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aWroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370

Wroclaw, Poland

Abstract

The imbalanced data classification remains a vital problem. The key is to
find such methods that classify both the minority and majority class cor-
rectly. The paper presents the classifier ensemble for classifying binary, non-
stationary and imbalanced data streams where the Hellinger Distance is used
to prune the ensemble. The paper includes an experimental evaluation of the
method based on the conducted experiments. The first one checks the impact
of the base classifier type on the quality of the classification. In the second
experiment, the Hellinger Distance Weighted Ensemble (hdwe) method is
compared to selected state-of-the-art methods using a statistical test with
two base classifiers. The method was profoundly tested based on many
imbalanced data streams and obtained results proved the hdwe method’s
usefulness.

Keywords: classifier ensemble, data stream, Hellinger Distance, imbalanced
data, pattern classification

1. Introduction

Researchers are still working on the imbalanced data stream classification.
The problem arises in the reality and there are not many solutions to ensure a
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high performance. The disproportion among learning instances from different
classes can significantly impact classifier learning algorithms [1] and usually
leads to a bias towards the majority class. The problem of the stationary data
imbalance, i.e., when the classes’ disproportion is constant, is well established
in the literature. However, there are only a few works on the imbalanced data
stream where the imbalance ratio may vary over time.

To illustrate the problem of the imbalanced data stream classification,
let us consider the spam filtering test [2]. Such a system recognizes which
e-mails should be sent to the spam and which ones are appropriate and must
be in the recipient’s inbox. The number of messages identified as spam can
change. At first, a new mailbox user does not get much spam. This is an
example of imbalanced data where one class (spam) is less numerous than
the other, denoted as the minority class. The second class is the majority
class (legitimate e-mails). With time, when the user begins to use the mailbox
more often and enters their e-mail address on different web pages, the number
of messages increases, both in the first and the second class. It may happen
that the relationship between the minority and majority classes, known as
the imbalance ratio, increases. For example, the imbalance ratio was 1%,
i.e., 1% of legitimate e-mails were spam. After some time, this ratio can
change 5%, 10%, 20%, etc. Also, it is possible that the amount of spam will
increase faster than regular e-mails, and then the minority class will become
the majority. In this case, when there are less important messages than
spam, which is now the minority class, recognition becomes crucial. The
error, in this case, is more expensive. In addition to changing the imbalance
between two classes, there may also be a concept drift [3]. This is a change in
the characteristics of e-mails over time, so the data becomes non-stationary.
Spammers are constantly trying to change techniques so that more spam
goes to the inbox. It means that the classifier’s decision boundary changes
after a certain period because it needs to learn a new data type and classify
it correctly. Combining both of these cases, the imbalance and the concept

drift, the classification problem becomes very difficult.
The classification of complex data with a single classifier may not be suffi-

cient. However, multiple individual classifiers known as a classifier ensemble
can give better classification results. When data has huge volume and arrive
continuously it can be called the data stream. It can cause a long time of
processing. Data appears continuously, so the system must always be ready
to receive it. However, the system cannot store the entire data stream in
memory. Therefore only storing the most up-to-date data or data chunks
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is used. Additionally, we have to implement a forgetting mechanism, which
discards old data and thus updates and improves its quality [4].

Working on the data type described above, i.e., non-stationary imbal-
anced data streams, it is possible to refine existing methods that allow sta-
tistically significant improvements. It is worth checking how this new method
works for the statically and dynamically imbalanced data. When the data
is non-stationary, so the concept drift may occur, the method should not
achieve the poor classification quality. In comparison, the method should
work at least as well as the selected state-of-the-art methods. Thus the main
contributions of the work are:

• The presentation of the new ensemble method Hellinger Distance Weighted

Ensemble for the imbalanced data stream with the concept drift clas-
sification and the computational complexity calculation.

• The experimental evaluation of the Hellinger Distance Weighted En-

semble and the comparison with the selected state-of-the-art methods.

The paper is organized as follows. Section 2 contains a literature review
that provides an overview of imbalanced data stream classification methods.
Section 3 describes the new method Hellinger Distance Weighted Ensemble.
The experiment plan with the description of data sets and tests as well as
the analysis of results and lessons learned can be found in the section 4. The
last section 5 concludes the work.

2. Related works

This section discusses the main topics related to the work, starting with
an introduction to the imbalanced data analysis task, then an overview of
the data stream classification, where inspiring approaches are presented.

2.1. Imbalanced data

Data is imbalanced when there is an enormous disproportion between
classes. Thus the number of instances in one class is much smaller than in
the other. In a two-class classification task, one class is the majority class
(negative), and the second one is the minority class (positive) [5]. Particular
attention is paid to the classification of the positive instances because the
cost of making a mistake can be very high [6].
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2.1.1. Approaches for imbalanced

According to [7], three types of methods dealing with the class imbalance
can be distinguished below.

• Algorithm level – this approach pays special attention to classifying
the minority class by adjusting the algorithm in such a way that it is
resistant to the skewed distribution [8]. It can take into an account the
cost of the minority class misclassification. Therefore the algorithm has
to consider this [9].

• Data level – in this approach, the samples are equalized in both im-
balanced classes by data resampling, which allows the use of standard
classifiers because the data is already balanced [10].

