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Abstract

We propose a physics-informed Echo State Network (ESN) to predict the evolution of chaotic systems. Compared
to conventional ESNs, the physics-informed ESNs are trained to solve supervised learning tasks while ensuring that
their predictions do not violate physical laws. This is achieved by introducing an additional loss function during the
training, which is based on the system’s governing equations. The additional loss function penalizes non-physical
predictions without the need of any additional training data. This approach is demonstrated on a chaotic Lorenz
system and a truncation of the Charney-DeVore system. Compared to the conventional ESNs, the physics-informed
ESNs improve the predictability horizon by about two Lyapunov times. This approach is also shown to be robust with
regard to noise. The proposed framework shows the potential of using machine learning combined with prior physical
knowledge to improve the time-accurate prediction of chaotic dynamical systems.
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1. Introduction

Over the past few years, there has been a rapid in-
crease in the development of machine learning tech-
niques, which have been applied with success to vari-
ous disciplines, from image or speech recognition [1, 2]
to playing Go [3]. However, the application of such
methods to the study and forecasting of physical sys-
tems has only been recently explored, including some
applications in the field of fluid dynamics [4–7]. One of
the major challenges for using machine learning algo-
rithms for the study of complex physical systems is the
prohibitive cost of data generation and acquisition for
training [8, 9]. However, in complex physical systems,
there exists a large amount of prior knowledge, such
as governing equations and conservation laws, which
can be exploited to improve existing machine learning
approaches. These hybrid approaches, called physics-
informed machine learning or theory-guided data sci-
ence [10], have been applied with some success to flow-
structure interaction problems [4], turbulence modelling
[5], the solution of partial differential equations (PDEs)
[9], cardiovascular flow modelling [11], and physics-
based object tracking in computer vision [12].

In this study, we propose an approach to combine
physical knowledge with a machine learning algorithm

to time-accurately forecast the evolution of chaotic dy-
namical systems. The machine learning tools we use are
based on reservoir computing [13], in particular, Echo
State Networks (ESNs). ESNs are used here instead of
more conventional recurrent neural networks (RNNs),
like the Long-Short Term Memory unit, because ESNs
proved particularly accurate in predicting chaotic dy-
namics for a longer time horizon than other machine
learning networks [13]. ESNs are also generally eas-
ier to train than other RNNs, and they have recently
been used to predict the evolution of spatiotemporal
chaotic systems [14, 15]. In the present study, ESNs are
augmented by physical constraints to accurately fore-
cast the evolution of two prototypical chaotic systems,
the Lorenz system [16] and the Charney-DeVore system
[17]. The robustness of the proposed approach with re-
gard to noise is also analysed. Compared to previous
physics-informed machine learning approaches, which
mostly focused on identifying solutions of PDEs using
feedforward neural networks [4, 9, 11], the approach
proposed here is applied on a form of RNN for the mod-
eling of chaotic systems. The objective is to train the
ESN in conjunction with physical knowledge to repro-
duce the dynamics of the original system for the ESN to
be a digital twin of the real system.
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Section 2 details the method used for the training
and for forecasting the dynamical systems, both with
conventional ESNs and the newly proposed physics-
informed ESNs (PI-ESNs). Results are presented in sec-
tion 3 and final comments are summarized in section 4.

2. Methodology

The Echo State Network (ESN) approach presented
in [18] is used here. Given a training input signal u(n)
of dimension Nu and a desired known target output sig-
nal y(n) of dimension Ny, the ESN learns a model with
output ŷ(n) matching y(n). n = 1, ...,Nt is the num-
ber of time steps, and Nt is the number of data points
in the training dataset covering a time window from 0
until T = (Nt − 1)∆t. Here, where the forecasting of
a dynamical system is under investigation, the desired
output signal is equal to the input signal at the next time
step, i.e., y(n) = u(n + 1) ∈ RNy .

