
QuOp MPI: a framework for parallel simulation of quantum variational algorithms.

Edric Matwiejewa,∗, Jingbo B. Wanga

aDepartment of Physics, The University of Western Australia, Perth, Australia

Abstract

QuOp MPI is a Python package designed for parallel simulation of quantum variational algorithms. It presents an object-orientated
approach to quantum variational algorithm design and utilises MPI-parallelised sparse-matrix exponentiation, the fast Fourier trans-
form and parallel gradient evaluation to achieve the highly efficient simulation of the fundamental unitary dynamics on massively
parallel systems. In this article, we introduce QuOp MPI and explore its application to the simulation of quantum algorithms de-
signed to solve combinatorial optimisation algorithms, including the Quantum Approximation Optimisation Algorithm, the Quan-
tum Alternating Operator Ansatz, and the Quantum Walk-assisted Optimisation Algorithm.

Keywords: quantum algorithms, quantum walks, combinatorial optimisation, parallel simulation, software packages

1. Introduction

With the first generation of quantum computers currently in
operation, the start of a new computing paradigm appears just
around the corner [1, 2]. Contributing to this optimism has
been the development of algorithms that exploit a combina-
tion of classical and quantum hardware to solve optimisation
problems [3–7]. Compared to many exclusively quantum al-
gorithms, these quantum variational algorithms (QVAs) require
minimal quantum operations and are inherently resilient to sys-
tem noise [2, 8]. For these reasons, QVAs are strong contenders
for early practical applications of quantum computing in the
Noisy Intermediate Scale Quantum (NISQ) era [9]. Examples
of such QVAs include the Quantum Approximate Optimisation
Algorithm (QAOA) [3, 7], the Quantum Alternating Operator
Ansatz (QAOAz) [4], and the Quantum Walk-assisted Optimi-
sation Algorithm (QWOA) [5, 6], which have been designed to
find optimal, or near-optimal, solutions to combinatorial opti-
misation problems.

Combinatorial optimisation problems (COPs) —the task of
finding the best combination of items from a set—are nearly
ubiquitous [10]. They are present in fields such as logistics
[11], drug design [12], software compilation [13] and finance
[14, 15]. These problems are difficult to solve classically due to
a lack of identifiable structure and exponential growth of the
solution space. Quantum variational algorithms can provide
a polynomial speedup compared to a classical random search
[5, 6] which is an attractive prospect in problems with great hu-
manitarian or financial consequence.

To solve COPs, QVAs exploit quantum superposition to act
on the entire problem-specific solution space in quantum par-
allel. They apply a sequence of alternating unitaries; the first
encodes the solution ‘qualities’ into the phase of superposed

∗Corresponding author.
E-mail address: Edric.Matwiejew@research.uwa.edu.au

quantum states, and the second ‘mixes’ probability amplitude
between the states. The phase-shift and mixing unitaries are
parameterised by scalar variables adjusted iteratively by a clas-
sical optimiser that minimises the average measured solution
quality. By encoding optimal solutions as minima in the solu-
tion space, lowering the average solution quality corresponds
to amplifying probability density at quantum states associated
with optimal or near-optimal solutions.

Classical numerical simulation plays a vital role in the de-
velopment of QVAs. Through simulation of the idealised quan-
tum dynamics, researchers can study QVAs independently of
implementation-specific hardware constraints and at scales that
still exceed the functional limitations of current quantum hard-
ware [16]. To assist with these efforts, we have developed
QuOp MPI (Quantum Optimisation with MPI) [17], which
provides a flexible framework for the design and classical sim-
ulation of QVAs.

There is currently significant interest in developing tools for
the simulations of QVAs in a high-performance computing set-
ting. Recent examples include TensorFlow Quantum, a soft-
ware framework for quantum machine learning [18], and the
Jülich universal quantum computer simulator [16]. Both utilise
GPU acceleration, with the latter being targeted at distributed
GPU clusters. Also of note is the XACC framework and qFlex,
which utilise a tensor network approach to quantum simula-
tion [19, 20]. These packages take a quantum-gate based ap-
proach to algorithm simulation and can simulate QVAs with a
large number of qubits (e.g. more than 50) given a quantum
circuit structure that is parsimonious to their underlying simu-
lation methods. QuOp MPI presents a distinct option for QVA
simulation in that it does not take a gate-based or approximative
approach; instead, it focuses on the simulation of the fundamen-
tal unitary dynamics across the complete quantum state-space.
It also provides the first tool for ready-made simulation of the
Quantum Walk-assisted Optimisation Algorithm.