• Hybrid approach – it employs data preprocessing and cost-sensitive
learning [11].

One of the methods of the first approach is the Hellinger Distance Deci-

sion Tree (hddt) [12] [13]. It is the C4.4 decision tree classifier [14] employing
the Hellinger Distance as a splitting criterion. Hence there is no need for
additional sampling. Cieslak et al. showed that their method is suitable for
the binary classification of imbalanced data sets because it is skew insensi-
tive and robust [13]. However, for balanced data, it is just as good as C4.5
[15]. Due to the structure of this algorithm, the classification of the high
imbalanced data is appropriate. Noting the positive impact of this approach
using the Hellinger Distance, the method proposed in this paper focuses on
the algorithm level approach.

The data level approach is focusing on data preprocessing [16]. It is
intuitive and usually returns good results. Its main aim is to reduce the
number of majority examples (undersampling) or to generate new minority
instances (oversampling). Many of the data sampling methods are inde-
pendent of classifiers used later [17]. However, many researchers use these
techniques together with classifiers, e.g., by combining data resampling with
the classifier ensemble [18]. Let us concentrate on two main techniques of
data sampling:

• Random Oversampling [19] – this is a random operation. It involves a
duplication of samples in the minority class, which leads to the class
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balance. Unfortunately, it may lead to overfitting. We may enumer-
ate several modifications of Random Oversampling as: Distributional

Random Oversampling [20], Wrapper-based Random Oversampling [21],
Generative Oversampling [22].

• Random Undersampling [19] – it removes some of the samples from
the majority class randomly to equalize the number of examples from
different classes. Because of randomness, it can lead to the elimination
of important instances. Then, there could be insufficient samples to
learn the model, and the model may be untrained. A few methods can
be distinguished: Inverse Random Undersampling [23], Tomek Link

and Random Undersampling [24], Clustering-based Undersampling [25].

Based on the classic approach, researchers made some improvements and
developed new methods to sample the data. Also, Synthetic Minority Over-

sampling Technique (smote) [26] is oversampling, but unlike random one,
smote prevents overfitting by interpolating minority class instances using a
K-Nearest Neighbors (knn) technique. A weakness of this approach appears
when the method’s parameters are wrong and instances are added to the
minority class. Some better versions of the original smote are: Borderline

smote [27], Safe-level-smote [28], smote-ipf [29]. The Selective Prepro-

cessing of Imbalanced Data (spider) [30] approach is more complex because
it combines oversampling with noisy filtering of majority-class samples de-
pending on the option selected. Wojciechowski and Stefanowski developed a
newer version spider3 [31]. If there is not minority class, the Real-value Neg-
ative Selection Over-sampling (rnso) [32] can be used in the binary classifi-
cation. It bases on the Real-value Negative Selection (rns) algorithm to gen-
erate artificial minority instances using feature vectors of majority instances.
In the case of the existing few minority instances, rns uses it to initialize
detectors. Tao et al. proposed the other over-sampling method Adaptive

Weighted Over-sampling [33]. It combines a few approaches: Density Peaks

Clustering, Adaptive Sub-cluster Sizing for over-sampling, Synthetic Instance

Generation and Heuristic Filter to overcome overlapping.

2.2. Data stream classification

As we mentioned above, when data comes to the system continuously, it is
called the data stream. The data set size is growing very fast, and it could be
difficult to analyze this because of a few challenges. Restrictions about time
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and memory resources are important, especially for real-life problems. Data
stream can be divided into small portions of the data called data chunks.
This method is known as batch-based or chunk-based learning. Choosing
the proper size of the chunk is crucial because it may significantly affect the
classification [34].

Instead of chunk-based learning, the algorithm can learn incrementally
(online) as well. Training examples arrive one by one at a given time, and
they are not kept in memory. The advantage of this solution is the speed of
sample processing and the need for smaller memory resources. One of the on-
line methods for imbalanced non-stationary data stream is weob (Weighted

Ensemble of oob and uob). This method is the ensemble built on the basis
of oob (Oversampling-based Online Bagging) and uob (Undersampling-based

Online Bagging). These two basic algorithms counteract the class imbalance
in real-time. The weob ensemble contains the best features of oversampling
and undersampling. uob works better in static data streams when recog-
nizing the minority class, while oob is more robust for dynamic imbalance
changes [35].

When the data stream is non-stationary and we have limited computa-
tional resources, then the well-known cross-validation is insufficient to evalu-
ate the predictive performance [4]. Two approaches for estimating prediction
measures in chunk-based learning can be used instead. Test-then-train and
prequential also apply to metrics described in the section 4.2.3.

• Test-then-train [36] – in this technique each data chunk is used first for
testing the method and then for training. The model and measurements
are updated incrementally after each data chunk.

• Prequential [4] – this is a sequential analysis in which every instance is
observed. The model makes a prediction, then the error is estimated. A
forgetting mechanism such as a sliding window or fading factors should
be implemented to collect selected instances and achieve a more robust
estimation.

The two following methods were an inspiration to create the Hellinger

Distance Weighted Ensemble method proposed in this paper.

