in cases for which many samples cluster close

together, which can lead to reconstruction artifacts in other meth-
ods (such as inverse distance weighting). Because the construction
of Voronoi tessellations is relatively expensive, the discrete Sibson
method avoids the explicit computation of the Voronoi diagram [7].
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Furthermore, statistical techniques such as Optimal Interpola-
ion (OI) can be regarded as scattered data interpolation methods
8,9]. Like Sibson’s method, Optimal Interpolation is robust to clus-
ering of samples. Moreover, it can be used for scattered data
pproximation as well as for scattered data interpolation, and it
rovides a built-in way to specify error bars on the scattered sam-
les, which can be quite useful for problems in which the scattered
amples are obtained via physical measurements. Early attempts
o deal with scattered oceanographic data used statistical methods
uch as Optimal Interpolation [10].

While Optimal Interpolation is a simple example of a statis-
ical scattered data interpolation technique, more sophisticated
tatistical methods have been applied to meteorological and
ceanographic data assimilation problems. For example, the 3D-
ar [11] and 4D-Var [12] methods have entered into common
sage. In general, such methods can be viewed as inverse prob-

ems in that they attempt to reconstruct continuous scalar fields
ased on a discrete (and often sparse) set of measurements.

A more recent approach to solving such inverse problems for
he specific case of ocean tracer distributions is a method called
otal Matrix Intercomparison [13], which is related to 4D-Var.
his method assumes multiple scalar fields in a flow field, but
ssumes that the flow field is unknown and attempts to recon-
truct it in addition to reconstructing the various scalar fields
hemselves. However, the reconstruction calculation involves a
ime-consuming optimization that makes the method more suited
or off-line use than for interactive visualization purposes.

One of the principal contributions of the method described in
his paper is the utilization of non-Euclidean distance measures for
he purpose of scattered data interpolation and approximation. The
se of non-Euclidean distances appears in the literature in related
ontexts. For example, Nielson and Foley have described the use
f affine-invariant norms for the purpose of scattered data approx-
mation [14]. Moreover, an example of the use of non-Euclidean
istance measures for scattered data approximation in the mete-
rological sciences is given by the so-called “banana scheme”
rovided as an option in the PSU/NCAR Mesoscale Modeling System
MM5)  [15].

In the context of distance measures, we note the related concept
f geodesics on manifolds. Given a manifold embedded in a higher
imensional space (a 2D spherical surface embedded in 3D space,
or example), the shortest path between two points on the man-
fold is a geodesic (for the spherical example, geodesics are great
ircles on the sphere). Efficient computational methods exist for
he calculation of geodesics on 2D manifolds [16]. Furthermore, the
oncept of geodesics has been used in the context of interpolation.
n such geodesic interpolation problems, pre-existing knowledge
f geodesic paths is used for the purpose of surface reconstruction
17].

Because the Earth’s surface is approximately a spherical man-
fold, geodesics are relevant to the oceanographic reconstruction
roblem when a grid-based approach is used [18]. However, we
ote that geodesics are not directly applicable to the problem
escribed in this paper. Here, we are interested not in distances in
mbedded lower-dimensional spaces, but rather in non-Euclidean
istance measures that are defined via reference to a correlated
uxiliary field (e.g., the flow field) of the same dimension as the
riginal reconstruction problem.

. Background
.1. Scattered data interpolation

Many of the existing methods for scattered data interpolation
nd approximation are formulated explicitly in terms of a distance
ional Science 16 (2016) 156–169

function d(xi, xj) whose value represents the distance between
points xi and xj in the domain of the scalar function being recon-
structed. For example, inverse distance weighting methods [3]
reconstruct the scalar field at the point x by interpolating the N
samples fi = f(xi) with the function

f (x) =
N∑

i=1

wi(x)fi∑N
j=1wj(x)

where wi(x) = 1
d(x,xi)

.

While some reconstruction methods perform interpolation (so
that the values at the sample points are reproduced exactly in
the reconstruction), others instead perform approximation (where
some reconstruction error is allowed at the sample points). Typi-
cally, such methods involve least-squares fitting of some kind [19].
One reason for preferring approximation over interpolation is that
simple reconstructions can be fit relatively well to given datasets
for cases in which interpolation might lead to complex, unrealistic
reconstructions that oscillate wildly in order to fit all of the data
points exactly. Furthermore, because simpler explanations typi-
cally are preferred to more complex ones (Occam’s razor), using
approximation rather than interpolation leads to reconstructions
that tend to be regarded as better representations of physical real-
ity.

Some methods can be used to perform either interpolation or
approximation. For example, Optimal Interpolation [9] allows for
the specification of errors for data points. As the specified errors
approach zero, the approximation method approaches the case of
true interpolation. Using approximation instead of interpolation
provides a way  to avoid fitting the noise in observations.

3.2. Distance metrics

The distance function d(x, y) used for the scattered data inter-
polation methods above is typically chosen to be the familiar
Euclidean distance, which for domains of dimension n is given by

d(x, y) =

√√√√ n∑
i=1

(xi − yi)
2

where xi and yi are the coordinates, in the ith dimension, of x and
y, respectively.

However, other choices are possible. For a function d(x, y) to
be a legitimate distance metric, it need only satisfy the following
conditions [20]:

• d(x, y) ≥ 0
• d(x, x) = 0
• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
• d(x, y) = d(y, x) (symmetry).

Moreover, it is possible to relax one or more of the conditions
above and to still have a function that resembles a distance metric
in some ways. For example, relaxing the triangle inequality leads
to a semimetric,  while relaxing symmetry leads to a quasimetric
[20]. Such generalized metrics will be used to extend standard scat-
tered data interpolation schemes to incorporate knowledge of flow
information.

4. Method
4.1. Flow-based distance metrics

In order to adapt a scattered data interpolation and approxi-
mation scheme (in this case, Optimal Interpolation) to utilize flow
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nformation, the scheme’s distance metric has been generalized
o that distances in directions across streamlines of the flow field
re given more weight than those in directions along the stream-
ines. This corresponds to the intuition that values of the scalar
eld should be more highly correlated in the direction of the flow
han perpendicular to the flow. This intuition depends upon the
ssumption that the scalar field represents a tracer quantity that
xperiences advection in the presence of the flow field.

To understand the motivation for the particular flow-based non-
uclidean distance measure that we have adopted, consider first
ow normal Euclidean distances are calculated in two dimensions.
wo points xi and xj in the plane are assigned x and y coordi-
ates in a Cartesian coordinate system. Then, the Euclidean distance
E(xi, xj) between the two points is given by

E(xi, xj) =
√

(xi − xj)
2 + (yi − yj)

2

here (xi − xj) and (yi − yj) are the measures of the distances
etween xi and xj in the x and y directions, respectively.

