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ABSTRACT

This paper presents neural network regression models for predicting the static and dynamic re-
action forces of spiral grooved gas journal bearings. The partial differential equations (PDEs)
are sampled, based on a full factorial and randomly spaced parameter set. Feed-forward neural
network (FNN) architectures are developed for modeling the PDEs and therefore replacing the
time-consuming discrete and iterative solution procedure used to this date. A significant speed-
up factor of > 103 in computation time is achieved, compared to solving the PDE numerically.
Furthermore, the FNN allows for multi-dimensional interpolation, which makes global system
optimization easily possible. This is demonstrated by a real-case rotordynamic system optimiza-
tion. By using the neural network meta-models, a complete rotordynamic system optimization
time reduction of factor 300 is achieved.

1. Introduction

High-speed small scale turbomachinery is used in many different energy conversion systems such as domestic or
commercial heat pumps [20], Organic Rankine cycles [18] or fuel cells [24]. The requirements of high rotational
speeds and a high life-time expectation make gas lubricated bearings ideal for these systems. Gas bearings, such as the
herringbone-groove journal bearing (HGJB), offer the advantages of oil-free operation, long lifetime, high rotational
speed at relatively low frictional losses compared to other bearing types, no sealing requirements and avoidance of
complex auxiliary systems. In order to develop stable compressor systems, accurate bearing models need to be avail-
able and parameter variations with thousands of computations have to be performed during an automated optimization
process.
To this date, the performance of HGJB have been predicted by solving the thin-film flow equation, also called Reynolds-
equation, in different ways. One of them is based on the narrow groove theory (NGT) approach, introduced by Whip-
ple [23]. The NGT is developed by assuming an infinite number of grooves, which leads to a smooth-pressure distri-
bution, which is governed by the NGT equation. The NGT equation intrinsically contains the bearing geometry. The
NGT was further developed by Hirs [12], Malanoski and Pan [14], Vohr and Pan [21] and Vohr and Chow [22]. Flem-
ing and Hamrock [4] used the narrow groove theory (NGT) for optimizing HGJB for maximum stability, quantified by
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a critical mass, which represents the mass the bearing can support before it gets unstable. A more detailed numerical
analysis has been published by Bonneau and Absi [1], who solved the Reynolds-equation for HGJB based on a FEM
approach. They presented solutions for different number of grooves and compared the case where the grooves are
rotating and non-rotating. Iseli et al. [13] introduced the finite groove approach (FGA), which allows the computation
of HGJB static and dynamic reaction forces with rotating grooves, avoiding a time-consuming transient analysis. They
further presented a systematic comparison between the NGT and the FGA and limitations of the NGT were presented.
A detailed overview of the different modeling approaches is given by Gu et al. [6].

Nature of the issue. All of the above presented numerical methods involve time-intensive iterative procedures or
lack the possibility of interpolating between different parameters. This is not a problem for the computation of one
single bearing, but becomes problematic when optimization procedures require parameter variations in the order of
thousands. The number of design variables for a rotordynamic system of small-scale turbo compressors is normally
more than 10. For the design of such systems different analysis and optimization procedures are used, such as genetic
algorithms or full factorial combinations and the number of computations easily exceeds millions. Therfore, one is
interested in developing new methods, which are faster than already existing solvers.
Only a small number of prior work addresses this issue by using transfer functions of different types. Elrod et al. [3]
introduced the step-jump response analysis, which was further developed by Miller and Green [15, 16]. They analyzed
the reaction motion of a self-acting cylindrical bearing by imposing an initial step-jump displacement. By using the
analogy between viscoelastic elements and gas films, the bearing behavior is approximated by polynomial functions. A
significant speed-up was reported, however, the usage of the derived models was limited to a simplified bearing model
and to one specific geometry. Hassini and Arghir [9, 10, 11] used rational transfer functions for approximating the
linearized bearing parameters in the frequency domain at different eccentric shaft positions. The linearized properties
were computed by solving the non-linear fluid film equation. With the inverse Laplace transformation they obtained
differential equations, describing the transient gas film behavior in a linear manner. They reported a speed-up in
transient computation time of factor 2 [9]. Other transfer function methods, based on series and coefficient models,
have been presented by Andrés and Jeung [19] for oil-bearings and by Franssen et al. [5] for aerostatic bearings. The
bearing types used by Hassini and Arghir, Andrés and Jeung and Franssen et al. show moderate non-linear behavior
compared to a HGJB. In order to model a HGJB, high order rational function (more than order 4) approximations are
necessary. In addition, the strong non-linear behavior of HGJB in the geometrical and operational parameter space
rules out the usage of simple linear, linear with interactions and linear-quadratic with interaction regression models
such as normally used in a classical design of experiment analysis. A new approach is presented in this work, which is
based on artificial neural network (ANN) regression models, capable of mapping several input parameters to a highly
non-linear output solution space.
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Goals and objectives. The goal is the derivation of artificial neural network regression models, describing the
static and dynamic HGJB behavior within a given range of varying boundary conditions to decrease the computation
time in comparison to existing numerical methods.