The ESN is composed of a randomised high di-
mensional dynamical system, called a reservoir, whose
states at time n are represented by a vector, x(n) ∈ RNx

representing the reservoir neuron activations. The reser-
voir is coupled to the input signal, u, via an input-to-
reservoir matrix, Win ∈ RNx×Nu . The output of the reser-
voir, ŷ, is deduced from the states via the reservoir-to-
output matrix, Wout ∈ RNy×Nx , as a linear combination
of the reservoir states:

ŷ = Wout x (1)

In this work, a non-leaky reservoir is used, in which the
state of the reservoir evolves according to:

x(n + 1) = tanh (Winu(n + 1) + Wx(n)) (2)

where W ∈ RNx×Nx is the recurrent weight matrix and
the (element-wise) tanh function is used as an activa-
tion function for the reservoir neurons. The commonly-
used tanh activation offers good accuracy [13, 18] for
the systems studied here, as discussed in the results sec-
tions 3.1 and 3.2. While different activation functions
have been proposed [19], it is beyond the scope of the
present work to study the effect of activation functions
on the echo state network accuracy.

In the conventional ESN approach (Fig. 1a), the input
and recurrent matrices, Win and W, are randomly initial-
ized only once and are not trained. These are typically
sparse matrices constructed so that the reservoir verifies
the Echo State Property [20]. Only the output matrix,
Wout, is trained to minimize the mean squared error, Ed,

between the ESN predictions and the data:

Ed =
1

Ny

Ny∑
i=1

1
Nt

Nt∑
n=1

(̂yi(n) − yi(n))2 (3)

(The subscript d is used to indicate the error based on
the available data.) Following [14], Win is generated
for each row of the matrix to have only one randomly
chosen nonzero element, which is independently taken
from a uniform distribution in the interval [−σin, σin].
W is constructed to have an average connectivity 〈d〉 and
the non-zero elements are taken from a uniform distri-
bution over the interval [−1, 1]. All the coefficients of
W are then multiplied by a constant coefficient for the
largest absolute eigenvalue of W to be equal to a value
Λ where Λ ≤ 1 to ensure the Echo State Property [18].

Input layer
Win

W

Output layer
Wout

Reservoir

u(n)
y(n)^

(a)
y(n)=u(n+1)

Prediction

Training

-

Input layer
Win

W

Output layer
Wout

Reservoir

u(n)

(b)

ŷ(n)=u(n+1)^^

Training

Figure 1: Schematic of the ESN during (a) training and (b) future
prediction. The physical constraints are imposed during the training
phase (a).

After training, to obtain predictions for future times
t > T , the output of the ESN is looped back as an input,
which evolves autonomously (Fig. 1b).

2.1. Training
Training of the ESN consists of the optimization of

Wout. As the outputs of the ESN, ŷ, are a linear com-
bination of the states, x, Wout can be obtained by using
ridge regression:

Wout = YXT
(
XXT + γI

)−1
(4)

where Y and X are respectively the column-
concatenation of the various time instants of the
output data, y, and associated ESN states x. γ is a
Tikhonov regularization factor. The optimization in Eq.
(4) is:

Wout = argmin
Wout

1
Ny

Ny∑
i=1

 Nt∑
n=1

(̂yi(n) − yi(n))2 + γ||wout,i||
2


(5)
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where wout,i denotes the i-th row of Wout. This optimiza-
tion problem penalizes large values of Wout, which gen-
erally improves the feedback stability and avoids over-
fitting [18].

In this work, following the approach of [9] for artifi-
cial deep feedforward neural networks, we propose an
alternative approach for training Wout, which combines
the data available with prior physical knowledge of the
system under investigation. Let us first assume that the
dynamical system is governed by the following nonlin-
ear differential equation:

F (y) ≡ ẏ +N(y) = 0 (6)

where F is a general non-linear operator, (˙) is the time
derivative and N is a nonlinear differential operator.
Equation (6) represents a formal equation describing the
dynamics of a generic nonlinear system. The training
phase can be reframed to make use of our knowledge
of F by minimising the mean squared error, Ed, and a
physical error, Ep, based on F :

