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ABSTRACT 

Nonlinear differential equations are considered to be an important tool for describing a number of 

phenomena in engineering and the natural sciences, and their study is thus subject to contemporary 

research. The purpose of the paper is to show applications of the differential transform to second-

order half-linear Euler equations with and without delay. The case of proportional delay is considered. 

Finding a numerical solution to an initial value problem is reduced to solving recurrence relations. The 

outputs of the recurrence relations are coefficients of the Taylor series of the solution. Validity of the 

presented algorithm is demonstrated on concrete examples of initial value problems. Numerical 

results are compared with solutions produced by Matlab function ‘‘ddesd’’. 

Keywords: Half-linear Euler equation, differential transform, method of steps, differential equation 

with delay 

 

1. Introduction 

Half-linear Euler type equations have been studied extensively in terms of the qualitative properties. 

However, combination of research methodologies is one of the successful generators of new ideas, 

results, and insights. The aim of this paper is to complement the theoretical results about qualitative 

behaviour of solutions - asymptotic formulas or oscillatory properties - to half-linear Euler equations 

with and without delay with finding an approximate solution to the initial value problem numerically. 

Motivated by the current progress in research on the differential transform, the purpose of the paper 

is to investigate how the differential transform algorithm can be applied to half-linear Euler equations 

with a proportional delay and without delay. 

The half-linear equation without delay can be achieved as a transformation of partial differential 

equations that contain the so-called p-Laplacian 

 

where for u(x) = u(x1,... ,xN), N ∈ ℕ, the symbol Vu stands for the Hamilton nabla operator and div 

represents the divergence operator. Origins of p-Laplacian are described, for example, in the paper [1]. 

Accordingly, the history of p-Laplacian is closely linked to applications in the filtration of fluids through 

porous media and nonlinear non-Newtonian fluid dynamics. Another application can be found, for 

example, in the paper [2]. The _p-Laplacian is used to model a nonhomogeneous diffusion to 

determine the height of a growing pile of noncohesive sand, where an ordinary differential equation 



arises in the limit case of “infinitely fast/slow” diffusion (see also [3]). More applications of nonlinear 

delayed differential equations are mentioned for example in [4,5]. 

The paper is organized as follows. In Section 2, we briefly summarize the results about qualitative 

properties of solutions to half-linear Euler equations with and without delay. Section 3 is devoted to 

theory and results on the differential transform. Sections 4 and 5 contain the main results of the paper. 

Numerical algorithms of the differential transform are adapted and applied to ordinary and delayed 

half-linear Euler equations. Concrete examples are illustrated by numerical results. Section 6 concludes 

the paper with a summary and outlines possibilities for further research. 

 

2. Half-linear differential equations 

Half-linear differential equation of the second order is an equation of the form 

 

 

where r(t),c(t) are continuous functions and r(t) > 0. For p = 2, Eq. (1) reduces to the second-order 

linear Sturm-Liouville differential equation 

 

 

Also from this point of view, the study of the properties of its generalized form (1) is a natural 

direction of research. 

The name ‘‘half-linear’’ has its origin in the fact that the space of solutions to (1) is homogeneous but 

not additive. The qualitative theory of half-linear differential equations has been studied extensively 

during the last decades. For the summary of the results up to 2005, we recommend the book [6]. More 

recent results can be found, for example, in [7-13] and references therein. 

From the qualitative point of view, half-linear differential equations of the form (1) can be divided into 

two classes. A half-linear equation is either oscillatory, which means that every its nontrivial solution 

has infinitely many zeros that form a sequence tending to infinity, or nonoscillatory, which means that 

every solution has constant sign in a neighbourhood of infinity. e recall that an oscillatory solution and 

a non-oscillatory solution to (1) cannot exist at the same time, which is a direct consequence of Sturm 

separation theorem [6, p. 16, Theorem 1.2.3]. 

The subject of our interest in this paper is the second-order halflinear Euler equation 

 

 

 

as well as the second-order half-linear Euler equation with a proportional delay 

 

 

 



where a >  0 is a quotient of two odd positive numbers, y ∈ (0, ∞) and λ ∈ (0,1). 

Euler Eq. (2) and its generalized forms belong to the most studied half-linear differential equations, 

see, for example [13-17]. 

For r(t) = 1,c(t) = 
𝑟

𝑡𝑎+1 and p = α +1, Eq. (1) is reduced to the Euler Eq. (2). Half-linear Euler  

equation is conditionally oscillatory with the oscillation constant 

 

 

 

that is, (2) is oscillatory if y > yα and non-oscillatory if y < yα. 

