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ABSTRACT

In this study the regulation of vascular tone inducing the blood flow increase at the onset
of exercise is examined. Therefore, our calf circulation model was extended with a reg-
ulation model to simulate changes in vascular tone depending on myogenic, metabolic
and baroreflex regulation. The simulated blood flow corresponded to the in vivo re-
sponse and it was concluded that metabolic activation caused the flow increase shortly
after muscle contraction. Secondly, the change in baseline flow upon tilt was a result of
myogenic and baroreflex activation. Based on a sensitivity analysis the myogenic gain
was identified as most important parameter.
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Figure 1: Schematic representation of the muscle pump effect during the A contrac-
tion and B relaxation phase. During contraction, the deep vein collapses due to the ex-
travascular pressure pex exceeds the intravascular pressure. Venous return is increased,
whereas back-flow and flow to the superficial system is blocked by the distal and per-
forator valves. During the relaxation, the deep vein is refilled from both the artery and
the superficial vein, while the perforator valves open and the proximal valve is closed to
prevent back-flow. Figure was adapted from Keijsers et al. [2015]

1 Introduction

During exercise several complex haemodynamic regulation mechanisms are activated to
ensure sufficient supply of oxygen and nutrients, and removal of waste products. In-
creased understanding of these individual mechanisms and their interaction is needed to
fully characterize the dynamics of blood flow during exercise. At the onset of exercise,
the blood flow within muscle in the lower limb increases significantly depending on the
arterio-venous pressure drop and the peripheral resistance. These are influenced by both
mechanical effects during muscle contraction and relaxation (the muscle pump effect)
and the vasodilatory state of the arterioles. However, the exact contribution of these two
mechanisms to the blood flow increment at the onset of exercise is still a matter of debate
[Tschakovsky and Sheriff, 2004]. Three hypotheses are currently described in literature:
the first states that flow augmentation is primarily caused by the muscle pump effect, the
second claims that regulation of peripheral resistance is the major determinant. The third
hypothesis considers both mechanisms to be important.
As a result of calf muscle activation, the muscle pump effect increases venous return by
collapsing the deep veins embedded within the muscle. Furthermore, backflow towards
the arterial system and into the superficial venous system is prevented by closure of the
distal and perforating venous valves respectively (Figure 1A) [Rowell, 1993]. Arterial
inflow rises during subsequent muscle relaxation as the perfusion pressure is increased
due to the pressure shielding of the closed proximal valve (Figure 1B) [Rowell, 1993].
Furthermore, the opening of the distal and perforating valves [Meissner, 2005] allows
venous refilling from both the arterial and superficial venous system. In summary, the
muscle pump effect increases blood flow through an increase in arterio-venous pressure
drop.
In a previous study [Keijsers et al., 2015], we examined the role of venous valves, hydro-
static pressure and the superficial veins during the muscle pump using a mathematical
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model. Although the model was able to simulate the increased venous return during
muscle contraction and the elevated arterial flow during muscle relaxation, the predicted
flow augmentation was low compared to the increase in arterial flow increase measured
during in vivo calf muscle contractions [Nådland et al., 2009]. Based on the debate in
literature [Nådland et al., 2009, Tschakovsky et al., 1996], it was proposed that vasodila-
tion could be the missing component in the model. Furthermore, the simulated arterial
baseline flow in the tilted position was equal to the baseline flow in the supine posi-
tion, which was in strong contrast with the 50% decay observed in vivo [Nådland et al.,
2009]. These postural changes can be attributed to changes in peripheral resistance due to
myogenic vasoconstriction and a global increase in peripheral resistance [Nådland et al.,
2009]. Therefore, in this study our previous model is extended to include regulation of
vascular tone.
Regulation of vascular tone in skeletal muscle tissue is not based on a single mech-
anism, but involves the interaction between the local myogenic, local metabolic and
global baroreflex regulation [Joyner and Casey, 2015]. Myogenic regulation protects the
capillaries against high pressures by vasoconstriction as transmural pressure increases
[Boron and Boulpaep, 2003]. The metabolic mechanism induces vasodilation when the
amount of metabolites accumulates, thereby regulating the oxygen delivery and removal
of waste products [Boron and Boulpaep, 2003, Joyner and Casey, 2015]. Finally, the barore-
flex initiates vasoconstriction when central pressure detected by the baroreceptors in the
aortic arch and the carotid artery decreases. In addition, the baroreflex affects heart rate,
cardiac contractility and venous unstressed volume [Boron and Boulpaep, 2003, Rowell,
1993]. A combined regulation model including all three components is thus required to
describe the resulting vascular tone. As all three mechanisms respond to different param-
eters and with different time delays, each should be modelled as a separate component.
The definition of specific parameters for each mechanism, allows us to examine the rela-
tive activation of the three mechanisms during muscle contraction and relaxation.
Previous numerical studies of regulation of vascular tone have focussed on cerebral auto-
regulation or the baroreflex. Ursino [1988] developed a model for cerebral auto-regulation
including a neurogenic and endothelial response in addition to the myogenic and metabolic
mechanism. This model was used to investigate the relation between cerebral blood
volume and intracranial pressure changes [Ursino and Giammarco, 1991] and applied to
examine cerebral regulation under squat exercise and visual stimulation [Spronck et al.,
2012]. Models of the baroreflex have been applied to study various physiological re-
sponses, e.g. the interaction between the baroreflex and a pulsating heart model [Ursino,
1998], heart rate variability [Ursino and Magosso, 2003], fetal welfare during labor [van der Hout-van der Ja
2013] and heart rate regulation under orthostatic stress [Olufsen et al., 2006]. However,
to our knowledge, no model exists that combines myogenic, metabolic and baroreflex
regulation to simulate the vascular tone response to a skeletal muscle contraction.
The aim of this study was to determine the importance of the myogenic, metabolic and
baroreflex regulation during the different phases of muscle contraction. Therefore, the 1D
arterio-venous model as described in Keijsers et al. [2015] was extended with a regulation
model for the vascular tone, which includes both the myogenic and metabolic effects de-
scribed by Spronck et al. [2012], combined with the baroreflex model of Ursino [1998]
to include all three mechanisms. In an initial explorative analysis, the intuitively most
important model parameters representing the gain of the myogenic and metabolic mech-
anism were fitted to match the measured in vivo flow response to a muscle contraction in
the supine position. Secondly, the same parameters were used to predict the response to
a muscle contraction in the tilted position. Finally, a sensitivity analysis was performed
to quantify which parameters are most important for the variance in the flow response.
For the sensitivity analysis the two step approach as described by Donders et al. [2015]
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Figure 2: Schematic overview of the methods as described in this study including: circu-
latory and regulation model, simulation of a muscle contraction, physiological data, and
the four analyses performed. For each part the main points are given together with the
corresponding figures.

was used. This approach consists of an initial Morris screening and a subsequent general-
ized polynomial chaos expansion (gPCE). We conclude with an analysis varying the most
important parameters, identified by the sensitivity analysis, to fit the in vivo response.

2 Methods

In this section the methods are described and a schematic overview can be observed in
Figure 2.

2.1 Model

To study the hemodynamic and local regulatory response to muscle contraction in the
lower limb a simplified model of the calf circulation was constructed (Figure 3). The
model includes an artery, supplying the muscle tissue with oxygen, a deep vein, embed-
ded in the muscle tissue, and a superficial vein, between the skin and the muscle. To
model regulation of vascular tone the mean response of the arterioles is included into a
single model variable which represents the regulatory state. This state is based on the
myogenic, metabolic and baroreflex regulation (Figure 3B). Changes in peripheral resis-
tance are induced by relating the resistance to the regulation state. The following section
describes the physiological background and governing equations of the various model
components.
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Figure 3: Model. A Model configuration of the calf circulation including: 1D artery (AR),
a 1D deep (DV) and superficial (SV) vein, 0D venous valves (VV), a 0D micro-circulation,
a 0D inlet and outlet boundary condition (BC). The length and radius of the 1D elements
are not true to scale (geometrical parameters of all 1D segments can be found in Table
1) B Schematic overview of the regulation model including baroreflex, myogenic and
metabolic regulation
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2.1.1 1D Pulse wave propagation: arteries and veins

The hemodynamics in the large arteries and veins is captured using the 1D equations for
mass and momentum balance, with blood assumed to be an incompressible Newtonian
fluid. The resulting equations read:

C
∂ptr

∂t
+

∂q

∂z
= 0, (1)

∂q

∂t
+

∂Av2z
∂z

+
A

ρ

∂p

∂z
=

2πa

ρ
τw +Agz, (2)

where C is the compliance per unit length, ptr = p− pex is the transmural pressure, p and
pex are the intra- and extravascular pressure respectively, q is the flow, t is the time and z is
the axial coordinate. Furthermore, A is the cross-sectional area, vz is the velocity in axial
direction averaged over the cross-sectional area, ρ is blood fluid density, a =