Etot = Ed + Ep, where Ep =
1

Ny

Ny∑
i=1

1
Np

Np∑
p=1

|F (ŷi(np))|2

(7)
Here, the set {̂y(np)}Np

p=1 denotes the “collocation points”
for F , which are defined as a prediction horizon of Np

datapoints obtained from the ESN covering the time pe-
riod (T + ∆t) ≤ t ≤ (T + Np∆t). Compared to the
conventional approach where the regularization of Wout

is based on avoiding extreme values of Wout, the pro-
posed method regularizes Wout by using the prior phys-
ical knowledge. Equation (7), which is a key equation,
shows how to constrain the prior physical knowledge
in the loss function. Therefore, this procedure ensures
that the ESN becomes predictive because of data train-
ing and the ensuing prediction is consistent with the
physics. It is motivated by the fact that in many com-
plex physical systems, the cost of data acquisition is
prohibitive and thus, there are many instances where
only a small amount of data is available for the train-
ing of neural networks. In this context, most existing
machine learning approaches lack robustness. The pro-
posed approach better leverages on the information con-
tent of the data that the recurrent neural network uses.
The physics-informed framework is straightforward to
implement because it only requires the evaluation of the
residual, but it does not require the computation of the
exact solution. Practically, the optimization of Wout is
performed using the L-BFGS-B algorithm [21] with the
Wout obtained by ridge regression (Eq. (4)) as the initial
guess.

2.2. Hybrid ESN

For a machine learning model comparison, the PI-
ESN, which includes physical knowledge as a penalty
term in the loss function, is compared to the hybrid ap-
proach of [14]. The hybrid approach combines an ESN
with an approximate model, which provides a one-step
forward prediction that is fed both as an input into the
ESN and directly into the output layer. The reservoir is
excited by both the original input data and the predic-
tion of the approximate model. The output layer, Wout,
is trained by blending the reservoir states and the pre-
diction from the approximate model. This approach in-
creases the size of the input and output layers of the
ESN by the number of degrees of freedom in the ap-
proximate model. In [14], the approximate model was
based on the same governing equations as the original
system (with one of the coefficients being slightly al-
tered), which doubles the size of the output and input
layers. A similar approach will be carried out here for
comparison.

3. Results

3.1. Lorenz system

The approach described in section 2 is applied for
forecasting the chaotic evolution of the Lorenz system,
which is governed by the following equations [16]:

u̇1 = σ(u2 − u1) (8a)
u̇2 = u1(ρ − u3) − u2 (8b)
u̇3 = u1u2 − βu3 (8c)

where ρ = 28, σ = 10 and β = 8/3. These are
the standard values of the Lorenz system that spawn a
chaotic solution [16]. The size of the training dataset is
Nt = 1000 and the timestep between two time instants
is ∆t = 0.01. This corresponds to roughly 10 Lyapunov
times [22].

The parameters of the reservoir both for the con-
ventional and PI-ESNs are: σin = 0.15, Λ = 0.4
and 〈d〉 = 3. In the case of the conventional ESN,
γ = 0.0001. These values of the hyperparameters are
taken from previous studies [14, 15].

For the PI-ESN, a prediction horizon of Np = 1000
points is used and the physical error is estimated by dis-
cretizing Eq. (8) using an explicit Euler time-integration
scheme. The choice of Np = 1000 is used to balance
the error based on the data and the error based on the
physical constraints. A balancing factor, similar to the
Tikhonov regularisation factor, could potentially also be
used to do this. However, the proposed method based
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on collocation points provide additional information for
the training of the PI-ESN as the physical residual has
to be minimized at the collocation points. Increasing Np

may be beneficial for the accuracy of the PI-ESN, but at
the cost of a more computationally expensive training.
Therefore, Np is chosen as a trade-off.

The predictions for the Lorenz system by conven-
tional ESN and PI-ESNs, for a particular case where
the reservoir has 200 units, are compared with the ac-
tual evolution in Fig. 2, where the time is normalized
by the largest Lyapunov exponent, λmax = 0.934. Fig-
ure 3 shows the evolution of the associated normalized
error, which is defined as

E(n) =
||u(n) − û(n)||
〈||u||2〉1/2

(9)

where 〈·〉 denotes the time average. The PI-ESN shows
a remarkable improvement of the time over which the
predictions are accurate. Indeed, the time for the nor-
malized error to exceed 0.2, which is the threshold used
here to define the predictability horizon, increases from
4 Lyapunov times for the data-only ESN to 5.5 for the
PI-ESN.