Scope of the paper. The PDEs, describing the static and dynamic behavior of HGJB, are numerically solved at
full factorial and randomly spaced data points. The solution pressure fields are integrated in space in order to obtain
the bearing reaction forces. Two-layer feed-forward neural network architectures are compared and selected based
on a specified regression accuracy threshold and number of total neurons used. Speed-up and accuracy comparisons
between the numerical analysis and the derived neural network are discussed and the possibility of multi-dimensional
interpolation is presented by means of a rotordynamic case study.

2. Problem definition

Parameters. A gas bearing is characterized by multiple geometrical design parameters as well as by operating
conditions. The geometrical parameters of a HGJB are schematically shown in Fig. 1 and listed in Table 1. Seven
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Figure 1: Spiral-grooved journal bearing convention. Upper schematic: 3D view of a HGJB. Lower schematic: cross
section of HGJB. The parameters are speci�ed in the nomenclature.

parameters in total describe a HGJB, including operational conditions, such as rotational speed and eccentricity. The
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Table 1

Factors of herringbone-grooved journal bearing.

Factor Symbol Unit

Groove-width ratio � -
Groove angle � °
Film thickness ratio Hgr -
Length to diameter ratio L∕D -
Land to groove ratio 
 -
Eccentricity " -
Compressibility number Λ -

groove-ridge ratio is specified as follows:

� =
wg

wg +wr
, (1)

the film thickness ratio:

Hgr =
ℎ0g
ℎ0r

. (2)

the land to groove ratio:


 =
L − Ll
L

(3)

and the static eccentricity:

" = e
ℎ0r

. (4)

The land to groove ratio is kept constant through the variations with a value of 1, which corresponds to a fully grooved
bearing. The number of grooves is not varied, since it is assumed to be infinite based on the Narrow Groove Theory
(NGT). Each parameter is given an upper and lower limit, which are listed in Table 2. The limits given in Table 2 are

Table 2

Factor ranges for regression models.

Parameter Min Max Mean

� 0.3 0.7 0.5
� 10 50 30
Hgr 1 4 2.5
L∕D 0.5 2 1.25
" 0 0.8 0.4
Λ 0.1 40 20.5

specified based on bearing parameters presented in the literature, namely by Guenat and Schiffmann [8], who listed
bearing geometries of stable HGJB-supported rotordynamic systems and Fleming and Hamrock [4], who optimized
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bearings for maximum stability and published the corresponding geometrical values.
Bearing reaction forces. The reaction forces of the bearing are obtained from the fluid film pressure field, enclosed

by the shaft and the bushing. The pressure inside a HGJB can be described by the NGT-equation, derived by Vohr
and Chow [22]. Using the same notation for the NGT coefficients as Guenat and Schiffmann [7], the NGT equation in
cylindrical coordinates for an ideal gas follows:

)
)�

(

P
[

f1
)P
)�

+ f2
)P
)Z

+ csf4 sin �
])

+

)
)Z

(

P
[

f2
)P
)�

+ f3
)P
)Z

− csf4 cos �
])

=

2
exΛ
)(Pf5)
)�

+ Λ
)(Pf5)
)�

,

(5)

where � represents the circumferential coordinate, Z the axial coordinate, P the non-dimensional pressure, � the non-
dimensional time, � the spiral-groove angle and Λ the compressibility number (see Fig. 1 for the coordinate system
convention). The compressibility number Λ is a gas bearing specific non-dimensional number and defined as follows:

Λ =
6�R2

paℎ20r
Ω, (6)

where � is the gas dynamic viscosity, R the bearing radius, pa the ambient pressure, ℎ0r the nominal bearing clearance
in concentric position and Ω the rotational speed. For a given bearing geometry, the static reaction forces are only
influenced by the compressibility number Λ. For fixed gas and geometrical properties, an increasing compressibility
number can be understood as an increase in rotational speed. Therefore, the analysis of a gas bearing over a given
speed range can be obtained in a non-dimensional way by varying the compressibility number.
The whirl ratio 
ex is the ratio between the bearing excitation frequency !ex and rotational speed Ω. The coefficients
fi and cs are specified by the bearing geometry and its operational condition. The coefficient’s expressions are detailed
by Guenat and Schiffmann [7].
Equation (5) represents a non-linear transient partial differential equation (PDE). In order to compute the static and
dynamic HGJB properties, Eq. (5) is linearized around a given eccentricity and an excitation frequency dependent
small orbital motion is imposed. This is done by introducing a perturbed clearance, varying with excitation frequency
!ex:

Hper = H + ΔxHx(�)ei!ext + ΔyHy(�)ei!ext. (7)

where Hx = cos(�) and Hy = sin(�) are the perturbed gap height variations in circumferential direction. The radial
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displacements Δx,Δy ≪ 1 are the small amplitudes of the excited motion around the equilibrium shaft position.The
equilibrium gap height is given as follows:

H = H0r,g + "x cos(�) + "y sin(�). (8)

where "x, "y are the static eccentricities in x- and y-direction. The pressure is also expressed as a perturbed property:

Pper = P0 + ΔxPx(�, z)ei!ext + ΔyPy(�, z)ei!ext. (9)

Inserting Eqs. (7) and (9) into Eq. (5) yields three equations, one for the static pressure P0 and two for the perturbed,
dynamic pressuresPx, Py in the two coordinate directions x and y. The static pressure equation, or zeroth order equation
is obtained by collecting all terms, which are not multiplied by Δx or Δy:

)
)�

(

f10
)P 20
)�

+ f20
)P 20
)Z

+ 2csf40 sin(�)P0

)

+

)
)Z

(

f20
)P 20
)�

+ f30
)P 20
)Z

− 2csf40 cos(�)P0

)

=

2Λ
)(P0f50 )
)�

(10)

where the subscript 0 marks the zeroth order properties. The dynamic pressure equations are obtained by collecting
all first order terms ((Δx),(Δy)). Two equations are obtained by separating all terms, which are multiplied by Δx
and all terms multiplied by Δy. The equation for Px can be written as follows:

)
)�

[

Pxf10
)P0
)�

+ P0f1x
)P0
)�

+ P0f10
)Px
)�

+

Pxf20
)P0
)Z

+ P0f2x
)P0
)Z

+ P0f20
)Px
)Z

]

+

)
)Z

[

Pxf20
)P0
)�

+ P0f2x
)P0
)�

+ P0f20
)Px
)�

+

Pxf30
)P0
)Z

+ P0f3x
)P0
)Z

+ P0f30
)Px
)Z

]

+

2cs sin(�)
)
)�

(

Pxf40 + P0f4x
)

−

2cs cos(�)
)
)Z

(

Pxf40 + P0f4x
)

=

2i
exΛ
(

P0f5x + Pxf50
)

+

Λ
)
(

Pxf50 + P0f5x
)

)�

(11)
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The dynamic pressure equation for Py has exactly the same form, only the subscripts x are replaced by y. For solving
Eqs. (10) and (11) the following Dirichlet boundary conditions are imposed at the bearing edges:

P0 = 1, Px = Py = 0 on )Γ. (12)

On the whole fluid domain the pressure field has to fulfill the following periodicity requirement:

P0(�,Z) = P0(� + 2�,Z),

Px,y(�,Z) = Px,y(� + 2�,Z).
(13)

The equations are discretized by a finite difference method (FDM) and the non-linearities are treated by the itertive
Newton-Raphson method. The static bearing reaction forces are computed by integrating the unperturbed pressure
field, which can be written in dimensionless form as follows:

Fx = −

L∕D

∫
−L∕D

2�

∫
0

(P0 − 1) cos �d�dZ (14)

Fy = −

L∕D

∫
−L∕D

2�

∫
0

(P0 − 1) sin �d�dZ. (15)

The bearing stiffness and damping values are obtained in analogy to the static forces by integrating the first order
pressure fields Px and Py, obtaining the complex dynamic bearing force coefficientsZij . Based on the spectral analysis
by Pan [17], Zij are computed for different whirl ratios 
ex = !ex∕Ω. In this work 41 whirl ratios are computed
ranging from 0.01 to 2, including 
ex = 1, which corresponds to the synchronous whirl condition where !ex = Ω. The
8 stiffness and damping values can then be extracted from Zij as follows:

⎡

⎢

⎢

⎣

Zxx Zxy

Zyx Zyy

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

Kxx Kxy

Kyx Kyy

⎤

⎥

⎥

⎦

+ i
ex
⎡

⎢

⎢

⎣

Cxx Cxy

Cyx Cyy

⎤

⎥

⎥

⎦

. (16)

The stiffnessKij and damping Cij values are finally used in the equations of motion for rotordynamic stability analysis.
In order to characterize a HGJB, the static forces Fx and Fy and the eight stiffness and damping valuesKij , Cij for each
whirl ratio 
ex need to be known. They are normally obtained by numerically solving one non-linear PDE for the static
forces and two linear PDEs for the dynamic forces for 41 whirl ratios, yielding the computation of 83 PDEs in total. In
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the following, a new approach is presented, which model the PDEs by ANNs. The ANNs need the numerical solutions
at certain sample points in the parametere space for training, but once trained, the bearing force coefficients can be
obtained directly. The main advantages of using ANNs are that the complexity of computing the HGJB properties
is significantly reduced (only analytical functions need to be evaluated, instead of solving complex PDEs) and the
computations can be performed fully vectorized, which results in significant speed up factors.