2.2.1. Accuracy Weighted Ensembles

Wang et al. conducted their research for the data stream with the concept
drift and proposed the new Accuracy Weighted Ensembles (awe) method
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[37]. They showed that the ensemble classifier outperforms a single classifier.
However, for the better data classification, they calculated each classifier’s
weights in the ensemble and selected the best one. The awe calculates these
weights based on the Accuracy on the testing data.

The data is divided into equal sized n chunks. The weight of one classifier
is expressed by the expected prediction error on the test data, where DSn

is a current nth chunk in the data stream in the form (x, i) and i is a true
label. Probability that x is an instance of class i given by kth classifier is
fk
i (x). The eq. 1 shows the mean square error (mse) of kth classifier.

MSEk =
1

|DSn|
∑

(x,i)∈DSn

(1− fk
i (x))2 (1)

Also, the MSE of random classification is needed for the weight of the
classifier. In the two-class problem MSEr = 0.25. The final weight for kth
classifier is shown in the eq. 2.

wk = MSEr −MSEk (2)

After building the ensemble, the worst classifiers are removed, ensuring
that the classifiers’ number is never greater than the level specified when the
algorithm was called in the ensemble. Such classifiers are the best possible
so that the quality of the classification can be improved. This idea of awe

method was used in this work to build hdwe.

2.2.2. Hellinger Distance

The Hellinger Distance (hd) measures distributional divergence using
the Bhattacharyya coefficient. In other words, it is a similarity between the
probabilities P1 and P2. This measure is used as a decision tree splitting
criterion as hddt method [12]. Cieslak et al. have proved that the Hellinger

Distance is skew insensitive. In their next article [13], they extended hddt

research and explored the advantage of their algorithms using isometric lines.
The analysis of the obtained results led them to conclude that the increasing
imbalance rate between classes has no impact on the algorithm’s quality.
The Hellinger Distance using the True Positive Rate (tpr) and the False

Positive Rate (fpr) presented in the section 4.2.3 is formulated by Cieslak
et al. as follows:
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dH(TPR, FPR) =

√

(
√
TPR−

√
FPR)2 + (

√
1− TPR−

√
1− FPR)2

(3)
The proposed hdwe method uses it to prune the committee.

2.3. Imbalanced data stream

It has been proven that the use of many individual classifiers assigned dif-
ferent weights can improve the classification’s performance. This is called the
classifier ensemble or the committee of classifiers [38]. Weights for individual
classifiers in the ensemble can be set based on various factors, e.g., perfor-
mance weighting [39]. The ensemble has many applications and one of them
is the classification of imbalanced data sets [40]. Based on [41], in which
the authors presented an overview along with the taxonomy for ensemble
methods for the imbalanced problem, selected classifiers are as follows:

• Cost-Sensitive Boosting Ensembles

– AdaCost [42]

– csb1, csb2 [43]

– RareBoost [44]

– AdaC1, AdaC2, AdaC3 [45]

– Self-adaptive cost weights-based SVM cost-sensitive ensemble [46]

• Boosting Ensemble Learning

– smoteboost [18]

– msmoteboost [47]

– rusboost [48]

– DataBoost-im [49]

• Bagging Ensemble Learning

– smotebagging [19]

– QuasiBagging [50]

– Asymetric Bagging [51]
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– Roughly Balanced Bagging [52]

– Partitioning [53]

– Bagging Ensemble Variation [54]

– IIVotes [55]

– Stratified Bagging and dynamic ensemble selection method [56]

• Hybrid Ensemble Learning

– EasyEnsemble [40]

– BalanceCascade [40]

When the data set is additionally non-stationary, classifying instances
into the appropriate classes becomes even more challenging [40]. The Stream-

ing Ensemble Algorithm (sea) [57] is used for classification drifting data
streams using chunk-based learning for balanced data sets. The heuristic
replacement technique is used to create the ensemble, so the model with the
worst quality is removed.

The following methods are suitable for imbalanced data with occurring
concept drifts. The Learn++ for Concept Drift with smote (Learn++.cds)
[2] is based on the Learn++.nse method [58]. Methods from Learn++ fam-
ily use the weighted majority voting to make a final decision. smote is
used to handle imbalanced data. For the Learn++ for Nonstationary and

Imbalanced Environments (Learn++.nie) [2], the ensemble is created with
the penalty constraint in which the model is better when it performs both
in the minority and majority class. Then bagging is used based on a sub-
set of majority examples. The Over Under Sampling Ensemble (ouse) [59]
employs oversampling to collect all previous minority class examples, as well
as undersampling, which selects all majority class samples from the previous
chunk. The Recursive Ensemble Approach (rea) [60] uses selective accom-
modation of previous samples of the minority class for the current chunk
based on the K-Nearest Neighbors. The Kappa Updated Ensemble (kue) [61]
uses the Kappa statistic rather than the Accuracy for weighting and selec-
tion base models in the ensemble. The method ensures a high diversity and
low complexity. If the minority class is underrepresented, one-class classi-
fiers can be used. One of the methods is One-Class Support Vector Machine

Ensemble for Imbalanced data Stream (oceis) [62], which trains ocsvm for
the majority and the minority classes based on clustered data.
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3. Proposition of the algorithm

So far, not many methods dedicated to the classification of difficult data,
such as non-stationary imbalanced data streams, have been developed. To
overcome this challenging data classification task, we propose the Hellinger

Distance Weighted Ensemble (hdwe). The method combines two approaches.
Firstly, it employs the Accuracy Weighted Ensembles, which is designed for
drifting concepts. Secondly, the Hellinger Distance is used to determine the
weight in the ensemble based on the specific formula. This combination uses
the advantage of both techniques.