The structure of the paper is as follows. In Section 2 we

Preprint submitted to Elsevier June 8, 2022

ar
X

iv
:2

11
0.

03
96

3v
2

 [
qu

an
t-

ph
]

 7
 J

un
 2

02
2

define the generalised QVA, introduce the QAOA, QAOAz and
QWOA, and specify the problem of combinatorial optimisation.
In Sections 3 and 4 we discuss the data structures, algorithms
and parallelisation schemes leveraged by QuOp MPI. This is
followed by an overview of the package structure, functional-
ity and workflow types in Section 5. In Section 6 we provide
usage examples drawn from literature followed by a discussion
of the package’s performance in Section 7. Finally, concluding
statements are presented in Section 8.

2. Theoretical Background

2.1. Quantum Variational Algorithms

For a quantum system of size N = 2n, where integer n

is a number of qubits with basis states
{
|0〉 =

(
0
1

)
, |1〉 =

(
1
0

)}
,

QuOp MPI defines a generalised QVA as

|θ〉 =

 D∏
i=1

Û(θi)

 |ψ0〉, (1)

where |ψ0〉 ∈ CN is an initial quantum state with basis states
{|i〉}i=0,...,N−1, Û ∈ CN×N is the ansatz1 unitary , integer D ≥ 0
specifies the number of applications of Û to |ψ0〉 (the ‘depth’)
and θ = {θi ∈ R} is an ordered set of classically tunable values
that parameterise Û. The ansatz unitary Û and initial quantum
state |ψ0〉 together define a specific QVA.

A Quantum Variational Algorithm is executed by repeatedly
preparing |θ〉 and measuring the expectation value

f(θ) = 〈θ|Q̂|θ〉, (2)

where Q̂ ∈ RN×N is a diagonal matrix operator with entries
diag(Q̂) = qi that specify the ‘quality’ associated with quan-
tum state |i〉. The variational parameters θ are updated using a
classical optimiser with the objective being minimisation of f.

The ansatz operator Û specifies a sequence of alternating uni-
taries. This can include phase-shifts

Ûphase(γ) = exp(−iγÔ), (3)

where Ô =
∑N−1

i=0 oi|i〉〈i| is a diagonal phase-shift matrix opera-
tor, γ ∈ θ and Ûphase applies a phase-shift proportional to oi, as
well as mixing-unitaries

Ûmix(t) = exp(−itŴ), (4)

where t ∈ θ is non-negative and Ŵ =
∑n−1

i, j=0 wi j| j〉〈i| is a mix-
ing matrix operator in which non-diagonal entries specify cou-
pling between states |i〉 and | j〉. Mixing-unitaries Ûmix drive the
transfer of probability amplitude between quantum states, dur-
ing which encoded phase differences contribute to constructive
and destructive interference.

1Originating from a German word that refers to the starting thought of a
process. In mathematics, an ansatz is an educated guess or assumption made to
help solve a problem.

Phase-shift operators Ô and mixing operators Ŵ may also be
parameterised by θ. As these operators are time-independent
Hamiltonians of the time-evolution operator, changes to the cor-
responding θi alter the element-wise magnitudes or structure of
the matrix exponent before preparation of |θ〉.

Typically, the ansatz unitary Û is applied D times to |ψ0〉 with
each repetition parameterised by subset θ ⊆ θ. Doing so in-
creases the potential for constructive and destructive inference
to concentrate probability amplitude at high-quality solutions;
at the expense of classical optimisation over a larger parameter
space and a deeper quantum circuit. In practice, a QVA must
balance the improved convergence afforded by increases to D
against the ability of the quantum hardware to maintain coher-
ence over a longer sequence of quantum operations.