Given this basic expression for distance, if we wanted to give a
ifferent degree of emphasis to the y component of distance than
o the x component, we could pre-process the data by multiplying
he y coordinates of the points by a constant factor. Alternatively,
e could use the x and y components of the points as is, and instead

lter the definition of distance to incorporate the non-uniform
reatment of coordinates. So, to reflect the scaling of the y com-
onent by a factor of � , we would define the distance as

E2 (xi, xj) =
√

(xi − xj)
2 + ˛(yi − yj)

2

here  ̨ = �2.
In analogy with the scaled Cartesian distance just discussed, we

efine a generalized distance function with respect to the stream-
ines of a given flow field. Instead of defining two-dimensional
istances in terms of their x and y components, as in the Carte-
ian case, we define distances in terms of a component measured
cross the flow direction and a component measured along the flow

irection. In particular, for points xi and xj, let d1(xi, xj) represent a
easure of the distance across the streamlines of the flow field,

nd let d2(xi, xj) represent a measure of the distance along the
treamlines, as defined by the construction in Fig. 2a.

ig. 2. Two methods for calculating distances from streamlines and distances across strea
on-Euclidean distance between points xi and xj is dsym(xi , xj), which is computed accord
he  lengths of the magenta line segments in the diagram, while the along-streamline di
pproximate method for calculating the distance from and across streamlines. Here, the
ompute  the streamlines over the entire domain. The across-streamline distances d1(xi , x
he  along-streamline distances d2(xi , xj) and d2(xj , xi) are the lengths of the green line se
nterpretation of the references to color in this figure legend, the reader is referred to the
onal Science 16 (2016) 156–169 159

Then, the flow-based distance between the points xi and xj is
given by

d(xi, xj) =
√

[d1(xi, xj)]
2 + ˛[d2(xi, xj)]

2 (1)

where  ̨ is a factor determining the relative weight of distances
along streamlines to those across streamlines. If  ̨ is chosen to be
less than unity, then this distance measure will give more weight
to distances across streamlines than to distances along the stream-
lines. This is in accordance with the intuitive expectation that tracer
values should be more highly correlated in the direction of the flow
than in directions perpendicular to it.

Note that the distance measure that we have defined is not only
non-Euclidean, but anisotropic as well. In other words, according to
our definition of distance, the distance between two points depends
upon their relative orientation in space. This anisotropy is inherited
from the anisotropy inherent in the notion of a flow field (flow,
by definition, has a direction). Because we  have assumed that the
scalar field correlations between points are larger in the direction
of flow than across the flow direction, we  have defined a distance
measure that reflects this anisotropic property of the scalar fields
we are attempting to reconstruct.

If streamlines are computed from every point in the domain and
are calculated as far as possible in both directions (until they leave
the domain), then an exact definition of distance along stream-
lines and distance across streamlines can be employed, as shown
in Fig. 2a. Note that domain boundaries are somewhat problematic
in relation to streamlines that leave the domain and then return. If
a streamline is broken by a domain boundary, the distance metric
will be affected, and therefore the distance between two  points in
a finite domain might be different from the distance that would
be calculated if the domain were placed into its global context in
terms of the flow field. For this reason, the proposed flow-based
reconstruction method is best employed for closed systems (such
as the entire ocean) or for domains over which the flow is relatively
simple (such that the effect of broken streamlines is minimized).

In Fig. 2a, d1(xi, xj) is the distance of point xi from the streamline

passing through point xj. Likewise, d1(xj, xi) is the distance of point
xj from the streamline passing through point xi. Similarly, d2(xi, xj)
is the along-streamline component of the flow-based distance from
xi to xj, which is measured along the streamline passing through

mlines. (a) Depicts the exact method for calculating these distances. The flow-based
ing to Eqs. (1) and (2). The across-streamline distances d1(xi , xj) and d1(xj , xi) are

stances d2(xi , xj) and d2(xj , xi) are the lengths of the green curves. (b) Depicts an
 lines tangent to the streamlines at the sample points are used to avoid having to
j) and d1(xj , xi) are the lengths of the magenta line segments in the diagram, while
gments, which lie on the lines tangent to the streamlines at points xj and xi . (For

 web  version of this article.)
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Fig. 3. Two different flow-based distance measures that use the same flow field. The flow field with respect to which both distance functions are defined is depicted in (a).
As  is the case throughout the paper, x and y represent the standard Cartesian coordinates of points in 2D space. The plot in (b) shows a distance measure that considers only
the  distance from streamlines (using an  ̨ parameter of 0). The color scale represents the (non-Euclidean) distance of points in the plane from the indicated point that lies
on  the streamline shown. The plot in (c) shows the distance function that results for an  ̨ value of 0.1, so that the overall distance measure is influenced by the distance
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are many possible ways to generalize the Euclidean distance to
a non-Euclidean measure of distance that utilizes flow informa-
tion. Within the framework above, even if we select one of the two

Fig. 4. A distance measure that uses a decaying anisotropy. For points near the
point represented by the green marker, the flow-based non-Euclidean distance mea-
sure weights distance from the streamline much more heavily than distance in the
streamline direction (using  ̨ = 0.0001, in this case). However, as the (Euclidean) dis-
long  streamlines but the distance from streamlines is given more weight. Red cur
For  interpretation of the references to color in this figure legend, the reader is refe

oint xj, from the point at which the segment corresponding to
1(xi, xj) intersects the streamline to the point xj itself. Likewise,
he along-streamline component of the distance from xj to xi is
2(xj, xi), where the distance is measured along the streamline pass-
ng through point xi. The flow-based non-Euclidean distance from
oint xi to point xj is given by d(xi, xj) according to Eq. (1), and the
istance from point xj to point xi is given by d(xj, xi), using the same
quation. Note that these two distances are different, in general,
ndicating that the distance measure of Eq. (1) is not symmetric.

In order to obtain a symmetric distance metric, we  can simply
ake the average of d(xi, xj) and d(xj, xi). So, a symmetric distance
unction dsym(xi, xj) is defined by

sym(xi, xj) = d(xi, xj) + d(xj, xi)
2

(2)

here d(xi, xj) and d(xj, xi) are computed according to Eq. (1) and
here dsym(xi, xj) satisfies dsym(xi, xj) = dsym(xj, xi).

While symmetry could be obtained in other ways, in general
here is no reason to prefer one of the two paths between point
i and point xj over the other, and therefore the simple averag-
ng procedure is appropriate. If the specific physical situation of

 particular application provides a reason for preferring one path
ver the other, then this additional domain-specific knowledge
an be utilized when deciding how to enforce symmetry upon
he flow-based distance measure. For example, in a certain set-
ing, perhaps the shortest path provides the best definition of the
istance between the two  points. Furthermore, if symmetry is not
equired for a particular application, then computational costs can
e reduced considerably, as is described in Section 4.4.

Fig. 3 shows two examples of distance functions calculated
ccording to the method illustrated in Fig. 2a. In the first exam-
le, the  ̨ parameter is 0, so the overall measure of distance utilizes
nly the distance from the streamline and completely ignores the
istance in the streamline direction. As a result, points close to the
treamline that passes through the specified point all have very
mall distances when compared to that point. In the second exam-
le,  ̨ is 0.1, so the distance along the streamline has some influence
n the overall distance measure. Nevertheless, the distance from
he streamline still has greater influence.