Usually, the classifier ensemble works better than a single classifier in the
classification of concept drift data streams. Therefore, hdwe bases on the
awe method. Also, a similar mechanism for determining weights was used.
The Hellinger Distance presented in section 2.2.2 is used as the classifier’s
weight in the ensemble. Thanks to this, hdwe can be resistant to the im-
balance. Let us assume that the ensemble classifier with calculating weights
for each model based on the Hellinger Distance will be better for imbalanced
data with the concept drift than selected state-of-the-art methods.

The Algorithm 1 outlines how the Hellinger Distance (eq. 3) was used
to the learning process of the ensemble. In the beginning, a pool of base
classifiers Π is empty. The data stream DS is divided into equal chunks,
except for the first initial one. The process of learning is conducted for each
chunk DSi. A new candidate classifier m is trained based on the current
chunk. Then the K-folds cross-validation is used to evaluate the model in
the ensemble. The current chunk is split into K-parts (the default value
of K is 5 for the hdwe method). The data is not shuffled. For each fold
in cross-validation, the Hellinger Distance function HD calculates the score
based on the candidate classifier and the fold from the current chunk using
the eq. 3. The weight of the candidate wm is averaged through folds. The
weights’ normalization has no influence on results thus we do not implement
it. In the next step, the Hellinger Distance as a weight wk is calculated for
each classifier Ck in the ensemble. A new candidate is added to the ensemble.
Afterward, if the ensemble’s size is bigger than the given value ES, the worst
classifier is removed.

The time complexity is based on the awe method [37]. Let s be the size
of the data set and n – the number of data chunks in the data stream. The
complexity of building one classifier is O(f(s)). According to the Algorithm
1, the time complexity is equal O(n× f( s

n
)).

10



Algorithm 1 Hellinger Distance Weighted Ensemble

Input:

HD – the Hellinger Distance function
DS – the data stream
DSi – ith chunk of the data stream DS

Π – the pool of base classifiers
Ck – kth classifier of the pool of base classifiers Π
m – the candidate classifier for the pool of base classifiers Π
wm – mth weight of the candidate classifier
wk – kth weight of the Ck classifier
ES – the given ensemble size

1: Π← ∅

2: for each DSi ∈ DS do

3: Train classifier m from DSi

4: Scores← Compute HD(m,DSi) via cross validation using (3)
5: wm ← AverageScores

6: for each Ck ∈ Π do

7: wk ← Compute HD(Ck, DSi) using (3)
8: end for

9: Π← Π + m

10: if |Π| > ES then

11: Remove the worst Ck from Π
12: end if

13: end for
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4. Experimental evaluation

4.1. Research goals

The conducted experiments will try to answer the following research ques-
tions:

RQ1: How does the hdwe method work with different base classifiers?

RQ2: Does the predictive performance of the hdwe outperform selected state-
of-the-art methods?

RQ3: How flexible is the hdwe in the non-stationary and dynamically im-
balanced data sets?

4.2. Setup

The stream-learn module [63] was used to conduct all experiments. It
is a complete set of tools that helps to process data streams. First, the
data streams were generated. Subsequently, Test-Then-Train evaluator was
used. The module allows the use of methods from the scikit-learn library
[64] and has several classifiers and ensemble methods used as state-of-the-art
methods. It also calculates selected metrics.

The project was implemented in the Python programming language. It
uses also software such as SciPy [65], Pandas [66], Numpy [67] for data pro-
cessing and drawing charts. The project’s implementation with this setup
and results is available in the GitHub repository1.

4.2.1. Data sets

Imbalanced data streams with the changing prior probabilities were used
to conduct the experiments. The stream-learn module was employed to gen-
erate synthetic data. Table 1 contains all attributes except the default ones.
It was used to generate 84 data streams in total.

The first five attributes are the same for each stream. As shown in the
paper [37], it is important to choose the right chunk size. When it is too big,
the training time and error rate increase because the model cannot recognize
the concept drift. When the data chunk is small, the error also increases
because it does not get enough training samples. After pre-experiments, the
size of 500 objects in one data chunk was chosen for the research.

1https://github.com/joannagrzyb/HDWE
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The next attributes are variables, i.e., one value is selected from a row
in the table. Streams generated in this way check many cases, especially
different imbalanced levels from 1% to 25%. Two types of the imbalance
were used: static and dynamic. The static imbalance does not change and the
imbalance ratio is the same in the entire data stream . However, the dynamic
imbalance changes over time with every new chunk. The initial minority class
becomes the majority, and the majority becomes the minority. In two places
among the number of chunks, the proportions of the classes are even. All
streams contain 5 concept drifts in two types: sudden and incremental. The
sudden concept drift means that a state is promptly changed, and distribution
is not adequate to the state. In the incremental concept drift, changes in the
distribution are slower. According to [4], these are 2 of 3 main types of
changes in the data stream. The random state ensures the replicability of
generating the same streams.