If γ = γα, Eq. (2) is also non-oscillatory and the two linearly independent solutions forming the solution 

space have the form 

 

 

 

where ~ means the asymptotic equivalence as t → ∞. It means that one of the solutions is known 

explicitly, whereas we only have an asymptotic formula for the second one. For details we refer to [6, 

Section 1.4.2]. 

Asymptotic formulas for the two linearly independent solutions are known also in the case y <  yα (see 

[18]). For i = 1, 2 these are of the form 

 

 

 

where λi are the zeros of the equation 

 

 

The Euler equation with a proportional delay (3) can be seen as a special case of the delayed half-

linear equation 

 

 

where r(t), c(t), r(t) are continuous functions on [t0, ∞), r(t) >  0, and x is a delay function satisfying 

 

 



In contrast to the non-delayed case (1), delayed half-linear equations may have oscillatory and non-

oscillatory solutions simultaneously. A consequence of this fact is that techniques applicable to half-

linear equations without delay (1) often cannot be applied to delayed half-linear equations. In 

particular, only Riccati type inequality is available instead of the Riccati equation. Moreover, to prove 

that a solution is oscillatory is easier than to prove that it is non-oscillatory. 

If we choose r(t) =  1, c(t) =
𝛾

𝑡𝑎+1, 𝑝 − 1 =  𝛼 and τ(t) = λt in (4), we obtain the delayed Euler Eq. (3). 

Criteria providing conditions on γ under which (3) has only oscillatory solutions were studied, for 

example, in [19,20], the oscillation constant between oscillation and nonoscillation was derived in [21]. 

 

3. Differential transform 

The Differential transform (DT) is a semi-analytical method based on Taylor’s theorem. Its history dates 

back to 1970s to the work of G. E. Pukhov [22]. It has been shown that DT is convenient for solving a 

variety of initial value problems (IVPs), covering the range from ordinary to functional, partial and 

fractional differential equations [23-26]. In particular, results on the differential equations with 

proportional, constant and non-constant delays can be found in [27-29]. 

The differential transform of a real function u(t) at a point t0 ∈ ℝ that is analytic in a neighbourhood 

of t0 is 

 

 

Here U(k)[t0] is the fcth component of the differential transform of the function u(t) at t0, k ∈ ℕ0, that 

is defined by 

 

 

 

The inverse differential transform of  is defined by 

 

 

 

In applications, the function u(t) is approximated by the finite sum 

 

 

 

 

As we can see from (7), DT is related to the Taylor series. It means that the results about convergence 

of Taylor series may be used to decide on convergence of the DT algorithms. However, we refer to the 

particular paper [30] where the optimal general explicit a-priori error estimates are given. 



The following results will be used in the application Sections 4 and 5. 

 

Lemma 3.1. Assume that u(t) is a real analytic function near t0. 

Then 

 

 

 

The statement is directly implied by (6). The relationships (8) will be used when transforming initial 

conditions. 

 

Lemma 3.2. Assume that U(k)[t0]  is the kth component of the differential transform of the real 

analytic function u(t)at t0.  

Then 

 

 

Proof. Using (7), we can write 

 

 

 

 

 

Lemma 3.3 ([29]). 

Assume that F(k)[t0] is the kth component of the differential transform of the function f (t)at t0 and 

r ∈ ℝ. 

 

 

 

for all t such that |t −  t0|  <  |t0|, where  

 

and ®𝑘 represents the Pochhammer symbol. 

 

Lemma 3.4 ([28]).  



Assume that F(fc), G(k) are the kth components of differential transforms of functions f (t), g(t) at a 

point t0. Differential transform of a product f (t)g(t) at t0 is 

 

 

 

Lemma 3.5 ([31]). 

Let g and f be real functions analytic near t0 and g(t0), respectively, and let h be the composition h(t) 

= (fog)(t)  =  f(g(t)). Denote  

and  

the differential transforms of functions g, f and h at t0, 𝑔(t0) and t0, respectively. Then the numbers 

H(k) in the sequence {H(k)}∞
k =0 satisfy the relations H(0) =  F(0) and 

 

 

 

where are the partial ordinary Bell polynomials. 

 

Lemma 3.6 ([31]). 

The partial ordinary Bell polynomials , satisfy the recurrence 

relation 

 

where  

 

Accordingly, the first few polynomials are: 

 

 

 

  



Lemma 3.7 ([32]). 

Let be the differential transform of the function f (t) at t0. Then the 

components F(k)[t1] of the differential transform 

may be expressed as 

 

 

 

4. Application of the differential transform to the Euler equation 

Consider the initial value problem for the half-linear Euler equation of the form 

 

 

 

in the case when a is a quotient of two positive odd numbers. 