If the calculation of streamlines across the entire domain is
oo expensive computationally, an alternative is to linearize the

treamlines about the sample points xi and xj , as shown in Fig. 2b.
n this case, the definitions of the distances d1(xi, xj), d1(xj, xi),
2(xi, xj), and d2(xj, xi) are analogous to those in the previous
ase, and the definitions of d(xi, xj) and dsym(xi, xj) are identical,
present streamlines and black curves represent contours of the distance function.
 the web  version of this article.)

as specified by Eqs. (1) and (2), respectively. This linearization
approach reduces the computational complexity of the method.
However, there is a cost in terms of accuracy. In particular, if the
points xi and xj are far apart (in terms of Euclidean distance),
then the validity of the resulting distance metric can be called
into question. For this reason, the linearized streamline approach
to defining a distance metric is best used in combination with a
technique for decaying the degree of anisotropy as the (Euclidean)
distance between points increases.

Fig. 4 shows an example of a distance function calculated using
the decaying anisotropy approach. Local to the point of interest, the
distance measure weights the distance from the streamline much
more heavily than the distance along the streamline. However, as
the (Euclidean) distance from the point of interest increases, this
anisotropy decays.

Based upon the considerations above, it is obvious that there
tance from the point increases, this anisotropy in the distance measure is decreased,
so  that for points far away the distance is approximately Euclidean. The decay of
anisotropy occurs linearly between the inner and outer decay radii indicated by the
two circles. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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eneral approaches for the incorporation of flow information (the
xact streamline method or the approximate, linearized streamline
ethod), we still have a large space of alternative non-Euclidean

istance metrics to consider. This family of distance measures is
arametrized by several parameters.

At the very least, we will have the parameter  ̨ that specifies
he relative weighting of distances across and along streamlines. If
e are using a decaying anisotropy, we will also have one param-

ter that specifies the inner radius of the decay region and another
he specifies the outer radius of the decay region. Moreover, we
ould introduce additional parameters in order to expand the size
f the family of distance measures that we can model. For example,
e could parametrize the exact form of the decay of anisotropy

etween the inner and outer radii. We  could also choose to con-
ider not only flow direction, but flow magnitude as well; this will
ecessitate the introduction of one or more additional parameters.

Given such a family of distance measures, the obvious question
s what specific one is best for the interpolation problem at hand.
he precise answer to this is problem specific, so the approach
hat we have implemented is to optimize the flow-based inter-
olator distance measure for each problem independently. Hence,
he parameter adjustment process is treated as an integral part of
he interpolation method itself. The specific parameter adjustment

ethod employed will be discussed in detail in Section 4.3.

.2. Streamline calculations

In order to compute d1(xi, xj) and d2(xi, xj) by reference to the
treamlines of the flow field (or other correlated vector field), as
escribed above, we must first calculate the streamlines them-
elves. Given the flow field, this is a fairly straightforward procedure
hat involves integrating the flow field from each point of interest.

e perform this integration numerically using the fourth-order
unge-Kutta method [19]. The flow field itself is assumed to be
n input to the reconstruction problem that reflects some a priori
nowledge about the problem at hand.

.2.1. Using isocontours as streamlines
It should also be noted that it is possible to compute non-

uclidean distance measures with respect to the isocontours of any
iven scalar field rather than with respect to the streamlines of a
ow field. The “flow-based” reconstruction method can then be
pplied as if these isocontours were the streamlines of a known
ow field. This mode of operation is useful when it is known that the
calar field of interest is correlated with another scalar field which
s known on the domain of interest, even if actual flow information
s not available.

.3. Parameter optimization

The generalized distance metric defined above in terms of the
treamlines of the flow field depends also on the free parameter ˛,
hich determines the relative weight to give to distances along the

treamlines versus distances across the streamlines. As mentioned
n Section 4.1, the distance function may  also involve additional
arameters besides  ̨ (such as those defining the inner and outer
ecay radii when a decaying anisotropy is utilized). If flow magni-
ude is considered, or if the distance function is otherwise modified
or the purposes of a specific application, further parameters may  be
ntroduced. The values of all these parameters determine the spe-
ific nature of the non-Euclidean distance measure to be used, and
his in turn influences the reconstructions that are obtained when

he flow-based interpolation/approximation method is applied to

 given set of scattered data.
Moreover, the underlying interpolation and approximation

ethod that we have chosen, Optimal Interpolation, also involves a
onal Science 16 (2016) 156–169 161

free parameter that must be chosen by the user (the so-called cor-
relation length, which determines the rate at which the influence
of a given sample point decays as the point of interest is moved
away from it). This method also involves an input parameter that
specifies the expected magnitude of the errors between the input
data and the values of the reconstruction at the corresponding loca-
tions. Although we usually have chosen to set this error parameter
to some reasonable fixed value, it also can be considered to be a free
parameter of the method. The effectiveness of the proposed recon-
struction method depends upon the specific choices made for these
parameters, and the optimal values of the parameters can vary from
problem to problem.

While exhaustive parameter studies can be performed on
specific cases in order to gain insight into the dependence of inter-
polation quality on the parameter settings, it is desirable to have
a more efficient way to select the precise parameter values that
lead to the best results. If the exact scalar field is known, we  can
use standard optimization techniques to find the best parameter
values for that specific scalar field in the presence of the specific
known flow field. Although gradient descent methods might be
applicable here, an easier approach (that avoids having to calculate
gradients) is to employ the direct search method (also known as
compass search or pattern search) [21,22]. Furthermore, because it
does not require gradient information, direct search is robust even
when the objective function lacks smoothness or continuity.

Unfortunately, like any local optimization method, direct search
is susceptible to falling into a local minimum of the objective func-
tion that is not the global minimum sought. In some cases we  simply
assume that either the initial guesses used are close enough to the
global minimum that the local direct search will find the parame-
ter configuration corresponding to this optimum value, or that the
objective function in fact has only one local minimum. However, we
have observed that the objective functions that result from most
practical reconstruction problems do involve multiple local min-
ima, so we  have implemented a simple procedure that attempts to
deal with this complication.

The procedure for global optimization is simply to perform an
initial scan of the parameter space (at some user-defined resolu-
tion) in order to attempt to select an initial guess that is likely to
be close to the global minimum. For applications for which we are
concerned that falling into a local minimum might lead to substan-
tially inferior results, we  utilize this procedure prior to invoking the
direct search algorithm. The initial guess used for the direct search
algorithm is then selected to be the parameter combination corre-
sponding to the lowest RMS  error encountered during the initial
scan. While more sophisticated approaches to global optimization
are possible, we have found that this simple approach is adequate
for most cases.

If the scalar field being reconstructed is known beforehand, the
objective function to be optimized is simply the RMS  error between
the known values at all locations considered (for example, on a
grid covering the entire spatial domain) and the values found for
these locations using the flow-based reconstruction method with
a given parameter configuration. Of course, in most real scattered
data interpolation problems, we  will not have knowledge of the
entire scalar field beforehand. However, by downsampling the set
of available scattered samples and comparing the interpolation
results using these subsamples to the known values of the scalar
field at the omitted sample locations, we can construct a suitable
objective function for optimization.