Table 1: Attributes of the generated data streams

Attribute Value

Number of samples 100000
Number of chunks 200

Chunk size 500
Number of classes 2

Number of features 20 (15 informative + 5 redundant)
Concept drifts 5 sudden 5 incremental
Random state 1111 1234 1567

Stationary
imbalance

1% 3% 5% 10% 15% 20% 25%

Dynamically
imbalance

1% 3% 5% 10% 15% 20% 25%

Most of the experiments were run on computer-generated data streams,
and the authors realize that better verification would be to use real data.
However, we have to take into consideration the low availability of such
data. According to analyzing possible real data streams, three benchmark
streams were selected [61]. Table 2 shows information about these data such
as the imbalance ratio because each stream contains the concept drift, and
after transformation they have the skew distribution. They were transformed
into a 2-class by combining some classes. The data set covtype contains
information about the forest cover type and it has binary and normalized
values. The original version has 7 classes but we merged first and the second
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class and compared them with the rest, so the classification problem became
binary. Purpose of the second data set poker is to predict poker hands
composed of five playing cards. The data set has 10 classes, but we merged
classes in the same way as in the previous data set. The aim of the insects

data set is classification of insects. To obtain the imbalanced data set and
the binary problem, the second class has been selected and the rest has been
merged. These streams’ chunk size was 2000 to ensure that the model does
not receive only one class during classification.

Table 2: Properties of real data sets

Data set Instances Attributes Imbalance Ratio

covtypeNorm-1-2vsAll 267 000 54 25%
poker-lsn-1-2vsAll 360 000 10 10%
2vsA INSECTS 355 274 33 23%

4.2.2. Used classifiers

In the first experiment, the following base classifiers were used. hddt

was described in details in section 2. The other methods were used from the
scikit-learn library.

• Gaussian Naive Bayes [68] – gnb

• Multi-Layer Perceptron classifier [69] – mlp

• Decision Tree classifier [70] – cart

• Hellinger Distance Decision Tree [13] – hddt

• K-Nearest Neighbors classifier [71] – knn

• C-Support Vector Classification [72] – svc

The second experiment contains a comparison between hdwe and under-
mentioned ensembles. sea and awe was used from the stream-learn module.

• Streaming Ensemble Algorithm [57] – sea

• Accuracy Weighted Ensemble [37] – awe

• Learn++ for Concept Drift with smote [2] – Learnppcds
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• Learn++ for Nonstationary and Imbalanced Environments [2] – Learnppnie

• Over and Under Sampling Ensemble [59] – ouse

• Recursive Ensemble Approach [60] – rea

During experiments, the number of estimators used in each ensemble was
10, because according to [73] the number of models in the ensemble should
be between 10 and 50 to strike a balance between accuracy and diversity.
Table 3 shows values of other parameters.

Table 3: Attributes of the ensemble classifiers

Method Attribute Value

sea Metric Accuracy
awe Number of folds in cross validation 5
Learnppcds
Learnppnie

Parameter a 2
Parameter b 2

ouse Number of chunks 10
rea Balance ratio 0,5

4.2.3. Metrics

In this work, we will focus on the binary classification task. Before pre-
senting the metrics, let us define a confusion matrix (Table 4) [74]. tp (true
positive) stands for the number of correctly classified positive instances (mi-
nority class). tn (true negative) – correctly classified negative examples (ma-
jority class). fp (false positive) and fn (false negative) are the numbers of
incorrectly classified objects from positive and negative classes, respectively.

Table 4: Confusion matrix for binary problem

Actual values
Positive (1) Negative (0)

Predicted
values

Positive (1)
tp

True Positive
fp

False Positive

Negative (0)
fn

False Negative
tn

True Negative

On the basis of the confusion matrix, the following metrics can be calcu-
lated that show the quality of the classification [75] [74]:

15



• Accuracy is one of the most popular threshold metric. This is a mea-
surement of the correct predictions between all predicted and actual
values.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Recall (other name Sensitivity or True Positive Rate – tpr) informs
with what quality the model recognizes objects as the minority class,
which actually belong to this class.

Recall =
TP

TP + FN
(5)

• Specificity (also known as True Negative Rate – tnr) returns the qual-
ity of the model as it correctly assigned the objects to the majority
class in relation to how many objects in that class are.

Specificity =
TN

TN + FP
(6)

• Precision

Precision =
TP

TP + FP
(7)

• F1 score

F1score = 2× Precision× Recall

P recision + Recall
(8)

• Balanced Accuracy (bac)

bac =
Recall + Specificity

2
(9)

• Geometric mean score (G–mean)

G−mean =
√

Recall × Specificity (10)

• False Positive Rate (fpr)

FPR = 1− Specificity =
FP

TN + FP
(11)
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• False Negative Rate (fnr)

FNR = 1− Recall =
FN

TP + FN
(12)

For imbalanced data sets, the Accuracy is inappropriate because it may
favor the majority class. Thus, more appropriate metrics for this type of
data sets are those that measure only one class, such as Recall or Specificity.
A combination of these metrics can also be useful, e.g. F1 score, G–mean

and Balanced Accuracy.