√

A/π is the
radius and τw is the wall shear stress. Additionally, gz = g eg · ez is the contribution of
the gravitational acceleration in the axial direction, g is the magnitude of the gravitational
acceleration on earth, eg is the unit vector in the direction of gravity and ez is the unit
vector in axial direction.
To obtain an estimation of the wall shear stress τw and the advection term ∂Av2z

∂z the ap-
proximate velocity profile is used (see Bessems et al. [2007] for more details). Here, the
pressure gradient and the gravitational forces are assumed to be in balance with viscous
forces in the boundary layer close to the vessel wall. In the central core inertia forces are
assumed to be in balance with the pressure gradient and the gravitational forces. Finally,
a constitutive law relating cross-sectional area and pressure, is defined for both arteries
and veins.
As the arterial cross-sectional area variations during the cardiac cycle are small under
normal conditions, the mechanical characteristics of the arterial wall are modeled with
the following linear A, p relation

A = Aref,A + C(ptr − pref,A), (3)

where Aref,A is the reference cross-sectional area at reference pressure pref,A and C the
linearized compliance per unit length at reference pressure pref,A. The compliance is de-
termined using thin-walled-cylinder theory for a linear isotropic elastic material:

C =
∂A

∂ptr

∣

∣

∣

∣

∣

ptr=pref,A
=

2π(1− ν2)r3ref,A

hE
, (4)

where ν is the Poisson’s ratio, rref,A =
√

Aref,A/π is the reference radius, h ≈ rref,A/10 is
the vessel wall-thickness [Westerhof et al., 1969] and E is the Young’s modulus.
Because veins are prone to collapse under low transmural pressures due to e.g. increas-
ing extravascular pressure during muscle contraction or gravitational stress, a nonlinear
pressure area relationship needs to be considered. Therefore, Shapiro [1977] derived a
tube law capturing the venous collapse with an p,A-relation. In order to solve the full
system of equations for pressure a fit of the tube law is used as derived in Keijsers et al.
[2015].

A = Aref,V

{

h(p∗)f+(p∗) + (1− h(p∗))f−(p∗)
)

}, (5)

where Aref,V is the reference cross-sectional area at zero transmural pressure, p∗ = ptr/Kp

is the dimensionless pressure and Kp is the bending stiffness. The functions f+ and f−

are fits of the positive and negative pressure part of the original tube law of Shapiro and
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Table 1: Geometrical parameters of the various 1D vessels [Müller and Toro, 2014] as de-
picted in Figure 3. The four perforating veins consist of a deep (PV#-D) and a superficial
(PV#-S) vein of which the parameters are noted separately.

Vessel Numbering (Figure 3) Radius [mm] Length [cm]

artery AR1 2.5 34

deep vein DV1 1.5 2

DV2 1.5 26

DV3 1.5 2

superficial vein SV1 3.5 2

SV2 1.5 2

SV3 1.5 26

SV4 1.5 2

SV5 3.5 2

perforating vein PV#-S 0.5 1.5

PV#-D 0.5 1.5

h(p∗) is a scaling function.

f+(p∗) =
A+

0

π

(

tan−1

(

p∗ − p+a
p+b

)

+
π

2

)

, (6)

f−(p∗) = B +
A−

0

π

(

tan−1

(

p∗ − p−a
p−b

)

+
π

2

)

, (7)

and h(p∗) =
1

π

(

tan−1

(

γp∗

π

)

+
π

2

)

, (8)

where B, A−

0 , p−a , p−b , A+
0 , p+a , p+b and γ are fitting constants determining the shape of

the A,p-relation. Venous compliance is calculated as the derivative of cross-sectional area
with respect to the transmural pressure.

2.1.2 0D Venous valves

The pressure-flow relation of a venous valve is included using the versatile valve model
of Mynard et al. [2012]. As the flow through venous valves is much lower compared to
heart valves, the linear viscous forces are included, as in Keijsers et al. [2016].

∆p = Rq +Bq|q|+ L
∂q

∂t
, (9)

where the Poiseuille resistance R, Bernouilli resistance B and the inertance L are defined
by

R =
8πηleff

A2
eff

, B =
ρ

2A2
eff

and L =
ρleff

Aeff
, (10)

where Aeff is the effective cross-sectional area, η is the dynamic blood viscosity, and leff =
βl · rref,V is the effective valve length defined as a multiple βl of the venous reference
radius rref,V =

√

Aref,V/π [Keijsers et al., 2016]. To include valve opening and closing, the
effective cross-sectional area is defined to be a function of valve state ζ via the following
relation

Aeff = (Aeff,max −Aeff,min) ζ +Aeff,min, (11)

where Aeff,min and Aeff,max are the minimal and maximal effective cross-sectional area
respectively. Here, maximal effective cross-sectional area Aeff,max = βA · Aref,V is defined
as a multiple βA of the reference cross-sectional area Aref,V of the connecting vein. The
valve state is defined to vary between zero and one (fully closed: ζ = 0, fully open:
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ζ = 1). Its value is related via two differential equations for valve opening and closing
respectively:

dζ

dt
=

{

(1− ζ)Kvo (∆p− dpvalve,0) , if ∆p > dpvalve,0

ζKvc (∆p− dpvalve,0) , if ∆p < dpvalve,0

, (12)

where Kvo and Kvc are coefficients determining the opening and closing speed of the
valve. Furthermore, dpvalve,0 is the pressure drop above and below which opening and
closing is initiated.

2.1.3 0D micro-circulation

To account for the pressure drop over the micro-circulation (in the current study defined
to include the arterioles, capillaries and venules) and its storage capacity, the micro-
circulation model consists of both resistances and compliances. The micro-circulation
is split into an arteriolar and venular part, both consisting of two resistances Ri (i = a, v)
in series and a compliance Ci (i = a, v) connected to the extravascular pressure, for which
the following relations hold (Figure 3A).

∆p = Riq and
∂ptr
∂t

=
1

Ci
q. (13)

Under baseline conditions the total resistance of the two parts is determined by the pres-
sure drop over the micro-circulation ∆pbl and the time-avaraged baseline flow qbl accord-
ing to

Rtot =
∆pbl

qbl
= Ra +Rv, (14)

whereRv is chosen such that the pressure drop over the venules is 400 Pa [Boron and Boulpaep,
2003]. Furthermore the baseline total compliance Ctot is derived from a typical time-
constant τRC as in a classical single windkessel micro-circulation [Keijsers et al., 2015].
The compliance of the venules is assumed to be much larger than arteriolar compliance
[Boron and Boulpaep, 2003]. Therefore, the compliances are distributed as follows

Ca = 0.3 · Ctot and Cv = 0.7 · Ctot. (15)

The above equations for resistance and compliance relate to the baseline conditions.
However, for the arteriolar part of the micro-circulation the resistance and compliance
are regulated by vascular tone as described in the following subsection.

2.1.4 Regulation of vascular tone

Regulation of the vascular tone in muscular tissue is based on the following mechanisms
(Figure 3B):

• Myogenic regulation: protecting the capillaries against excessive pressures

• Metabolic regulation: matching the blood flow to the oxygen demand

• Baroreflex regulation: aiming to maintain the level of systemic pressure

The regulation model is based on the implementation of cerebral auto-regulation as de-
scribed by Spronck et al. [2012]. In this study, each regulation mechanisms is included in-
dividually and represented by a regulatory state xi. The myogenic regulatory state xmyo

is derived from the arteriolar wall tension T and has a time constant τmyo. The metabolic
regulatory state xmeta with time constant τmeta is modeled to depend on tissue CO2-level,

8



S
p

at
ia

l 
p

re
ss

u
re

 m
(z

) 
[−

]
Z−coordinate [m]

A

0 0.1 0.2 0.3

0

0.5

1

T
em

p
o

ra
l 

p
re

ss
u

re
 k

(t
) 

[−
]

Time [s]

B

0 2 4

0

0.5

1

Figure 4: Extravascular pressure of the deep veins is increased to simulate a muscle con-
traction. Plot A and B show the spatial m(z) and temporal k(t) course of extravascular
pressure as applied to the deep venous elements respectively (see Appendix A for the
full equations of m(z) and k(t)). The grey areas in the spatial plot indicate the location of
the venous valves. [Keijsers et al., 2015]

which is derived from the CO2-production and the blood flow. The latter two regulatory
mechanism are included as described by Spronck et al. [2012], but the metabolic mecha-
nism is adjusted to induce metabolic activation upon muscle contraction instead of cere-
bral activity, as included by Spronck et al. [2012]. Furthermore, tissue specific parameters
are updated to match muscle tissue. Finally, the baroreflex regulatory state xbaro is based
on the carotid pressure, which is derived from the pressure at the heart level based on the
hydrostatic column. The baroreflex implementation is based on the model based on the
study of Ursino [1998]. The total regulatory state is calculated as the weighted sum of the
three mechanisms, each having a specific gain: Gmyo, Gmeta and Gbaro. The total regula-
tory state is translated to arteriolar wall tension, which is subsequently converted to the
arteriolar radius using Laplace’s law. Finally, the arteriolar radius is used to determine
the change in peripheral resistance and compliance. For completeness, the equations de-
scribing the activation of the three regulation mechanisms and how they affect a change
in resistance and compliance are given in Appendix B.