Sections 2.3 and 2.4 introduce four distinct QVAs for solving
constrained and unconstrained COPs. We summarise here the
following notational conventions for a given QVA:

• n: the number of qubits.

• |ψ0〉: the initial quantum state vector.

• Û: a sequence of phase-shift and mixing operators.

• |ψ〉: |ψ0〉 after D ≥ 0 applications of Û.

• |θ〉: |ψ0〉 after D ≥ 1 applications of Û.

• θ: classically tunable variables parameterising Û with
starting values θ0 and optimised values θ f .

• f: the ansatz objective function.

2.2. Combinatorial Optimisation with QVAs

Combinatorial optimisation problems seek optimal solutions
s̄ of the form,

s̄ =
{
s | C(s) ∈ min

{
C(s) | s ∈ S′

}}
, (5)

where the problem cost-function C(s) maps a solution s from
an ordered set of problem solutions S = {si} to R, s is a k-
permutation of discrete elements from a finite set ζ and

S′ =
{
s | s ∈ χ

}
(6)

is the problem-specific valid solution space where

χ =
⋃

i

{
s | χi(s) = ai

}
(7)

denotes any constraints on s̄ and a = {ai} defines the constraints.
Problems of this type are often difficult to solve as S grows

factorially with |ζ | and, in general, lacks identifiable structure.
For this reason, heuristic and metaheuristic algorithms are often
used to find solutions that satisfy the relaxed condition of C(s̄)
being a ‘sufficiently low’ local minimum.

To apply a quantum variational algorithm to a given combi-
natorial optimisation problem, an injective map is defined be-
tween S and H with the cost-function values forming the di-
agonal of the quality operator diag(Q̂) = C(si). For example,

2

a problem with four solutions, S = {s0, s1, s2, s3}, maps to a
two-qubit system as

|00〉 = |0〉 → |s0〉

|01〉 = |1〉 → |s1〉

|10〉 = |2〉 → |s2〉

|11〉 = |3〉 → |s3〉,

(8)

where diag(Q̂) =
(
C(s0),C(s1),C(s2),C(s3)

)
.

For a combinatorial optimisation problem to be efficiently
solvable by a QVA, it must satisfy three conditions:

1. The number of solutions |S| must be efficiently com-
putable in order to establish a bound on the size of the
required Hilbert spaceH .

2. For all solutions s, C(s) must be computable in polynomial
time .

3. For all solutions s, C(s) must be polynomially bounded
with respect to |S|.

Conditions one and two ensure that the objective function
(Equation (2)) is efficiently computable as classical computa-
tion of C(s) is required to compute f and boundedness in C(s)
ensures that the number of measurements required to accurately
compute f does not grow exponentially with |S′| [21]. These
conditions constrain the application of QVAs to polynomially
bounded (PB) COPs in the non-deterministic polynomial-time
optimisation problem (NPO) complexity class (together de-
noted as NPO-PB) [21].

2.3. Unconstrained Optimisation
For the case of unconstrained optimisation, the valid solution

space S′ is equivalent to S. For these COPs a quantum encod-
ing of C(s) is equivalent to the bijective map S → H .

2.3.1. QAOA
The Quantum Approximate Optimisation Algorithm is com-

prised of two alternating unitaries. Firstly the phase-shift-
unitary

ÛQ(γi) = exp(−iγiQ̂) (9)

and, secondly, the mixing operator

ÛX(ti) = exp(−itiŴX), (10)

where ŴX = X⊗N and X is the Pauli-X (or quantum NOT) gate.
The mixing operator ŴX induces a coupling topology that is
equivalent to an n-dimension hypercube graph, as shown in Fig-
ure 1.

The initial state |ψ0〉QAOA is prepared as an equal superposi-
tion overH ,

|+〉 =
1
√

n

n−1∑
i=0

|i〉. (11)

The final quantum state is then

|0000〉

|0001〉

|0010〉

|0011〉

|0100〉

|0101〉

|0110〉

|0111〉

|1000〉

|1001〉

|1010〉

|1011〉

|1100〉

|1101〉

|1110〉

|1111〉

Figure 1: Coupling topology of WX in the QAOA for |S| = 16 (n = 4).

|θ〉QAOA =

 D∏
i=1

ÛX(ti)ÛQ(γi)

 |+〉, (12)

where θ = {γi, ti} and |θ| = 2D [3].