4.2.4. Statistical tests

The statistical analysis may improve the readability of results and strengthen
conclusions from experiments. One of the acclaimed work on analysis meth-
ods is [76], where Demsar showed different statistical tests that may be per-
formed depending on the number of classifiers and the number of data sets.
In our research the nonparametric Friedman test with the Nemenyi post-hoc

test are used.

4.3. Results

This section presents an analysis of the results of the conducted exper-
iments. The first of them check the base classifier type’s impact on the
hdwe method. Then two base classifiers svc and hddt were selected. For
each of them, the hdwe method was compared with selected state-of-the-art
methods. The last part shows the dependence of the imbalance.

4.3.1. Experiment 1 – base classifiers for hdwe

The first experiment compares base classifiers in the hdwe method with
each other. As described precisely in section 4.2, 6 base classifiers were
compared in 84 generated data streams.

Four example graphs of measured quality Recall and Specificity are shown
in Figures 1 and 2. Both data streams have 10% of the imbalance. Figures 1a
and 1b show the sudden concept drift with the stationary imbalance. Figure
1a clearly shows five concept drifts. In addition, all methods achieve the
highest Recall value, which means in this case that the minority class has
been well recognized. Figure 1b shows the significant difference in the level of
Specificity for different methods, so the hdwe method is worse at recognizing
the majority class.
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In Figures 2a and 2b it is the incremental concept drift with the dynamic
imbalance. It looks a little different for the dynamic concept drift and the
imbalance in Figures 2a and 2b. Both figures show that the methods reach
maximum values, but after some time the quality decreases.

0 25 50 75 100 125 150 175
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

HDWE-SVC
HDWE-HDDT
HDWE-MLP
HDWE-GNB
HDWE-CART
HDWE-KNN

(a) Recall

0 25 50 75 100 125 150 175
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec
ifi
cit
y

HDWE-SVC
HDWE-HDDT
HDWE-MLP
HDWE-GNB
HDWE-CART
HDWE-KNN

(b) Specificity

Figure 1: Performance scores for base classifiers – the generated data stream with the
sudden concept drift and the stationary imbalance

Based on the selected figures from two streams, it is impossible to deter-
mine which method is statistically the best. Thus, each stream’s results were
averaged, and then the average rankings for each method and six metrics
were calculated separately. To better compare all methods and find these
statistically different, the Friedman test is performed [76]. For the p-value
equal 0.05, the hypothesis H0 is rejected. Once the H0 hypothesis is rejected,
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Figure 2: Performance scores for base classifiers – the generated data stream with the
incremental concept drift and the dynamically imbalance

it can proceed to the Nemenyi test [76]. Figure 3 shows diagrams for every
metric calculated based on the Nemenyi test. It is a post-hoc test. An axis
represents the ranks of the method, where the higher number means the
better method. The best methods are on the right side of every diagram.
The critical difference is calculated for the confidence level α = 0.05, average
ranks of scores in all generated data streams. Methods that are not signif-
icantly different are connected with a thick horizontal line. The other ones
are significantly different, which means that its average ranks differ at least
a critical difference.

Based on the above analyzes, it could be concluded that the base classifier
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Figure 3: Diagrams of critical difference for Nemenyi test for base classifiers

svc in the hdwe method is statistically significantly better than the other.
Except for mlp, which is not significantly different from svc.

4.3.2. Experiment 2 – comparison with state-of-the-art methods with the base

classifier: svc

This section presents the second experiment. It contains a compari-
son between the hdwe method with state-of-the-art methods: sea, awe,
Learn++.cds, Learn++.nie, ouse, rea. All of these methods are ensem-
bles, which means they must use the base classifier. svc was chosen for the
study first because it proved to be statistically the best in the first experi-
ment.

From all generated data streams, two examples were selected with the
imbalance ratio 10%, and two metrics: Recall – indicating the minority class
and Specificity – indicating the majority class. Figures 4a and 4b show five
sudden concept drifts and the stationary imbalance. The hdwe method is
working just as well as the other. It is worth noting that the ouse method
is better when recognizing the majority class. Figures 5a and 5b show five
incremental concept drifts and the dynamical imbalance.
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Figure 4: Performance scores for state-of-the-art methods with base classifier svc – the
generated data stream with the sudden concept drift and the stationary imbalance

As in the first experiment, the average ranks of all methods were calcu-
lated. The Friedman test is carried out. For p-value equal 0.05, the hypoth-
esis H0 is rejected, so the Nemenyi test can be conducted. Figure 6 shows
the Nemenyi test. The axis represents the ranks of the methods. The better
methods are on the right. The confidence level is α = 0.05 for calculating
cd. The thick, horizontal line connects methods which are not significantly
different.

Depending on the metrics, the best results were obtained by Learn++.cds,
awe, and Learn++.nie. For half of the metrics (Balanced Accuracy, G–

mean, Specificity), the hdwe method is on the right, which means it is quite
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Figure 5: Performance scores for state-of-the-art methods with base classifier svc – the
generated data stream with the incremental concept drift and the dynamically imbalance

good compared to others. For example, for Recall, it is significantly better
than the ouse method.