2.1.5 Boundary conditions

Both the inlet of the 1D arterial and the outlet of the 1D venous part are connected to
a three element windkessel model representing the proximal vasculature. Each wind-
kessel element consists of two resistances in series and a compliance connected to the
extravascular pressure p0 (Equation (13)). The total windkessel resistance is the sum of
the Poiseuille resistances of the proximal vasculature, based on the geometrical param-
eters of the arterial and venous tree published by Müller and Toro [2014]. Similarly, the
inlet and outlet compliance is the sum of the compliances of the proximal vasculature
based on Equation (4) and the derivative of Equation (5) times the length respectively.
At the inlet and outlet the pressure is set to a time-averaged pinlet and poutlet respectively.
When a head up tilt position is simulated the hydrostatic column up to the heart is added
to both the inlet and outlet pressure.
The model formulation described above is completed for the current application by defin-
ing the form of the muscle contraction.

2.1.6 Simulating muscle contraction

The effect of a muscle contraction is included in the current model both in a mechanical
and a metabolic manner. The mechanical effect on the deep veins is expected to be large
due to their location, embedded in the muscle tissue, and the low intravascular pres-
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sure. Similar to Keijsers et al. [2015], a muscle contraction is simulated by an increase in
extravascular pressure included in the equation for mass balance and the venous consti-
tutive law (Equation (1) and (5) respectively). The extravascular pressure is defined by
the following relation

pex = pex,max · k(t) ·m(z), (16)

where pex,max is the maximal extravascular pressure, and k(t) and m(z) are the tempo-
ral and spatial course of extravascular pressure, respectively. The latter can be observed
in Figure 4, and the full equations are give in Appendix A. The influence of the mus-
cle contraction on the superficial veins is assumed to be negligible due to their location
outside the muscle tissue. Furthermore, due to the high arterial pressure the influence
of the muscle contraction on the arterial cross-sectional area is also assumed to be neg-
ligible. Finally, the mechanical influence on the micro-circulation is also assumed to be
negligible due to its viscous character (in Equation (13) and (24)) [Gray et al., 1967]. Al-
though contradicted in some studies [Tschakovsky et al., 1996], few experimental studies
hypothesize the decrease in transmural pressure could induce myogenic vasodilation
[Tschakovsky and Sheriff, 2004], but implementation of this theory requires more accu-
rate knowledge of the magnitude of extravascular pressure and is therefore neglected.
The increase in metabolism due to a muscle contraction is included in the metabolic
mechanism of the regulation of vascular tone via muscle activation Amc (Equation (37)).
Because the flow increase due to a muscle contraction increases linearly with increas-
ing contraction intensity [Tschakovsky et al., 2004], muscle activation is defined to follow
the contraction pattern defined by the extravascular pressure and reaches a maximum of
Amc,max corresponding to the percentage of maximum electromyogram (EMG) activity:

Amc = Amc,max · k(t). (17)

2.1.7 Numerical implementation

The model equations were implemented in the finite element package SEPRAN (Inge-
nieursbureau SEPRA, Leidschendam, the Netherlands) using the computational method
described by Kroon et al. [2012]. Time discretization was included based on an implicit
Euler scheme with a time step of ∆t = 1.0 ms and spatial discretization based on the
trapezium rule with element size ∆z = 1.0 cm for arterial and superficial venous seg-
ments, and ∆z = 0.5 cm for the deep venous segments, which is necessary to capture the
collapse accurately. The model parameters that are not included in the sensitivity analy-
sis are summarized in Table 2. Pre- and post-processing was performed using MATLAB
R2012b (MathWorks, Natick, MA, USA).

2.2 Physiological data

Pressure and flow measurements were performed on twelve healthy subjects (29 ± 3
years, six male, six female, BMI: 23.4 ± 2.3 kg m−2) during muscle contraction in both
the supine and 70◦ head up tilt positions. These experiments were approved by the ethi-
cal committee of the Northern Rhine Medical Association, Germany (Ethikkommission der
Ärztekammer Nordrhein). Subjects were asked to perform a contraction of the left calf mus-
cle corresponding to 30% of maximal electromyography (EMG) activity (Ambu Blue Sen-
sor N, Ballerup, Denmark). Visual feedback of the relative muscle activity was provided
to enable the subjects to maintain muscle activity at the prescribed level. During the
experiment blood pressure waveforms were measured at the finger using photoplethys-
mography (Finometer Midi, AD instruments), while maintaining the wrist at heart level.
Furthermore, femoral artery blood flow was assessed using a Mylab 25 ultrasound scan-
ner (Esaote, the Netherlands) equipped with a linear array probe and having a center
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Table 2: Constant model parameters

Symbol Value Unit Description
ρ 1050 kg m−3 Blood mass density [Kenner, 1989]
g 9.81 m s−1 Gravitational acceleration

pref,A 13 kPa Arterial reference pressure [Bessems et al., 2007]
ν 0.5 - Poisson’s ratio [Westerhof et al., 1969]
E 1.6 MPa Arterial Young’s modulus [Westerhof et al., 1969]
Kp 425 Pa Bending stiffness [Müller and Toro, 2014]
A+

0 1.37 - Fitting constant [Keijsers et al., 2015]
p+a -2.53 - Fitting constant [Keijsers et al., 2015]
p+b 3.02 - Fitting constant [Keijsers et al., 2015]
B 0.108 - Fitting constant [Keijsers et al., 2015]
A−

0 1.28 - Fitting constant [Keijsers et al., 2015]
p−a -1.49 - Fitting constant [Keijsers et al., 2015]
p−b 2.03 - Fitting constant [Keijsers et al., 2015]
γ 4 - Fitting constant [Keijsers et al., 2015]
η 4.5 mPa s Dynamic blood viscosity [Letcher et al., 1981]
βl 1.0 - Effective valve length ratio [Keijsers et al., 2016]

Aeff,min 1.0 10
−20 m2 Minimal effective valve cross-sectional area

[Mynard et al., 2012]
βA 0.65 - Effective valve cross-sectional area ratio

[Keijsers et al., 2016]
Kvo 0.3 Pa−1s−1 Valve opening constant [Mynard et al., 2012]
Kvc 0.3 Pa−1s−1 Valve closing constant [Mynard et al., 2012]

dpvalve,0 0 Pa Valve opening and closing pressure drop
[Keijsers et al., 2016]

τRC 2.0 s Typical time constant for windkessel element
[Keijsers et al., 2016]

pex,max 20 kPa Maximal extravascular pressure [Keijsers et al.,
2016]

frequency of 10 MHz. The blood flow measurement were performed in pulsed-Doppler
mode. Blood flow was estimated from mean blood flow velocity and vessel diameter
using the Poiseuille formulation [Leguy et al., 2009].
To use the experimental data for validation of the simulated muscle flow, the in vivo
flow decay after muscle contraction (10 s < t < 50 s) was captured using the following
exponential decay relation and a non-linear least squares fit.

qfit(t) = q0 + (qmax − q0)e
−(t−tmax)/τ , (18)

where tmax = 10 s, q0 is the baseline flow, qmax is the flow at t = tmax and τ is the time
constant of the flow decay. Measurements are excluded from postprocessing when (1)
average arterial pressure is below 50 mmHg for a whole experiment, (2) femoral artery
flow was only measured successful during part of the experiment or (3) the quality of the
flow fit was too low (R2

adj < 0.6). An average of the pressure and femoral artery flow was

derived in the supine and head up tilt positions using the following relation

x(t) =
1

Nsubj

Nsubj
∑

isubj

1

NMC,isubj

NMC,isubj
∑

iMC

xisubj,iMC
(t), (19)

where Nsubj is the number of subjects, NMC,isubj
is the number of muscle contractions per-

formed by subject isubj and xisubj,iMC
(t) is the waveform obtained during muscle contrac-

tion iMC of subject isubj. The corresponding intersubject standard deviation was derived
using the following relation:

σ2(t) =
1

Nsubj − 1

Nsubj
∑

isubj

(

xisubj
− x(t)

)2
, (20)
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Figure 5: Heartbeat average of A the finger pressure and B femoral artery flow response
to a muscle contraction in supine (red) and head up tilt (blue) position. The gray area
indicates the 4-s muscle contraction (MC). Furthermore, the fit (−−) to the flow response
is included, where its uncertainty is indicated with the shaded area around (light gray
indicates the overlap). The dotted line (··; 0 < t < 10 s) indicates the uncertain part of
the flow curve due to measurement difficulties. Fitting parameters and their standard
deviation can be found in Table 3.