2.3.2. Extended-QAOA
A variation of the QAOA, ‘extended-QAOA’ (ex-QAOA),

utilises a sequence of phase-shift unitaries,

ÛQext(γi) =

|Σ|∏
j=1

exp(−i(γi) jΣ j), (13)

where Σ j are non-identity terms in a Pauli-gate decomposition
of Q̂ and |Σ| is the number of non-identity terms [7]. This in-
creases the number of variational parameters to |θ| = (1 + |Σ|)D
with the intent of achieving a higher degree of convergence to
optimal solutions at a lower circuit depth.

The final state of ex-QAOA is

|θ〉ex-QAOA =

 D∏
i=1

ÛX(ti)ÛQext(γi,:)

 |+〉, (14)

where |+〉 and ÛX are defined as in Equations (10) and (11) and
θ =

{
γi j, ti

}
.

2.4. Constrained Optimisation
Constrained optimisation problems seek valid solutions s′

from a subset of S as defined by constraints χ. Encoding of the
solution constraints χ is achieved by restricting the action of
the mixing-unitaries Ûmix and initialising |ψ0〉 over a subspace
ofH .

2.4.1. QAOAz
The Quantum Alternating Operator Ansatz was developed to

solve problems for which χ creates a correspondence between
S′ and quantum states of equal parity – states with the same

3

|0000〉

|0001〉|0010〉

|0011〉

|0100〉

|0101〉

|0110〉

|0111〉

|1000〉

|1001〉

|1010〉

|1011〉|1100〉

|1101〉 |1110〉

|1111〉

Figure 2: Coupling topology of Ŵ for the QAOAz (n = 4). Note that H is
partitioned into subgraphs of equal state parity.

number of |1〉 states. This algorithm consists of the phase-shift-
unitary defined in Equation (9), followed by a sequence of three
Ûmix with mixing operators

B̂odd =

N−1∑
a odd

XaXa+1 + YaYa+1

B̂even =

N∑
a even

XaXa+1 + YaYa+1

B̂last =

XN X1 + YNY1, odd
I, Neven,

(15)

which together form the parity-conserving mixing operator

Ûparity(t) = e−itB̂last e−itB̂even e−itB̂odd (16)

that mixes probability amplitude between subgraphs of equal
parity as illustrated in Figure 2.

By initialising |ψ0〉QAOAz in a quantum state that satisfies the
parity constraint, probability amplitude is constrained to S′.

The state evolution of the QAOAz is

|θ〉QAOAz =

 D∏
i=1

Ûparity(ti)ÛQ(γi)

 |ψ0〉QAOAz, (17)

where |ψ0〉QAOAz is an initial state satisfying the parity con-
straint [4].

2.4.2. QWOA
The Quantum Walk-assisted Optimisation Algorithm imple-

ments χ given the existence of an efficient indexing algorithm
for all s ∈ S′. Under this condition, the QWOA implements an
indexing unitary

U†# |i〉 =

|idχ(i)〉, |i〉 ∈ |s′〉|i〉, otherwise,
(18)

where U†# maps states corresponding to valid solutions |s′〉 to

|0000〉

|0001〉

|0010〉

|0011〉

|0100〉

|0101〉

|0110〉
|0111〉

|1000〉

|1001〉

|1010〉

|1011〉

|1100〉

|1101〉

|1110〉
|1111〉

Figure 3: Coupling topology of Ŵ for the QWOA QWOA (n = 4).

indexed states |idχ(i)〉. By preparing |ψ0〉QWOA as an equal su-
perposition over |idχ(i)〉

|ψ0〉QWOA =
1
√
|S′|

∑
i∈S′
|i〉, (19)

probability amplitude is restricted to the subspace of indexed
states.

