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1. Abstract

We provide a brief survey of our current developments in the simulation-based de-
sign of novel families of mesoscale porous materials using computational kinetic theory.
Prospective applications on exascale computers are also briefly discussed and commented
on, with reference to two specific examples of soft mesoscale materials: microfluid crystals
and bi-continuous jels.

2. Introduction

Complex fluid-interface dynamics [1, 2, 3, 4], disordered liquid-liquid emulsions [5, 6],
soft-flowing microfluidic crystals [7, 8, 9, 10], all stand as complex states of matter which,
besides raising new challenges to modern non-equilibrium thermodynamics, pave the way
to many engineering applications, such as combustion and food processing [11, 12], as
well as to questions in fundamental biological and physiological processes, like blood
flows and protein dynamics [13].

In particular this novel state of soft matter opens up exciting prospects
for the design of new materials whose effective building blocks are droplets
instead of molecules [14, 7, 15, 16].

The design of new materials has traditionally provided a relentless stimu-
lus to the development of computational schemes spanning the full spectrum
of scales, from electrons to atoms and molecules, to supramolecular struc-
tures all the way up to the continuum, encompassing over ten decades in
space (say from Angstroms to meters) and at least fifteen in time (from fem-
toseconds to seconds, just to fix ideas). Of course, no single computational
model can handle such huge spectrum of scales, each region being treated
by dedicated and suitable methods, such as electronic structure simulations,
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ab-initio molecular dynamics, classical molecular dynamics, stochastic meth-
ods, lattice kinetic theory, finite difference and finite elements for continuum
fields. Each of these methods keeps expanding its range of applicability, to the
point of generating overlap regions which enable the development of powerful
multiscale procedures [17, 18, 19, 20, 21, 22, 23].

In this paper we focus on a very specific window of material science, meso-
materials, namely materials whose “effective” constitutive bricks are neither
atoms nor molecules, but droplets instead.

Obviously, droplets cannot serve as “super-molecules” in a literal sense,
since they generally lack chemical specificity. Yet, in recent years, droplets
have revealed unsuspected capabilities of serving as building blocks (motifs)
for the assembly of new types of soft materials, such as dense foams, soft
glasses, microfluidic crystals and many others [14, 7, 15, 16].

Droplets offer a variety of potential advantages over molecules, primarily
the possibility of feeding large-scale productions of soft materials, such as
scaffolds for tissue engineering and other biomedical applications [1, 2, 24].

From a computational standpoint, mesoscale materials offer the oppor-
tunity to deploy mesoscale models with reduced needs of down-coupling to
molecular dynamics and even less for to upward coupling to continuum meth-
ods. Mesoscale particle methods [25, 26] and especially lattice Boltzmann
methods [27, 28, 29] stand out as major techniques in point. In this paper
we focus precisely on the recent extensions of the latter which are providing
a versatile tool for the computational study of such droplet-based mesoscale
materials. The main issue of this class of problems is that they span six or more
orders of magnitude in space (nm to mm) and nearly twice as many in time, thus mak-
ing the direct simulation of their dynamics unviable even on most powerful present-day
supercomputers. Why six orders? Simply because the properties of such ma-
terials are to a large extent controlled by nanoscale interactions between
near-contact fluid-fluid interfaces, which affect the behaviour of the entire
device, typically extending over millimiter-centimeters scales. Why twice as
many in time? Typically, because the above processes are driven by capil-
lary forces, resulting in very slow motion and long equilibration times, close
to the diffusive scaling tdif ∼ L2, tdif being the diffusive equilibration time
of a device of size L. Notwithstanding such huge computational demand, a clever
combination of large-scale computational resources and advanced multiscale modelling
techniques may provide decisive advances in the understanding of the aforementioned
complex phenomena and on the ensuing computational design of new mesoscale materi-
als. Many multiscale techniques have emerged in the past two decades, based on static or
moving grid methods, as well as various forms of particle dynamics, both at the atomistic
and mesoscale levels [30, 31, 32].

In this paper, we shall be concerned mostly with a class of mathematical models
known as Lattice Boltzmann (LB) methods, namely a lattice formulation of a Boltz-
mann’s kinetic equation, which has found widespread use across a broad range of prob-
lems involving complex states of flowing matter at all scales, from macroscopic fluid
turbulence, to micro and nanofluidics [27].