3. Methodology

Feed-forward neural network models. The investigation of artificial neural network (ANN) architectures is done
separately for the static and dynamic response variables. The base architecture is a feed-forward neural network (FNN),
which represents a non-linear function of its inputs and is composed by its neuron functions [2]. It consists of a fully-
connected input layer, a few hidden layers and a fully connected output layer. A corresponding network is schematically
shown in Fig. 2, which consists of 1 input layer with 6 inputs, two hidden layers with 7 and 4 neurons and 1 output
layer with 1 output. A neuron is a non-linear mapping of several inputs to one output. Each neuron of a given layer is
connected to each neuron of the preceding layer. A neuron is characterized by its activation function. On layer n + 1

1

2

3

4

5

6

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2: Schematic representation of feed-forward neural network with one input layer, two hidden layers and one output
layer. The network accepts 6 inputs and returns one output. Hidden layer 1 has 7 neurons and hidden layer 2 has 4
neurons.

each neuron receives inputs xi from all neuron outputs at layer n. These inputs are weighted and summed:

v =
m
∑

i=1
wixi + b (17)

where m is the number of neuron input values, wi are the weights for each input and b is an additional constant term,
also named "bias". The value v is termed the potential of the neuron. The output of the neuron is computed by a
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non-linear activation function g and the potential v. In this work, the hyperbolic tangent sigmoid activation function
is selected, which is given as follows:

g(v) = 2
1 + e−2v

− 1. (18)

This activation function is used for all intermediate (hidden) layers. The final predicted value yp is computed by the
output neuron, which has a linear activation function:

yp = cv, (19)

where c is a constant and v is computed by Eq. (17).
In this work, six parameters are used as inputs and one parameter as output, i.e. a separate neural network is trained for
each bearing output (static reaction forces and stiffness and damping force coefficients). In order to train the network,
the weights wi and the bias b have to be adjusted such that the output predicts the response variable. The model
prediction error can be quantified by the mean-squared error (RMSE), which has to be minimized during training. The
RMSE is defined as follows:

RMSE =

√

√

√

√
1
N

N
∑

i=1

(

y(i)p − y(i)
)2 (20)

where N are the number of samples, yp and y are the predicted and sample output values. The RMSE is not ideal
for comparing different output parameters, since it is not a normalized property. Therefore the normalized root mean-
squared error NRMSE is used, which is defined as:

NRMSE =

√

1
N

n
∑

i=1
(y(i)p − y(i))2

ymax − ymin
, (21)

where ymax and ymin are the maximum and minimum values on the whole validation data set. The nominator of E-
q. (21) represents the root mean squared error, which is normalized by the sample range.
The weights and bias of the FNN are updated by the Levenberg-Marquardt optimization algorithm by means of back-
propagation, which is widely described in the literature (e.g. [2]). The Levenberg-Marquardt algorithm is an iterative
numerical method, where the weights and the biases of the neural network are updated by the following expression:

xk+1 = xk −
[

JT J + �lmI
]−1 JT e, (22)
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where �lm is a scalar, x is the vector containing all weights and biases, e is the network error vector (computed by the
loss function) and J the corresponding Jacobian. Through iteration the weights and biases are updated, leading to a
reduction in network errors. Backpropagation is one way of computing the Jacobian. The inputs and outputs of the
neurons are computed by one forward-pass, the loss function is evaluated and its derivative computed. This value is
then backpropagated to the first layer by computing the gradient of the weighted input of each layer. The two main
advantages of this process are that there are no duplicated computations and that it computes the gradient directly to
the output loss function and not to additional intermediate parameters.

FNN architecture for static force models. For identifying the static response models, different network widths
and depths are investigated by varying the number of layers and corresponding neurons. The variation is performed on
a dataset of 40k samples for a compressibility number interval of Λ = [20, 25]. All points with an eccentricity lower
than " < 1 × 10−4 are not considered, since the static reaction forces are close to zero and a regression model in this
region is not meaningful. Each network is trained over a period of 100 epochs. Then the networks are characterized by
a test sample dataset. The relative errors between sample ouput and prediction are computed. Based on these errors,
the number of predictions laying outside the 2% and 5% relative error bounds are counted. The number of counts is
used as a quality measure of the model prediction accuracy.
The net variation for the response variable Fx is shown in Fig. 3a with the corresponding accuracy of fit in Fig. 3b.
As expected, the accuracy increases for two layer architectures and an increased number of neurons. If the number of
neurons on the first layer is larger than 30 and on the second layer larger than 20, the accuracy does not significantly
increase with further increasing the layer width. The various networks are screened by applying the desired error
threshold of p0.02 < 0.02, which means that up to 2% of the dataset points are predicted by the model with an error
larger than 2%. Among the networks, fulfilling this requirement, the one with the lowest number of total neurons is
chosen, in order to reduce the training time later on. The optimum model for Fx is identified in Fig. 4. It has two layers
with 30 and 21 neurons. In analogy the model found for response variable Fy has two layers with 36 and 21 neurons.