The indexing unitary U†# and its conjugate unindexing unitary
Û# occur either side of a mixing-unitary that acts on |idχ(i)〉:

Ûindex(t) = Û# exp(−itŴQWOA)Û†# (20)

Where efficiency in the implementation of U†# dictates that
ŴQWOA is circulant. Most commonly, ŴQWOA is chosen to be
the adjacency matrix of the complete graph as it produces a
maximal and unbiased coupling over |S′〉 (see Figure 3).

The state evolution of the QWOA is

|θ〉QWOA =

D∏
i=1

Ûindex(ti)ÛQ(γi)|ψ0〉QWOA, (21)

where θ = {γi, ti} and there are |θ| = 2D variational parameters
[5, 6].

3. Numerical Methods

By default, QuOp MPI presents three approaches by which
to compute the action of a phase-shift Ûphase or mixing-unitary
Ûmix.

As phase-shift unitaries Ûphase have a diagonal exponent ma-
trix Ô, the action of a Ûphase(γ) is efficiently computed by noting
that

Ûphase(γ)|ψ〉 =

N−1∑
i

e−iγoi |i〉〈i|ci|i〉, (22)

4

where |ψ〉 is an arbitrary quantum state with complex coeffi-
cients ci.

For the mixing unitaries Ûmix , non-diagonal entries in Ŵ,
necessitate accurate computation of the action of the matrix ex-
ponential. Given a circulant Ŵ, QuOp MPI takes advantage of
the relationship between the eigensystem of circulant matrices
and the discrete Fourier transform. The analytical solution for
the eigenvalues of a circulant matrix are given by

λ j = w0 + wM−1ω
j + wM−2ω

2 j + ... + w1ω
(M−1) j, (23)

where M is the size of the matrix, wi=0,...,M−1 defines the first
row of the circulant matrix, ω = exp(2πi

M) is a primitive mth root
of unity and j = 0, ..,M − 1. The corresponding eigenvectors,

v j =
1
√

n
(ω j, ω2 j, ..., ω(M−1) j), (24)

then form the matrix of the discrete Fourier transform. As such,
the action of a Ûmix with a circulant Ŵ may be implemented as

Ûmix(t)|ψ〉 = F−1eitΛF|ψ〉, (25)

which is carried out in QuOp MPI using algorithms provided
by the Fastest Fourier Transform in the West (FFTW) library
[22, 23]. For the case of sparse mixing operators, QuOp MPI
utilises a variant of the scaling and squaring algorithm, adapted
from an implementation previously developed by the authors
[24].

The above numerical methods support a simulation work-
flow distinct from gate-based quantum algorithm simulation
packages. For instance, efficient gate-based simulation of the
complete wavefunction can be achieved by combining one and
two-qubit gates to reduce the total number of required matrix
multiplications [18]. [18]. Alternatively, tensor-network based
approximations reduce the computational cost by disregarding
long-range interactions or qubit couplings, in addition to form-
ing an efficient decomposition of the quantum circuit as a se-
quence of tensor products [19].

Gate based simulation efficiency is highly dependent on the
structure of the Ûmix and Ûphase matrix exponents. In general,
Ûmix and Ûphase are approximated as per the quantum Hamilto-
nian Simulation Algorithm [25], which is based on a Trotter-
Suzuki decomposition of the matrix exponential [26]. Such
representations are computationally efficient given Ûmix with
sparse matrix exponents expressed in the Pauli basis [26]. How-
ever, accurate simulation of arbitrary mixing operators is gen-
erally not possible as the computational cost of simulation is
proportional to the length of the quantum circuit [26]. Efficient
gate-base representations can also be hard to realise for highly
entangling quantum algorithms - which offer some of the best
examples of quantum advantage. For instance, one such algo-
rithm, the Quantum Fourier Transform, offers an exponential
advantage over its classical counterpart [27].

For these reasons, the numerical methods provided with
QuOp MPI focus on providing QVA simulations to double-
precision accuracy in a manner that is agnostic to any specific

implementation. Together, QuOp MPI, and other gate-based
simulation packages provide for different avenues of investi-
gation. The former enables research into the limiting charac-
teristics of QVAs, and the latter supports the investigation of
gate-based realisations of QVAs.

