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Abstract

Many applications of financial modelling require to jointly model multiple uncertain quantities to

present more accurate, near future probabilistic predictions required in decision making. Bayesian

networks (BNs) and copulas are two common approaches to modelling joint uncertainties with

probability distributions in financial and bushiness professions. In particular, the copulas have

attracted more attentions due to their nice property of approximating the probability distribution

of the data with heavy tail which is very common in financial applications (e.g., financial asset

returns, risk analysis of capital allocation within a financial ordination). The standard multivariate

copulae suffer from some serious limitations which made then unsuitable for multivariate modelling

of the financial data. An alternative copula model is the pair-copula construction (PCC) model

which is more flexible and efficient for multivariate modelling of financial data. The only restriction

of PCC model is that selecting the best model when the number of variables increases becomes a

computationally a challenging problem. Bauer et al. [3] address this issue by capturing conditional

independences in the data, and propose a new model called Bayesian network PCC (BN-PCC) which

provides more parsimonious models in different settings. This new model is structurally more flex-

ible than PCC due to the benefit of including conditional independences by the data structure. In

addition, the difficulty of computing conditional distributions in graphical models for non-Gaussian

distributions can be eased using bivariate copulas. In this paper, we extend this approach further

using the minimum information vine model which results in a more flexible and efficient approach
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in modelling multivariate dependencies of heavy-tailed distribution and tail dependence as observed

in the financial data. We demonstrate that the extended model based on minimum information

PCC can approximate any given non-Gaussian BN to any required degree of approximation. Unlike

the method developed by Bauer et al. [3], the proposed model is more flexible and is not restricted

to use the parametric pair-copula models, but pair-copulas can be approximated using the maxi-

mum entropy (or minimum information) concept given the limited observed data by truncating the

corresponding polynomials/bases after k terms to meet the restrictions imposed by the data and

problem under study. We examine three different bases including ordinary polynomial, orthonor-

mal and Fourier series and propose the best fitting model among them based on a goodness-of-fit

criteria. Finally, we apply our method to modelling the global portfolio data from the perspective

of an emerging market investor located in Brazil. The results show that the multivariate distribu-

tion approximated based on the proposed model in this paper is fitted far better other previously

published methods.

Keywords:

Bayesian Network, Copula, Directed Acyclic Graph, Entropy, Orthonormal Series, Probabilistic

Financial Modelling, Vine.

1. Introduction

Soft computing is a collection of methodologies, which aim to exploit uncertainty. Modelling

multiple uncertainties using multivariate distributions is required in real life problems as a soft com-

puting methods. Construction of multivariate distribution would help us to appropriately examine

dependencies between multivariate data in the real world complexities. A natural way to model

multivariate data is to use the method proposed in [24] which is known as Norta method (normal to

anything). Norta transforms the marginal distribution function of the variable to normal, induces

a dependence structure and then transforms back. This method ignores the difference between

product moment and rank correlation matrices of the joint normal and for higher dimensions, the

set of rank correlation matrices may not be positive definite.

In recent years, copulas have gained popularity in constructing multivariate distributions and

survey dependency structures. In the well known Sklar’s theorem [41], univariate distributions link

to each other to construct multivariate distribution i.e. copula function is a multivariate distribution
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function which is marginally distributed on the interval [0, 1] uniformly. One of the main advantages

of the copula function is to separate dependency structure from marginal distributions. Moreover,

by using copula function, some quantities such as tail dependency which is the dependency between

extreme values of the variables, can be obtained. This kind of dependency in particular is very

important in real life problems.

Unfortunately, multivariate copulas are not as rich as bivariate copula. Building higher dimen-

sional copula is generally a challenging task, and choosing a parametric family for the given higher

dimensional copula is rather more difficult and limited (see [19]). This drawback in modelling of

multivariate data by using copula, motivated statisticians to apply a flexible multivariate copulas

known as pair copula for modelling multivariate dependency. This graphical model which can be

seen as a classical hierarchical model was firstly introduced by Joe [25] and was later formulated

by Bedford and Cooke [6, 7]. Aas et al. [1] developed and called it pair copula or vine and also

decomposed a general multivariate distribution based on it and proposed a method to perform

inferences. This modelling structure is based on a decomposition of a multivariate density into a

cascade of bivariate copula. Pair copula construction solves the limitation in construction of mul-

tivariate copula and also considers the dependency between pair of variables. Two common forms

of the pair copula are D-vine and C-vine, (for more information see [31]).

Using vine to model multivariate distribution apart from the advantages mentioned above is

suffering from this drawback that when the number of variables increases, the number of bivariate

copulas increases by quadratic rate (i.e., as for n variables we should use n(n − 1)/2 bivariate

copula), and this is against parsimonious axiom in modelling.

To overcome these vine modelling challenges, Bauer et al. [3] and later Bauer and Czado [4] pro-

posed the pair-copula construction for modelling multivariate distribution represented by a Bayesian

network (BN) for non-Gaussian distributions. Their method also permits to include the conditional

independence assumptions induced by a BN. This approach is very useful to construct non-Gaussian

distribution in order to capture features such as tail behaviour and non-linear, asymmetric depen-

dency. In order to tackle these challenges and for modelling non-Gaussian multivariate distribution,

it is more plausible to represent the pair-copula construction model in terms of a DAG [3, 4]. The

method addressed in [3, 4] also permits to include the conditional independence assumptions in-

duced by a BN. This approach is very useful to construct non-Gaussian distribution in order to
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capture features such as tail behaviour and non-linear, asymmetric dependency.

Bedford et al. [8] stated that the use of a parametric copula to model dependency is simply a

translation of one difficult problem into another: instead of the difficulty of specifying the full joint

distribution, we have the difficulty of specifying the copula. The only and main advantage is the

technical one that copulas are normalized to have support on the unit square and uniform marginal

distributions. As a result, restricting copula functions to a particular parametric class (Gaussian,

multivariate t, etc.) makes the potential flexibility of the copula approach not being realized in

practice.

To settle this concern, there have been recently several studies proposing various non-parametric

methods to tackle the issues mentioned above. For instance, Kauermann et al. [28] proposed a semi-

parametric method by using the spline to estimate multivariate copula density. In order to achieve

a good and smooth fit, the spline coefficients are first penalized, and uniform marginals of the

copula density is then approximated by placing linear constraints on the spline coefficients which

quadratic programming is then required to derive the fitted model. However, the main purpose of

the method proposed in [28, 38] was to tackle the curse of dimensionality using a semi-parametric

approach, but it was not fully successful in achieving it. It was shown that the proposed method

shifts the problem a little bit so that computation on 3, 4 (or 5) dimensions could be possible. In

order to tackle the curse of dimensionality [38], the methodology was then applied to D-vines with

penalized Bernstein polynomials or penalized B-splines, to estimate the bivariate copula density

in each knot of the selected D-vine model [27]. However, the reported results are very promising,

but there is no clear model selection algorithm. In addition, when there is weak dependency they

do not perform well. Nagler et al. [39] extended the above approaches by applying them on the

simplified vine copula models. Simplified vine copula models give rise to very flexible models which

are often found to be superior to other multivariate copula models [1]. In order to make the

model more tractable, one usually makes the simplifying assumption that the pair-copula densities

do not change with conditional assumption [39]. There are several interesting factors driving the

relative performance of the non-parametric estimators. The most important one is the strength

of dependence. They concluded that the kernel estimators performed best, but do worse than

penalized B-spline estimators when there is weak dependence or tail dependence.

Bedford et al. [8] proposed an alternative method based on using entropy copula (also known
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as minimum information copula) that can be determined to any required degree of precision based

on the available data (or expert judgements). The approach used in this paper, by contrast, allows

a lot of flexibility in copula specification. It can be easily implemented in practice and it is only

required to assume that the copula density of interest must be continuous and non-zero. Our

constructive approach involves the use of entropy copulas that can be specified to any required

degree of precision based on the data available. We illustrate properly that good approximation

locally guarantees globally good approximation.

A natural way to build a minimum information copula or specifying dependency constraints is

through the use of moments [8]. These can be specified either on the copula or on the underlying

bivariate density. These moment constraints are considered as real-valued functions φ1, . . . , φk

which are required to take expected values e1, . . . , ek, respectively. The expected values are either

computed from the available data or specified based on the experts’ beliefs.