Table 3: Fitting parameters of the flow decay after muscle contraction using the following
equation: qfit(t) = q0 + (qmax − q0)e

−(t−tmax)/τ

q0 [mL/s] qmax [mL/s] τ [s]

Supine 2.8± 1.5 12.1 ± 5.6 8.4± 1.6

Head up tilt 1.2± 1.1 9.2± 5.0 6.4± 2.2

where xisubj
(t) is the mean response of subject isubj. The resulting time averaged pressure

and femoral artery flow are shown in Figure 5A and B respectively, with the supine mea-
surement in red and the head up tilt in blue. The area around the fitted curve represents
one standard deviation from the average fit.

2.3 Simulations and analysis

The first aim is to match the simulated flow response during a supine muscle contrac-
tion to the fit of the measured data (Figure 5B), to gain insight into the importance of the
various regulation mechanisms. An explorative local analysis including variation of xinit,
Tmax,0, Gmeta and Gmyo, identified Gmeta and Gmyo as the major determinants. Therefore,
Gmeta and Gmyo were varied (−25 < Gmeta < −15; dGmeta = 1 and 0.5 < Gmyo < 1.5;
dGmyo = 0.25) during the fitting procedure, while keeping all other regulation param-
eters at their baseline values (55 model evaluations). The best three sets of gains are
derived based on the least square of the difference between the simulated flow response
and the in vivo fit.

ǫ =

∫ 50 s

t=10 s

√

(qsim − qfit)2dt. (21)

These parameters are then used to repeat the simulation in the head up tilt position.
Apart from obtaining a nice fit, the second aim of the first analysis is to determine the
relative importance of the regulation mechanisms. Because the regulation mechanisms
are included individually their relative importance can be analyzed directly.
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variance over the various input parameter and their interactions. Si = main sensitivity
index, Sij = second order effect, Sijk = third order effect. B Output of interest visualized
in a plot of the flow response to a muscle contraction in supine and tilted position.

In the above mentioned analysis a constant pressure is used as an input for the baroreflex
and the inlet boundary condition. However, in vivo the systemic pressure shows a small
increase during and a decrease after muscle contraction (Figure 5). In a second analysis
the influence of this pressure fluctuation via the systemic pressure and the baroreflex reg-
ulation on the flow response was investigated. For this the best parameter set, derived in
the first analysis, was used to repeat the supine and tilted simulations with the following
adaptations: (1) in vivo pressure is used as an input for the baroreflex and pinlet remains
unchanged compared to the previous simulations; (2) in vivo pressure is used as an input
for the baroreflex as well as for pinlet.

2.4 Sensitivity analysis

To investigate the importance of all regulation parameters on the flow response to a mus-
cle contraction and to validate the choice to derive the fit based on only Gmeta and Gmyo

as described in the previous section, a global sensitivity analysis was performed. Si-
multaneous variation of the input parameters within their uncertainty range enables the
derivation of the variance in the simulated flow response. Each fraction of this output
variance can be allocated to individual parameters or interaction between two or more
input parameters (Figure 6A). The influence of an individual input parameter is captured
by the main sensitivity index Si, which can be interpreted as the expected reduction in
output variance if the true value would have been known. The contribution of interac-
tion between two or more parameters is captured by the higher order effects (Sij, Sijk, ...)
[Eck et al., 2016].

2.4.1 Output of interest

The following parameters, describing the flow response to a muscle contraction in both
supine and tilted position, are used as outputs of interest:

• qsup,max: Flow in supine position 10 s after the onset of muscle contraction.

• ǫsup =
∫ 50 s
t=10 s

√

(qsim,sup − qfit,sup)2: Root mean square of the difference between the

simulation and the fit of the flow response to a muscle contraction in the supine
position.

• qhut,bl: Baseline flow in the tilted position.

• qhut,max: Flow in the tilted position 10 s after the onset of muscle contraction.
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• ǫhut =
∫ 50 s
t=10 s

√

(qsim,hut − qfit,hut)2: Root mean square of the difference between the
simulation and the fit of the flow response to a muscle contraction in the tilted
position.

2.4.2 Input parameters

The sensitivity analysis was performed while varying all input parameters of the regula-
tion model. A description of these parameters can be found in Table 4, along with their
baseline value and the range used for the sensitivity analysis. The uncertainty ranges are
based on literature values or values resulting in a physiological flow response determined
by a local sensitivity analysis (results not shown). From this local sensitivity analysis, it
was concluded thatrm (the radius at which maximal tension can be reached) and rt (the
constant defining the shape of the maximal tension curve) should be fixed, as even small
variation resulted in non-physiological responses or decreased model stability.

Table 4: Model input parameters included in the sensitivity analysis. Uncertainty range
is given in percentages, unless indicated with superscript ABS when the absolute range is
given. The uncertainty range is based on literature values and is adapted when the local
sensitivity analysis indicated unphysiological outputs or decreasing in model stability.

Symbol Value Unit Description Range

σe,0 1.49 kPa Parameter for elastic tension model
(Laplace) [Ursino and Giammarco,
1991]

-10,7.5

Kσ 4.5 - Parameter in tension model
(Laplace) [Ursino and Giammarco,
1991]

-10,10

ra,0 75.0 µ m Arteriolar radius in un-
stressed condition (Laplace)
[Ursino and Giammarco, 1991]

-10,10

σc 5.51 kPa Stress contribution of col-
lagen fibers (Laplace)
[Ursino and Giammarco, 1991]

-10,10

rha,0 0.33 - Unstressed arteriolar wall thick-
ness relative to radius (Laplace)
[Nordborg et al., 1985]

-10,10

ηa 6.37 kPa s Arteriolar wall viscosity (Laplace)
[Ursino and Giammarco, 1991]

-10,10

nm 1.75 - Parameter for smooth mus-
cle tension model (Laplace)
[Ursino and Giammarco, 1991,
Ursino and Lodi, 1998]

-10,7.5

Tmax,0 5.0 Pa Smooth muscle tension in
basal condition (Laplace)
[Ursino and Giammarco, 1991,
Ursino and Lodi, 1998]

4.0,5.5ABS

xinit −0.5 - Offset regulation state (Laplace) -0.6,-0.45ABS

pn 13.3 kPa Reference pressure barore-
flex model (Baroreflex)
[Boron and Boulpaep, 2003]

-10,10

fab,min 2.52 s−1 Minimal afferent firing rate
(Baroreflex) [Ursino, 1998,
Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,30

fab,max 47.78 s−1 Maximal afferent firing rate
(Baroreflex) [Ursino, 1998,
Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,20
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Table 4 – continued from previous page

Symbol Value Unit Description Range

kdp 1.5676 kPa Parameter defining slope of affer-
ent firing rate (Baroreflex) [Ursino,
1998, Ursino and Magosso, 2000]

-20,30

fsp,∞ 2.1 s−1 Sympathetic firing rate at
infinite afferent firing rate
(Baroreflex) [Ursino, 1998,
Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,30

fsp,0 16.11 s−1 Sympathetic firing rate at zero affer-
ent firing rate (Baroreflex) [Ursino,
1998, Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,30

kes 0.0675 s Parameter defining the shape
of the sympathetic firing rate
(Baroreflex) [Ursino, 1998,
Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,20

fsp,max 60 s−1 Maximal sympathetic
firing rate (Baroreflex)
[Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,30

GR 0.33 MPa s m−3 Gain baroreflex (Baroreflex)
[Ursino and Magosso, 2000]

-30,15

DR 2.0 s Pure time delay sympathetic
firing rate (Baroreflex) [Ursino,
1998, Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,30

fes,min 2.66 s−1 Minimal sympathetic firing rate
affecting resistance (Baroreflex)
[Ursino, 1998, Ursino and Magosso,
2000]

-30,20

τR 6.0 s Time constant low pass filter
baroreflex (Baroreflex) [Ursino,
1998, Ursino and Magosso, 2000,
van der Hout-van der Jagt et al.,
2013]

-30,30

V 300 mL Volume estimation of per-
fused muscle tissue (Metabolic)
[Elliott et al., 1997]

-10,10

Ca,CO2
20.65 mol m−3 Arterial CO2 concentration

(Metabolic)
20.0,20.9ABS

fm 75 - Ratio of metabolism in rest and
under maximal activity (Metabolic)
[Boron and Boulpaep, 2003]

75,85ABS

Amc,max 0.3 − Percentage of maximum EMG
reached during muscle contraction
(Metabolic) [Tschakovsky et al.,
2004]