Figures 7, 8 and 9 show F1 score for all methods tested on the real data
sets covtype, poker and insects respectively. Figure 10 includes radar rep-
resentation of all metrics. For each case, hdwe has reasonable values of
G–mean, F1 score and Balanced Accuracy compared to other methods. It
achieves the highest Specificity and Precision and lower Recall than others.
For all methods a high value of Specificity may lead to overfitting toward the
majority class.
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Figure 6: Diagrams of critical difference for Nemenyi test for state-of-the-art methods with
the base classifier svc

0 20 40 60 80 100 120
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

F1

HDWE-SVC
AWE-SVC
LearnppNIE-SVC
LearnppCDS-SVC
REA-SVC
OUSE-SVC
SEA-SVC

Figure 7: F1 score for state-of-the-art methods with base classifier svc – real data stream
(covtype)
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Figure 8: F1 score for state-of-the-art methods with base classifier svc – real data stream
(poker)
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Figure 9: F1 score for state-of-the-art methods with base classifier svc – real data stream
(insects)

4.3.3. Experiment 2 – comparison with state-of-the-art methods with the base

classifier: hddt

The second base classifier chosen to conduct a similar analysis of the
result is hddt. It is a decision tree that returns interesting results because,
like the hdwe method, it bases on the Hellinger Distance.

For the hddt base classifier, similar analyzes of the hdwe and selected
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state-of-the-art methods were performed. For two examples of the data
stream and two metrics, Figure 11 and 12 show performance. Data streams
have the imbalance ratio 10%. Figures 11a and 11b show sudden concept

drifts and the stationary imbalance. Figures 12a and 12b show incremental
concept drifts and the dynamical imbalance. It can be observed, that in each
figure, the hdwe method slightly outperforms awe.

Based on the average values of the stream metrics, the average ranks were
calculated. Then, the Friedman test is carried out. For p-value equal 0.05,
the hypothesis H0 is rejected. The Nemenyi test is shown in the Figure 13.
The confidence level α = 0.05 was used to calculate cd. The hdwe method
has higher rank for F1 score and Recall, while Learn++.cds is better for
Balanced Accuracy, G–mean, Specificity. For Precision, the sea method has
the biggest value. Methods hdwe and Learn++.cds are not different from
each other. They are the best methods among others.

Performance on real data sets covtype, poker and insects is shown in Fig-
ures 14, 15 and 16 respectively. hdwe achieves the highest value of F1 score
while other methods have values from almost 0 to 0.4. Figure 17 shows per-
formance based on all metrics. The hdwe method is as good as other in the
classification of the covtype and insects data sets. Otherwise, it outperforms
in the poker data set for F1 score, Balanced accuracy and G–mean.

4.3.4. Imbalance comparison

This section shows how the type of the imbalance affects the quality of
the classification.

An important point of this work is paying attention to the dynamic and
stationary imbalance. Figure 18 shows G–mean measure for the same stream
with incremental concept drifts and 5% imbalance. Figure 18a clearly shows
5 drifts. It is a stream without changing the imbalance level. However, Figure
18b reflects the imbalance. The first class is 5% and the second class is 95%.
In the 50th chunk, i.e., in 1/4 of the entire stream, classes’ distribution is
evened out. In the middle of the stream, the classes change, i.e., the first
class is the majority, the second – the minority, and the classification’s quality
decreases. Then, in 3/4 of the stream, the two classes are balanced again,
and finally, the stream returns to the initial imbalanced state.

As before, Figure 19 shows G–mean score, but this time for sudden con-

cept drifts and 3% imbalance. In the case of dynamically imbalanced data
stream (Figure 19b), all algorithms work at a similar level.
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4.4. Lessons learned

The Hellinger Distance Weighted Ensemble is a typical chunk-based ap-
proach [7]. The weight of the candidate in the ensemble depends on the
Hellinger Distance. Thanks to that, hdwe prefers the minority class and re-
moves bias for the majority class because, in the case of imbalanced data, the
cost of the minority class misclassification is higher. It is the algorithm-level
method, so it does not use oversampling nor undersampling. Based on the
experiments, the answers to research questions formulated in the beginning
are as follows:

RQ1: How does the hdwe method work with different base classifiers?

The first experiment shows that the quality of the classification depends
on the type of the base classifier. If high performance is expected for
both the minority and majority classes, then svc or mlp should be
chosen.

RQ2: Does the predictive performance of the hdwe outperform selected state-

of-the-art methods?

It works as well as other selected state-of-the-art methods with non-
stationary and imbalanced data streams. By comparing methods and
averaging their results for all generated streams, i.e., for sudden and
incremental concept drifts, the stationary and dynamically imbalanced
data stream, hdwe is statistically quite good compared to selected
state-of-the-art methods. It shows high quality in classifying the mi-
nority class. This is probably because the Hellinger Distance is used,
which is insensitive to the imbalance. hdwe can also be used for the
real data streams. Experiments showed that hdwe classified with com-
parable quality to other methods and slightly outperforms them, espe-
cially for the complex, difficult data.

RQ3: How flexible is the hdwe in the non-stationary and dynamically im-

balanced data sets?