In this paper, we improve the fitted multivariate density approximation proposed in [3, 4] us-

ing a newly developed approximation method based on the entropy method (see also [22]). The

conditional and joint probabilities of the selected DAG structure can be specified by constructing

a minimum information copula between the nodes of interests given their parents’ sets. In this

study, we assume that the DAG structure is learned using either search and score methods (Sparse

Candidate Algorithm; and Greedy Search methods) or constraint based methods, including PC,

MMPC algorithms, Fast algorithm, etc (e.g., see [14, 29, 22]). A minimum information copula can

be represented in terms of Polynomial Series (PS), and more flexible ones including Orthonormal

Polynomial Series (OPS) and Orthonormal Fourier Series (OFS). We demonstrate that the approx-

imation accuracy will be notably increased using the minimum information copula. We verify our

claim by comparing our approximation with the results illustrated in [3, 4] to model the global

portfolio data from the perspective of an emerging market investor located in Brazil.

The present paper is organised as follows. In Section 2, we introduce the pair-copula decom-

position associated with the non-Gaussian BN of multivariate data. In Section 3, we first briefly

study the entropy copula and show that how it can be used to approximate a bivariate copula

density. We then develop it further to approximate the multivariate distribution associated with

the given non-Gaussian BN. We improve this approximation in Section 4, using PS and OPS basis

functions and OFS. In Section 5, we apply our method for modelling the global portfolio data from
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the perspective of an emerging market investor located in Brazil. We then exhibit our approxima-

tion flexibility by comparing it with the method presented in [3, 4]. Section 6 is dedicated to a

simulation study. We finally conclude our study in Section 7.

2. Pair-copula construction for non-Gaussian Bayesian Networks

Considering the above-mentioned vine’s drawbacks in modelling multivariate data, it has been

tried to develop a method through using the nice properties of graphical model and pair-copula,

simultaneously. Hanea et al. [23] provided an opportunity to exploit the advantages of both worlds.

Indeed, the purpose is to apply the conditional independence in graphs and the simplified vine

structure. Simplified vine copula models give rise to very flexible models which are often found to

be superior to other multivariate copula models [1]. In order to make the model more tractable,

one usually makes the simplifying assumption that the pair-copula densities do not change with

conditional assumption [39].

Graphical models [33] are probabilistic models in which conditional independence between vari-

ables can be shown using a simple graph, i.e. in a graphical model, vertex are the variables, and

the conditional and the causal relationships between variables are shown by edges. Let’s introduce

the conditional independence concept as:

X1 is said to be conditionally independent of X2 given X3, denoted by (X1⊥X2|X3), if for all

configuration x1, x2, x3 of the variable in X1, X2, X3 satisfying p(X3 = x3), it holds

p(X1 = x1|X2 = x2, X3 = x3) = p(X1 = x1|X3 = x3).

Equivalent definition for conditional independence can be stated as follow:

p(X1 = x1, X2 = x2|X3 = x3) = p(X1 = x1|X3 = x3)p(X2 = x2|X3 = x3).

Bayesian networks models known as Directed acyclic graphical (hereafter DAG) and are certainly

the most common and perhaps the most applicable version of a graphical model. The construction

of the Bayesian networks was based on the assumption of a joint Gaussian distribution, however

this approach lacks the necessary performance for capturing the features of real world data such

as tail behaviour and non-linear, asymmetric dependencies. Bauer et al. [3] filled this gap and

introduced non-Gaussian graphical model by combining useful properties of both pair-copula and
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Figure 1: A DAG with 4 elements

DAG, and named it non-Gaussian DAG-PCC. Elidan [17, 18] gives another copula decomposition of

distributions associated with a DAG that is based on generally higher variate copulas, and therefore

lacks the flexibility of the pair-copula approach.

First, let us introduce some of the preliminary notations associated with graphical models, and

also some of the basic concepts related to Bayesian networks. Further details on Bayesian network

can be found in [14]. Applications of Bayesian networks range from artificial intelligence, decision

support systems, and engineering to genetics, geology, medicine, and finance, see [40].

A graph is a pair G = (V,E) where V is the set of vertices (or nodes) and E is the set of edges.

The set of edges E is a subset of the set V × V of ordered pair of nodes. It is assumed that E

contains only distinct pair of nodes so that there exists no loops, that is, (x, y) ∈ E =⇒ x 6= y.

Given two nodes x and y, the edge between them is said to be directed if (x, y) ∈ E but (x, y) /∈ E,

and written x −→ y. If the edges in each graph are all directed, such graph is called a directed

one. Figure 1 illustrates a directed graph with vertices V = {x1, x2, x3, x4}. A cycle of length n is

a path (i.e. a path of length n form x to y is a sequence x = x0 = x1 = . . . = xn = y of distinct

vertices such that (xi−1, xi)εE for all i = 1, 2, . . . , n) with the modification that the first and the

last vertex are identical x0 = xn. A directed graph G = (V,E) is acyclic if it contains no directed

cycle.

Given a DAG D, we define the set of descendants de(x) of x are the vertices y such that

x −→ y but not y −→ x and the descendants of x are the nodes y such that there is a path from

x to y, but not from y to x, and by similar definition non-descendants of x or nd(x) defined as
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nd(x) = V \ (de(x)
⋃
x). For x −→ y; x is a parent of y and y is a child of x. The set of parents

of a vertex y is denoted by pa(y), and the set of children of a vertex x represented by ch(x). For

example in Figure 1, the set of parents of X4 is pa(X4) = {X2, X3} and the set of children of X3 is

given by ch(X3) = {X4}.

We only consider the density decomposition related to DAG. Factorization of the multivariate

density can be done by using the conditional independence concept. The basic decomposition

scheme offered by a DAG can be explained based on the conditional independence. Consider a joint

density function f defined over n variables X1, . . . , Xn. The multivariate density function f can be

decomposed as a product of n conditional density functions as follows:

If Xi is independent of all other predecessors given its parent then, we can write

f(x1, . . . , x3) =

n∏
i=1

f(xi|pa(xi)),

i.e. once we know the value of pa(xi), knowing the value of the other preceding variables is redundant

. This property of f is known as Markovian or local Markov properties in the literature. We illustrate

briefly that the density decomposition scheme associated with 4 random variables X = (X1, . . . , X4)

with a joint density function f(x1, . . . , x4) are satisfying a DAG shown in Figure 1 and the marginal

densities f(x1), . . . , f(x4). We make use of the expression

f(x1, . . . , x4) = f(x1)f(x1|x2)f(x3|x1, x2)f(x4|x1, x2, x3)

The marginal distribution of X1 is known, therefore f1 is also known. The marginals of X1 and X2

are known, and the copula of X1, X2 is also known; therefore by applying Sklar’s theorem we can

get f(x1, x2), and hence

f(x1|x2) = c12(F (x1), F (x2))f2(x2).

In order to get f(X3|X1, X2), based on the conditional independence X2 and X3 given X1, we can

write

f(x3|x1, x2) = f(x3|x1) = c13(F (x1), F (x3))f3(x3).

Similarly, by using conditional independence between X1 and X4 given X2 and X3, holds that

f(x4|x1, x2, x3) = f(x4|x2, x3).
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Now, for v ∈ V , we order the elements of pa(v) increasingly (with respect to some strict total order

<v on pa(x) ) and set

pa(v, w) = {u ∈ pa(v)|u <v w}, w ∈ pa(v).

These orders can be determined based on the Kendall’s τ rank correlation between variable v and

pa(v). For example, for pa(4, 3) = {2} , we can write

f(x4|x2, x3) = c34|2(F4|2(x4|x2), F3|2(x3|x2))f4|2(x4|x2).

We can determine f4|2(x4|x2) in a similar way as f2|1(x2|x1) or f3|1(x3|x1). Therefore, f can be

decomposed as:

f(x1, . . . , x4) =

4∏
i=1

f(xi)× c12(F (x1), F (x2))× c13(F (x1), F (x3))

× c24(F (x2), F (x4))× c34|2(F4|2(x4|x2), F3|2(x3|x2)).

(1)

As a result, we can state the following theorem.

Theorem 1. . Let D = (V,E) be a DAG and let f be a multivariate density function on n variables

with marginal density fi and corresponding cumulative distribution function Fi, i = 1, 2, . . . , n.

Then f is uniquely determined by its univariate margins fi, i = 1, 2, . . . , n and its conditional

pair-copula cvw|pa(v,w), v ∈ V,w ∈ pa(v) and f can be decomposed as follows:

f(x1, . . . , xn) =

n∏
v=1

f(xv)
∏

w∈pa(v)

cvw|pa(x,w)(Fv|pa(v,w), Fw|pa(v,w)). (2)

Proof. The proof of this theorem relies on graph theoretical considerations only (see [3] and refer-

ences therein).