In practice, a reasonable approach is to remove one point at
a time and to compute the reconstruction there using the other

points. By doing this for each point in the sample set and taking
the root-mean-square error across all points, we  essentially are
utilizing a “leave-one-out” cross validation scheme. The cross vali-
dation is done during each iteration of the iterative optimization
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lgorithm. The expression for the objective function defined using
eave-one-out cross-validation is given by

MSECV =

√∑N
i=1e2

i

N
(3)

here ei is the error at the ith of the N sample points when com-
uting a reconstruction using the other N − 1 points.

Hence, direct search can then be used to approximate the opti-
al  parameter settings for the given problem, even though we only

now the value of the scalar field at a limited number of points. Note
hat this method of parameter optimization using downsampling is
losely related to the well-known “jackknife” method in statistics
23]. While the approach of withholding data for subsequent vali-
ation is quite common, our contribution here is to advocate the
se of parameter optimization using leave-one-out cross validation
s an integral part of the reconstruction process.

.4. Computational complexity

The computational complexity of the method described above
epends on the specific choices made for its various components.
or example, whether or not streamlines are calculated across the
ntire domain has a big effect on the overall complexity of the inter-
olation method. If we intend to compute a reconstruction on a
ense discretization of the entire spatial domain and if we decide
o use the exact method for defining a flow-based non-Euclidean
istance measure depicted in Fig. 2a, then we will have to compute
treamlines through every point of the discretization, which will
ead to a large computational overhead just for the computation of
he distance function.

To reduce this overhead, we could decide to employ the approx-
mate method for defining a flow-based distance measure (Fig. 2b),

hich does not require the computation of streamlines. Alter-
atively, if we are willing to accept a distance function that is
on-symmetric with respect to the sample locations and also pos-
ibly discontinuous at these locations, then we can substantially
educe the computational cost in another way. Specifically, because
f the relaxation of the symmetry requirement, we can compute
he streamlines that pass through the sample locations, and then
efine the flow-based distance measure using only these stream-

ines. Because we typically have a sparse scattered dataset, we

ill need to compute far fewer streamlines than if we  were to

mpose symmetry, which necessitates the computation of stream-
ines through every reconstruction point in addition to through
very sample point.

ig. 5. A simple analytic test case that illustrates the potential of the flow-based interp
treamlines of the associated flow field. The flow-based scattered data interpolation meth
n  knowledge of the flow field and only two  samples of the scalar field (denoted by the b
his  figure legend, the reader is referred to the web version of this article.)
ional Science 16 (2016) 156–169

In addition, if parameter optimization is performed to tune the
free parameters of the method (as described in Section 4.3), then
the computational costs are increased. The direct search procedure
described in Section 4.3 is an iterative method whose convergence
properties contribute to the overall computational complexity of
the interpolation scheme. Furthermore, if this local optimization
method is used along with a global optimization scheme (in order
to deal with the presence of local minima), then the computational
costs are increased even further.

Of course, the computational costs of the underlying interpola-
tion/approximation method must be considered as well. Optimal
Interpolation, like many interpolation and approximation algo-
rithms, ultimately involves the numerical solution of a matrix
equation. The matrices involved scale quadratically with the num-
ber of input data points (the scattered samples), and the cost of
solving a matrix equation of this size must then be multiplied by
the number of points at which the reconstruction is to be computed.

5. Results

5.1. An analytic test case

A simple test case to assess the potential of the flow-based scat-
tered data interpolation method is presented next. Because the
flow-based distance functions used by the proposed method make
the fundamental assumption that scalar fields are highly correlated
along streamlines, as opposed to across streamlines, the method
should perform well when this assumption holds exactly. To verify
this, the interpolation method can be applied to a scalar field and
flow field for which the isocontours of the scalar field are exactly
coincident with the streamlines of the flow field.

Fig. 5 illustrates such a case. In Fig. 5a, an oscillating scalar field
is shown. Superimposed on the field are representative streamlines
of the associated flow field. As can be seen, these streamlines are
also isocontours of the scalar field.

Fig. 5b shows the result of using the flow-based scattered data
interpolation method to reconstruct the scalar field based on only
two samples (one toward the upper left of the spatial domain and
the other toward the lower right). A visual comparison of Fig. 5a and
b shows that the method produces a relatively accurate reconstruc-
tion of the original scalar field even though only two samples of the
original field are used. The effectiveness of the method results from

its use of knowledge of the associated flow field (via a flow-based
non-Euclidean distance function), combined with the fact that the
flow field directions exactly specify the isocontours of the scalar
field.

olation method. (a) Shows an oscillating scalar field f(x, y) whose isocontours are
od produces an adequate reconstruction r(x, y) of the oscillating scalar field based
lue markers), as can be seen in (b). (For interpretation of the references to color in
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Fig. 6. Three different 2D scalar fields resulting from the solution of the advection–diffusion equation of Eq. (4) with a flow field moving from left to right with a constant
fl ows th
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with the underlying Optimal Interpolation method (a large corre-
lation length corresponds to a greater sphere of influence for each
sample point, while a small correlation length implies that
ow  magnitude of unity. (a) Shows the solution �(x, y) for a diffusivity of 0.5, (b) sh
he  quoted values for diffusivity refer to the numerical values used for both �x an
oundary that specifies a time-invariant concentration there. The rest of the scalar 

.2. Tests for cases involving various degrees of diffusivity

.2.1. Test cases from an advection–diffusion model
In order to test the effectiveness of the proposed flow-based

nterpolation method for interpolating actual physical datasets, we
eed test data that reflect a realistic relationship between a scalar
eld and an associated flow field. A convenient way  to construct
uch realistic test cases is to employ a physical model. We have cho-
en to use steady-state solutions to a simple 2D advection–diffusion
odel that approximates the behavior a tracer quantities in the

cean [24].
Defining the tracer concentration at location (x, y) and time t to

e �(x, y, t) and the x and y components of the (time-invariant) flow
elocity at location (x, y) to be vx(x, y) and vy(x, y), respectively, the
ime evolution of the tracer concentration scalar field is modeled
y the partial differential equation

∂�

∂t
+ vx

∂�

∂x
+ vy

∂�

∂y
= �x

∂2
�

∂x2
+ �y

∂2
�

∂y2
(4)

here the constants �x and �y are diffusivities in the x and y direc-
ions, respectively. For all cases presented in this paper, we  have
ssumed isotropic diffusion, for which �x = �y. Physically, the diff-
sivities �x and �y have dimension length2/time. However, because
e are using this model solely to construct mathematical functions

f x and y to use as test cases for our reconstruction method, we  typ-
cally will avoid the explicit assignment of physical units to �x and
y (and to x, y, t, vx, vy, and �, for that matter).