The main goal of this section is to obtain image of Eq. (15) under the differential transform at t0. We 

apply the formulas introduced in Section 3. Number of the applied formula appears in parentheses 

above the ‘‘=’’ sign. 

 

 



Now, we use of the property (11) for transforming the product. The image of Eq. (15) transformed at t 

= t0 reads as 

 

 

 

We demonstrate the use of this result on a concrete example. 

 

Example 4.1. As a testing example, we take the Euler Eq. (2) with α = 3: 

 

 

 

We know that if  is a solution to the initial value problém 

 

 

 

For brevity, we will use X(k) instead of X(k)[1], k ∈ ℕ0. Transformed Eq. (16) expands for (17) with  

 

 

 

 

 

where the middle term applies only for k ≥ 1. Taking into account (13), we can write the preceding 

equality in a more compact form 

 

 

 

 

 

We start with k =  0: 



 

 

 

 

 

Then we substitute k =  1 : 

 

 

 

 

 

 

We continue with k =  2: 

 

 

 

 

 

 

that is 

 

 

 

 

Now recall that the exact solution to the initial value problem (17) is x0(t) = t3/4. Taylor series 

expansion of t3/4 at t0 =  1 is 

 

 

 

 

  



Remark 4.2. 

A different approach to find recurrence relations for obtaining the coefficients of a Taylor series of the 

solution is presented in papers about the Parker-Sochacki method (see for example [30,33]). The main 

idea is to transform an ordinary differential equation into a system of first order ordinary differential 

equations with nothing but polynomials on the righthand side. Such a method can be applied to a wide 

class of ordinary differential equations. However, describing the process of finding the polynomial form 

is not simple and the polynomial system might not be unique. A-priori error estimates presented in 

[30] can be applied especially to this polynomial form of the equation. Within this context, choosing 

the transformations y1 =  x(t), y2 =  x’(t), y3 =  t-4,y4 =  t, y5 =
1

x′(t)
, the initial value problem (17) can 

be rewritten in the following polynomial form: 

 

 

 

 

 

 

5. Application of the differential transform to the Euler equation with a proportional delay 

Consider the initial value problém 

 

 

 

with λ ∈ (0,1) and the initial function 

 

 

Let  

If t ∈  I𝑖 then λt lies in I𝑖−1. We follow the process of combining the differential transform with the 

method of steps for delayed differential equations described in the paper [28]. 

For t ∈ I1 =  [t0,t1] we determine the solution of the initial value problem (18), (19) as x1(t). The 

differential transform of x1(t) at t0 will be X1(k)[t0], k ∈ ℕ0. Since λt for t ∈ I1 falls into I0, we substitute 

the initial function (19) for x(λt) and rewrite Eq. (18) in the form 

 

 

Because 

 

 



and the fcth component of the differential transform of (ϕ(λt))𝛼 at t0 is 

 

 

 

After we use the formula (11), Eq. (20) transformed at t0 reads as 

 

 

 

 

 

The initial conditions are transformed to 

 

 

Substitution for k =  0,1, ... into (21) provides recurrence relations from which one can successively 

calculate X1(k)[t0] for k ≥ 2. The solution on the interval I1 is then 

 

 

 

In applications, we use a computing software to calculate the coefficients of the Taylor series. It means 

that this series as well as any other series will be truncated. The solution x1 will become an approximate 

solution. 

Notice that with a general initial function ϕ,, Eq. (21) would have the form 

 

 

 

 

 

Now we proceed with the second step. Take t ∈ I 2=  [t1, t2], denote x2(t)the approximate solution on 

I2, and let X2(k)[t1] for k ≥ 0 be the differential transform of x2 at t1. Since λt for t ∈ I2 lies in I1, we 

substitute for x(λt) the function x1(λt) and rewrite Eq. (18) in the form 

 

 

  



Since λt =  λt1 + λ(t −  t1), we have 

 

 

Recalling that λt1 =  t0, we have the following expression for the kth component of the differential 

transform of x1(λt) at t1: 

 

 

 

 

Next, for (x1(λt))α we get 

 

 

 

 

Again, we use the product formula (11) and Eq. (22) transformed at reads as 

 

 

 

 

 

 

 

According to (14), the initial conditions are 

 

 

 

 

The approximate solution x2 for t ∈ I2 is then 

 

 

 



Further steps for t ∈  I𝑖, i ≥  3 lead again to the recurrence relation (23). The only differences will 

appear in indices of the Taylor coefficients (that is, X2 becomes X𝑖) and centres of the Taylor expansion 

(that is, t1 becomes t𝑖−1). The process of calculation of the Taylor coefficients in the ith step follows the 

pattern of the second step. 