-30,15

ρm 1055 kg m−3 Muscle density (Metabolic)
[Segal et al., 1986]

1040,1070ABS

MCO2 ,0,m 12.9 µmol s−1 kg−1 Basal metabolic CO2 production
per kg muscle tissue (Metabolic)
[Boron and Boulpaep, 2003]

9.0,13.5ABS

αt,v 0.49 - Fitting constant venous CO2 con-
centration (Metabolic) [Irving et al.,
1932]

0.43,0.55ABS
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Table 4 – continued from previous page

Symbol Value Unit Description Range

βt,v 11.5 mol m−3 Fitting constant venous CO2 con-
centration (Metabolic) [Irving et al.,
1932]

9.7,13.3ABS

Cv,CO2 ,0 22.34 mol m−3 Venous CO2 concentration at rest
(Metabolic) [Geers and Gros, 2000]

22.1,23.0ABS

Gmeta −15 - Gain for metabolic mechanism
(Metabolic)

-25,-10ABS

τmeta 15.0 s Time-constant metabolic regulation
(Metabolic) [Ursino and Lodi, 1998]

12,18ABS

Gmyo 0.75 - Gain for myogenic mechanism
(Myogenic)

0.1,5ABS

τmeta 7.0 s Time-constant myogenic regulation
(Myogenic) [Ursino and Lodi, 1998]

4,9ABS

2.4.3 Morris screening and general polynomial chaos expansion

To derive the output variance and the sensitivity indices in a computationally efficient
manner, the two-step approach described by Donders et al. [2015] was used. In the first
step non-important model parameters are identified by using a Morris screening. In the
second step the generalized polynomial chaos expansion method is applied to the re-
duced input space, resulting in a metamodel from which the sensitivity indices can be
calculated straightforwardly [Huberts et al., 2014]. The metamodel consists of orthogonal
polynomials dependent on the model parameters and with output-specific coefficients,
which are derived by a least-square regression of the metamodel and N simulations. The
accuracy of the metamodel is determined by the quality of the regression, for which a
sufficient number of model evaluations is needed. In the current study a metamodel con-
taining orthogonal polynomials up to the third order is derived based on 13485 model
evaluations (CPU ≈ 63 h, using 25 cores). The number of model evaluations is based on:
N =

(z+k
z

)

· q, where z = 3 is the order of the metamodel, k = 28 is the number of input
parameters of the reduced input space and q is set to 3 to have sufficient simulations to
obtain a good regression.

2.4.4 Post sensitivity analysis

To investigate how well the important parameters identified in the sensitivity analysis
can fit the in vivo response two additional sets of simulations were performed. First,
all parameters with ST > 0.05 for at least one output of interest were varied randomly
over k ∗ 500 simulations, with k the number of parameters. Second, the same process
was carried out for all parameters with ST > 0.10. For both sets of simulations it was
investigated which simulations were in good agreement with the in vivo fit, i.e. within the
standard deviation of the in vivo fit. A second subset is defined to include all simulation
within half the standard deviation. Finally, it is analysed how the input parameters of
these subsets of simulations were distributed over the input space.

3 Results

This section first reports how the activation of the regulation mechanisms influences the
agreement between the flow response and the in vivo data. Secondly, the influence of
systemic pressure on the regulation is reported. Finally, the results of the sensitivity
analysis are presented.
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Figure 7: Regulatory response to muscle contraction in supine and tilted position, de-
picted in the left and right column respectively. In plot A and B the regulation state of
the various mechanisms is shown over time: baroreflex (−−), metabolic (−·), myogenic
(··) regulation and the sum of the three (−). Here, the negative state corresponds to va-
sodilation and the positive state to vasoconstriction. The resulting arterial flow is shown
in plot C and D together with the fit to the in vivo response (−·). The three simulations
best matching the in vivo response are depicted in color. The remaining simulations (as
described in Section 2.3) are visualized together in the gray area. To show the general
patterns some individual responses are depicted in dark gray.

3.1 Baseline simulations

The regulatory response to a muscle contraction in the supine position was simulated
while varying the gain of the myogenic and metabolic mechanism. The variation in reg-
ulatory responses and arterial flow are indicated by the gray region either side of the
curve in Figure 7A and C respectively. The period of muscle contraction (MC) is indi-
cated by the shaded region (0 < t < 4 s). The arterial flow responses which best match
the in vivo measurement (−· plus the standard deviation indicated by the blue area) are
visualised in color. These parameters values are used to repeat the simulation in the tilted
position, for which the results are shown in Figure 7B and D. For the best flow results the
regulatory state of the baroreflex (−−), metabolic (−·) and myogenic (··) mechanism are
also shown in color.
Before the onset of muscle contraction in the supine position all the regulation states are
equal to zero. After muscle contraction (t > 4 s), the metabolic mechanism induces a
strong vasodilation, whereas the myogenic mechanism and baroreflex show a mild and
small vasoconstriction respectively (Figure 7A). Arterial flow shows an increase due to
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the muscle contraction and a gradual decay starting at t ≈ 10 s, which closely matches
the in vivo response (Figure 7C). Most of the remaining flow responses show waveforms
that are parallel to each other, although some simulations cross due to a difference in
decay (Figure 7C).
In the tilted position, the baroreflex and to a lesser extent the myogenic mechanisms
induce a vasoconstriction at baseline (−10 < t < 0 s). After muscle contraction (t > 4 s),
the metabolic response induces a vasodilation, slightly inhibited by the vasoconstrictive
response of the myogenic mechanism and baroreflex (Figure 7B). Finally, arterial flow
increases after muscle contraction and decreases back to baseline, matching the in vivo
response (Figure 7D).

3.2 Influence of systemic pressure

The influence of the fluctuation in systemic pressure on the flow response to a muscle
contraction is investigated. For this, the best fit found in the previous section is compared
to a simulation with the pressure fluctuations included only in terms of the baroreflex
regulation and a simulation with the pressure fluctuation applied at the inlet as well as
the baroreflex. The regulatory (top) and flow (bottom) response to a muscle contraction
in the supine (left) and tilted (right) position are shown in Figure 8.
In the supine position the three simulations all start at the same baseline and show a
similar decay for t > 10 s (Figure 8C). Peak flow (5 < t < 10 s) is lower once the pressure
fluctuation is applied via baroreflex regulation (green line). In the case where the pressure
fluctuation is also applied as an inlet boundary condition (orange line) a fast decrease is
observed shortly after muscle contraction followed by a plateau. In the tilted position
all three simulations start at the same baseline (Figure 8D). The flow decay for t > 10 s
is faster for both simulations with the in vivo pressure applied compared to the original
simulation, but remain close to the fit of the in vivo response (dashed dark blue line).
Furthermore, peak flow is higher and is reached sooner following muscle contraction if
the in vivo pressure is used.

3.3 Sensitivity analysis

3.3.1 Morris screening

From the Morris screening the following parameters were found to be unimportant: pa-
rameter for smooth muscle tension model nm, minimal afferent firing rate (baroreflex)
fab,min, parameter defining shape of sympathetic firing rate (baroreflex) kes, pure time de-
lay of sympathetic firing rate (baroreflex) DR, percentage of maximum EMG Amuscle,max

and basal metabolic CO2-production MCO2,0,m. Excluding these six parameters from the
polynomial chaos expansion reduces the required number of simulations from 23310 to
13485.

3.3.2 Polynomial chaos expansion

The quality of the derived metamodels, captured by the descriptive error, is shown in
Table 5. This gives the part of the variance that could not be captured by the metamodel.
For the ǫsup and ǫhut the descriptive error is relatively large; 0.14 and 0.10 respectively.
The total sensitivity indices for all outputs of interest are shown in Table 6. The input
parameters are arranged in order of importance and only contributions greater than 1%
are shown. The myogenic gain Gmyo is the most important parameter for all outputs of
interest. Furthermore, the metabolic gain Gmeta, the initial regulation state xinit and the
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Figure 8: Influence of variation in systemic pressure on the regulatory response to mus-
cle contraction in supine and tilted position (left and right column respectively). In plot
A and B the regulation state of the various mechanisms is shown over time: baroreflex
(−−), metabolic (··), myogenic (−·) regulation and the sum of the three (−). Here, the
negative state corresponds to vasodilation and the positive state to vasoconstriction. The
resulting arterial flow is shown in plot C and D together with the fit to the in vivo response
(−·). The various colors represent the original simulation (red line), in vivo pressure ap-
plied at the baroreflex (green line) and in vivo pressure applied to both the baroreflex and
the inlet boundary condition (orange line).