Among others, one of the main perks of the LB method is its excellent amenability
to massively parallel implementations, including forthcoming Exascale platforms. From

2

Jo
ur

na
l P

re
-p

ro
of



the computational point of view an Exascale system (the supercomputer class foreseen
in 2022) will be able to deliver a peak performance of more then one billion of billions
floating-point operations per second (1018), an impressive figure that, once properly
exploited, can benefit immensely soft matter simulations.

As a matter of fact, attaining Exaflop performance on these applications is an open
challenge, as it requires a synergic integration of many different skills and a performance-
oriented match between system architecture and the algorithmic formulation of the math-
ematical model.

In this paper we provide a description of the different key points that need to be
addressed to achieve Exascale performance in Lattice Boltzmann simulations of soft
mesoscale materials.

The article is organized as follows.
In section 3, for the sake of self-consistency, we provide a brief introduction to the

main features of the LB method.
In section 4 a qualitative description of the up-to-date performance of pre-exascale

computers is discussed, together with an eye at LB performances on such pre-exascale
(Petascale) computers for macroscopic hydrodynamics.

In section 5 a concrete LB application to microfluidic problems is presented. In section
6 a new high-perfomance lattice Boltzmann code for colloidal flows is presented.

Finally, in section 7 partial conclusions are drawn together with an outlook of future
developments

3. Basics of Lattice Boltzmann Method

The LB method was developed in the late 1980’s in a (successful) attempt to remove
the statistical noise hampering the lattice gas cellular automata (LGCA) approach to
fluid dynamic simulations [27].
Over the subsequent three decades, it has witnessed an impressive boost of applications
across a remarkably broad spectrum of complex flow problems, from fully developed
turbulence to relativistic flow all the way down to quark-gluon plasmas [22, 33].
The key idea behind LB is to solve a minimal Boltzmann Kinetic Equation (BKE) on a
suitable phase-space-time crystal.

This means tracing the dynamics of a set of discrete distribution functions (often
named populations) fi(~x; t), expressing the probability of finding a particle at position ~x
and time t with a discrete velocity ~v = ~ci.

To correctly solve the Boltzmann kinetic equation, the set of discrete velocities must
be chosen in order to secure enough symmetry to comply with mass-momentum-energy
conservation laws of macroscopic hydrodynamics as well as with rotational symmetry.
In Fig. 1, two typical 3D lattices used for current LB simulations are shown, one with a
set of 27 velocities (D3Q27, left) and the other one with 19 discrete velocities (D3Q19,
right).

In its simplest and most compact form, the LB equation reads as follows:

f(~x+ ~ci, t+ 1) = f ′i(~x; t) ≡ (1− ω)fi(~x; t) + ωfeqi (~x; t) + Si, i = 1, b (1)

where ~x and ~ci are 3D vectors in ordinary space, feqi are the equilibrium distribution
functions and Si is a source term. Such equation represents the following situation:
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Figure 1: Left: D3Q27 lattice, a three dimensional mesh composed of a set of 27 discrete velocities.
Right: D3Q19 lattice, a three dimensional mesh composed of a set of 19 discrete velocities.

the populations at site ~x at time t collides (a.k.a. collision step) and produce a post-
collision state f ′i(~x; t), which is then scattered away to the corresponding neighbour (a.k.a.
propagation step) at ~xi at time t+ 1.

The lattice time step is made unitary, so that ~ci is the length of the link connecting a
generic lattice site node ~x to its b neighbors, located at ~xi = ~x+~ci. In the D3Q19 lattice,
for example, the index i runs from 1 to 19, hence there are 19 directions of propagation
(i.e. neighbors) for each grid-point ~x.

The local equilibrium populations are provided by a lattice truncation, to second
order in the Mach number M = u/cs, of the Maxwell-Boltzmann distribution, namely

feqi (~x; t) = wiρ(1 + ui + qi) (2)

where wi is a set of weights normalized to unity, ui = ~u·~ci
c2s

and qi = (ciacib−c2sδab)uaub/2c4s,

with cs equal to the speed of sound in the lattice, and an implied sum over repeated latin
indices a, b = x, y, z.