Solving the differential equation of Eq. (4) numerically, we have
btained a collection of test cases for various values of diffusivity.
ig. 6 illustrates the scalar fields that correspond to three differ-
nt values of the diffusivity coefficients �x and �y in Eq. (4) (with
x = �y for each case). All three cases use the same flow field (a left-
o-right flow field with constant flow magnitude over the entire (x,
) domain) and boundary conditions (a Dirichlet boundary condi-
ion specifying the concentration on the left boundary and no-flux
oundary conditions enforced on the other three boundaries). In all
ases, we have solved for the steady state solution, which we call
imply �(x, y). It is this 2D scalar field �(x, y) that is depicted in each
lot of Fig. 6.

Clearly, the correlation between scalar field values at two  points
n a given streamline is greater when the ratio of flow field veloc-
ty to diffusivity (the Péclet number) is large. So, for a given flow
elocity, the correlation is higher for a low-diffusivity case than for
 high-diffusivity case. The ability to vary the diffusivity is one of
he benefits of testing the interpolation method using the results of
he advection–diffusion model, as this provides a convenient way
o assess the effect of diffusion and to quantify the rate at which
e solution for a diffusivity of 1.0, and (c) shows the solution for a diffusivity of 2.0.
n Eq. (4). For each case, there is a Dirichlet boundary condition at the left domain
s the steady-state solution of the advection–diffusion equation.

reconstruction quality degrades as the diffusivity becomes large
(thereby reducing the usefulness of the known flow information).

5.2.2. Parameter study for an advection–diffusion test case
In this section, we show how the performance of the pro-

posed flow-based scattered data interpolation method depends
upon the choice of parameters used with the method. Fig. 7 shows
the problem that will be used to illustrate the dependence of
interpolation results on the parameters chosen. The plot shows
the scalar function of interest, which was  constructed using the
advection–diffusion model described above. Overlaid on the plot
are the locations of 30 points at which samples of the scalar field
are taken. The interpolation task is to use the flow-based scattered
data interpolation method to compute a reconstruction of the orig-
inal scalar field based on knowledge of these 30 sample points
and the fact that the associated flow field is that of a left-to-right
flow.

Fig. 8 shows the results of applying the interpolation method
with different parameter configurations. The family of non-
Euclidean flow-based distance functions that were used for this
case was  parametrized only by the parameter ˛, which specifies
the relative weight of distances along streamlines versus distances
across streamlines. In addition to varying ˛, the parameter study
also considered various values of the correlation coefficient used
Fig. 7. A 2D scalar field �(x, y) in the presence of a left-to-right flow field, constructed
using the advection–diffusion model of Eq. (4), with 30 scattered samples indicated.
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Fig. 8. A parameter study showing the RMS  error of reconstructions of the scalar field of Fig. 7 compared to the known values for the scalar field. (a) Shows the RMS  error as a
function of the OI correlation length. Each curve corresponds to a different value of the  ̨ parameter. (b) Shows the RMS  error as a function of  ̨ for curves representing different
values of the correlation length. The parameter study results indicate that local minima of RMS error can exist with respect to both the correlation length and the  ̨ parameter.
In  (a), the red line represents the RMS  error obtained by using the standard Optimal Interpolation algorithm for various values of the OI correlation length parameter. In both
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lots, the blue line represents the best possible reconstruction (for any correlation
he  flow-based method yields a lower RMS  error than the regular OI algorithm. (Fo
he  web  version of this article.)

ach point’s influence on the reconstruction is relatively local to
he streamline passing through it).

Each curve in Fig. 8a corresponds to a different value of the
 parameter. The horizontal axis represents the value of the OI
orrelation length parameter and the vertical axis represents the
oot-mean-square (RMS) error for a point-by-point comparison of
he original scalar function of Fig. 7 with the reconstruction corre-
ponding to the parameter configuration being used. Conversely,
ach curve in Fig. 8b corresponds to a different value of the OI cor-
elation length parameter, with the horizontal axis corresponding
o the value of the  ̨ parameter. The red curve in Fig. 8a represents
he RMS  error, as a function of the correlation length parameter,
f reconstructions computed using the standard OI method with a
uclidean distance function. In both plots, the blue line indicates
he RMS  error of the best reconstruction computed using standard
I, which serves as a baseline to assess the effectiveness of the
ow-based method.
The first thing to notice from Fig. 8 is that there are parame-
er combinations (of the  ̨ and correlation length parameters) that
ead to RMS  errors that are lower than the lowest error achieved by

 reconstruction using the standard OI method. These parameter

ig. 9. A parameter study showing the RMS  error of reconstructions of the scalar field of
sing  the information that is usually available in practice). The RMS  errors shown corresp
s  defined in Eq. (3). (a) Shows the RMS  error as a function of the OI correlation length. Each
s  a function of  ̨ for curves representing different values of the correlation length. As with
hat  local minima of RMS  error can exist with respect to both the correlation length and th
alidation). In (a), the red line represents the cross-validation-based RMS error (RMSECV

nstead  of the flow-based method, plotted as a function of the correlation length paramet
ossible cross-validation-based RMS  error (for any correlation length) obtained using OI.
rror  values are a reasonable proxy for parameter combinations leading to low RMS error
o  color in this figure legend, the reader is referred to the web  version of this article.)
h) obtained using OI. As can be seen, there are parameter combinations for which
rpretation of the references to color in this figure legend, the reader is referred to

combinations are represented by the portions of the parameter
study curves that lie below the blue lines. The second important
observation is that some of the curves exhibit local minima with
respect to one or both of the parameters. This observation is perti-
nent when considering optimization-based automatic procedures
for finding a near-optimal parameter configuration.

As can be seen from Fig. 8, parameter combinations exist that
result in better reconstructions (in terms of having a lower RMS
error) than the standard OI method applied to the same problem.
However, how to find these parameter combinations is unclear. The
parameter study indicates what the near-optimal parameter com-
binations are, but the study was  performed with a priori knowledge
of the actual scalar field being reconstructed. In other words, the
only way  we were able to compute the RMS  errors displayed in
Fig. 8 was  by comparing the reconstructions obtained to the known
ground truth shown in Fig. 7. In practice, the ground truth will not
be known, so identifying the near-optimal parameter combination

is not straightforward.

Our solution to this problem is to utilize leave-one-out cross
validation, as described in Section 4.3. Fig. 9 shows the results
of a parameter study conducted using the leave-one-out cross

 Fig. 7 with respect to the known values at the sample points only (in other words,
ond to the alternative definition of RMS  error using leave-one-out cross validation,

 curve corresponds to a different value of the  ̨ parameter. (b) Shows the RMS  error
 the results presented in Fig. 8, the parameter study results presented here indicate
e  ̨ parameter (in this case, for the RMS  error computed using leave-one-out cross
from Eq. (3)) obtained when using the standard Optimal Interpolation algorithm

er used with the standard algorithm. In both plots, the blue line represents the best
 Note that the parameter combinations leading to low cross-validation-based RMS
s for the reconstructions represented in Fig. 8. (For interpretation of the references
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alidation definition of RMS  error given in Eq. (3). The results
hown parallel those shown in Fig. 8. As for the previous case, we
bserve local minima with respect to both  ̨ and the correlation
ength parameter (with potential consequences for any optimiza-
ion method applied to the RMS  error function). Most importantly,
hough, we note that the near-optimal parameter combinations for
his alternative RMS  error function appear to be a reasonable proxy
or those for the RMS  error function that was computed with respect
o the known ground truth scalar field. In other words, the values
f  ̨ and correlation length that lead to the lowest RMS  errors in
ig. 9 correspond to relatively low RMS  error values in Fig. 8 as
ell. While the optimum configuration for Fig. 9 does not corre-

pond exactly to the optimum configuration for Fig. 8, we see that
t at least leads to an RMS  error below the blue lines in Fig. 8 (the OI
aseline). Therefore, we have demonstrated the potential value of
he leave-one-out cross validation approach for identifying near-
ptimal parameter combinations for a given problem, or at least
nes that will lead to reconstructions superior to those computed
sing the standard OI method.