The above theorem gives us a constructive approach to build a multivariate distribution given a

DAG: If we make choices of marginal densities and copula, then the above formula gives us a mul-

tivariate density. Hence, PCC-DAG can be used to model general multivariate densities. However,

in practice, we have to use copula from a convenient class, and this class should ideally be the one

that allows us to approximate any given copula to an arbitrary degree. In the following sections,

we address this issue in more details. By having this class of copula, we can then approximate any

multivariate distribution using a DAG.

When we apply Non Gaussian PCC-DAG for decomposing multivariate density f as seen in

Theorem 1, some of the copula may not exist as C23 in Figure 1 and decomposition (1), i.e. since
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the copula C23 is not available in the decomposition of the f , Bauer et al. (2012) exploited the

conditional independence property (X2⊥X3|X1) to get F3|2(x3|x2). This method proposed in [3]

requires quite complex numerical computation, and there is no general closed-form solution for it.

To overcome this challenge, we divide the support of X2 to some bins and in each bin we calculate

F3|2(x3|x2). Complete discussion are provided on the Brazilian case.

3. Approximating Multivariate Density: A minimum information copula approach

This section outlines an approach based on using the entropy techniques originated from [9]

in conjunction with the observed data or expert elicitation of observables. This is used to define

a copula that can help to build the joint distribution of two random variables. It can also be

used to develop it further for constructing a multivariate distribution using a Non-Gaussian PCC-

DAG model. The method that will be described below is based on using the D1AD2 algorithm

to determine the copula in terms of potentially asymmetric information about two variables of

interests.

3.1. The D1AD2 algorithm and minimum information copula

Bedford and Meeuwissen [9] applied a so-called DAD algorithm to produce discretized entropy

copula between two variables with given rank correlation. This approach relies on the fact that the

correlation is determined by means of the symmetric function UV . The same approach can be used

whenever we wish to specify the expectation of any symmetric function of U and V ([5, 34]).

This method can be developed further using Borwein et al.’s idea [11] which enables us to have

asymmetric specifications. In the revised method, we first determine a positive square matrix A,

also called a kernel ; two diagonal matrices D1 and D2 should be then found in such a way that the

following product, D1AD2 is doubly stochastic. The theory can be easily generalised for continuous

functions [8, 15].

Now, suppose there are two random variables X and Y , with cumulative distribution functions

FX and FY , respectively. These are the variables of interest that we would like to correlate by

introducing constraints, based on some knowledge about functions of these variables. Suppose

there are k of these functions, namely h′1(X,Y ), h′2(X,Y ), . . . , h′k(X,Y ), and that we wish either

to calculate their mean values in terms of the observed data, or the expert wishes to specify mean
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values α1, . . . , αk for all these functions, respectively. We can simply specify corresponding functions

of the copula variables U and V , defined by hi(U, V ) = h′i(F
−1
1 (U);F−12 (V )), i = 1, 2, . . . , k, where

hi : [0, 1]2 → R, at which we can specify the mean values α1, . . . , αk that these functions should

simultaneously take. Further suppose that hi, hj are linearly independent for i 6= j. We seek a

copula that has these mean values, a problem which is usually either infeasible or undetermined.

Hence, assuming feasibility for the moment, we also consider the copula to be maximum entropy

(with respect to the uniform distribution), which guarantees a unique and reasonable solution. We

form the kernel

A(u, v) = exp(λ1h1(u, v) + . . .+ λkhk(u, v)), (3)

where u denotes the realization of U and v the realization of V .

For practical implementations, we use the same method as proposed by [8], and later by [15] to

discretize the set of (u, v) values such that the whole domain of the copula is covered. Thus, the

aforementioned kernel A becomes a 2-dimensional matrix, and two matrices D1 and D2 should be

then determined. As a result, the following product denoted by P over [0, 1]2 becomes a doubly

stochastic matrix which represents a discretized copula density

P = D1AD2. (4)

The D1AD2 algorithm can be used to generate a unique joint density with uniform marginals

for each vector (λ1, . . . , λk). The set of all possible expectation vectors (α1, . . . , αk) that could

be taken by (h1, h2, . . . , hk) under some probability distribution is convex, and that for every

(α1, . . . , αk) in the interior of that convex set, there is a density with parameters (λ1, . . . , λk)

for which (h1, h2, . . . , hk) take these values [11, 8, 15].

We now explain the iterative algorithm required to approximate the mentioned copula density by

this algorithm. Suppose that both (u, v) are discretized into n points, as ui, and vj , i, j = 1, . . . , n

respectively. Then, we write A = (aij), D1 = diag(d
(1)
1 , . . . , d

(1)
n ), D2 = diag(d

(2)
1 , . . . , d

(2)
n ), where

aij = A(ui, vj), d
(1)
i = D1(ui), d

(2)
j = D2(vj). We define the doubly stochastic matrix, D1AD2 with

the uniform marginals as follows

∀i = 1, . . . n
∑
j

d
(1)
i d

(2)
j aij = 1/n, and

∀j = 1, . . . n
∑
i

d
(1)
i d

(2)
j aij = 1/n.
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The idea behind D1AD2 algorithm is simple. It starts with arbitrary positive initial matrices for

D1 and D2, and the new vectors will be then successively defined by iterating the following maps

d
(1)
i 7→ 1

n
∑

j d
(2)
j aij

(i = 1, . . . , n), d
(2)
j 7→ 1

n
∑

i d
(1)
i aij

, (j = 1, . . . , n).

It can be shown that this iteration scheme converges geometrically to the requested vectors [11].

Note that to compare different discretizations (for different n’s) we should multiply each cell

weight di(1)dj(2)aij by n2 as this quantity approximates the continuous copula density with respect

to the uniform distributions.

The mapping from the set of vectors of λ’s onto the set of vectors of the resulting expectations

of functions (h1, . . . , hk) has to be found numerically. Bedford et al. [8] proposed the optimization

techniques for determining the λi’s and the corresponding copula. The expectations αi of k functions

of variables X and Y are given by

E[h′i(X,Y )] = E[hi(U, V )] = αi, i = 1, . . . , k.

We now wish to determine the appropriate set of λ’s for the given expectations αi, where the

expectations have been calculated using the discrete copula density D1AD2 given in (4). Hence, to

determine λi’s satisfying the constraints, the following set of equations has to be solved

Ll(λ1, . . . , λk) =
1

n2

n∑
i=1

n∑
j=1

P (ui, vj)hl(ui, vj)− αl, l = 1, 2, . . . , k. (5)

The left hand sides of the above equations are just functions of λ’s and with optimization algorithms

their roots can be found. One of the possible solvers for this task would be FSOLVE - MATLAB’s

optimization routine. An alternative method is to use another MATLAB’s optimization procedure

called FMINSEARCH, which implements the Nelder-Mead simplex method [32]. The minimized

function is then

Lsum(λ1, . . . , λk) =

k∑
l=1

L2
l (λ1, . . . , λk).

We refer the interested readers to [8, 34] to show how an expert could specify a copula through

defining expected values.

3.2. Approximating Multivariate Density by Non-Gaussian PCC-DAG

In this section, we use techniques from approximation theory to show that any n-dimensional

multivariate density which is C2 (that is, twice differentiable, with continuous second derivatives)
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can be approximated arbitrarily well pointwise using a finite parameter set of 2-dimensional copulas

in a PCC-DAG construction. The basic idea is that we can use a series expansion, like a two-

dimensional Ordinary Polynomial Series (PS), Orthonormal Polynomial Series (OPS) and Fourier

Series (OFS) , to approximate any log-density function by truncating the series at an appropriate

point. What is non-trivial, however, about this method, is that the same truncation can be used

everywhere in a PCC-DAG construction giving an overall uniform pointwise approximation. Hence

our method allows the use of a fixed finite dimensional family of copulas to be used in a PCC-DAG

construction, with the promise of a uniform level of approximation. Since the approximations we

make of copula densities might not be quite copula densities themselves, we need to transform them

to make them copulas.

To demonstrate this, we first should show that the family of bivariate (conditional) copula den-

sities contained in a given multivariate distribution forms a compact set in the space of continuous

functions on [0, 1]2. Then, it can be shown that the same finite parameter family of copulae can be

used to derive a given level of approximation to all conditional copulae simultaneously.

Here, we develop the approximation method used in [8, 15] to approximate any log-density

function at a desired level of approximation which is more accurate and exhibits better properties.