FNN architecture for dynamic force models. The net structures for the dynamic force coefficients are developed
by assessing the stiffness and damping values Kij , Cij with the largest variations along the parameter variation, which
is the cross-coupled damping Cxy. The nets are trained and tested in the compressibility number range Λ = [35, 40]

with 34k samples. The two layer net structure variations are shown in Fig. 5a. The corresponding accuracy of fit is
shown in Figs. 5b and 5c. p0.02 < 0.02 is chosen as a net selection criterion. Under the remaining network architectures,
fulfilling this criterion, the one with the lowest total number of neurons is chosen. The optimum model is identified in
Fig. 6 and has 36 neurons on the first layer and 13 on the second layer. This particular net architecture was used for
fitting the stiffness and damping values Kij , Cij at each whirl ratio and compressibility number interval.
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(a) Number of neurons of layer 1 and layer 2 of a FNN.
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(c) NRMSE below 5 × 10−4 for train, test and validation data set.
Figure 3: Neural network variation for response variable Fx. Dashed red line: selected network architecture. The variation
number corresponds to a given combination of the number of neurons on the �rst and the second layer.

4. Meta-model performance

Static force models. For modeling the static forces Fx and Fy, the neural networks presented above are used for
fitting sample data. The compressibility number range Λ = [0.1, 40] is subdivided into 8 intervals. The reason for the
subdivision into compressibility number ranges is the reduction of degrees of freedom the model has to handle, which
allows for the usage of simpler and faster models. The first interval has the limits [0.1, 5], the others are all starting
at multiples of 5 with length ΔΛ12 = 5. This value has been selected by testing different interval length. For each
interval a model is trained. The training data consists of a total of 310k samples, from which 82% belong to a full
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Figure 4: Neural network selection by two objective variables, the percentage of data outside 2% error band (1) versus
the total number of neurons of two layers (2). Filled circle: performance of selected net architecture with p0.02 < 2% and
minimum number of total neurons for the static force prediction.

factorial distribution. The number of training data points has been selected based on reasonable computation times
for creating the test data set (within weeks) and avoiding sub-sampling of the solution parameter space. The models
are tested by 120k randomly distributed data points per compressibility number interval, which have not been used for
training. The fit of accuracy is quantified by the NRMSE for each compressibility number interval and summarized
in Fig. 7. It can be seen that the regression models accuracy increases towards larger compressibility numbers. The
largest difference is observed at the compressibility number interval [0.1, 5] with a NRMSE of 7 × 10−4.

The regression model is compared with solving the NGT lubrication equation directly. The computation time of
the NGT equation is dependent on solver parameters, the bearing geometry and its operational condition. If these are
kept constant, the computation time for a certain variation is a linear function of the number of computations. Since
the meta-model is fully vectorized, the computation time is not a linear function of the number of computations. This
is shown in Fig. 8, where the total time for a given number of computations is compared between solving the NGT
directly and using the derived meta-model. It can be seen, that with increasing the number of computations, the speed-
up factor increases until leveling off at > 105 for > 105 computations. It can be concluded, that the meta-model is
significantly more efficient in handling large datasets, than it is for low number of computations, while achieving very
low deviation to the original and more complex NGT model.
Dynamic force models. The stiffness and damping values are trained individually for each whirl ratio. The 8 dynamic
forces Kij , Cij and 41 whirl ratios [0.01-2] yield 328 models per compressibility number interval. 41 discrete whirl
ratios are selected in order to resolve the strong non-linear variations of dynamic force coefficients (see Fig. 12). The
whirl ratio could be regarded as an additional input parameter to the models, reducing the number of models to 8.
However, the training data set would be larger by factor 41 and the model complexity would increase in order to handle
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(c) Normalized root mean squared error below 5 × 10−4 for train, test and validation data
set.

Figure 5: Neural network variation for response variable Cxy.. Dashed red line: selected network architecture.The variation
number corresponds to a given combination of the number of neurons on the �rst and the second layer.

the additional degree of freedom. Based on these facts, a dynamic force coefficient model per whirl ratio and com-
pressibility interval was trained. The compressibility number intervals are [1-2, 2-5, 5-10, 10-20, 20-30, 30-40], which
have been selected by testing different subdivisions and comparing training time and model prediction accuracy. The
smaller intervals for lower compressibility numbers accounts for the stronger variation of dynamic bearing properties
with compressibility number in this region. The models are trained by 2.3 × 106 samples, where 57% are full factorial
and the remainder randomly distributed data points. The models are trained until the RMSE showed convergence, i.e.
the change of RMSE over epochs approaches 0. The RMSE convergence of the cross-coupled damping Cxy, at the
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Figure 7: FNN performance evaluation for response variables Fx and Fy. Normalized root mean squared error below
7 × 10−4 for 120k randomly distributed data points per compressibility number interval.