The source term Si of Eq. 1 typically accounts for the momentum exchange between
the fluid and external (or internal) fields, such as gravity or self-consistent forces describ-
ing potential energy interactions within the fluid.

By defining fluid density and velocity as

ρ =
∑
i

fi ~u = (
∑
i

fi~ci)/ρ, (3)

the Navier-Stokes equations for an isothermal quasi-incompressible fluid can be recovered
in the continuum limit if the lattice has the suitable symmetries aforementioned and the
local equilibria are chosen according to Eq. 2.

Finally, the relaxation parameter ω in Eq. 1 controls the viscosity of the lattice fluid
according to

ν = c2s(ω−1 − 1/2). (4)

Further details about the method can be found in Ref. [28, 34].
One of the main strengths of the LB scheme is that, unlike advection, streaming

is i) exact, since it occurs along straight lines defined by the lattice velocity vectors
~ci, regardless of the complex structure of the fluid flow, and ii) it is implemented via
a memory-shift without any floating-point operation. This also allows to handle fairly
complex boundary conditions [35] in a more conceptually transparent way with respect
to other mesoscale simulation techniques [36].
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3.1. Multi-component flows

The LB method successfully extends to the case of multi-component and multi-phase
fluids. In a binary fluid, for example, each component (denoted by r and b for red and
blue, respectively) comes with its own populations plus a term modeling the interactions
between fluids.

In this case the equations of motion read as follows:

fri (~x+ ~ci; t+ 1) = (1− ωeff )fri (~x; t) + ωefff
eq,r
i (ρr; ~u) + Sr

i (~x; t) (5)

f bi (~x+ ~ci; t+ 1) = (1− ωeff )f bi (~x; t) + ωefff
eq,b
i (ρb; ~u) + Sb

i (~x; t) (6)

ωeff = 2c2s/(2ν̄ − c2s) (7)

1

ν̄
=

ρk
(ρk + ρk̄)

1

νk
+

ρk̄
(ρk + ρk̄)

1

νk̄
(8)

where ωeff is related to the kinematic viscosity ν̄ of the mixture of the two fluids.

The extra term Sr
i (~x; t) of Eq. 5 (and similarly for Sb) can be computed as the

difference between the local equilibrium population, calculated at a shifted fluid velocity,
and the one taken at the effective velocity of the mixture [37], namely:

Sr
i (~r; t) = feq,ri (ρr, ~u+

~F r∆t

ρr
)− feq,ri (ρr, ~u). (9)

Here ~F r is an extra cohesive force, usually defined as [38]

~F r(~x, t) = ρr(~x, t)GC

∑
i

wiρ
b(~x+ ~ci, t)~ci, (10)

capturing the interaction between the two fluid components. In Eq. 10, GC is a parameter
tuning the strength of this intercomponent force, and takes positive values for repulsive
interactions and negative for attractive ones.

This formalism has proved extremely valuable for the simulation of a broad variety
of multiphase and multi-component fluids and represents a major mainstream of current
LB research.

4. LB on Exascale class computers

Exascale computers are the next major step in the high performance computing arena,
the deployment of the first Exascale class computers being planned at the moment for
2022. To break the barrier of 1018 floating point operations per second, this class of
machines will be based on a hierarchical structure of thousands of nodes, each with up to
hundreds cores using many accelerators like GPGPU (General Purpose GPU or similar
devices) per node. Indeed, a CPU-only Exascale Computer is not feasible due to heat
dissipation constraints, as it would demand more than of 100MW of electric power!

As a reference, the current top-performing Supercomputer (Summit) in 2019 is com-
posed of 4608 nodes, with 44 cores per node and 6 Nvidia V100 GPU per node, falling
short of the Exascale target by a factor five, namely 200 Petaflops (see online at Top500,
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[39]), and over 90% of the computational performance being delivered by the GPUs.

Since no major improvement of single-core clock time is planned, due again to heat
power constraints, crucial to achieve exascale performance is the ability to support con-
current execution of many tasks in parallel, from O(104) for hybrid parallelization (e.g.
OpenMP+MPI or OpenAcc+MPI) up to O(107) for a pure MPI parallelization.