 

Example 5.1. To demonstrate the described algorithm, we choose the following concrete values of the 

parameters: 

 

 

Notice that the constants α, t0 and y have the exactly same values as in Example 4.1. Comparison with 

the solution x0(t) = t3/4 to the non-delayed problem (17) studied in Example 4.1 will allow us to 

observe the effect of the delay and the chosen initial function. This is important because it is not 

possible to find exact solution to the initial value problem (18), (19) with the constants (24) in terms of 

elementary functions. 

The Eq. (18) with the constants (24) becomes 

 

 

 

and the initial function is 

 

 

 

Recalling the fact that 𝑡𝑖 =
𝑡0

𝜆𝑖
, the first step of the algorithm takes place on the interval [𝑡0, 𝑡1] =

[1,
10

8
 ]  whereas the second step takes place on the interval [𝑡1, 𝑡2 ] = [

10

8
,

100

64
]. The results of the 

simulation in Matlab, version 2019b, are shown in Table 1 and Fig. 1. The first column of Table 1 

presents the values of 𝑡 in the interval [t0, t2] where the comparison is done. In the second column we 

have values of the approximate solution to the IVP (25), (26) found by using the differential transform 

algorithm. Here x1 represents the solution on [t0, t1] and x2 the solution on [t1, t2]. In both cases, the 

order of the Taylor polynomial that represents the approximate solution is 5. We note that the 

accuracy influenced by the chosen order is good enough. The difference between the 5th order 

approximate solution and higher order approximate solutions on the observed interval is less than 

10−6. The third column contains values of the approximate solution computed by the built-in Matlab 

function designed for solving delay differential equations ‘‘ddesd’’. The fourth column shows the 

difference between these two numerical solutions at given points. In the fifth column we present 

values of the exact solution to the initial value problem (17), that is, to the non-delayed half-linear 

Euler equation. At the end of the interval [t0, t2], we can observe that the solution to the half-linear 

Euler equation with delay tends to grow faster than the solution to the half-linear Euler equation 

without delay. This fact is illustrated also in Fig. 1. 



Table 1 Comparison of DT (order 5) and Matlab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Comparison of approximate solutions to (25), (26) and the exact solution to (17). 

 

Experimenting with other values of y, we have noticed that neither ‘‘ddesd’ nor our algorithm can 

successfully calculate the approximate solution on the interval [t0,t2] if y increases to 1.9. Similar 

situation happens if we keep y at the constant value 1 and try to calculate on the interval [t0, 3.0]: 

Matlab returns an error message. Such behaviour suggests that more research in this direction is 

needed. 

 

6. Conclusion 

Half-linear differential equations are the subject of ongoing research, especially in the field of 

asymptotic behaviour and qualitative properties. However, the search for suitable numerical 

algorithms, has not yet been considered. e presented how the differential transform algorithm can be 

applied to obtain numerical solutions to second-order half-linear Euler equations without delay and 

with a proportional delay. The described algorithm includes a modification for different types of initial 

functions. Applicability of the algorithm is demonstrated first on an example of the Euler equation 

without delay. The coefficients of the Taylor expansion obtained by the differential transform coincide 

with coefficients of Taylor expansion of the exact solution. Numerical simulation on an example of the 

delayed equation with concrete values of parameters was performed. The simulation values are in a 

good agreement with simulations produced by the Matlab routine ‘‘ddesd’’. All obtained results 



confirm that the presented algorithm is efficient and convenient for finding approximate solutions to 

the studied initial value problems. 

Our experiment shows that the differential transform method in combination with the method of steps 

is well applicable to delayed half-linear Euler equations. One of the advantages is that the obtained 

approximate solution is in the form of a Taylor polynomial. That is different from the outcome of the 

Matlab function ‘‘ddesd’’, where the result is a set of approximate function values of the solution. We 

also found out that both ‘‘ddesd’’ function and our procedure do not work on larger intervals in some 

cases, particularly with increasing y. On the other hand, the combination of the differential transform 

and the method of steps can be theoretically elongated easily. The practical implementation of the 

algorithm, however, has to deal with the limits of division by numbers close to zero, especially when 

increasing the order of the Taylor polynomial. The idea of scaling the coefficients to the same 

dimension by the length of the considered interval might help to overcome this obstacle. 

Finally, the knowledge of approximate solutions to initial value problems for half-linear Euler type 

equations can complement the qualitative theory and motivate further theoretical results. Lat but not 

least, the lack of success with computations on larger intervals using Matlab gives a strong motivation 

for continuing research on approximate solutions. 
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