whirl ratio 
ex = 1, for the compressibility number interval Λ = [1, 2], is shown in Fig. 9. It can be seen, that after
50 epochs the change of RMSE is not significant and a further training yields only a small increase in accuracy. The
models are validated by 55k randomly distributed data points (geometry and eccentricity) in the compressibility range
of Λ = [1, 40], which have not been used for training. The accuracy of the models is quantified by the NRMSE. The
results are shown in Figs. 10 and 11. In Fig. 10 the maximum NRMSE of all whirl ratios in a given compressibility
number range, is plotted for all dynamic bearing coefficients. It can be seen that all NRMSE are below 0.01, which has
been set as the training target. In Fig. 11 the maximum NRMSE of the whole validation data set is shown at different
whirl ratios. It can be seen that the models perform equally well at different whirl ratios.

A comparison of predicted and excact solution for the impedances is shown in Fig. 12. The data point was not used
in the training set. It can be seen that the model shows very good agreement with the NGT computed data.
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Figure 8: Computation time comparison of regression model and numerically solving the NGT equation.
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Figure 9: RMSE convergence of Cxy at whirl ratio 
ex = 1, in the compressibility number interval Λ = [1, 2].
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Figure 10: Evaluation of sti�ness and damping meta models. Maximum NRMSE for di�erent compressibility number
intervals.

By using the meta-models a significant speed-up can be achieved compared to solving the NGT numerically
(Fig. 13). A similar trend as for the meta-models for the static forces can be observed. For one single computation, the
meta-model is slower than using the NGT solver, which can be attributed to the neural network initialization. However,
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Figure 11: Evaluation of sti�ness and damping meta models. Maximum NRMSE at di�erent whirl ratios and all com-
pressibility numbers.
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Figure 12: Comparison of model with numerical data. Sti�ness and damping values of bearing operating at Λ = 23.
Crosses: model, squares: numerical data.

already at 10 computations, the meta-models yield a speed-up factor of approximately 10. At 104 computations the
speed-up factor levels off at around 3000. This speed-up reduces the computation time of a typical bearing optimization
that takes several days down to minutes, which allows for large parameter variations in a reasonable amount of time
without incurring significant deviation to the NGT model. In addition, eccentric shaft positions can be computed at
arbitrary values. The meta-models are not limited to discrete values and multi-dimensional interpolations are possible,
which is shown in the following section by means of a multi-objective rotordynamic system optimization.

5. Case study

The strength of the developed models is presented by means of a real case rotordyamic system optimization, en-
countered in the development phase of small scale oil-free turbomachines. In order to validate the ANN models, the
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Figure 13: Computation time comparison of regression model and numerically solving the NGT equation for sti�ness and
damping values for 41 whirl ratios.

optimum solution, obtained with the ANN, is compared with the solution obtained by solving the PDEs directly.
Rotordynamic model. The design of small-scale turbomachinery requires stability analysis of the complete rotor-
dynamic system, considering the bearing non-linear stiffness and damping values. The system may be optimized for
maximum load capacity and stability. The load capacity can be directly quantified by the radial force in x-direction
(see Eq. (14)). The rotordynamic stability is computed by a natural frequency analysis of the bearing-shaft system.
The pure radial motion of a shaft, modeled as a point-mass, can be described by the following system of equations:

Mẍ + Cẋ +Kx = 0 (23)

whereM is the mass matrix:

M =
⎡

⎢

⎢

⎣

m 0

0 m

⎤

⎥

⎥

⎦

, (24)

C the damping matrix:

C =
⎡

⎢

⎢

⎣

Cxx Cxy

Cyx Cyy

⎤

⎥

⎥

⎦

, (25)

and K the stiffness matrix:

K =
⎡

⎢

⎢

⎣

Kxx Kxy

Kyx Kyy

⎤

⎥

⎥

⎦

. (26)
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The following non-dimensional properties can be introduced:

X̄ = x
R

(27)

as the shaft displacement with R as the bearing radius,

� = 
exΩt, (28)

as the dimensionless time,

m̄ =
paℎ50
36�2R6


2exΛ
2m = md
2exΛ

2 (29)

as the dimensionless mass, with pa the ambient pressure, ℎ0 the bearing clearance, � the dynamic fluid viscosity, Λ the
compressibility number and m the shaft mass. The non-dimensional damping and stiffness coefficients can be written
as follows:

C̄ij =
ℎ0
exΩ
paR2

Cij (30)

K̄ij =
ℎ0
paR2

Kij . (31)

With these definitions, Eq. (23) can be written as follows:

M̄ ̈̄X + C̄ ̇̄X + K̄X̄ = 0. (32)

By setting X̄ = X̄se
��

exΩ = X̄se�̄� into Eq. (32), it follows the quadratic eigenvalue problem:

(

M̄�̄2 + C̄�̄ + K̄
)

X̄s = 0 (33)

which yields four eigenvalues, each coming as a complex conjugated pair of the following form:

�̄1,2 = −�̄ ± i
√

!̄2 − �̄2. (34)
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From these, the logarithmic decrement can be computed which is > 0 if the system is stable and < 0 if the system is
unstable. It can be represented by the following expression:

Γ = 2��̄
√

!̄2 − �̄2
. (35)

Two logarithmic decrements are computed for the two complex conjugated pairs of eigenvalues. One corresponds to
a forward and one to a backward whirling shaft motion. Since the bearing impedance, and therefore the stiffness and
damping matrices, K̄ and C̄, are whirl ratio dependent, Γ has to be computed for each whirl ratio 
ex. The relevant
logarithmic decrements (forward and backward whirling) at a given compressibility number are then obtained by
finding 
ex, whereℑ(�̄)1,2 = 1. The minimum logarithmic decrement of the backward and forward mode is considered
for stability analysis and ideally, is maximized. This results in a logarithmic decrement for each bearing geometry, at
each eccentricity and compressibility number. The system has to be stable over the whole compressibility number
range and different eccentricities.

Optimization problem. The geometrical parameters of a HGJB are optimized for a given rotordynamic system,
where the non-dimensional lumped mass of the selected test shaft is given by md = 0.1578. The HGJB geometry has
to be found in order to maximize stability and load capacity. The HGJB parameters �, �,Hgr and L∕D are optimized,
assuming that each bearing has to support half the shaft mass 0.5md = 0.0789. The bearing is assumed to work in
the compressibility number interval Λ = [0, 30], which is typical in real case applications (see Guenat and Schiff-
mann [8]). Since the lubrication equation and the rotordynamic analysis is performed fully non-dimensional, the only
relevant parameter for describing the operational condition is the compressibility number. It contains any combination
of viscosity and pressure values. Therefore it considers also viscosity variations with temperature changes.
The stability is analyzed at eccentricities " = 0 and 0.5 and the load capacity is evaluated at " = 0.5. The compressibil-
ity number range is subdivided into 30 points, thus leading to 60 computations per geometry. A multi-objective genetic
optimization is performed with 2k geometries per population. The fitness function first computes the bearing stiffness
and damping values Kij , Cij , by using the derived ANNs, then solves Eq. (33) for the system natural frequencies. The
scores s1 and s2 of the fitness function are finally computed by:

s1 = −min(Γf,b)

s2 = −max(Fx).
(36)

The minus signs are used since the optimization algorithm minimizes the scores and we are interested in maximum
Γf,b and Fx values. The total number of individual computations per population is 120k. On an Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz processor, the computation time for one population (120k) is 147 s.
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Results. The Pareto curve of the rotordynamic system optimization at generation 10 is shown in Fig. 14 and
suggests a clear trade-off between stability and load capacity. The corresponding design variables along the Pareto
front are represented in Fig. 15, which suggest that increased load capacity is achieved by reducing the effect of the
grooves (reduced groove width and depth) and by increasing the L∕D ratio.

Figure 14: The Pareto curve for the optimized rotordynamic system in terms of minimum stability (at " = 0 and 0.5) and
maximum load capacity (for " = 0.5) at generation 10. Gray region corresponds to unstable region.

Aminimum logarithmic decrement of < 0 (gray region in Fig. 14) represents systems of unstable behavior and are
not interesting in practice. The remaining geometries are chosen based on a trade-off between stability safety margin
and achievable load capacity at eccentricity " = 0.5.

Model performance and accuracy. The meta-model approach provides significant computation time improve-
ments, compared to the direct finite difference method (FDM). For 10 generation a total number of 1.32 million single
computations have to be performed. By using the meta-models, the computation of 10 generations, including the
computation of the rotordynamic stability, takes a total time of 27min. The same amount of computations, using the
FDMwith 4 parallel processes, would take (one single computation takes 1.5 s) 5.7 days, which corresponds to a factor
≈ 300, compared to the meta-model based optimization.
In order to assess the accuracy of the ANNs compared to the classical FDM approach in predicting the rotordynam-
ic performance, the system natural frequencies and the corresponding logarithmic decrements are computed for all
compressibility numbers and eccentricities with the ANN and the FDM approach (exact) for a solution selected on
the computed Pareto curve. The selected design yields a logarithmic decrement of min(Γf,b) = 0.2018 and a load
capacity max(Fx) = 8.0138. The corresponding optimization parameters are � = 0.486, � = 46.9°,Hgr = 1.819 and
L∕D = 1.783. The comparison is summarized in Table 3. The relative error between FDM and meta-model approach
for the minimum stability is 1.1% and the error for predicting the static radial bearing reaction force is <0.1%.
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Figure 15: Pareto optimum for di�erent HGJB geometrical parameters as a function of maximum radial force Fx, at
generation 10.