Hence, three different levels of parallelism have to be implemented for an efficient
Exascale simulation: i) at core/floating point unit level: (Instruction level parallelism,
vectorization), ii) at node level: (i.e., shared memory parallelization with CPU or CUDA,
for GPU, threads), iii) at cluster level: (i.e., distributed memory parallelization among
tasks).

All these levels have to be efficiently orcherstrated to achieve performance by the
user’s implementations, together with the tools (compilers, libraries) and technology and
the topology of the network, as well as the efficiency of the communication software. Not
to mention other important issues, like reliability, requiring a fault tolerant simulation
environment [40, 41].

How does LB score in this prospective scenario?

In this respect, the main LB features are as follows:

� Streaming step is exact (zero round-off)

� Collision step is completely local (zero communication)

� First-neighbors communication (eventually second for high-order formulations)

� Conceptually easy-to-manage boundary conditions (e.g. porous media)

� Both pressure and fluid stress tensor are locally available in space and time

� Emergent interfaces (no front-tracking) for multi-phase/species simulation

All features above are expected to facilitate exascale implementations [42]. In Ref. [43],
an overview of different LB code implementations on a variety of large-scale HPC ma-
chines is presented, and it is shown that LB is, as a matter of fact, in a remarkable good
position to exploit Exascale systems.

In the following we shall present some figures that can be reached with LB codes on
exascale systems.

According to the roofline model [44], achievable performance can be ranked in terms
of Operational Intensity (OI), defined as the ratio between flops performed and data
that need to be loaded/stored from/to memory. At low OI (< 10), the performance is
limited by the memory bandwidth, while for higher values the limitation comes from the
floating point units availability. It is well known that LB is a bandwidth limited numer-
ical scheme, like any other CFD model. Indeed, the OI index for LB schemes is around

6

Jo
ur

na
l P

re
-p

ro
of



Figure 2: Roofline model for single-phase, single time relaxation, Lattice Boltzmann. The vertical line
indicates the performance range using double precision.

0.7 for double precision (DP) simulations using a D3Q19 lattice1 (see Fig. 2 where the
roofline for LB is shown2).

In Fig. 3, a 2D snapshot of the vorticity of the flow around a 3D cylinder at Re = 2000
is shown ([? ] in preparation).
This petascale class simulation was performed with an hybrid MPI-OpenMP paralleliza-
tion (using 128 Tasks and 64 threads per task), using a single-phase, single time relax-
ation, 3D lattice. Using O(104) present-day GPUs3, a hundred billion lattice simulation
would complete one million time-steps in something between 1 and 3 hours, correspond-
ing to about 3 and 10 TLUPS (1 Tera LUPS is a trillion Lattice Units per Second). So
using an Exascale machine more realistic structure, both in terms of size, complexity (i.e.
decorated structure) and simulated time can be performed [? ]. To achieve this we must
be able to handle order of 104 tasks, and each of them must be split in many, order of
1′000, GPUS threads-like processes.

What does this mean in terms of the multiscale problems sketched in the opening of
this article?

With a one micron lattice spacing and one nanosecond timestep, this means simulating
a cubic box 5 mm in side over one millisecond in time. Although this does not cover the

1For a single fluid, if F ' 200÷250 is the number of floating point operations per lattice site and time
step and B = 19× 2× 8 = 304 is load/store demand in bytes (using double precision), the operational
intensity is F/B ∼ 0.7. For Single-precision simulation is 1.4

2Bandwidth and Float point computation limits are obtained performing stream and HPL benchmark.
3At this time only GPUs seems the only device mature enough to be used for a Exascale Machine.
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Figure 3: Vorticity of a flow around a cylinder at Reynolds number = 2000. The color map indicates
the direction of rotation, blue for clockwise and red for counterclockwise. The flow was simulated with
an optimised LB code for macroscopic hydrodynamics [42]

full six orders in space, from, say, 10 nanometers to centimeters, which characterize most
meso-materials, it offers nonetheless a very valuable order of magnitude boost in size as
compared to current applications.