We first introduce the notations. The basic assumption is that all densities are continuous. We

denote C(Z) as the space of continuous real valued functions on a space Z, where Z = [0, 1]r for

some r, and the corresponding norm on C(Z) is given by

||f1...r|| = sup |f1...r(x1, . . . , xr)|.

The set of all possible 2-dimensional (conditional) copulae is denoted by

C(f) = {cij|i1...ir : 1 ≤ i, j, i1, . . . , ir ≤ n, i, j 6= i1, . . . , ir},

where cij|i1...ir is the copula of the conditional density of Xi, Xj given Xi1 , . . . , Xir .

The famous Arzela-Ascoli theorem can be used to check the compactness of the following function

space, K ⊂ C([0, 1]2). This space is relatively compact, if the functions in K are equicontinuous and

pointwise bounded. Further details about equicontinuous and pointwise bounded of the minimum

information copula density can be found in [8].

It can be shown that the following two spaces are relatively compact (Theorem 3 in [8]).

M(f) = {fi|i1...ir : 1 ≤ i, i1, . . . , ir ≤ n, i 6= i1, . . . , ir},
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and

B(f) = {fij|i1...ir : 1 ≤ i, j, i1, . . . , ir ≤ n, i, j 6= i1, . . . , ir},

where fi|i1...ir is the conditional density of Xi given Xi1 , . . . , Xir , and fij|i1...ir is the conditional

density of Xi, Xj given Xi1 , . . . , Xir .

It is then straightforward to show that the set C(f) ⊂ C([0, 1]2) is relatively compact. In

addition, since all the functions in C(f) are positive and uniformly bounded away from 0, the set

LNC(f) = {ln(g) : g ∈ C(f)} ⊂ C([0, 1]2) is also relatively compact (see [8] for details and proofs).

As a result, the set C([0, 1]2) can be considered as a vector space, and in this context a base is

simply a sequence of functions h1, h2, · · · ∈ C([0, 1]2) such that any function g ∈ C([0, 1]2) can be

written as g =
∑∞

i=1 λihi. In other words, it can be shown that given ε > 0, there is a k such that

any member of LNC(f) (or C(f)) can be approximated to within error ε > 0 by a linear combination

of h1, h2, . . . , hk. There are lots of possible bases. We introduce three of these bases, PS, OPS and

OFS in the next three subsections with some nice properties in their density approximation.

It should be noticed that the copula density approximated by the method described above might

not be a copula density itself. Therefore,the resulting approximation needs to be transformed in

such a way to obtain a copula. This can be done by weighting the approximated density. One of the

most effective weighting schemes is the D1AD2 algorithm mentioned in the previous section. If we

have a continuous positive real valued function A(u, v) on [0, 1]2, then there are continuous positive

functions d1(u) and d2(v), such that d1.d2.A is a copula density, that is, it has uniform marginal

distributions. This density is called C-Projection of A and denoted by C(A). Bedford et al. [8]

present the following lemma in which it allows us to control the error made when approximating a

copula by another function.

Lemma 1. Let g be a non-negative continuous copula density. Given ε > 0, there is a δ such that

if ||g − f || < δ then ||g − C(f)|| < ε.

Note that these reweighting functions have the same differentiability properties as the function

f being reweighted. This can be seen from the integral equation that they satisfy:

d(1)(u) =
1∫

d(2)(v)f(u, v)dv
and d(2)(v) =

1∫
d(1)(u)f(u, v)du

.
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Eventually, the term given in (2) can be used to show that good approximation of each conditional

copula would result in a good approximation of the multivariate density of interest by using PCC-

DAG.

4. Building approximations using maximum entropy distributions

In this section, we provide a practical guide for building a maximum entropy PCC-DAG structure

to approximate any multivariate distribution. In the previous section, we presented a method

proposed in [8] that all conditional copulae can be approximated using linear combinations of basis

functions. In this section, we are going to address the issue of how the appropriate parameter

values can be chosen. We will also introduce a practical and efficient alternative, based on using

the entropy criterion that lies very close to the approach described above. In other words, given

the basis functions {1, h1, . . . , hk} : [0, 1]2 → R, we seek values λ1, . . . , λk so that exp(
∑k

1 λihi) is

close to the approximated copula density. This can be done by fitting the moments of hi in the

entropy framework. Therefore, if Eg[hi(u, v)] = αi, we seek for the entropy copula density that also

has these moments. This copula density can be uniquely determined, using the D1AD2 algorithm,

hence

d1(u)d2(v) exp(

k∑
1

λihi(u, v)).

As mentioned above, a multivariate distribution can be modelled by a PCC-DAG structure where

it can be defined as a decomposition of the given multivariate distribution into certain conditional

copulae. The following algorithm has summarised the steps for approximating the given multivariate

distribution associated with a PCC-DAG structure:

1. Specify a basis family, denoted by S(k) = {h1, h2, . . .},

2. Specify a DAG structure,

3. For each part of the DAG, the bivariate copulae, specify either

• mean α1, . . . , αk for h1, . . . , hk on each pairwise copula;

• functions αm(ji | De) for the mean values as functions of the conditioning variables, for

m = 1, . . . , k.

One of the main aspect that would effect the aforementioned approximation is the basis family.

Here, we examine the impact of three basis families,the ordinary polynomial series, the orthonormal
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polynomial series and Fourier on approximating the entropy copulae and the multivariate distri-

bution associated with the chosen DAG structure. We first briefly introduce these three basis

functions.

4.1. Ordinary Polynomial base

One of the simple basis that can be applied in entropy copula is ordinary polynomial basis.

These basis were mainly used in [8] and can be defined simply as follows:

ψ0(u) = 1, ψ1(u) = u, ψ2(u) = u2, ψ3(u) = u3, ψ4(u) = u4, . . . .

PS basis are so easy to determine and selecting it by expert judgement can be easier than other

basis.

4.2. Orthonormal polynomial base

In mathematics, particularly numerical analysis, a basis function is an element of the basis for a

function space. The term is a degeneration of the term basis vector for a more general vector space;

that is, each function in the function space can be represented as a linear combination of the basis

functions. We say two polynomial functions g1 and g2 are orthonormal in the interval [0, 1], if

∫ 1

0

g1(u)g2(u)du =

 1 for g1(u) = g2(u);

0 for g1(u) 6= g2(u).
(6)

The OPS base can be calculated more conveniently than some natural basis. In fact, if the basis is

an OPS basis, adding a new item to the expansion does not change the coefficient of the already

found shorter expansion [21]. But, if the basis is not orthonormal, any new item in general has a

nonzero projection on previous items. It means that the already found coefficients of the expansion

would have to be changed. That is one of the reasons for using OPS basis functions as the basis

family, S(k). It is reasonable to consider Gram-Schmidt OPS basis which is one of the famous OPS

basis functions on [0, 1].

To construct this OP basis over the interval [0, 1], we use the Gram-Schmidt process as follows

ϕ0(u) = 1

ϕn(u) =
un −

∑n−1
j=0

∫ 1
0
unϕj(u)du∫ 1
0
ϕ2

j (u)du
ϕj(u)

||un −
∑n−1

j=0

∫ 1
0
unϕj(u)du∫ 1
0
ϕ2

j (u)du
ϕj(u)||

n ≥ 1.

16



The first few functions are

ϕ0(u) = 1,

ϕ1(u) =
√

3(−1 + u),

ϕ2(u) =
√

5(1− 6u+ 6u2),

ϕ3(u) =
√

7(−1 + 12u− 30u2 + 20u3),

ϕ4(u) =
√

9(1− 20u+ 90u2 − 140u3 + 70u4),

ϕ5(u) =
√

11(−1 + 30u− 210u2 + 560u3 − 630u4 + 252u5).

4.3. Fourier base

Trigonometric or Fourier basis is the other type of orthonormal basis. Computational speed of

these basis for some data is considerable. Especially, these basis function present appropriate fit in

the peridic data. The first functions are

φ0(u) = 1, φ1(u) =
√

2cos(2πu), φ2(u) =
√

2sin(2πu),

φ3(u) =
√

2cos(4πu), φ4(u) =
√

2sin(4πu),

φ5(u) =
√

2cos(6πu), φ6(u) =
√

2sin(6πu).

5. Application: Global portfolio data from the perspective of an emerging market

investor located in Brazil

In this section, we apply the approximation method presented in this paper using OP, OPS and

OFS basis families, S(k) (as mentioned in the first step in the algorithm above) to approximate

the multivariate distribution associated with the selected PCC-DAG structure corresponding to the

global portfolio data from the perspective of an emerging market investor located in Brazil. We

then exhibit the potential flexibility of our approach by comparing it with the method cited in [3, 4].
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Figure 2: Selected DAG structure for six dimensional contemporaneous daily log-returns of the global portfolio data

from the perspective of an emerging market investor located in Brazil.