The comparison of the parameter study results shown in
igs. 8 and 9 has shown that leave-one-out cross validation pro-
ides a way around the problem of how to calculate RMS  error
hen the ground truth is not known. However, even so, perform-

ng an exhaustive parameter study such as the one shown in Fig. 9
n order to find the best parameter configuration is too expensive to
e practical for interactive visualization purposes. In order to find

 good combination of parameters without having to perform a full
arameter study, the parameter optimization approach described

n Section 4.3 has been implemented. The results obtained using
his approach are presented next.

.2.3. Results using dynamically optimized method
The parameter study results above illustrate the typical behavior

f the RMS  error with respect to the choice of parameters used with
he flow-based reconstruction method. In order to find the near-
ptimal choice of parameters without having to run a full parameter
tudy, a dynamic parameter optimization can be performed during
he interpolation process itself. Such a parameter adjustment can be

ade using any nonlinear optimization method, but as has already
een described in Section 4.3, the method we have implemented
ses a simple direct search to perform the optimization.
Fig. 10 shows an alternative presentation of the data shown in
igs. 8 and 9 for our flow-based reconstruction method. Here, the
MS  error functions are shown explicitly as functions of both ˛
nd the OI correlation length parameter. These functions are the

ig. 10. Illustration of RMS  error as a function of the correlation length and the  ̨ paramet
ruth. (b) Shows the leave-one-out cross-validation-based RMS  error. The latter serves a
pace.  The green marker shows the location of the minimum of the RMS error surface (the
how  the local minima of the cross-validation-based RMS  error surface. The cyan mark
hoosing a parameter combination that is close to the global minimum of the reconstruc
egend, the reader is referred to the web version of this article.)
onal Science 16 (2016) 156–169 165

objective functions that are to be minimized using the dynamic
parameter optimization method. Fig. 10a shows the RMS  error cal-
culated with respect to the ground truth of Fig. 7. Because the
ground truth is known for this case, we can perform a 2D direct
search directly on this objective function in order to find the best
possible parameter combination for the problem (the point indi-
cated by the green marker in Fig. 10a).

In practice, however, we usually do not know the ground truth
scalar field a priori. So, instead of optimizing using the objective
function of Fig. 10a, we will typically optimize with respect to
an objective function defined in terms of the leave-one-out cross-
validation-based RMS  error defined in Eq. (3). Fig. 10b shows this
alternative RMS  error surface, which was calculated by applying
leave-one-out cross validation using the 30 available sample points
depicted in Fig. 7. Notice that the surface has two local minima in
the parameter range shown. Which of these minima is found dur-
ing the direct search procedure depends upon the initial guess used
at the start of this iterative algorithm. This initial guess, in turn, is
determined by the results of the initial scan done beforehand, if one
is used (as described in Section 4.3).

In Fig. 10b, the cyan marker represents the location of the global
minimum, so if a fine enough initial scan is performed, the subse-
quent direct search will find this minimum rather than the local
minimum represented by the black marker (at which the cross-
validation-based RMS  error is only very slightly greater). Note
from Fig. 10a that this parameter configuration is nearby the one
that leads to the minimum RMS  error with respect to the ground
truth. Hence, when using the parameters found during the dynamic
parameter optimization phase of the algorithm (which depends
only on knowledge of the scalar field values at the sample points),
our method yields a reconstruction that is close to the optimal
one for the problem. Also, note that even if the other local mini-
mum  of the function of Fig. 10b were found during the parameter
optimization (or if the surface were slightly different, so that the
black marker represented the global minimum of that function), the
reconstruction obtained would still be a good one. In particular, the
contour lines in Fig. 10a indicate that even though the black marker
is further from the best possible configuration in the parameter
space (the green marker), the RMS  error obtained is similar to that
obtained using the configuration represented by the cyan marker.

Although the example just discussed illustrates the param-

eter adjustment process using a family of distance functions
parametrized by the single parameter ˛, the same procedure
can be used for more complicated families of distance functions
that are parametrized by more than one parameter. For example,

er. (a) Shows the RMS  error of reconstructions compared against the known ground
s the objective function for a dynamic direct search optimization of the parameter

 best reconstruction over the entire parameter space). The cyan and black markers
er happens to be the global optimum, so the cross validation procedure leads to
tion error surface in (a). (For interpretation of the references to color in this figure
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hen using distance functions with decaying anisotropy, the direct
earch optimization would search in two additional directions to
nd the near-optimal values of the inner and outer radii for the
ecay region to be used. Although computational complexity is

ncreased as additional variables are included within the optimiza-
ion loop, the computational costs are mitigated by the fact that
or problems involving sparse scattered samples there are rela-
ively few RMS  error values to be computed during each iteration
f the optimization. Furthermore, for the example given (involving
istance functions with decaying anisotropy), the computational
avings from avoiding streamline calculations by using the lin-
arized streamline approximation of Fig. 2b presumably would
utweigh the added computation required to handle the optimiza-
ion of the extra parameters introduced by the decaying anisotropy
onstruct.

In order to demonstrate the utility of our proposed flow-based
econstruction method as compared to standard methods, we now
resent results from applying the method to a collection of test
ases similar to the one just described (whose error surfaces are
llustrated in Fig. 10). Each case uses the same 30 sample loca-
ions depicted in Fig. 7 and involves a scalar field that has been
enerated using the advection–diffusion model of Eq. (4) with the
ame boundary conditions and flow field as for the case shown in
ig. 7 but with a different value for the diffusivities �x and �y (with
x = �y for each case, as before). For each case, we  have used the
irect-search-based dynamic parameter optimization procedure,
nd have attempted to avoid local minima of the objective func-
ions by first performing an initial scan of the parameter space to
etermine a reasonable initial guess for each problem.