5. LB method for microfluidic crystals

As mentioned in the Introduction, many soft matter systems host concurrent interac-
tions encompassing six or more decades in space and nearly twice as many in time. Two
major directions can be endorsed to face this situation: the first consists in developing
sophisticated multiscale methods capable of covering five-six spatial decades through a
clever combination of advanced computational techniques, such as local grid-refinement,
adaptive grids, or grid-particle combinations [45, 46, 47, 48, 49].

The second avenue consists in developing suitable coarse-grained models, operating
at the mesoscale, say microns, through the incorporation of effective forces and potentials
designed in such a way as to retain the essential effects of the fine-grain scales on the
coarse-grained ones (often providing dramatic computational savings)

Of course, the two strategies are not mutually exclusive; on the contrary,
they should be combined in a synergistic fashion, typically employing as much
coarse-graining as possible to reduce the need for high-resolution techniques.

In [9], the second strategy has been successfully adopted to the simulation of mi-
crodevices. Experiments [7, 8] have shown that a soft flowing microfluidic crystal can be
designed by air dispersion in the fluid with a flow focuser: the formation of drops is due
to the balance between pressure drop, due to the sudden expansion of the channel, and
the shear stress, exerted by the continuous phase inside the nozzle.

In Fig. 4 (top), we show the typical experimental setup for the production of ordered
dispersion of mono-disperse air droplets.

In our LB experiments (Fig. 4, bottom), droplet formation is controlled by tuning i)
the dispersion-to-continuous flow ratio α (defined as α = ud/2uc, where ud and uc are
the speeds of the dispersed and the continuous phase at the inlet channel) and by ii) the
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Figure 4: (Top). Flow focuser used for the production of air bubbles [7, 8]. Gas is injected from the
horizontal branch at pressure Pg while air enters at flow rate Ql/2 from the two vertical braches. They
are focused into a striction of width ' 100 µm, and resulting air bubbles are collected downstream in
the outlet chamber. (Bottom) Lattice Boltzmann simulation showing the production of roughly mono-
disperse fluid droplets within a microfluidic flow focuser. The red phase represents the dispersed fluid
(oil) while the black phase the continuous one (water).

mesoscopic force Frep modeling the repulsive effect of a surfactant confined at the fluid
interface.

The dispersed phase (in red in Fig. 4, bottom) is pumped with a predefined speed ud
within the horizontal branch, whereas the continuous phase (black) comes from the two
vertical branches at speed uc. They are driven into the orifice ,where the droplet form
and are finally collected in the outlet chamber. A schematic representation of Frep on the
lattice is reported in Fig.5. This term enters the LB equation as a forcing contribution
acting solely at the fluid interfaces when in close contact. Its analytical expression is

Frep = −Ah[h(x)]nδI , (11)

where δI ∝ ∇ψ is a function, proportional to the fluid concentration ψ, confining the
near-contact force at the fluid interface, while Ah[h(x)] sets the strength of the near-
contact interactions. It is equal to a positive constant A if h < hmin and it decays as
h−3 if h > hmin, with hmin = 3 − 4 lattice units. Although other functional forms of
A[h(x)] are certainly possible, this one proves sufficient to capture the effects occurring
at the sub-micron scale, such as the stabilization of the fluid film formed between the
interfaces and the inhibition of droplet merging.

An appropriate dimensionless number capturing the competition between surface
tension σ and the near-contact forces Frep can be defined as Nc = A∆x/σ, where ∆x is
the lattice spacing.

Usually, if Nc � 1, capillary effects dominate and drops merge, whereas if Nc ∼ 1,
close contact interactions prevail and droplet fusion is inhibited. A typical arrangement
reproducing the latter case is shown in Fig. 4, obtained for Ah = 1 and Nc = 0.1.
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n
Frep

x y=x+hn

Figure 5: Close-up view of the modelling of the near interaction between two droplets. Frep is the
repulsive force and n is the unit vector perpendicular to the interfaces, while x and y indicate the
positions, at distance h, located within the fluid interface.

These results suggest that satisfactory compliance with experimental results can be
achieved by means of suitable coarse-grained models, which offer dramatical computa-
tional savings over grid-refinement methods.