Example: In this example, we use the same data set as previously studied in [37] to illustrate

the approximation method introduced in this paper. The data consists of six dimensional contem-

poraneous daily log-returns: Brazilian composite hedge fund index (the ACI, Arsenal Composite

Index), a long-term inflation-indexed Brazilian treasury bonds index (the IMA-C index, computed

by the Brazilian Association of Financial Institutions, Andima), Brazilian stock index with the 100

largest capitalization companies (IBRX), Index of large world stocks computed by MSCI (WLDLg),

Index of small capitalization world companies computed by MSCI (WLDSm), and index of total

returns on US treasury bonds computed by Lehman Brothers Barra (LBTBond). They are recorded

over the period January 2, 2002 to October 20, 2008 in which 1629 data are collected. We denote

these six variables ACI, IMA, IBrX, Wldlg, WLdSm and LBIBond, respectively.

We shall first remove serial correlation in these six time series, that is, the observation of each

variable must be independent over time. Hence, the serial correlation in the conditional mean and

the conditional variance are modelled by an AR(1) and a GARCH(1,1) model (see [10]), respectively.

Thus, the following model for log-return xi is considered for the ith time series

xi,t = ci + αixi,t−1 + σi,tzi,t,

E[zi,t] = 0 and V ar[zi,t] = 1,

σ2
i,t = αi,0 + aiε

2
i,t−1 + biaσ

2
i,t−1,

18



where εi,t−1 = σi,t + zi,t [1].

The further analysis is performed on the standardized residuals zi . If the AR(1)-GARCH(1,1)

models are successful at modelling the serial correlation in the conditional mean and the condi-

tional variance, there should be no autocorrelation left in the standardized residuals and squared

standardized residuals. We can use the modified Q-statistic and the Lagrange multiplier test, re-

spectively, to confirm this [1]. For all series, the null hypothesis, ’no autocorrelation left for the

both tests’, cannot be rejected with %5 significance. Since, we are mainly interested in estimating

the dependence structure of the risk factor, the standardized residual vectors are converted to the

uniform variables using the kernel method before further modeling. We denote the converted time

series of ACI, IMA, IBrX, Wldlg, WLdSm and LBIBond by 1,2,3,4,5 and 6, respectively.

Here, we want to generate a PCC-DAG approximation fitted to this data set using entropy

distributions based on the different basis. Indeed, the real challenge is in connecting DAG models

to vines. We try to specify DAG structure in our data. One approach is to apply structure learning

algorithms such as the PC algorithm (see [42], Section 5.4.2) to the data Φ−1(.), where Φ denotes

the standard normal cdf. This transformation is needed, since the tests for conditional indepen-

dence performed by the PC algorithm(at the %5 significance level) are based on the assumption

of normality. As an alternative approach, expert knowledge is frequently exploited to define the

DAG (see [30], Chapter 5). Moreover, there are structure selection algorithms for Non Gaussian

DAG’s available in Bauer and Czado (2016) which are similarly based on the PC algorithm. We

adopt the DAG structure presented in Figure 2 by applying the PC algorithm. Furthermore, the

presented structure for non Gaussian DAG available in Bauer and Czado (2016) produces the same

results. According to the presented DAG, we decompose the multivariate density of our data by

applying Theorem 1 in order to derive PCC-DAG structure i.e. given the presented DAG, The-

orem 1 prescribes which pair copulas are required to be specified in the definition of our model.

Note that variable 1(ACI) has three parents (2(IMA), 3(IBrX), and 5(WldSm)) as the order of the

parents based on the heuristic rule of modelling strong bivariate dependences prior to weak depen-

dences. Our decision was based on estimates τ̂ of kendall’s τ variable 1,5 (τ̂ = 0.209), variable

1,3 (τ̂ = 0.197), and variable 1,2 (τ̂ = 0.127), respectively. Similar rule can be applied for vari-

ables 3(IBrX) and its parents (2(IMA) and 4(WLdLg) based on τ̂ as τ̂32 = 0.0858, and τ̂34 = 0.424.

Moreover, variable 5 has two parents (3(IBrX) and 4(WIdIg)) which are τ̂53 = 0.402 and τ̂54 = 0.75.
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Based on these ordering, and according to the measure of dependencies kendall’s τ , the resulting

multivariate density decomposition is:

f1,...,6(x1, . . . , x6) =

6∏
i=1

fi(xi)× c15(F1(x1), F5(x5))× c45(F4(x4), F5(x5))× c46(F4(x4), F6(x6))

×c34(F3(x3), F4(x4))× c13|5(F1|5(x1|x5), F3|5(x3|x5))× c23|4(F2|4(x2|x4), F3|4(x3|x4))

×c35|4(F3|4(x3|x4), F5|4(x5|x4))× c12|35(F1|35(x1|x3, x5), F2|35(x2|x3, x5)). (7)

We now derive the entropy copulae in association with some moment constraints between copula

variables 1,2,3,4,5,6 in the density decomposition (7) . We initially construct maximum entropy

copulas for unconditional copula c15, c46, c34, c45. Now, is essential to decide which bases should

be taken and how many discretization points should be used in each case. We start to outline our

procedure for the unconditional copula c15. Other unconditional copula c46, c34, c45 can be followed

in a similar way.

We could simply choose basis functions based on the method described in [15] i.e. starting with

simple bases, and moving to more complex ones, and including them until we are satisfied with our

approximation. Our OP basis functions are as follows,

ψ1(.)ψ1(.), ψ1(.)ψ2(.), ψ2(.)ψ1(.), ψ1(.)ψ3(.), ψ3(.)ψ1(.),

ψ2(.)ψ2(.), ψ2(.)ψ3(.), ψ3(.)ψ2(.), ψ1(.)ψ4(.), ψ4(.)ψ1(.),

ψ1(.)ψ5(.), ψ5(.)ψ1(.), ψ2(.)ψ4(.), ψ4(.)ψ2(.), ψ3(.)ψ3(.), . . .

OPS basis function constructed using Gram-Schmidt process

ϕ1(.)ϕ1(.), ϕ1(.)ϕ2(.), ϕ2(.)ϕ1(.), ϕ1(.)ϕ3(.), ϕ3(.)ϕ1(.),

ϕ2(.)ϕ2(.), ϕ2(.)ϕ3(.), ϕ3(.)ϕ2(.), ϕ1(.)ϕ4(.), ϕ4(.)ϕ1(.),

ϕ1(.)ϕ5(.), ϕ5(.)ϕ1(.), ϕ2(.)ϕ4(.), ϕ4(.)ϕ2(.), ϕ3(.)ϕ3(.), . . .

and then considered OFS basis functions are:

φ1(.)φ1(.), φ1(.)φ2(.), φ2(.)φ1(.), φ1(.)φ3(.), φ3(.)φ1(.),

φ2(.)φ2(.), φ2(.)φ3(.), φ3(.)φ2(.), φ1(.)φ4(.), φ4(.)φ1(.),

φ1(.)φ5(.), φ5(.)φ1(.), φ2(.)φ4(.), φ4(.)φ2(.), φ3(.)φ3(.), . . .
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Following the explanations to select basis function in an optimal manner, we add the basis functions

by using stepwise method in [15]. In this method, at each stage, we propose to assess the log-

likelihood of adding each additional basis function. We then include the function which produces

the largest increase in the log-likelihood. Also, according to [15], in order to get optimal results,

first four bases have been considered.

We are now able to construct the entropy copula density C15 with respect to the uniform

distributions given the corresponding OP, OPS and OFS constraints above, using the method

described in this paper. We are initially required to determine the number of discretization points

(grid size). Clearly, a larger grid size will provide a better approximation to the continuous copula,

however more computation time will be required. Similarly, the approximation will become more

precise, if we run the D1AD2 algorithm with more iterations, and therefore, this would cost us

more computation time. It can be concluded that the number of iterations will depend on the grid

size. We consider the approximation errors in the range 1× 10−1 to 1× 10−24. Thus, the larger the

number of grid points used, the larger the number of iterations required for convergence; which is

true at all error levels. For all grid sizes, a higher of number of iterations are required initially for

improving the accuracy of computation; once the error is reduced, the number of iterations can be

decreased. In this example, we choose a grid size of 200× 200 throughout.