Fig. 11 shows RMS  errors for a range of diffusivities. For
omparison purposes, results are shown both for the standard Opti-
al  Interpolation method and for our flow-based reconstruction
ethod. For the former, the OI correlation length parameter was

ptimized for each case, and for the latter both the correlation
ength and the  ̨ parameter of the flow-based distance measure
ere optimized simultaneously.
Moreover, two curves are plotted for both for the OI method

nd the flow-based method. The curves labeled “optimal” plot the
MS  errors (with respect to the ground truth) for reconstructions
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ig. 11. Comparison of the RMS  errors for reconstructions computed using the
ow-based method and using the standard Optimal Interpolation algorithm.
econstructions were computed using the sample locations shown in Fig. 7 and for
he same flow field, but for a range of different diffusivities. Comparing the curves
or the two methods when optimized against the ground truth, we  see that the flow-
ased method offers the possibility for superior results as long as the free parameters
an be chosen appropriately. When these parameters are chosen using leave-one-
ut cross validation (using only the available sample points to construct the objective
unction to be minimized), the flow-based method does in fact achieve superior
esults compared to OI. If the parameter adjustment process can be improved even
urther, even better results may  be possible.
ional Science 16 (2016) 156–169

whose parameter configurations were found using dynamic param-
eter optimization with respect to the ground-truth-based objective
functions themselves (e.g., the surface depicted in Fig. 10a). These
curves illustrate the lowest possible RMS  errors for each method
when applied to the problem corresponding to the diffusivity indi-
cated (ignoring the fact that we  don’t have a way to find the
optimal parameters when the ground truth is not known). As can
be seen in the plot, for test cases constructed using a wide range
of diffusivities, the flow-based method always has a better optimal
reconstruction than the standard OI method.

On the other hand, the curves labeled “using cross validation”
plot the RMS  errors for reconstructions computed using the
parameters found by the dynamic parameter optimization process
applied to leave-one-out cross-validation-based objective func-
tions constructed with reference only to the scattered samples
themselves (e.g., the surface depicted in Fig. 10b). Note that while
cross-validation was used to actually find the parameter config-
urations to use for each case, the RMS  errors shown are those
of the final reconstruction with respect to the ground truth. These
curves illustrate the lowest RMS  errors achievable by each method
in practice, using our parameter optimization procedure and only
the data typically available. As can be seen from Fig. 11, when using
cross validation, the flow-based method yields superior results over
a large range of diffusivities.

Furthermore, considering the gap between the curve for the
optimal flow-based method and the curve for the flow-based
method using cross validation (especially for higher diffusivities),
we see that even better results may  be possible. If the cross-
validation-based parameter adjustment process can be improved
upon, then the low-RMS-error reconstructions that evidently are
possible with use of flow-based distance measures (with the appro-
priate parameter settings) may possibly be achievable in practice.
It remains as future work to explore how to enhance the process
to get closer to the optimal parameter configuration using only the
sparsely distributed samples that are known.

5.3. Application to Oceanographic Problems

5.3.1. Effectiveness for water mass boundaries
While the proposed method for flow-based scattered data

interpolation (and approximation) does not explicitly consider
boundaries between separate regions of the interpolation domain,
it nevertheless results in reasonable reconstructions in the vicinity
of such boundaries. One example of such a situation involves the
different water masses that are present in the ocean. Large gradi-
ents of tracer values tend to exist across the boundary between one
water mass and another. Because the direction of water flow tends
to be approximately parallel to a water mass boundary, using a rel-
atively low value of  ̨ with our flow-based interpolator provides
a way to ensure that interpolated values at a given point near a
boundary are constructed in such a way that greater weight is given
to the values at sample points on the same side of the boundary.
Hence, even though the method does not reconstruct the bound-
ary explicitly, the reconstructed scalar field can be better aligned
with the boundary than would be possible using a non-flow-based
reconstruction method.

For example, Fig. 12 illustrates a simple case for which the scalar
field takes the value 0.8 above a horizontal boundary and the value
0.2 below it (as depicted in Fig. 12a). The flow direction is to the right
in the region above the boundary and to the left in the region below
the boundary, and 40 sample points are available to be used as input
to a scattered data interpolation algorithm. When standard Opti-

mal  Interpolation is used as the algorithm (optimizing for the best
value of the correlation length parameter), the shape of the water
mass boundary is not well-represented in the resulting reconstruc-
tion (Fig. 12b). However, as shown in Fig. 12c, the flow-based
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Fig. 12. Using the flow-based interpolation technique to better capture tracer values on either side of an idealized water mass boundary. (a) Illustrates the scalar function of
interest, f(x, y), which involves one constant value (0.8) above the boundary and a different constant value (0.2) below it. Flow is in the rightward direction above the boundary
and  in the leftward direction below the boundary. The markers indicate the location of each of the 40 samples of the scalar field that are available as inputs to a scattered
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referred to as ı C, which is the typical oceanographic parameter
used to discuss this ratio). The locations of these measurements
correspond to the core locations specified in Fig. 1. The flow field
used was a simple one representing a coarse approximation of the

Fig. 13. Reconstruction of the ı13C scalar field generated using the flow-based
ata  interpolation algorithm. (b) Illustrates the reconstruction r1(x, y) obtained usin
est  correlation length. (c) Shows the reconstruction r2(x, y) obtained using our flow
nd  for the correlation length simultaneously.

ethod – optimized simultaneously for both the weighting fac-
or  ̨ and the correlation length – produces a reconstruction that

ore faithfully represents the boundary between the two regions.
Note that the reconstruction would be identical if the flow were

n the same direction in both regions (because the streamlines
ould be the same). Hence, it should be clear that the flow-based
ethod’s effectiveness at boundaries is related to how it weights

ample points in relation to flow direction, rather than to any
xplicit identification of boundaries. Because flow is parallel to
oundaries, using a value of  ̨ less than one will tend to preserve
ny pre-existing difference in the average tracer value above the
oundary compared to below it. While this idealized problem may
ot seem to be a very difficult one, given the information present in
he flow field and the clear separation of scalar field values above
nd below the boundary, the example nevertheless serves to illus-
rate how the flow-based reconstruction method is able to exploit
nown information in a way not possible with a non-flow-based
ethod.

.3.2. Effectiveness for domain boundaries
In addition to its advantageous properties with respect to

ater mass boundaries, our method also is naturally well-suited
o handling domain boundaries. In the oceanographic application
omain, these boundaries are defined by the ocean surface and the
cean bathymetry. Because the bathymetry involves a considerable
mount of structure imparted by such things as ocean ridges, the
econstruction problem has an added complexity not present when
econstructing fields on a simple rectangular domain.

For example, when using a typical interpolation method (with
 Euclidean distance metric), the distance between two  points on
pposite sides of a ridge will be measured straight through the
idge, and therefore the correlation between the scalar field values
t these points will be computed to be stronger than it should be.
he result is an unphysical bleeding through of the reconstructed
calar field from one side of the ridge to the other. In order to pre-
ent this, one of several largely ad hoc procedures would have to
e implemented.

On the other hand, because streamlines of a flow field cannot
ass through such a ridge, the flow-based reconstruction method
e have proposed handles such complexities in a natural way,
ithout the need for significant ad hoc modifications. For two
oints on opposite sides of a ridge, if the streamlines passing

hrough the two points both pass over the ridge, then the flow-
ased method yields good results essentially for free. If one or both
f the streamlines do not extend to both side of the ridge, a naive
mplementation will exhibit unphysical artifacts in the vicinity of
imal Interpolation as the scattered data interpolation algorithm, optimizing for the
ed scattered data interpolation method, optimizing both for the weighting factor ˛

the ridge. However, the flow-based method provides a natural way
to handle this case as well, requiring only a fairly simple modifica-
tion to the implementation.