However, success or failure of coarse graining must be tested case by case,
since approximations which hold for some materials, say dilute microfluidic
crystals, may not necessarily apply to other materials, say dense emulsions in
which all the droplets are in near-touch with their neighbours. In this respect,
significant progress might be possible by resorting to Machine-Learning tech-
niques [50, 51], the idea being of semi-automating the procedure of developing
customized coarse-grained models, as detailed in the next section.

5.1. Machine-learning for LB microfluidics

Machine learning has taken modern science and society by storm. Even
discounting bombastic claims mostly devoid of scientific value, the fact re-
mains that the idea of automating difficult tasks through the aid of properly
trained neural networks may add a new dimension to the space of scientific
investigation [52, 53, 54]. For a recent critical review, see for instance [55].

In the following, we portray a prospective machine-assisted procedure to
facilitate the computational design of microfluidic devices for soft mesoscale
materials. The idea is to “learn” the most suitable coarse-grained expression
of the Korteweg tensor, the crucial quantity controlling non-ideal interactions
in soft mesoscale materials.

The procedure develops through three basic steps: 1) Generate high-
resolution data via direct microscale simulations; 2) Generate coarse-grained
data upon projection (averaging) of high-resolution data; 3) Derive the coarse-
grained Korteweg tensor using machine learning techniques fed with data
from step 2).
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The first step consists of performing very high resolution simulations of
a microfluidic device, delivering the fluid density ρf (~xf , tf ), the flow field
~uf (~xf , tf ) at each lattice location ~xf and given time instant tf of a fine-grid
simulation with Nf lattice sites and Mf timesteps, for a total of Df = 4NfMf

degrees of freedom in three spatial dimensions. To be noted that such fine-
grain information may be the result of an underlying molecular dynamics
simulation.

The second step consists of coarse-graining the high-resolution data to
generate the corresponding “exact” coarse-grained data. Upon suitable pro-
jection, for instance averaging over blocks of B = b4 fine-grain variables, b be-
ing the spacetime blocking factor, this provides the corresponding (“exact”)
coarse-grained density and velocity ρc and ~uc, for a total of Dc = Df/B � Df

degrees of freedom.
The third step is to devise a suitable model for the Korteweg tensor at

the coarse scale xc = bxf . A possible procedure is to postulate parametric
expressions of the coarse-grained Korteweg tensor, run the coarse grained
simulations and perform a systematic search in parameter space, by varying
the parameters in such a way as to minimize the departure between the ”ex-
act” expression Kc = Pρf obtained by projection of the fine-grain simulations
and the parametric expression Kc[ρc;λ], where λ denotes the parameters of
the coarse-grained model, typically the amplitude and range of the coarse-
grained forces.

The optimization problem reads as follows: find λ such as to minimise the
error,

e[λ] = ‖(Pc, Pc[λ])‖ (12)

where ‖..‖ denotes a suitable metrics in the Dc-dimensional functional space
of solutions.

This is a classical and potentially expensive optimization procedure.
A possible way to reduce its complexity is to leverage the machine learning

paradigm by instructing a suitably designed neural network (NN) to “learn”
the expression of Kc as a functional of the coarse-grained density field ρc.
Formally:

Kml
c = σL[Wρc] (13)

where ρc = Pρf is the “exact” coarse-grained density and σL denotes the set
of activation functions of a L-levels deep neural network, with weights W .

Note that the left hand side is an array of 6Dc values, six being the number
of independent components of the Korteweg tensor in three dimensions, while
the input array ρc contains only Dc entries. Hence, the set of weights in a
fully connected NN contains 36N2

c entries. This looks utterly unfeasible, until
one recalls that the Korteweg tensor only involves the Laplacian and gradient
product of the density field

Kab = λ[ρ∆ρ+
1

2
(∇ρ)2]δab − λ∇aρ∇bρ

where a, b = x, y, z and λ controls the surface tension.
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The coarse-grain tensor is likely to expose additional nonlocal terms, but
certainly no global dependence, meaning that the set of weights connecting
the value of the K-tensor at a given lattice site to the density field should be
of the order of O(100) at most.