Based on the information given above regarding the grid size, number of iterations and error

size, we can derive the entropy copula C15 associated with the chosen constraints. Expectations

α of the selected basis, Lagrange multiplies values (parameter values) λ and Log-Likelihood are

summarized in Table 3. Log-Likelihood (L) for PS, OPS, and OFS basis are 93.49, 98.59, and

38.76, respectively. The corresponding copulas in terms of the OP, OPS and OFS bases are plotted

in Panels (a), (b), and (c) in Figure 3 respectively.

Method Base (α1, α2, α3, α4) (λ1, λ2, λ3, λ4) L

PS (ψ1ψ1, ψ2ψ1, ψ5ψ5, ψ1ψ2) ( 0.27,0.18,0.04,0.19) ( 14.2,-7.9,3.5,-4.1) 93.49

OPS (ϕ1ϕ1, ϕ2ϕ2, ϕ4ϕ2, ϕ2ϕ4) ( 0.29,0.13,0.08,0.07) ( 0.31,0.09,0.08,0.04) 95.59

OFS (φ2φ2, φ1φ1, φ3φ2, φ3φ4) ( 0.16,0.08,0.07,0.07) ( 0.16,0.08,0.07,0.04) 37.76

Table 1: The minimally informative copula given moment constraints for OP, OPS, and OFS bases between 1 and 5
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(a) (b) (c)

Figure 3: The minimally informative copula given moment constraints between variable 1 and 5; Panel (a): PS basis,

Panel (b): OPS basis, and Panel (c): OFS basis

Consider the minimum information copula computation in PCC-DAG structure such that in-

stead of choosing the grid equidistant (or uniform grid), we could choose points where more points

are included in the tail of the distribution. This could result in outperforming of Gaussian models

by non-Gaussian models approximated based on the method described in this paper. However,

we have used Chebyshev points for copula approximation in our grid using minimum information

method instead of uniform grid, since they allow for more points in the tail or boundaries of our

approximation. This is very important especially in financial applications. Chebyshev points are

roots of Chebyshev Polynomial; the discussion and some details are presented in [36]. In order to

compare uniform grid and Chebyshev, we consider the above discussion with respect to the uni-

form grid size deriving the minimum information copula C15 which is associated with the previous

chosen constraints. Figure (4) illustrates the entropy copula C15 Chebyshev grid which allow for

more points in the tail.
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Figure 4: Entropy copula C15 using Chebyshev grid.

One of the main advantages of using OPS and OFS bases over the ordinary polynomial series

(considered in Bedford et al., 2015) is that the D1AD2 algorithm converges much faster using these

bases. This is because of the following nice property of these two bases that adding a new basis to

the kernel defined in (3) and used to construct the entropy copula, does not change the Lagrange

multipliers of the already used in the kernel. But, this is not the case when one is applying the

PS bases (as proposed in [8]) to calculate the entropy copula. In this situation, we need to run the

D1AD2 algorithm each time a new basis is added to the already chosen bases, and the parameter

values are changing accordingly. Therefore, more iterations are required for the D1AD2 algorithm

to converge. The optimisation time required for the D1AD2 algorithm using the OPS bases is 9.83

seconds and for the OFS bases is 8.89, while this time for the PS bases is 29.87 seconds which is

almost twofold of the former one and almost two and half times more than the latter one.

The other unconditional copula in the decomposition (7) i.e. C46,C34, and C45 could be calcu-

lated in the similar way. Using the step-wise method, we select the four PS, OPS and OFS bases

that along with their corresponding constraints, resulting Lagrange multipliers, and Log-Likelihood

(L) are given in Table 2. The approximated maximum entropy copula for these unconditional

copula in terms of the PS, OPS and OFS bases is shown in Panels of Figure 5.

Now, the conditional copulas C13|5, C23|4 and C35|4 can similarly be approximated using the

entropy approach. We only illustrate construction of the conditional maximum entropy copula

between C13|5. C23|4 and C35|4 can be similarly approximated in a similar way. In order to calculate

this copula, we divide the support of 5 into some arbitrary sub- intervals or bins and then construct
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Figure 5: The minimally informative copula given moment constraints, Panel (a):C46 for PS basis, Panel (b):C46 for

OPS basis, Panel (c):C46 for OFS basis, Panel (d):C34 for PS basis, Panel (e):C34 for OPS basis, Panel (f):C34 for

OFS basis, Panel (g):C45 for PS basis, Panel (h):C45 for OPS basis, and Panel (i):C45 for OFS basis.
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Copula Base (α1, α2, α3, α4) (λ1, λ2, λ3, λ4) L

PS:(ψ1ψ1, ψ5ψ5, ψ5ψ1, ψ1ψ4) ( 0.23,0.02,0.06,0.08) ( 1.4,6.5,-4.7,-4.6) 44.19

C46 OPS:(ϕ1ϕ1, ϕ2ϕ2, ϕ4ϕ2, ϕ5ϕ5) ( -0.18,0.13,-0.06,0.06) ( -0.18,0.12,-0.06,0.06) 51.03

OFS:(φ2φ2, φ1φ1, φ2φ4, φ4φ2) ( -0.11,0.1,-0.08,-0.07) ( -0.11,0.1,-0.08,0.02) 30.37

PS:(ψ1ψ1, ψ1ψ2, ψ2ψ5, ψ2ψ1) ( 0.29,0.21,0.08,0.21) ( 36,27.5,10.4,-5.3) 379.02

C34 OPS:(ϕ1ϕ1, ϕ2ϕ2, ϕ5ϕ3, ϕ1ϕ2) ( 0.57,0.35,0.1,-0.07) ( 0.73,0.23,0.09,0.01) 392.4

OFS:(φ2φ2, φ1φ1, φ4φ2, φ2φ4) ( 0.35,0.3,0.19,0.01) ( 0.4,0.3,0.2,-0.003) 245.49

PS:(ψ1ψ1, ψ5ψ5, ψ1ψ2, ψ1ψ4) ( 0.32,0.07,0.23,0.15) ( 144,-18.4,-96.3,42.3) 1479.6

C45 OPS:(ϕ1ϕ1, ϕ2ϕ2, ϕ3ϕ3, ϕ3ϕ1) ( 0.88,0.78,0.67,-0.01) ( 2.8,0.73,0.67,-0.01) 1506.3

OFS:(φ2φ2, φ1φ1, φ2φ4, φ3φ1) ( 0.8,0.7,0.1,0.09) ( 1.6,1.2,0.52,-0.001) 1366.1

Table 2: The minimally informative copula given moment constraints for C46, C34, and C45

the conditional copula within each bin. To do so, we select bases in the same way as for the

unconditional copulas and fit the copula to the calculated mean values or constraints. In this

case, we use four bins so that the first copula is for 13|5 ∈ (0, 0.25). The other bins are 13|5 ∈

(0.25, 0.5), 13|5 ∈ (0.5, 0.75), and 13|5 ∈ (0.75, 1). We can follow this process again for the remaining

bins. Table 3 shows the mean values or constraints (denoted by αi) and corresponding Lagrange

multipliers (λi) required to build the conditional entropy copula between 1|5 and 3|5 for PS, OPS

and OFS bases, respectively. The log-likelihood of the approximated copula in each bin is also

reported in these tables. The Log-Likelihood over all bins for C23|4 and C35|4 for (PS, OPS, OFS)

basis are (16.13, 39.1, 38.63) and (223.69, 345.15, 246.99), respectively.

We can obtain the conditional maximum entropy copula, C12|35, similarly by dividing each of

the conditioning variables’ supports into four bins. Then the entropy copulas for 1|35 and 2|35 are

calculated on each combination of bins for 3 and 5 which makes 16 bins altogether for it. The bins,

bases and log-likelihoods associated with each copula based on the PS, OPS and OFS basis are

given in Table 4.