Table 3

Result comparison of optimized geometry between FDM and meta-model approach.

Score value FDM Meta-model Rel. error

min(Γf,b) 0.204 0.2018 0.011
max(Fx) 8.0193 8.0138 0.0007

6. Summary and Conclusion

Data-driven meta-modeling of the static and dynamic analysis of HGJBs are presented in view of speeding up
bearing computation time and enhancing bearing analysis possibilities.
Feed-forward neural networks (FNN) are used, offering many degrees of freedom and the possibility of fitting highly
non-linear data sets. Themodels are tested and derived for predicting the static and dynamic HGJB behavior in different
compressibility number intervals and eccentric shaft positions.
It can be concluded, that with two layer neural network architectures, a meta-model for the static reaction forces Fx
and Fy can be trained with a NRMSE <7 × 10−4. For the dynamic force coefficientsKij and Cij a NRMSE <1 × 10−2
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is achieved.
The ANNs offer significant computational speed-up, in particular towards a high number of computations. At 104
computations the speed-up factor levels-off at > 105 for the static force models and > 103 for the dynamic force
models. This means a significant reduction in bearing computation time, allowing for large (in the range of millions)
parameter variations in minutes.
TheANNs are trained in parameter intervals, which gives the possibilities formulti-dimensional interpolation, avoiding
discrete point limitations. The models can predict the bearing reaction forces at arbitrary eccentric positions, which
makes them ideally suited for being used in a rotordynamic context. The subdivision into compressibility number
intervals leads to a reduction of parameter space size, which makes it possible to use simple and fast FNN architectures.
Furthermore, it allows for easily expanding the models towards larger compressibility numbers.
The ANNs can be smoothly integrated in a rotordynamic context, allowing for time-efficient, optimizations. A relative
difference of <1.1% has been observed between the ANN based model and the classical FDM based approach for the
target optimization parameter values. The meta-models lead to a speed-up factor for rotordynamic computations of
≈ 300, which reduces the computation time from several days to minutes.
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Nomenclature
Acronyms

C̄ij Non-dimensional damping, paR2∕(ℎ0
exΩ)C
K̄ij Non-dimensional stiffness, paR2∕ℎ0K
m̄ Non-dimensional mass, md
2exΛ2
e Network error vector
J Jacobian of weigths and biases
x Vector containing all weights and biases
b bias
cs NGT coefficient
Cij Damping coefficients (Ns∕m)
D Diameter (m)
f NGT coefficient
g Activation function
H Non-dimensional gap height
ℎ Gap height µm
i Imaginary number
Kij Stiffness coefficients (N∕m)
L Bearing length (m)
m Mass (kg)
md Non-dimensional mass, paℎ50∕(36�2R6)m
N Natural number
n Layer number
P Non-dimensional pressure
pa Ambient pressure (Pa)
q Solution variable
R Radius (m)
v Potential of neuron
w Width m
wi Neuron weights
x Neuron input
y Response variable

E Iseli et al.: Preprint submitted to Elsevier Page 23 of 26



Z Non-dimensional axial coordinate, Z = z∕R

z Axial coordinate (m)
Zij Non-dimensional impedance coefficients
Greek Symbols

� Dimensionless groove width
�̄ Damping value
!̄ Eigenfrequency
� Groove angle (°)

 Dimensionless groove length

ex Whirl ratio, !ex∕Ω
Γf,b Logarithmic decrement
Λ Compressibility number, 6�Ω∕pa(R∕ℎ)2
� Eigenvalue
�lm Scalar for Levenber-Marquardt algorithm
� Dynamic viscosity (Pa ⋅ s)
Ω Rotational speed (rad∕s)
!ex Excitation frequency (rad∕s)
� Attitude angle (°)
� Non-dimensional time, !ext
� Circumferential coordinate (rad)
" Dimensionless eccentricity, e∕ℎ0
e Eccentricity (µm)
Subscripts

0 Concentric position
X̄ Non-dimensional x-direction coordinate, x∕R
� Circumferential direction (rad)
a Ambient
g Groove
gr Ratio groove to ridge
l Land region
r Ridge
s Solution variable

E Iseli et al.: Preprint submitted to Elsevier Page 24 of 26



x x-direction in shaft cross-section plane (m)
y y-direction in shaft cross-section plane (m)
z Axial direction (m)
ANN Artificial neural network
FGA Finite Groove Approach
FNN Feedforward neural network
HGJB Herringbone groove journal bearing
NGT Narrow-groove theory
NRMSE Normalized root mean squared error
PDE Partial differential equation
RMSE Mean squared error
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