Table 5: Quality of the metamodel for each output of interest: qmax,sup, ǫsup, qbl,hut, qmax,hut

and ǫhut. The error measure 1−R2 can be interpreted as the residual variance that could
not be captured by the metamodel.

qmax,sup ǫsup qbl,hut qmax,hut ǫhut

1−R2 0.04 0.14 0.01 0.06 0.10
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Table 6: Total sensitivity indices of all the outputs of interest: qmax,sup, ǫsup, qbl,hut, qmax,hut

and ǫhut. The input parameters are arranged in order of importance and only contribu-
tions starting at 1% are shown.

qmax,sup ǫsup qbl,hut qmax,hut ǫhut

Gmyo 0.79 0.72 0.55 0.64 0.47
Gmeta 0.08 0.17 0.18 0.30
xinit 0.02 0.38 0.04 0.11
τmeta 0.16 0.02 0.09

Cv,CO2 ,0 0.02 0.06 0.05 0.09
Ca,CO2

0.02 0.06 0.05 0.09
r0 0.06 0.06 0.02 0.01 0.02

Tmax,0 0.03 0.03 0.01 0.03 0.05
τmyo 0.08 0.03

fab,max 0.01 0.02 0.02 0.05
fm 0.02 0.05 0.01 0.02
GR 0.02 0.02 0.02 0.04
pn 0.01 0.02 0.04 0.01 0.02
kdp 0.01 0.01 0.02 0.03
Kσ 0.03 0.03

fes,min 0.02 0.01 0.03
fsp,∞ 0.01 0.01 0.03
fsp,0 0.02 0.01
σe0 0.02
rh0 0.02
V 0.02
αtv 0.02
σc 0.01
ηa 0.01

fsp,max 0.01
τR 0.01
ρm 0.01
βtv 0.01

metabolic time constant τmeta all contribute more than 10% to the variance for at least one
output of interest. This is in line with the first local analysis where a fit was derived based
on Gmyo and Gmeta. Four other parameters have a contribution larger than 5%: Cv,CO2,0,
Ca,CO2

, r0 and τmyo. All other parameters have a smaller contribution, but they do all
contribute to the variance of the output.
The main sensitivity indices and higher order interactions are shown in Figure 9, where
the main sensitivity indices Si are shown as ellipsoids, the second order interactions are
indicated by an arrow and the third order interactions by a shaded area. The myogenic
gain contributes most to the output variance; it has the highest main sensitivity index
for all outputs of interest and is present in all of the main interactions. Furthermore, the
metabolic gain Gmeta, the initial regulation state xinit and the metabolic time constant τmeta

all have a main sensitivity index and/or interaction larger than 0.05 for at least one output
of interest. The sums of the sensitivity indices (bottom of each subfigure) show that most
of the variance is captured by individual contributions (Si). However, for ǫsup and ǫhut

a significant contribution to the variance comes from interactions between parameters.
The contribution of the parameters varies for each regulation mechanism. The influence
of the metabolic parameters is mainly observed in the maximum flow and ǫ outputs.
The baroreflex parameters, on the other hand, are of more importance for the variance in
baseline flow in the tilted position and the ǫ in tilted position. The parameters describing
the myogenic mechanism and Laplace law are present in all outputs of interest.
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Figure 9: Results of the sensitivity analysis for all the outputs of interest: B qmax,sup, C

rmsqsup, D qbl,hut, E qmax,hut and F rmsqhut. The main sensitivity index is visualised in a
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Figure 10: Post sensitivity analysis. The flow response of additional simulations varying
the input parameters with ST > 0.05 (left column) and ST > 0.10 (right column) in
both supine (AB) and tilted position (CD). For both sets the good simulations (present
within one standard deviation and half the standard deviation) are presented in dark
gray and the best 10 simulations in color. In the bottom plots (EF) the distribution of the
corresponding input parameter is shown.

3.3.3 Post sensitivity analysis

The important parameters identified though the sensitivity analysis were used to perform
two sets of simulations: (1) varying all parameters with ST > 0.05 (k = 8) and (2) varying
all parameters with ST > 0.10 (k = 4). The flow response in both the supine and tilted
positions together with the distribution of the input parameters is shown in Figure 10.
Both sets of simulations are divided into four subsets: (1) the simulations that converged
(light gray) (2) the simulations that had a flow response within the standard deviation
of the in vivo fit (middle gray) (3) the simulation that had a flow response within half a
standard deviation (dark gray) and (4) the 10 simulations which best matched the mean
in vivo response (colors).
For the first set of 4000 simulations (ST > 0.05) 1610 of the 3880 (41%) converged simu-
lations had a flow response within one standard deviation of the in vivo response (mid
gray in Figure 10AC). Taking only half the standard deviation into account only 385 (10%)
simulations remained (dark gray). In Figure 10E it can be observed that all values of the
input parameters can result in a flow response within the in vivo uncertainty, because the
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light gray area covers the whole input space. However, some combinations never occur;
e.g. Gmyo and Gmeta never have their maximum value simultaneously. When considering
the simulations within half a standard deviation, a decrease in the input range of Gmyo is
observed (Figure 10E). The ten best simulations closely match the mean in vivo response
in both positions (Figure 10AC). The distribution of the input parameters is more spread
over the input domain once the importance of the parameter decreases (parameter im-
portance decreases from left to right). Whereas the most important parameter Gmyo has
relative values between 0.10 and 0.27, values of the less important parameters, Cv,CO2,0,
Ca,CO2,0 and τmyo, cover the full input domain.
In the second set of 2000 simulations (ST > 0.10) 1104 out of 1961 (56%) converged simu-
lations showed a flow response within the in vivo uncertainty (mid gray in Figure 10BD).
Considering only half a standard deviation results in only 277 (14%) simulations. Similar
to the larger set of simulations, the input parameters of the good simulations (within one
standard deviation) had values within their whole uncertainty range (mid gray Figure
10F). Again, not all combinations were present, especially at the lower and upper lim-
its of the domains. For the subset within half a standard deviation a decrease in input
range of Gmyo is observed as for the first set of simulations. Although the value of ǫsup

and ǫhut slightly increased (same order of magnitude), the 10 best simulations still closely
matched the in vivo fit. However, now the values of Gmeta show a stronger correlation
with the values of Gmyo, which is in line with the high values found in the sensitivity
analysis for the interaction between Gmyo and Gmeta. Furthermore, the range of Gmeta has
shifted to the upper part of the domain, which indicates Gmeta could be fixed within this
range to obtain a good fit.

4 Discussion

The flow augmentation observed at the onset of exercise is hypothesized to be a result
of the muscle pump effect, the regulation of vascular tone or a combination of both. In
a previous study [Keijsers et al., 2015], we showed that the muscle pump effect alone
cannot induce the flow increase observed in vivo. Therefore, in the current study the im-
portance of the major mechanisms regulating blood flow during the different phases of a
muscle contraction has been investigated in both the supine and tilted position. To inves-
tigate these effects our arterio-venous 1D pulse wave propagation model [Keijsers et al.,
2015] has been extended with a regulation model accounting for baroreflex, metabolic
and myogenic regulation. Model parameters were either taken from literature or deter-
mined by fitting the simulated arterial flow response to the measured in vivo response to
a muscle contraction in the supine position. The model was then validated by comparing
simulated results with the in vivo measurements in the tilted position without changing
the parameter values obtained from the fit in the supine position. Furthermore, a sensi-
tivity analysis has been performed to quantify the importance of the input parameters in
the regulation model.
The model was able to capture the in vivo response in the supine position when only
optimizing the values of the myogenic and metabolic gain (Figure 7C). When the same
parameters were used to simulate a muscle contraction in the tilted position, again good
agreement was found (Figure 7D). The model response replicates two of the main fea-
tures of flow variation. Firstly, it matches the flow decay back to baseline after the va-
sodilation is initiated following muscle contraction. Secondly, the model captures the
decreased baseline flow in the tilted position observed in vivo. Examining the activation
of the various regulation mechanisms, the metabolic mechanism is the main vasodilator
after muscle contraction in both the supine and tilted position, which is in line with in vivo
studies [Nådland et al., 2009, Tschakovsky and Sheriff, 2004]. Furthermore, these simu-
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lations support the hypothesis of Nådland et al. [2009] that the decrease in baseline flow
in the tilted position is a result of the global baroreflex and local myogenic activation.
The latter is a result of the decreased carotid pressure and increased arteriolar pressure
respectively.
The influence of the variation in systemic pressure via the baroreflex mechanism and the
boundary conditions of the model is assessed and is most clearly observed within the
first 10 s after the onset of muscle contraction (Figure 8). The lack of reliable in vivo data
shortly after muscle contraction, does not allow any conclusions to be drawn on which
implementation is closest to physiology. The relatively small effect during the remaining
part of the response (t > 10s) can be explained by the fact that most of the variation
in systemic pressure is present shortly after muscle contraction. In the in vivo study of
Nådland et al. [2009] it was stated that the systemic pressure reduction was too small to
have an effect on femoral artery flow. However, based on the combination of the current
model results and in vivo measurements this statement can neither be confirmed nor re-
jected. Because the current study focusses on the flow decay after muscle contraction and
the baseline flow, which are both hardly affected, the systemic pressure variation is not
expected to have a large influence on the results.
Based on the sensitivity analysis, the spread in myogenic gain Gmyo is clearly the most im-
portant parameter (both individually and through interactions) of the regulation model
for variance in the simulated flow response to muscle contraction (Figure 9). The uncer-
tainty in metabolic gain Gmeta also has a significant contribution to the output variance.
The importance of both gains was expected, because they determine the magnitude of
vasodilation. Furthermore, it confirms the choice to vary Gmyo and Gmeta in the first anal-
ysis. The fact that Gmyo is more important than Gmeta may be a result of the sigmoid
function (Equation (30)) that is applied to the total regulation state. Even a small myo-
genic activation (i.e. vasoconstriction) will shift the total regulation towards the more
sensitive part of the regulation curve. A third important parameter is xinit, which is the
offset of the regulation state. A change in xinit can shift the regulatory response to a less or
more sensitive region of the regulation curve. This explains the large importance of xinit