The log-likelihood of the overall non-Gaussian PCC-DAG model using the PS, OPS and OFS

bases are 2390.44, 2669.69 and 2093.75, respectively. The use of log-likelihood as a goodness-of-fit

criterion is not inconsistent with minimum information modeling. Jaynes [26] uses the parameter

25



Interval Bases (α1, α2, α3, α4) (λ1, λ2, λ3, λ4) L

PS:(ψ1ψ1, ψ1ψ2, ψ1ψ3, ψ1ψ4) (0.12,0.06,0.03,0.02) (38.1,-115,129.7,-44.3) 35.9

0 < M < 0.25 OPS:(ϕ1ϕ1, ϕ4ϕ3, ϕ1ϕ4, ϕ5ϕ1) (0.51,-0.15,-0.2,0.12) (0.4,-0.08,-0.1,0.02) 52.99

OFS:(φ5φ5, φ1φ1, φ2φ2, φ2φ3) (0.09,0.12,0.2,0.08) (0.15,0.09,0.18,-0.05) 18.21

PS:(ψ2ψ1, ψ1ψ3, ψ1ψ5, ψ1ψ4) (0.13,0.08,0.04,0.05) (2.5,40.7,57.9,-98.4) 5.4

0.25 < M < 0.5 OPS:(ϕ1ϕ1, ϕ2ϕ3, ϕ5ϕ4, ϕ1ϕ4) (0.12,-0.06,0.08,0.04) (0.12,-0.08,0.1,-0.05) 9.2

OFS:(φ2φ5, φ5φ5, φ1φ1, φ2φ2) (-0.12,-0.01,0.06,0.06) (-0.1,-0.01,0.05,-0.01) 6.7

PS:(ψ5ψ5, ψ4ψ5, ψ1ψ1, ψ3ψ4) (0.04,0.05,0.32,0.07) (7.4,4.3,2.1,-10.3) 7.19

0.5 < M < 0.75 OPS:(ϕ3ϕ3, ϕ1ϕ1, ϕ3ϕ1, ϕ2ϕ3) (0.07,0.1,0.1,0.07) (0.06,0.13,0.16,-0.05) 10.3

OFS:(φ4φ2, φ5φ3, φ1φ3, φ2φ4) (0.14,0.03,0.05,0.07) (0.13,0.04,0.06,-0.04) 6.3

PS:(ψ1ψ1, ψ5ψ5, ψ2ψ1, ψ5ψ2) (0.4,0.09,0.3,0.14) (11.7,0.65,-10.3,2.7) 30.5

0.75 < M < 1 OPS:(ϕ1ϕ1, ϕ2ϕ5, ϕ4ϕ1, ϕ1ϕ5) (0.4,0.12,0.06,0.06) (0.4,0.09,0.06,0.07) 40.5

OFS:(φ2φ2, φ4φ2, φ3φ1, φ2φ4) (0.2,0.14,0.09,0.09) (0.14,0.13,0.08,-0.01) 17.58

Table 3: Minimaly informative copula given moment constraints between 1 and 3 given 5

maximum likelihood estimates associated with the form of the minimum information distribution

to justify the connection in the constraint rule of expectations and frequencies. The use of log-

likelihood is also recommended as a plausible model selection tool within minimum information

framework [8].

However, the best model should be typically selected by trading-off between the goodness of fit

of the candidate models and their model complexity. When there are several competing copulas,

and one wishes to know which copula fits the data best. The selected copula model should be

the one that minimizes the Kullback-Leibler information between the copula model and the true

unknown copula. The Akaike information criteria (AIC) can be thus considered as a plausible tool,

which also minimizes the information between the candidate models, to select the best model from

the parametric families and non-parametric candidate models [20]. In this regard, the AIC is first

computed for each model with the same data, then the “best” model is the one with the least AIC

value. It is claimed that AIC is also more computationally efficient than other copula selection

methods [20]. Since, the comparison of the log-likelihood of the proposed non-parametric model

and the parametric model [3, 4] is not conclusive, as the model complexity measured by the number

of parameters is not considered. As suggested above, we compare these models based on the AIC
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Interval Bases (PS,OPS,OFS) L(PS,OPS,OFS)

0 < 3 < 0.25 &

0 < 5 < 0.25 (ψ1ψ1, ψ3ψ1, ψ2ψ4, ψ5ψ2), (ϕ1ϕ1, ϕ3ϕ3, ϕ3ϕ1, ϕ3ϕ5), (φ2φ2, φ1φ1, φ4φ5, φ5φ2) (19.2,16,8)

0 < 3 < 0.25 &

0.25 < 5 < 0.5 (ψ3ψ5, ψ2ψ3, ψ4ψ4, ψ5ψ4), (ϕ5ϕ5, ϕ3ϕ5, ϕ2ϕ3, ϕ2ϕ4), (φ4φ4, φ1φ2, φ5φ4, φ2φ1) (0.9,8.5,3.6)

0 < 3 < 0.25 &

0.5 < 5 < 0.75 (ψ4ψ1, ψ1ψ5, ψ2ψ3, ψ5ψ5), (ϕ1ϕ5, ϕ2ϕ4, ϕ2ϕ1, ϕ2ϕ3), (φ2φ4, φ5φ1, φ1φ3, φ1φ4) (2.6,16.4,14.9)

0 < 3 < 0.25 &

0.75 < 5 < 1 (ψ1ψ1, ψ1ψ2, ψ1ψ4, ψ5ψ1), (ϕ4ϕ5, ϕ4ϕ3, ϕ5ϕ2, ϕ2ϕ2), (φ3φ3, φ3φ5, φ3φ4, φ4φ1) (0.53,4.4,5.3)

0.25 < 3 < 0.5 &

0 < 5 < 0.25 (ψ1ψ3, ψ2ψ2, ψ5ψ5, ψ1ψ5), (ϕ1ϕ1, ϕ4ϕ2, ϕ3ϕ4, ϕ2ϕ5), (φ2φ2, φ4φ2, φ3φ1, φ3φ3) (9.1,8.8,6)

0.25 < 3 < 0.5 &

0.25 < 5 < 0.5 (ψ1ψ1, ψ2ψ1, ψ3ψ1, ψ5ψ2), (ϕ4ϕ5, ϕ5ϕ3, ϕ1ϕ1, ϕ3ϕ4), (φ4φ2, φ1φ2, φ1φ3, φ3φ1) (4.4,10.5,4.9)

0.25 < 3 < 0.5 &

0.5 < 5 < 0.75 (ψ3ψ5, ψ1ψ1, ψ2ψ3, ψ1ψ2), (ϕ4ϕ2, ϕ3ϕ5, ϕ1ϕ2, ϕ5ϕ1), (φ4φ2, φ4φ1, φ5φ2, φ1φ2) (2.4,5.5,3.8)

0.25 < 3 < 0.5 &

0.75 < 5 < 1 (ψ5ψ1, ψ1ψ2, ψ2ψ2, ψ4ψ1), (ϕ2ϕ1, ϕ3ϕ5, ϕ5ϕ2, ϕ1ϕ1), (φ2φ4, φ1φ2, φ4φ2, φ1φ1) (4.9,7.9,2.9)

0.5 < 3 < 0.75 &

0 < 5 < 0.25 (ψ5ψ5, ψ4ψ3, ψ2ψ1, ψ1ψ1), (ϕ1ϕ5, ϕ4ϕ3, ϕ5ϕ5, ϕ5ϕ2), (φ2φ4, φ1φ2, φ5φ4, φ5φ1) (3.7,7.5,3.7)

0.5 < 3 < 0.75 &

0.25 < 5 < 0.5 (ψ3ψ5, ψ1ψ3, ψ2ψ4, ψ1ψ1), (ϕ2ϕ3, ϕ3ϕ2, ϕ5ϕ1, ϕ5ϕ5), (φ4φ2, φ4φ1, φ5φ2, φ1φ2) (2.8,7.1,3.8)

0.5 < 3 < 0.75 &

0.5 < 5 < 0.75 (ψ1ψ2, ψ5ψ4, ψ4ψ4, ψ5ψ3), (ϕ1ϕ1, ϕ2ϕ4, ϕ3ϕ5, ϕ5ϕ5), (φ2φ2, φ3φ3, φ1φ4, φ3φ1) (4.5,6,4)

0.5 < 3 < 0.75 &

0.75 < 5 < 1 (ψ1ψ1, ψ1ψ5, ψ1ψ4, ψ1ψ3), (ϕ1ϕ5, ϕ1ϕ1, ϕ2ϕ2, ϕ2ϕ3), (φ2φ4, φ1φ2, φ4φ2, φ1φ1) (2.6,3,2.9)

0.75 < 3 < 1 &

0 < 5 < 0.25 (ψ5ψ1, ψ1ψ1, ψ3ψ1, ψ1ψ2), (ϕ2ϕ4, ϕ4ϕ3, ϕ5ϕ2, ϕ2ϕ1), (φ1φ2, φ2φ5, φ4φ3, φ4φ2) (1.2,7.2,1.7)

0.75 < 3 < 1 &

0.25 < 5 < 0.5 (ψ5ψ3, ψ3ψ1, ψ5ψ5, ψ2ψ3), (ϕ4ϕ5, ϕ2ϕ4, ϕ3ϕ3, ϕ1ϕ5), (φ5φ5, φ1φ4, φ4φ4, φ5φ2) (0.99,2.3,3)