The statistical dependence of the predictability hori-
zon on the reservoir size and the comparison with a hy-
brid ESN [14] are shown in Fig. 4. In the hybrid ESN,
the approximate model consists of the same governing
equations (Eqs. (8)) with a slightly different parameter
ρ, which is perturbed as (1 + ε)ρ (as in [14]). Values
of ε = 0.05 and ε = 1.0 are considered here to have
a higher- and lower-accuracy approximate model. This
statistical predictability horizon is estimated as follows.
First, the trained PI-ESNs and conventional ESNs are
run for an ensemble of 100 different initial conditions.
Second, for each run, the predictability horizon is cal-
culated. Third, the mean of the predictability horizon is
computed from the ensemble.

It is observed that the physics-informed approach
provides a marked improvement of the predictability
horizon over conventional ESNs and, most significantly,
for reservoirs of intermediate sizes. The only exception
is for the smallest reservoir (Nx = 50). In principle, it
may be conjectured that a conventional ESN may have
a similar performance to that of a PI-ESN by ad-hoc
optimization of the hyperparameters. However, no ef-
ficient methods are available (to date) for hyperparam-
eters optimization [13]. The approach proposed here
allows us to improve the performance of the ESN (op-
timizing Wout) by adding a constraint on the physics,
i.e., the governing equations, without changing the hy-
perparameters of the ESN and so, without performing
an ad-hoc tuning of the hyperparameters. This suggests

Figure 2: Prediction of the Lorenz system (a) u1, (b) u2, (c) u3 with
the conventional ESN (dotted red lines) and the PI-ESN (dashed blue
lines). The actual evolution of the Lorenz system is shown with full
black lines.

Physics-informed
Conventional

Figure 3: Error, E, from the conventional ESN (dotted red lines) and
the PI-ESN (dashed blue lines) of the predictions shown in Fig. 2.

that the physics-informed approach may be more robust
than the conventional approach and could provide an
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improvement of the accuracy of a given ESN without
having to perform an expensive additional hyperparam-
eter optimization.

The hybrid methods have a larger predictability hori-
zon than both the PI-ESN and the conventional ESN
with a downward, or constant, trend with increasing
reservoir sizes. The hybrid model is more prone to over-
fitting as its output matrix is twice the size as the output
matrix of the PI-ESN and conventional ESN. Further-
more, as it may be expected, the predictability horizon
of the higher-accuracy case (ε = 0.05) is larger than the
lower-accuracy case (ε = 1.0). The high predictabil-
ity horizon of the hybrid ESN is due to the fact that the
approximate solution is very close to the correct dynam-
ics because the approximate model consists of the exact
governing equations (with a small perturbation to a pa-
rameter). Technically, the only difference between the
approximate model and the governing equations is the
εu1 term in Eq. (8b). To compensate for this small error,
the hybrid ESN does not need to learn the actual chaotic
dynamics of the Lorenz system because the approxi-
mate model provides an accurate estimate. In practice,
reduced-order models may contain larger model errors
and may not model so accurately the actual dynamics
of the system. Therefore, if the approximate solution is
sufficiently far from the real dynamics, the gain in pre-
dictability horizon could become negligible despite the
input and output layers being larger. This loss in accu-
racy in the hybrid ESN is illustrated in Sec. 3.3 where
noisy training data are considered. In contrast, the PI-
ESN enables an improvement in predictability horizon
without modifying the underlying network architecture.

Figure 4: Mean predictability horizon of the conventional ESN (red
line with circles), PI-ESN (blue line with crosses), hybrid method with
ε = 0.05 (green line with triangles) and hybrid method with ε = 1.0
(dashed green line with triangles) as a function of the reservoir size
(Nx) for the Lorenz system.