for qbl,hut. The fourth important parameter is the metabolic time-constant τmeta, which is
expectedly important for both ǫ outputs. The fact that the metabolic parameters dom-
inate the ǫ output is logical, because the metabolic activation was concluded to be the
main vasodilator after muscle contraction. The baroreflex is almost inactive in the supine
position, which is confirmed by the fact that the baroreflex parameters are not present for
the supine outputs. Whilst the current model may seem complex, the large contribution
of the higher order terms (Sij and Sijk in Figure 9) indicates the need of all parameter in-
teractions in capturing the complex physiology of the system and thereby that the model
is not too complex.
In the post sensitivity analysis it was concluded that even when only varying the 4 most
important parameters (each contributing more than 10%), it was still possible to find sim-
ulations that strongly resemble the in vivo response. The small range found for Gmyo for
the 10 best fits confirms the importance of Gmyo. Furthermore, the interaction between
Gmyo and Gmeta was also confirmed, because high values of the two parameters never oc-
cur simultaneously. Examining the relation between Gmyo and Gmeta for the 10 best fits,
even suggests defining a relation between the two. The large spread of input parameters
observed for the subset of simulations within the measurement uncertainty, could indi-
cate that the whole input space is not covered. However, analysing the simulations with
a flow response within half a standard deviation indicates that if one could reduce the
measurement uncertainty, the input space of the most important parameter Gmyo could
be decreased.
To model the regulation of vascular tone a general approach is taken using the mean ar-
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teriolar radius as a measure for the regulatory state, because the explicit representation
of individual arterioles was not of interest in the current study. Metabolic regulation was
included based on a single metabolite, whereas many metabolites are known to act as
vasodilator and no single metabolite has been shown to account for the full vasodila-
tory response [Joyner and Casey, 2015]. However, the current implementation is in good
agreement with the in vivo response, which indicates that the tissue CO2-concentration
is a good surrogate for the general metabolic response. For a correct myogenic activa-
tion an accurate pressure level is necessary. As only the calf circulation is included in
the 1D part, the hydrostatic column applied to the pressure boundary condition might
be overestimated, especially on the venous side. This could be overcome if the proximal
vasculature would also be included in the 1D part of the model. However, as the current
model is able to accurately match the in vivo response, it is concluded that the current
model contains sufficient detail to capture the flow response after muscle contraction.
For validation of the developed model, in vivo ultrasound measurements were performed
capturing the flow response to a calf muscle contraction in both the supine and tilted po-
sitions (Figure 5B). Measured baseline flow in the supine position was observed to be
2.3 times higher than in the 70◦ head up tilt position (Table 3), which is in line with the
flow decrease observed by Nådland et al. [2009] in the 30◦ head up tilt position. Flow
changes observed following muscle contraction reach peak flow within 10 s followed by
a decay back to baseline within a further minute. This is in accordance with the changes
observed by Tschakovsky et al. [1996] following a single forearm contraction and those
observed by Wesche [1986] following quadriceps contraction. Although the general flow
response is in accordance with previous in vivo studies, the first 10 s after the onset of
muscle contraction are excluded from the validation, because this part of the measure-
ment is less accurate due to measurement difficulties during and shortly after muscle
contraction. Improved measurements are necessary for validation of the simulated flow
response in the first 10 s after muscle contraction, which could possible be obtained by
fixing the ultrasound probe to the subject.
The quality of the metamodel, captured in the coefficient of determination (1 − R2), was
observed to be lower for the outputs ǫsup and ǫhut. Because both outputs cover a time
range of 40 s, they include more information, which is more likely to be hard to capture
in a metamodel. Furthermore, these effects could be due to the fact that the importance of
the parameters excluded by the Morris screening was underestimated. However, the post
sensitivity analysis shows that even when varying only the four most important param-
eters the model is capable to capture the flow response to a muscle contraction. Another
more likely reason is that the variance that could not be captured by the metamodel is
a result of the high frequency vibrations present in some simulations, because the ǫ out-
puts are affected most by these instabilities. Further research is needed to improve model
stability. However, the values of the coefficient of determination are still acceptable and
are not expected to influence the results.
This study has described how the developed model can be used to study the regulation
of vascular tone in healthy individuals under muscle contraction. However, this model
has potential application in the study of chronic venous disease. Extending the current
model with regurgitating valves [Mynard et al., 2012] or valve prolapse [Pant et al., 2015],
would allow examination of valve dynamics and hemodynamics in the presence of dis-
ease. Furthermore, the model could be used to simulate the effect of multiple contrac-
tions, as studied by Simakov et al. [2013], or even exercise. For the latter application, an
extension of the model to the full circulation [Müller and Toro, 2014, Mynard and Smolich,
2015] is needed to account for venous return and baroreflex regulation of heart rate and
heart contractility. This would also improve the model with a better representation of the
full hydrostatic column.
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5 Conclusion

A 1D pulse wave propagation model was developed including the baroreflex, meta-
bolic and myogenic regulation, which enables the simulation of the flow response to a
muscle contraction. In addition to our previously presented model [Keijsers et al., 2015],
which considered only the mechanical effect of a muscle contraction (muscle pump), we
added a regulation model and now the simulated flow response accurately mimicks the
in vivo measurements in both the supine and tilted positions. This confirms the hypothe-
sis that regulation of peripheral resistance is an important mechanism inducing the flow
increase at the onset of exercise. From the activation of the regulatory mechanisms it is
concluded that (1) metabolic activation is the main vasodilator after muscle contraction
and (2) baroreflex and myogenic activation are responsible for the decrease in baseline
flow in the tilted position. The sensitivity analysis confirmed Gmyo as the most important
parameter.
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A Extravascular pressure

The temporal course of the extra vascular pressure is defined by
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(22)
where T0 = 0 s is the starting time of the compression, Tr = 1 s and Tf = 1 s are the
times for the extravascular pressure to rise and fall respectively and Tc = 2 s is the time
for the extravascular pressure to remain constant. The spatial course of the extravascular
pressure is defined by
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where l0 = 0.07 m and lend = 0.27 m are the coordinates below and above which no
extravascular pressure is applied and lr = 0.10 m and lf = 0.10 m are the lengths over
which the extravascular pressure rises and falls. The z-coordinate is defined to be zero at
the distal side of the vein and increases to z = 0.34 m at the proximal side.

B Regulation model

The regulation of vascular tone is based on three regulation mechanisms: myogenic reg-
ulation, metabolic regulation and the baroreflex. The activation of the different mecha-
nisms and how they result in a change in resistance and compliance is explained in detail
in the following sections.

B.1 Laplace’s law

The arteriolar wall tension Ttot is the parameter determining vascular tone and is related
to the arteriolar radius ra via the Laplace law [Fung, 1993].