0.75 < 3 < 1 &

0.5 < 5 < 0.75 (ψ5ψ5, ψ2ψ5, ψ1ψ4, ψ5ψ1), (ϕ4ϕ2, ϕ1ϕ5, ϕ5ϕ1, ϕ2ϕ1), (φ4φ2, φ3φ1, φ5φ2, φ3φ4) (2.2,6.5,6.9)

0.75 < 3 < 1 &

0.75 < 5 < 1 (ψ3ψ2, ψ1ψ5, ψ2ψ3, ψ1ψ1), (ϕ2ϕ1, ϕ1ϕ2, ϕ5ϕ1, ϕ1ϕ5), (φ1φ1, φ3φ2, φ4φ3, φ2φ3) (6.7,5.7,2.2)

Table 4: entropy copula for given moment constraints between 1 and 2 given 3 and 5
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Type of copula AIC

Bauer et al. (2012) method -3078.62

entropy copula based -4187.24

on OFS basis

entropy copula -4780.88

based on PS basis

entropy copula -5339.38

based on OPS basis

Table 5: Comparison between different models.

which includes the model complexity for the parametric method. The AIC of the overall Non-

Gaussian PCC-DAG model using the PS, OPS and OFS bases are -4780.88, -5339.38 and -4187.24,

respectively. These values are considerably less than the AIC of the parametric non-Gaussian PCC-

DAG models using Bauer et al. (2012) method, (as the AIC equals to -3078.62). We illustrate the

corresponding results in Table 5.

The size of observed data could be considered as a source of potential error when the minimum

information vine model is applied for modeling a high-dimensional problem. As the dimensional-

ity (or number of uncertain variables) increases, the number of trees representing the structure of

pair-copula model will also increase (see also [12]). The conditional distributions/expectations at

lower levels of a deeper vine model must then be estimated based on fewer data points which can

be then less accurate and noisier (see also [16] for further details with an application in modelling

flood events with the limited data). This problem could be resolved by ignoring some unnecessary

conditional dependencies (the so-called simplifying assumption) in the sense discussed in[2, 43].

An alternative method is to approximate fully conditional pair-copula models using Gaussian pro-

cesses [35]. This model shows promising results with better predictive performance than the method

that ignores conditional dependencies. This simplifying pair-copula model is more appropriate for

high-dimensional problems.

In this paper, the conditional independence statements play a crucial role in simplifying the

model structure [22]. Thus, the computation of the conditional probabilities in practice could not
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be complex unless the parent set is considerably large. In the case that the parent set of a variable

of interest is very large, the corresponding conditional probability could be estimated using the

Gaussian process emulators as suggested in [35].

6. Simulation study

We can now discuss the data simulations derived from the presented minimum information

PCC-DAG in order to provide comparisons between correlations in the simulated data and in the

observed data. This is based on 2000 simulations. We follow the simulation method proposed

by [30] subjected to sampling from the cumulative distributions. This simulation method has been

followed by Daneshkhah et al. [15] references cited therein. Moreover, this simulation has been

updated using provided simulation method from PCC-DAG in parametric status in [4, 3]. Their

sampling strategy is as follows: sample two independent variables distributed uniformly on intervals

[0, 1], denoted by U1, U2, and calculate values of the original variables using the following equations:

x1 = u1, x2 = F−12|1 (u2|x1),

where xi is realization values of Xi, and ui is realization values of Ui. Finally, this has been applied

to all variables in PCC-DAG. Please note that the order of variables for childs and parents in this

simulation is important.

It can be observed that the simulated data and the original data have similar dependency

patterns. Table 6 shows the rank correlations between the variables of interest calculated from

the original observed data, that are based on the simulated data taken from the fitted PCC-DAG

through entropy copula on OPS basis. Other bases can be similarly simulated, however they are not

reported and considered here. By comparing these correlations, we can conclude that the results

show strong consistency and the estimated correlations based on the entropy PCC-DAG are closer

to the ones that are originated from the observed data. Furthermore, we can compare entropy

PCC-DAG and parametric PCC-DAG which estimated correlations based on the entropy PCC-

DAG using OPS basis are closer to the ones that are derived from the observed data rather than

the parametric PCC-DAG.
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Table 6: Correlation coefficients of the original data and the simulated data

Original

LBTBond IMA IBrX WldSm Wldlg ACI

LBTBond -0.069 -0.373 0.596 0.571 -0.465

IMA 0.112 0.024 0.022 0.211

IBrX 0.197 0.197 0.435

WldSm 0.938 -0.080

Wldlg -0.093

Parametric PCC-DAG

LBTBond IMA IBrX WldSm Wldlg ACI

LBTBond -0.054 -0.360 0.458 0.479 -0.453

IMA 0.110 0.020 0.019 0.185

IBrX 0.240 0.223 0.342

WldSm 0.924 -0.088

Wldlg -0.117

Entropy PCC-DAG

LBTBond IMA IBrX WldSm Wldlg ACI

LBTBond -0.066 -0.366 0.526 0.513 -0.458

IMA 0.112 0.022 0.020 0.197

IBrX 0.207 0.212 0.417

WldSm 0.933 -0.083

Wldlg -0.102
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7. Discussion and Conclusions

Gaussian distributions are generally used for modelling and computing financial asset returns,

risk assessment of capital allocation by banks, and estimating risks associated with financial portfo-

lios in actuarial science. However, the existing internal Gaussian models are limited when it comes

to inference from tails. As opposed to normal Gaussian distributions, copulae are known to be a

suitable and powerful means for overcoming the flaws in the existing techniques. An example for

the application of copulae in the above-mentioned areas, would be the claim allocations and fees’

assignments for investigators, experts, etc. as part of allocated loss adjustment expense processes.

An additional case for the application of copulae, would be risk assessments conducted by banks and

credit institutions for credit and market evaluations and judgements; an existing flaw with many of

the existing techniques, known to be internal bottom-up approaches, for such risks assessments, as

such techniques are incapable of modelling joint distribution of non-identical risks.

There are non-identical approaches to inference in multivariate distributions. Bayesian networks

and copulae are generally very suitable for modelling such probability distributions. In the applica-

tions where tail properties are important for predictive probabilistic modelling, many of the existing

techniques are limited and inadequate. One of the well-known techniques that can conveniently in-

fer from tail properties is the multivariate Gaussian copula. As stated above, many of the current

techniques used for financial application modelling, assume a normal Gaussian distribution of events

for simplifying the complex nature of the financial scenarios (as discussed in [8, 13]). The proposed

methodology for utilising vine structure for approximation, would enable the modeller to simply

establish non-constant conditional correlations, and minimise the chance of risk underestimation.

In this paper, we extended the novel method originally presented by [3, 4] to approximate a

multivariate distribution by any Non-Gaussian PCC-DAG structure. The main idea to implement

this approximation method is to use the entropy copulae that can be determined to any required

degree of precision, based on the available data. The approximation method used in this paper

is flexible and easy to implement. The standing technical assumptions we require is that the

multivariate density of DAG under study is continuous and is non-zero. In order to approximate

a multivariate distribution for the observed data, one only needs to specify a DAG structure, a

basis family, and the expected values for the certain functions associated with some constraints

on each pairwise copula. Our focus in this paper was to introduce pair-copula structure that can
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be approximated by any given non-Gaussian DAG to any required degree of approximation with

different bases family. We concentrated on the PS, OPS and OFS bases. The OPS and OFS bases

exhibit an appropriate property, which makes the distribution approximation faster in the sense

that adding a new element to their expansion does not change coefficient of the already found

shorter expansion, where any new item has in general non-zero projection on previous items.

Any functions can be used to create the minimum information copulas used here, and in some

applications it may be natural to use functions that are themselves computed in computer codes.

Because of the frequent evaluation calls needed to determine the minimum information model, it

then makes sense to use emulators (particularly, Gaussian process as proposed in [43]) or Kriging

models as a way to speed up the computations.

As a future work, we wish to extend the methodologies presented in [39] to estimate the non-

Gaussian DAG model and compare it with the proposed method in this paper. It would be com-

pelling to investigate how the model can be simplified further using the approaches presented

in [39] and considering the conditional independence statements. Furthermore, it would be desired

to extend the modified AIC given in Nagler et al. [39] to a more comprehensive model selection

tool so that the non-parametric model presented in this paper could be compared with other non-

parametric/parametric model candidates.
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