For the sake of generality, one may wish to express it in integral form

Kc(~xc) = ρ(~xc)

∫
G(~xc, ~yc)ρ(~yc)d~yc (14)

and instruct the machine to learn the kernel G.
This is still a huge learning task, but not an unfeasible one, the number of

parameters being comparable to similar efforts in ab-initio molecular dynam-
ics, whereby the machine learns multi-parameter coarse-grained potentials
[56, 57].

Further speed can be gained by postulating the functional expression of the
coarse grained K-tensor in formal analogy with recent work on turbulence
modelling [58], i.e. based on the basic symmetries of the problem, which
further constrains the functional dependence of Kc on the density field.

Work is currently in progress to implement the aforementioned ideas.

6. High-performance LB code for bijel materials

For purely illustrative puroposes, in this section we discuss a different class of complex
flowing systems made up of colloidal particles suspended in a binary fluid mixture, such
as oil and water.

A notable example of such materials is offered by bijels [4], soft materials consisting
of a pair of bi-continuous fluid domains, frozen into a permanent porous matrix by a
densely monolayer of colloidal particles adsorbed onto the fluid-fluid interface.

The mechanical properties of such materials, such as elasticity and pore size, can be
fine-tuned through the radius and the volume fraction of the particles, typically in the
range 0.01 < φ < 0.1, corresponding to a number

N =
3φ

4π
(
L

R
)3

of colloids of radius R in a box of volume L3.
Since the key mechanisms for arrested coarsening are i) the sequestration of the

colloids around the interface and ii) the replacement of the interface by the colloid itself,
the colloidal radius should be significantly larger than the interface width, R/w > 2.
Given that LB is a diffuse-interface method and the interfaces span a few lattice spacings
(say three to five), the spatial hierarchy for a typical large scale simulation with, say, one
billion grid points reads as follows:

dx = 1, w = 3÷ 5, R = 10÷ 50, L = 1000

With a typical volume fraction φ = 0.1, these parameters correspond to about N ∼
103 ÷ 105 colloids.
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In order to model bijels, colloidal particles are represented as rigid spheres of radius
R, moving under the effect of a total force (~Fp) and torque (~Tp), both acting on the
center of mass ~rp of the p-th particle.

The particle dynamics obeys Newtons equations of motion (EOM):

d~rp
dt

= ~up, mp
d~up
dt

= ~Fp, Ip
d~ωp

dt
= ~Tp, (15)

where ~up is the particle velocity and ~ωp is the corresponding angular velocity. The force
on each particle takes into account the interactions with the fluid and the inter-particle
forces, including the lubrication term [59, 60]. Hence, the equations of motion (EOM)
are solved by a leapfrog approach, using quaternion algebra for the rotational component
([61, 62]).

The computation is parallelised using MPI. While for the hydrodynamic part the
domain is equally distributed (according to a either 1D, or 2D or 3D domain decompo-
sition), for the particles a complete replication of their physical coordinates (position,
velocity, angular velocity) is performed.

More specifically, ~rp, ~vp and ~ωp are allocated and maintained in all MPI tasks, but each
MPI task solves EOM only for the particles whose centers of mass lie in its sub-domain,
defined by the fluid partition. Whenever a particle crosses two or more sub-domains,
the force and torque are computed with an MPI reduction and once the time step is
completed, new values of ~rp, ~vp and ~ωp are broadcasted to all tasks.

Even at sizeable volume fractions (such as φ = 0.2), the number of particles is of the
order of ten-twenty thousands, hence much smaller than the dimension of the simula-
tion box (L3 = 10243), which is why the “replicated data” strategy ([63, 64]) does not
significantly affect the MPI communication time (see Fig.6).

Results from a typical simulation of a bijel are shown in Fig.7, in which solid particles
accumulate at the interface leading to the arrest of the domain coarsening of the bi-
continuous fluid, which in turn supports the the formation of a soft and highly porous
fluid matrix. Further results are shown in Fig 8, in which the bijel is confined
within solid walls with opposite speeds ±U = 0.01, hence subject to a shear
S = 2U/H, H being the channel width. The complex and rich rheology of such
confined bijels is a completely open research item, which we are currently
pursuing through extensive simulations using LBsoft, a open-source software
for soft glassy emulsion simulations [65].