Namely, if the shortest straight line from one point to the
streamline passing through the other point crosses a domain
boundary, we define the components of the distance as follows.
The across-streamline distance is defined to be the length of the
shortest line segment between the two streamlines that is entirely
within the spatial domain, and the distance in the streamline direc-
tion is defined to be the sum of the streamline lengths from each of
the two  points to the endpoint of the aforementioned line segment
that is on its own  streamline. In this way, all distance measurements
are performed within the spatial domain, and therefore the result-
ing reconstruction is well-behaved with respect to the domain
boundaries.

5.3.3. Approximating a tracer field from oceanographic core data
As a final example we show (in Fig. 13) the result of applying

our flow-based approximation method to scattered carbon iso-
tope data. The dataset consists of measurements of 13C/12C (here

13
approximation technique applied to ı13C data at the core locations depicted in Fig. 1.
The  ı13C values at the core locations are indicated by the colors inside the plotted
circles. The lines in the plot depict isocontours of the reconstruction. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 14. In order to reduce extrapolation excursions toward the boundaries of the
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omain, a convex hull is formed around the sample points and values are assigned at
he  boundary of the domain using linear extrapolation from the initial reconstruc-
ion inside the convex hull.

ow observed in the modern Atlantic Ocean. As can be seen, our
ethod leads to a relatively smooth approximation. Furthermore,

he reconstruction appears to respect the ı13C values at the core
ocations fairly well considering the level of smoothness exhibited
and considering that for this example, data from all longitudes
ave been mapped onto a single latitude/depth plane).

While the reconstruction depicted in Fig. 13 appears physically
ealistic in the interior of the domain, the existence of extrapola-
ion artifacts toward the boundaries (in particular, toward the left
ide and in the bottom right corner) leads to an unrealistic recon-
truction in these regions. To handle this problem, extrapolation
s handled explicitly via a second pass through the reconstruc-
ion algorithm. A set of boundary points are assigned values based
pon a linear extrapolation from the convex hull of the sample
oints (Fig. 14). These points are added to the original set of points
or a second pass through the flow-based reconstruction algo-
ithm. The result is a continuous reconstruction, depicted in Fig. 15,
hat is better behaved toward the domain boundaries and there-
ore physically more realistic across the entire domain. To reduce
xtrapolation excursions even further, the same two-pass proce-
ure can be employed, but with the values at the boundary points
omputed using constant extrapolation from the convex hull rather
han linear extrapolation.

For real reconstruction problems such as this one, it is diffi-

ult to compare the effectiveness of the flow-based method to the
ffectiveness of standard methods such as Optimal Interpolation
ecause the ground truth (the actual scalar field over the entire
omain of interest) is unknown. However, one possibility is to

ig. 15. The final reconstruction is computed using a second pass through the
ow-based approximation algorithm, using the same parameters as for the initial
econstruction but adding the boundary points from Fig. 14 to the original set of
ample points. This process leads to a continuous reconstruction that exhibits fewer
xcursions in the extrapolation region, and therefore is more physically realistic.
ional Science 16 (2016) 156–169

utilize the leave-one-out cross validation version of the reconstruc-
tion error, RMSECV, from Eq. (3). Such an approach would compare
the RMSECV value for the flow-based method (for the final, opti-
mized parameter configuration) to the RMSECV value for standard
OI. While such a comparison is not definitive, a lower value of
RMSECV for the flow-based method would at least give some evi-
dence that the corresponding reconstruction is superior to the
baseline OI reconstruction. An alternative approach would be to
estimate the reconstruction error using proxy quantities that are
known over the entire domain [25]. However, because of the errors
introduced by mapping the 3D data of this example onto a 2D plane,
such assessments are best done with a 3D version of the method,
and therefore have been left as future work.

6. Conclusions and future work

The results presented have shown that the proposed method
for scattered data interpolation and approximation is more effec-
tive than the corresponding non-flow-based method. Specifically,
for a relatively sparse set of samples of a scalar field, using flow-field
motivated generalized distance metrics with the Optimal Interpo-
lation method of reconstruction typically leads to better fidelity
with the true scalar field than is obtained by using the standard
(Euclidean-distance-based) Optimal Interpolation method. Also,
we have noted that proper optimization of the free parame-
ters of the interpolation method is critical to obtaining good
reconstruction results. Toward this end, we have demonstrated
a cross-validation-based approach to searching for near-optimal
parameter configurations.

For example, the results shown in Fig. 11 indicate that for the
family of test cases presented there, using the flow-based method
with parameters found by cross validation leads to an average
decrease of approximately 0.01 in RMS  error (across all diffusivi-
ties considered) compared to the RMS  errors obtained when using
standard OI with cross validation for the same problems. For the
range of diffusivities considered, the RMS  errors for the OI recons-
tructions range from around 0.01 to around 0.023, so a decrease of
0.01 in RMS  error is quite significant in a relative sense. Further-
more, note that the relative reduction in error is greatest for the
cases involving lower diffusivities (for which advection dominates
diffusion), which makes sense considering that the flow-based
method has been designed to exploit the existence of higher corre-
lations in the direction of flow.

The flow-based scattered data interpolation and approximation
method described in this paper can be enhanced in several ways,
and these will be investigated in future work. For example, while
the current method exploits correlations with flow only via the
streamlines of the flow field, a straightforward extension would be
to generalize this so that flow magnitudes are considered explicitly.
Another possible generalization is to allow the tunable  ̨ parameter
to vary locally in space rather than being a global parameter for each
reconstruction problem.

With regard to parameter optimization, a more sophisticated
approach to global optimization would lead to fewer instances of
falling into local minima of the objective function, which in turn
might result in the identification of parameter configurations closer
to the optimal ones. Many algorithms for global optimization exist
[26], many of which would likely work well for our purposes. In
addition, a more careful analysis of the relationship between objec-
tive functions constructed with respect to the ground truth and
those constructed using leave-one-out cross validation might lead
to improved methods for parameter selection. Furthermore, the

cross-validation-based objective function itself could be refined to
include enhancements such as weighting the individual terms to
adjust for the relative proximity of sample points (perhaps using a
Voronoi tessellation).
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2006 and 2008, and is a past Department Chair. He con-
ducts research at the interface between living and fossil
foraminifera to develop and calibrate geochemical prox-
ies  that are used to reconstruct climate change throughout
G.J. Streletz et al. / Journal of Com

Also, while this paper considered the method only in its 2D
ncarnation, the generalization to 3D will allow the method to
e used directly for 3D ocean reconstruction problems (and will
acilitate comparisons with standard methods for such real-data
roblems, as was mentioned in Section 5.3.3). Likewise, the exten-
ion to 4D would allow treatment of time-varying problems.
inally, while the current method exploits a known flow field to
nhance the fidelity of reconstruction of a related scalar field, it
ould be of interest to explore the degree to which an unknown
ow field could be inferred based only on scattered samples of the
calar field.
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