3.2. Charney-DeVore system
The truncated Charney-DeVore (CDV) system is now

considered. This model is based on a Galerkin projec-
tion and truncation to 6 modes of the barotropic vorticity

equation in a β-plane channel with orography [17]. The
6 retained modes exhibit chaos and intermittency for an
appropriate choice of parameters. The model equations
are [17, 23, 24]:

u̇1 = γ∗1u3 −C(u1 − u∗1)
u̇2 = −(α1u1 − β1)u3 −Cu2 − δ1u4u6

u̇3 = (α1u1 − β1)u2 − γ1u1 −Cu3 + δ1u4u5

u̇4 = γ∗2u6 −C(u4 − u∗4) + ε(u2u6 − u3u5)
u̇5 = −(α2u1 − β2)u6 −Cu5 − δ2u4u3

u̇6 = (α2u1 − β2)u5 − γ2u4 −Cu6 + δ2u4u2 (10)

where the model coefficients are given by:

αm =
8
√

2m2(b2 + m2 − 1)
π(4m2 − 1)(b2 + m2)

, βm =
βb2

b2 + m2

δm =
64
√

2
15π

b2 − m2 + 1
b2 + m2 , γ∗m = γ

4
√

2mb
π(4m2 − 1)

ε =
16
√

2
5π

, γm = γ
4
√

2m3b
π(4m2 − 1)(b2 + m2)

(11)

for m = 1, 2. Here, we set the parameters as in [23],
(u∗1, u

∗
4,C, β, γ, b) = (0.95,−0.76095, 0.1, 1.25, 0.2, 0.5),

which ensures a chaotic and intermittent behaviour.
The time evolution of this system is illustrated in Fig.

5. It can be seen that the CDV system shows two distinct
regimes: one characterised by a slow evolution (and a
large decrease in u1) and one with strong fluctuations of
all modes. These correspond to “blocked” and “zonal”
flow regimes, respectively, which originate from the
combination of topographic and barotropic instabilities
[17]. This intermittent characteristic of the CDV system
makes it significantly more challenging than the Lorenz
system. The dataset illustrated in Fig. 5 is obtained
by discretizing the set of equations (10) with an Euler-
explicit scheme with a timestep of ∆t = 0.1. The first
9000 timesteps of Fig. 5, highlighted in the grey box,
are kept for training. This corresponds to approximately
30 Lyapunov times. The largest Lyapunov exponent of
the CDV system is equal to λmax = 0.033791.

For the prediction, the parameters for the ESNs are:
σin = 2.0, Λ = 0.9 and 〈d〉 = 3. For the conventional
ESN, γ = 0.0001. These values are obtained after per-
forming a grid search. For the PI-ESN, a prediction
horizon of Np = 3000 points is used. Compared to the
Lorenz system where the same number of collocation
points as training points was used, here, comparatively
fewer collocation points are used. This choice was made
to decrease the computational cost of the optimization
process as the cost of computing Ep is proportional to
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u1

u2

u4

u5

u6

u3

blocked zonal

zonal

blocked

(b)

(a)

Figure 5: (a) Evolution of the modal amplitudes of the CDV system
(black to light gray: u1 to u6). The shaded grey box indicates the data
used for training. (b) Phase plots of the u1 − u4 trajectory.

Np. Nonetheless, that number of collocation points was
sufficient to improve the prediction as is shown next.

In Fig. 6, the predictions of the evolution of the CDV
system by the ESN and PI-ESN with a reservoir of 600
units are presented alongside the true evolution. The
associated normalised error (Eq. (9)), is shown in Fig.
7. The PI-ESN outperforms the conventional ESN and
maintains a good accuracy for 2 Lyapunov times beyond
the conventional ESN.

u1

u2

u3

u4

u5

u6

(a)

(b)

Figure 6: Prediction of the CDV system for (a) u1, u2 and u3 and
(b) u4, u5 and u6 with the conventional ESN (dotted lines) and the
PI-ESN (dashed lines). The actual evolution of the CDV system is
shown with full lines.

Physics-informed
Conventional

Figure 7: Error on the prediction from the conventional and PI-ESN
for the prediction shown in Fig. 6.

To assess the robustness of the results and compare
the PI-ESN with the hybrid ESN, a statistical analysis
similar to Sec. 3.1 is shown in Fig. 8. Similarly to the
Lorenz system, the approximate model used consists of
the exact governing equations (Eqs. (10)) with one pa-
rameter being slightly perturbed. Two cases are consid-
ered: one in which b is perturbed as (1 + ε)b (hybrid-b),
and one in which C is perturbed as (1 + ε)C (hybrid-C),
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where ε = 0.05 or 1.0.
The mean predictability horizon is computed from