Figure 8 reports the bijel before and after applying the shear over half-
million timesteps. From this figure, it is apparent that the shear breaks the
isotropy of the bijel, leading to a highly directional structure aligned along
the shear direction. Further simulations show that upon releasing the shear
for another half-million steps does not recover the starting condition, showing
evidence of hysteresis.

This suggests the possibility of controlling the final shape of the bijel by
properly fine-tuning the magnitude of the applied shear, thereby opening the
possibility to exploit the shear to imprint the desired shape to bijels within
controlled manufacturing processes.

Systematic work along these lines is currently in progress
As to performance, LBsoft delivers GLUPS on one-billion gridpoint configurations

on large-scale parallel platforms, with a parallel efficiency ranging from above ninety
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Figure 6: Left: GLUPS versus number of cores measured in a cubic box of linear size L = 1024, in which
spherical colloids are dispersed in a bicontinuous fluid. From the top to the bottom, the box was filled
with N = 0, N = 15407, N = 154072, and N = 308144 colloids, corresponding to a particle volume
fraction φ equal to 0%, 1%, 10% and 20%, respectively. Right: Run (wall-clock) time, in seconds, per
single time step iteration, ts, with corresponding GLUPS and parallel efficiency, Ep, versus the number
of computing cores, np for the same system. Note that the parallel efficiency is reported in percentage.

percent for plain LB (no colloids), down to about fifty percent with twenty percent
colloidal volume fractions (see Fig. 6).

Assuming parallel performance can be preserved up to TLUPS, on a Exascale com-
puter, one could run a trillion gridpoint simulation (four decades in space) over one
million timesteps in about two weeks wall-clock time.

Setting the lattice spacing at 1 nm to fully resolve the colloidal diameter (10 − 100
nm), this corresponds to a sample of material of 10 micron in side, over a time span of
about one microsecond.

By leveraging dynamic grid refinement around the interface, both space and time
spans could be boosted by two orders of magnitude. However, the programming burden
appears fairly significant, especially due to the presence of the colloidal particles.

Work along these lines is also in progress.
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Figure 7: Typical morphology of a bijel material obtained by dispersing rigid colloids (of radius R =
5.5 lu) in a bicontinuous fluid. Particles are adsorbed at the fluid interface and, if their volume fraction
is sufficiently high, domain coarsening arrests. Red and blue colors indicate the two fluid components
while grey spheres are colloids.

7. Summary and outlook

Summarising, we have discussed some of the main challenges and prospects of Exas-
cale LB simulations of soft flowing systems for the design of novel soft mesoscale materials,
such as microfluidic crystals and colloidal bijels.

Despite major differences in the basic physics, both systems raise a major challenge
to computer modelling, due to the coexistence of dynamic interactions over about six
decades in space, from tens of nanometers for near-contact interactions, up to the cen-
timeter scale of the experimental device. Covering six spatial decades by direct numerical
simulations is beyond reach even for Exascale computers, which permit to span basically
four (a trillion gridpoints). The remaining two decades can either be simulated via
local-refinement methods, such as multigrid or grid-particle hybrid formulations, or by
coarse-graining, i.e. subgrid modeling of the near-contact interactions acting below the
micron scale. Examples of both strategies have been discussed and commented on.

We conclude with two basic takehome’s: 1) Extracting exascale performance from
exascale computers requires a concerted multi-parallel approach, no “magic paradigm”
is available, 2) even with exascale performance secured, only four spatial decades can
be directly simulated, hence many problems in soft matter research will still require an
appropriate blend of grid-refinement techniques and coarse-grained models. The optimal
combination of such two strategies is most likely problem-dependent, and in some for-
tunate instances, the latter alone may suffice. However, in general, future generations
of computational soft matter scientists should be prepared to imaginative and efficient
ways of combining the two.
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Figure 8: Bijel in a channel of 128× 128× 1024 lu: top and bottom walls slide with opposite directions
(aligned with the mainstream axis z). Left-right walls are bounce-back while the mainstream axis z is
periodic. The main parameters are as follows: wall speed U = 0.01, volume fraction φ = 0.15, sphere
radius R = 5.5 lu. Top: Initial configuration. Bottom: Elongated structures after half-million steps with
applied shear.
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