The hdwe method can be used for dynamically imbalanced data be-
cause it achieves similar results to other selected methods. However, it
is not completely resistant to changes in the prior probabilities of both
concept drifts and the variable imbalance.
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5. Conclusions

This work proposed the Hellinger Distance Weighted Ensemble (hdwe)
method for batch learning and the binary classification data stream with
occurring concept drifts and the imbalance among classes. It is the classifier
ensemble in which base classifiers are selected based on the value of the
Hellinger Distance calculated using the True Positive Rate and the False

Positive Rate. When the ensemble’s size is bigger than the number given
initially, the worst model is removed. The computer experiments confirmed
the satisfactory quality of the proposed algorithm in comparison to the state-
of-art methods.

Future research could consider:

• To examine the relationship between concept drifts and the classifica-
tion quality, and to use a drift detector to investigate a quality im-
provement time.

• Testing how the size of the ensemble affects metrics such as Balanced

Accuracy, F1 score, G–mean, Precision, Recall, Specificity.

• Inclusion advanced Neural Network as the base classifier for ensemble
methods to improve the classification quality.

• Extension of the hdwe algorithm to multi-class problems and embed
it into hybrid architectures with data preprocessing algorithms.
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[76] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine learning research 7 (Jan) (2006) 1–30.

35



Specificity

Recall

Pre
cis
ion

F1

BAC

G-
me
an
1

0.2

0.4

0.6

0.8

1.0

covtypeNorm

HDWE-SVC
AWE-SVC
LearnppNIE-SVC
LearnppCDS-SVC

REA-SVC
OUSE-SVC
SEA-SVC

(a) Covtype data set

Specificity
Recall

Pre
cis
ion

F1

BAC

G-
me
an
1

0.2

0.4

0.6

0.8

1.0

poker

HDWE-SVC
AWE-SVC
LearnppNIE-SVC
LearnppCDS-SVC

REA-SVC
OUSE-SVC
SEA-SVC

(b) Poker data set

Specificity

Recall

Pre
cis
ion

F1

BAC

G-
me
an
1

0.2

0.4

0.6

0.8

1.0

2vsA_INSECTS

HDWE-SVC
AWE-SVC
LearnppNIE-SVC
LearnppCDS-SVC

REA-SVC
OUSE-SVC
SEA-SVC

(c) Insects data set

Figure 10: Performance scores for state-of-the-art methods with base classifier svc – real
data sets

36



0 25 50 75 100 125 150 175
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

HDWE-HDDT
AWE-HDDT
LearnppCDS-HDDT
REA-HDDT
SEA-HDDT

(a) Recall

0 25 50 75 100 125 150 175
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec
ifi
cit
y

HDWE-HDDT
AWE-HDDT
LearnppCDS-HDDT
REA-HDDT
SEA-HDDT

(b) Specificity

Figure 11: Performance scores for state-of-the-art methods with base classifier hddt – the
generated data stream with the sudden concept drift and the stationary imbalance
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Figure 12: Performance scores for state-of-the-art methods with base classifier hddt – the
generated data stream with the incremental concept drift and the dynamically imbalance

38



1 2 3 4 5 6 7

LearnppNIE-HDDT
OUSE-HDDT
AWE-HDDT
REA-HDDT

SEA-HDDT
HDWE-HDDT
LearnppCDS-HDDT

CD

(a) Balanced Accuracy

1 2 3 4 5 6 7

LearnppNIE-HDDT
OUSE-HDDT
REA-HDDT
AWE-HDDT

LearnppCDS-HDDT
SEA-HDDT
HDWE-HDDT

CD

(b) F1 score

1 2 3 4 5 6 7

LearnppNIE-HDDT
OUSE-HDDT
AWE-HDDT
SEA-HDDT

REA-HDDT
HDWE-HDDT
LearnppCDS-HDDT

CD

(c) G–mean

1 2 3 4 5 6 7

LearnppNIE-HDDT
OUSE-HDDT

LearnppCDS-HDDT
REA-HDDT

AWE-HDDT
HDWE-HDDT
SEA-HDDT

CD

(d) Precision

1 2 3 4 5 6 7

LearnppNIE-HDDT
OUSE-HDDT
REA-HDDT
AWE-HDDT

LearnppCDS-HDDT
SEA-HDDT
HDWE-HDDT

CD

(e) Recall

1 2 3 4 5 6 7

LearnppNIE-HDDT
OUSE-HDDT
AWE-HDDT
REA-HDDT

SEA-HDDT
HDWE-HDDT
LearnppCDS-HDDT

CD

(f) Specificity

Figure 13: Diagrams of critical difference for Nemenyi test for state-of-the-art methods
with the base classifier hddt
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Figure 14: F1 score for state-of-the-art methods with base classifier hddt – real data
stream (covtype)

39



0 20 40 60 80 100 120 140 160
Data chunk

0.0

0.2

0.4

0.6

0.8

1.0

F1

HDWE-HDDT
AWE-HDDT
LearnppNIE-HDDT
LearnppCDS-HDDT
REA-HDDT
OUSE-HDDT
SEA-HDDT

Figure 15: F1 score for state-of-the-art methods with base classifier hddt – real data
stream (poker)
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Figure 16: F1 score for state-of-the-art methods with base classifier hddt – real data
stream (insects)
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Figure 17: Performance scores for state-of-the-art methods with base classifier hddt –
real data sets
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Figure 18: G–mean score for the generated data stream with incremental concept drifts
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Figure 19: G–mean score for the generated data stream with sudden concept drifts
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