100 different initial conditions and for different reser-
voir sizes. Similarly to the Lorenz system, the PI-ESN
outperforms the conventional ESN by up to 2 Lyapunov
times. However, the evolution of the predictability hori-
zon of the PI-ESN and also the conventional ESN shows
some degradation for very large reservoirs. It is con-
jectured that this behaviour originates from overfitting
and the more complicated evolution of the CDV sys-
tem which exhibits two different regimes. Indeed, for
the PI-ESN, the training is performed using the training
timeseries which contains mostly a zonal regime evolu-
tion and the collocation points which are at times corre-
sponding to a zonal regime as they are directly after the
training dataset. As a result, the conventional ESN and
the PI-ESN with very large reservoir may be overfitting
to predict only the zonal regime. It is possible that by
extending the collocation points for the PI-ESN, the pre-
diction of the PI-ESN improves as those added colloca-
tion points may then cover a blocked regime evolution.

The hybrid ESN has a larger predictability horizon
for small reservoirs because of the extra information
added by the approximate model, which is close to the
exact model. The accuracy is, however, less marked
than it is in the Lorenz system because an error in the pa-
rameters b or C is amplified by more significant model
nonlinearities as these parameters appear in all the gov-
erning equations of the CDV system (Eq. (10)). The ac-
curacy of hybrid-b is lower than the accuracy of hybrid-
C because the nonlinear dynamics is more sensitive to
small errors in b, which affects all the coefficients of
the CDV equations (Eqs. (10)-(11)). Similarly to the
Lorenz system, when the model error is larger (ε = 1.0),
the predictability horizon is smaller than with the accu-
rate approximate model (ε = 0.05).

3.3. Robustness with respect to noise
In this section, we study the robustness of the re-

sults presented in the previous sections for the Lorenz
and CDV systems with regard to noise. To do so, the
training data used in Sects. 3.1 and 3.2 are perturbed
by adding measurement Gaussian noise to the train-
ing datasets. Two cases with Signal to Noise Ratios
(SNRs) of 20 and 30dB are considered, which are typ-
ical noise levels encountered in experimental fluid me-
chanics [25].

The evolution of the Lorenz and the CDV systems
and the predictions from the conventional and PI-ESNs
are shown in Figs. 9 and 10, respectively. In those
figures, it is seen that the proposed approach still im-
proves the prediction capability of the PI-ESN despite

Figure 8: Mean predictability horizon of the conventional ESN (red
line with circles), PI-ESN (blue line with crosses), hybrid-b with ε =

0.05 (full green line with triangles), hybrid-b with ε = 1.0 (dashed
green line with triangles), hybrid-C with ε = 0.05 (full orange line
with downward triangles) and hybrid-C with ε = 1.0 (dashed orange
line with downward triangles) as a function of the reservoir size (Nx)
for the CDV system.

the training with noisy data. This originates from the
physics-based regularization term in the loss function
in Eq. (7), which provides the information required
during the training as to how to appropriately filter the
noise. Indeed, the physics-based loss provides the con-
straints that the components of the output have to sat-
isfy, therefore providing an indication as to how to filter
the noise. In addition, for the Lorenz system, the con-
ventional ESN is diverging during its prediction while
the PI-ESN’s prediction remains bounded. This high-
lights the improved robustness of the physics-informed
approach. This is an encouraging result, which can po-
tentially enable the use of the proposed approach with
noisy data from physical experiments whose governing
equations are known.

The mean predictability horizon for the two systems
and the two noise levels is shown in Fig. 11, which
also shows a comparison with the hybrid approach with
ε = 0.05. For the Lorenz system, compared to the
ESN trained on non-noisy data, in Fig. 4, the mean
predictability horizon is smaller. Furthermore, for the
data-only ESN, the predictability horizon decreases for
large reservoirs. This is because the ESN starts over-
fitting the noisy data and, thereby, reproducing a noisy
behaviour and deteriorating its prediction. On the other
hand, the PI-ESN maintains a satisfactory predictabil-
ity horizon for the same large reservoirs. This indicates
that the physics-based regularization in the loss function
(Ep in Eq. (7)) enhances the robustness of the PI-ESN.
The predictability horizon of the hybrid method is close
to the predictability horizon of the PI-ESN for a small
noise level. This is due to the effect of noise in the train-
ing data. During the training, the approximate model
time-integrates noisy input data, therefore, the approx-
imate prediction is far from the target output. As a re-
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u1

u2

u3

Physics-informed
Conventional

(b)