Ttot = para − pex(ra + ha), (24)

where pa is the arteriolar pressure and ha is the arteriolar wall thickness. The total ten-
sion is divided into three components: Ttot = Te + Tv + Tm, where Te, Tv and Tm are
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the elastic, viscous and active smooth muscle tension respectively. The passive elas-
tic tension is based on experimental studies and is defined by the exponential function
[Ursino and Giammarco, 1991]

Te = haσe = ha

(

σe,0

(

e
Kσ·

ra−ra,0
ra,0 − 1

)

− σc

)

, (25)

where σe,0 and Kσ are parameters defining the shape of the function, ra,0 is the ves-
sel radius in the unstressed condition and σc is the stress contribution of the collagen
fibers. Furthermore, the arteriolar wall thickness ha is defined by assuming no longitu-
dinal stretch and conservation of mass:

ha =
√

r2a + 2ra,0ha,0 + h2a,0 − ra, (26)

where ha,0 is the unstressed arteriolar wall thickness.
The second component of the passive tension is the viscous tension Tv, which is in accor-
dance with the viscous component of the Voigt model [Ursino and Giammarco, 1991]

Tv = σvha =
ηa
ra,0

dra
dt

ha, (27)

where ηa is the arteriolar wall viscosity.
The active smooth muscle tension Tm is known to decrease for very small and very large
arteriolar radius and is therefore based on the following bell-type curve [Ursino and Giammarco,
1991]

Tm = Tmax · e
−

∣

∣

∣

ra−rm
rt−rm

∣

∣

∣

nm

, (28)

where rm is the radius at which the smooth muscle cell exerts maximal tension, and rt
and nm are constants. Furthermore, the maximal active tension Tmax is defined by

Tmax = Tmax,0(1 +Ms), (29)

where Tmax,0 is the maximal tension at baseline, i.e. when the regulatory state Ms is equal
to zero. The latter is defined by the following relation

Ms =
e2Ms,1 − 1

e2Ms,1 + 1
, (30)

where
Ms,1 = Gmyoxmyo +Gmetaxmeta + xbaro + xinit, (31)

where xi and Gi are the state and gain of the regulation mechanism i and xinit is the reg-
ulatory state at baseline. The state equations for xi are described later on. Summarizing,
the Laplace law is used to translate a change in regulatory state to a change in arteriolar
radius. Actual changes in resistance and compliance of the micro-circulation are derived
by coupling the arteriolar radius ra to the arteriolar resistance Ra and volume Ca via

Ra =
Ka,R

r4a
(32)

and

Ca =
Ka,Cr

2
a

pa
, (33)

where

• Ka,R is chosen such that the baseline arteriolar radius ra and pressure pa result in
baseline flow qa. Where baseline means the supine position and Ms,1 = xinit.
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• Ka,C is chosen such that it corresponds with a total RC-time of 2.0 [s] under baseline
conditions.

Summarizing, the arteriolar resistance and compliance are regulated based on the arteri-
olar radius ra. The latter is derived from the arteriolar wall tension based on the Laplace
law. The muscular tension Tm is the part of the tension affected by the state of the regula-
tion mechanisms xi. In the following sections the state equations for the three regulation
mechanisms are explained.

B.2 Myogenic regulation mechanism

Myogenic regulation protects the micro-vasculature against high pressures by increasing
vascular tone upon increasing circumferential stresses and strains. Myogenic activation
Amyo is therefore based on the current arteriolar tension Ttot [Spronck et al., 2012]

Amyo =
Ttot − Tmyo,0

Tmyo,s
, (34)

where Tmyo,0 is the tension at baseline pressure for Ms,1 = xinit and Tmyo,s = 0.2Tmax,0 is a
normalization tension. The myogenic regulation state xmyo is defined by

dxmyo

dt
=

Amyo − xmyo

τmyo
, (35)

where τmyo is the myogenic time constant.

B.3 Metabolic regulation mechanism

Metabolic regulation can be initiated via different metabolites, such as potassium ions,
adenosine, lactate and CO2. These metabolites are generated during a muscle contraction
and are washed out by the blood flow. In the current model CO2 is chosen to be the
determining metabolite for the regulation of blood flow during muscle contraction. First,
the tissue CO2-concentration Ct,CO2

is defined as the balance between metabolic rate and
muscle perfusion qd

dCt,CO2

dt
=

1

V
(MCO2

− qd (Cv,CO2
− Ca,CO2

)) , (36)

where V is an estimate of the perfused muscle tissue volume, Cv,CO2
and Ca,CO2

are the
venous and arterial CO2-concentration respectively, of which the latter is fixed [Spronck et al.,
2012]. The metabolic rate MCO2

is related to muscle activity as follows:

MCO2
= MCO2,0 (1 +Amc (fm − 1)) , (37)

where fm is the ratio of metabolic rate at rest and maximal activity and Amc is muscle
activity, which is defined to follow the contraction pattern (see Section 2.1.6 for the full
definition). Furthermore, MCO2,0 is the basal metabolic production of CO2 by a tissue of
volume V

MCO2,0 = MCO2,0,mρmV, (38)

where ρm is the muscle density and MCO2,0,m is the basal metabolic CO2-production per
kg tissue. Muscle perfusion qd in Equation (36) is the flow leaving the tissue, which is
calculated using

qd =
p2 − p3
Ra/2

, (39)
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where p2 and p3 are the pressure at node n2 and n3 respectively (Figure 3). Further-
more, Cv,CO2

is the venous CO2-concentration and is determined by the following rela-
tion [Irving et al., 1932]

Cv,CO2
= αt,vCt,CO2

+ βt,v , (40)

where αt,v and βt,v are fitting constants. The metabolic activation Ameta is determined by
the CO2-concentration in the tissue using

Ameta =
Ct,CO2

− Ct,CO2,0

Ct,CO2,s
, (41)

where Ct,CO2,0 is the steady state solution of Equation (36) and Ct,CO2,s = Cv,CO2,0 −Ca,CO2

is a scaling term. Finally, the metabolic regulation state xmeta is defined by

dxmeta

dt
=

Ameta − xmeta

τmeta
, (42)

where τmeta is the time constant governing metabolic regulation.

B.4 Baroreflex regulation

The baroreflex is a global regulation mechanism which aims to maintain systemic pres-
sure by affecting the heart rate, heart contractility, venous unstressed volume and pe-
ripheral resistance. In this study, only the effect of the baroreflex on the peripheral re-
sistance is included, which is based on the model of Ursino [1998] (also implemented in
other studies [Lim et al., 2013, van der Hout-van der Jagt et al., 2013]). The carotid pres-
sure pcarotid is used as an input parameter and is defined as mean systemic pressure (see
Section 2.3 for details) plus a hydrostatic column of 20 cm in tilted position. First, carotid
pressure is compared to a reference pressure pn, which is defined as the baseline pressure
in the supine position

∆pbaro = pcarotid − pn. (43)

This pressure difference ∆pbaro is converted to an afferent baroreflex firing fab rate via a
sigmoidal transfer function

fab =
fab,min + fab,max · e

(

∆pbaro
kdp

)

1 + e

(

∆pbaro
kdp

) , (44)

where fab,min and fab,max are the firing rates reached for minimal and maximal ∆pbaro

and kdp is a constant determining the slope of the afferent firing rate. The firing rate for
the sympathetic innervation of the peripheral micro-circulation fsp is calculated via the
following relation:

fsp =

{

fsp,∞ +
(

fsp,0 − fsp,∞

)

· e- kes fab for fsp < fsp,max

fsp,max for fsp ≥ fsp,max
, (45)

where kes is a parameter defining the shape of the sympathetic firing rate. The parameters
fsp,0 and fsp,∞ are the firing rates at zero and infinite afferent firing rate, and fsp,max is
the maximal sympathetic firing rate. The sympathetic innervation is converted to an
unfiltered change in resistance ∆R∗

∆R∗ =

{

GR · ln
(

fsp(t−DR)− fsp,min + 1
)

for fsp ≥ fsp,min

0 for fsp < fsp,min
, (46)
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where GR is a constant gain, DR is a pure time delay and fsp,min is the minimal sympa-
thetic firing rate affecting the resistance. The actual change in resistance ∆R is calculated
based on ∆R∗ using a low pass filter

d∆R

dt
=

1

τR
· (∆R∗ −∆R) , (47)

where τR is the time constant of the low pass filter. Finally, the relative change in resis-
tance cbaro is calculated using the following relation

cbaro =
∆R−Rref

Rref,Ursino
+ 1 =

Rbaro

Rref
, (48)

where Rref is the resistance in baseline conditions in supine position and Rref,Ursino is the
baseline resistance in the model of Ursino [1998]. To combine the baroreflex with the
local auto-regulation mechanisms, the resistance is converted into a regulation state xbaro

similar to the regulation state of the other mechanisms. Firstly, the resistance is converted
to arteriolar radius using Equation (32)

abaro =

(

KR

Rbaro

)1/4

. (49)

Using Laplace’s law (Equation (24)) the arteriolar radius is converted into a change in
muscular tension due to the baroreflex

Tm,baro = paabaro − Te,baro − Tv,baro, (50)

where Te,baro and Tv,baro are calculated using ra = abaro (Equation (25) and (27) respec-
tively). From the muscular tension the total regulation state Ms,baro is derived using
Equation (28) and (29)

Ms,baro =
Tm,baro

Tmax,0 · e
-
(

abaro−am

at−am

)n − 1. (51)

Finally, the total regulation state is converted to the regulation state via Equation (30) and
(31)

xbaro = Ms,1,baro − xinit = tanh−1 (Ms,baro)− xinit =
1

2
ln

(

1 +Ms,baro

1−Ms,baro

)

− xinit. (52)
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