(c)

(a)

u
i

Figure 9: (a) Prediction of the Lorenz system with the conventional
ESN (dotted lines) and the PI-ESN (dashed lines) with 200 units
trained from noisy data (SNR=20dB) and (b) Zoom of the evolution
before the divergence of the conventional ESN. The actual (noise-free)
evolution of the Lorenz system is shown with full grey lines. (c) Error
on the prediction for the conventional ESN and PI-ESN.

sult, during the training, the hybrid ESN learns to rely
mostly on the reservoir states to make a forecast, and
only to use the prediction from the approximate model
in a limited way. This is more apparent for a higher
noise level, in which the predictability horizon of the
hybrid method becomes shorter than the predictability
horizon of the PI-ESN. This shows that the hybrid ESN
is not filtering out the noise as efficiently as the PI-ESN.
The performance of the hybrid ESN deteriorates for a
higher noise level.

For the CDV system, similar observations as for the
Lorenz system can be made. However, the decrease
in mean predictability horizon of the ESN and PI-ESN
with large reservoir sizes is not observed as it has a
larger dimension than the Lorenz system. Hence, it
would require larger reservoirs than those considered
here before the occurrence of noise overfitting. Finally,

(a)

(b)

(c)

u1

u2

u3

u4

u5

u6

Physics-informed
Conventional

Figure 10: (a-b) Prediction of the CDV system with the conventional
ESN (dotted lines) and the PI-ESN (dashed lines) with 600 units
trained from noisy data (SNR=20dB). The actual (noise-free) evolu-
tion of the CDV system is shown with full red lines and the noisy data
is shown with full greyscale lines. (c) Error on the prediction from the
conventional ESN and PI-ESN.

the accuracy of the hybrid method is similar to that of
the PI-ESN. Similarly to the Lorenz system, this is be-
cause of the effect of noisy data used in training.

4. Conclusions and future directions

In this paper, we propose an approach for training
echo state networks (ESNs) by constraining the knowl-
edge of the physical equations that govern a dynamical
system. This physics-informed ESN (PI-ESN) is shown
to be more robust than purely data-trained ESNs. The
proposed PI-ESN needs minimal modification of the
original architecture by requiring only the estimation
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(a)

(b)

Figure 11: Mean predictability horizon of the conventional ESN
(dotted line with circles), PI-ESN (full line with crosses), hybrid
or hybrid-b (dashed-dotted line with upward triangles) and hybrid-
C (dashed line with downward triangles) trained from noisy data (red:
SNR=20dB, blue: SNR=30dB) as a function of the reservoir size (Nx)
for the (a) Lorenz and (b) CDV systems. Hybrid methods are used
with ε = 0.05

of the physical residual. The predictability horizon is
markedly increased without requiring additional train-
ing data. This is assessed on the Lorenz system and the
Charney-DeVore system, both of which exhibit strong
intermittency. Furthermore, the robustness to noise of
the proposed PI-ESN is assessed. It is observed that,
compared to a Thikonov regularization, the PI-ESN per-
forms more robustly, even with larger reservoirs where
the conventional ESN may overfit the noisy data. As
compared to other nonlinear filters used for denoising,
such as the ensemble Kalman filter, the proposed ap-
proach does not require ensemble calculations.

For noise-free data, the predictability of the hybrid
ESN [14] can be higher than the predictability of the PI-
ESN, but the model errors of the additional approximate
model in the hybrid ESN, which requires an additional
time-integration, should be very small. In engineering
practice, we expect model errors to be more significant.
Additionally, the hybrid method needs larger output and
input layers, up to twice the original size if the approx-
imate model has the same number of states as the orig-
inal system as in [14], and a time integrator for the ap-
proximate model. For noisy data, the predictability of
the PI-ESN is higher than the predictability of the hy-
brid method of [14].

In addition, in ongoing work, the PI-ESN is being ap-
plied to high dimensional fluid dynamics systems. This

work opens up new possibilities for the time-accurate
prediction of the dynamics of chaotic systems by using
the underlying physical laws as constraints.
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