The choice of initial values for the variational parameters
θ and the accompanying classical optimisation algorithm is
an active area of research [28]. By default, QuOp MPI uses
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [29]
provided by SciPy via its minimize function [30] as the authors
have found it to behave reliably across a wide variety of QVAs
(see Section 7). Users are able to adjust the parameters and op-
timisation algorithms used by the minimize function or opt to
use algorithms provided by the NLOpt package [31] through an
included ‘SciPy-like’ interface [32].

4. Parallelisation Schemes

Parallelisation in QuOp MPI is implemented using the Mes-
sage Passing Interface (MPI) standard. In general terms, MPI
supports a distributed-memory model of parallel computing
in which concurrent instances of the same program operate
within isolated memory and namespaces, communicating with
each other using ‘message-passing’ directives. As opposed to
shared-memory parallel frameworks, this allows for the use of
large scale distributed computers (i.e. supercomputers).

A group of program copies (MPI processes) that are capable
of MPI communication form an MPI communicator. Within an
MPI communicator, each process is identified by a sequential
rank ID that ranges from 0 to size − 1, where size is the total
number of MPI processes in the communicator. Communica-
tor subsets (sub-communicators) can be created and assigned
to sub-tasks. Note that, while an MPI process is also com-
monly referred to as a node, in this work node refers only to
a compute-node in a computational cluster. Depending on user-
controlled settings, QuOp MPI operates on the default global
MPI communicator or a variable configuration of MPI sub-
communicators.

The primary QuOp MPI parallelisation scheme COMM-|θ〉
is illustrated in Figure 4. The initial state |ψ0〉, evolved state
|θ〉 and observable values diag(Q̂) are distributed over an MPI
communicator with each rank containing a partition of sequen-
tial elements. The global position of a vector partition is thus
specified by two variables; the number of vector elements in the
local partition

locali (26)

and the vector element index offset

local i offset =

rank−1∑
m=0

localm. (27)

Unitary evolution is carried out using MPI-parallelised subrou-
tines that act on the local vector partitions.

At run-time, QuOp MPI attempts to partition the global vec-
tors equally over each rank in COMM-|θ〉 while satisfying any

5

Û(θ)
(MPI)

Û |ψ0〉

=

|θ〉

local0

local1

local2

COMM-|θ〉

Figure 4: The partitioning of |ψ0〉 and |θ〉 over an MPI communicator of size =

l where locali denotes the number of vector elements stored at rank i. The
ansatz unitary Û is implemented as a sequence of MPI parallelised subroutines
that recieve the distributed state vector and θi as inputs and return |θ〉 as an
identically distributed state vector.

f(θ)

{
∂ f(θ)
∂θ j

}
2

{
∂ f(θ)
∂θi

}
1

{
∂ f(θ)
∂θk

}
m

COMM-∇θ f

Figure 5: Parallel computation of the objective function gradient ∇θ f where
each box represents an MPI sub-communicator implementing an instance of
COMM-|θ〉. The objective function f is calculated by the COMM-|θ〉 contain-
ing the MPI process with rank = 0 in the global MPI communicator and the
partial derivatives by sub-communicators 1 through to m where m ≤ |θ|.

partitioning constraints associated with external libraries such
as FFTW. If a process receives zero vector elements, they are
excluded from COMM-|θ〉 and the vector partitioning is recal-
culated. State evolution and calculation of f is then carried out
over COMM-|θ〉 in parallel.

With each evaluation of |θ〉, f is sent to rank 0 of COMM-|θ〉
where it is received by the optimisation algorithm. The adjusted
θ are then broadcast to all nodes in COMM-|θ〉, and the cycle
repeats until the optimisation algorithm terminates. The dis-
tributed |θ f 〉 may then be written to disk using parallel HDF5
or gathered at the root rank.

In the case of optimisation algorithms that make use of gradi-
ent information, the user may choose to calculate the objective
function gradient ∇θ f in parallel. As shown in Figure 5, the
global communicator is split into m+1 MPI sub-communicators
of which m are assigned the task of approximating the partial
derivative of f (via forward or central differences) for a subset
of θ. The number of created sub-communicators depends on |θ|,
the number of compute nodes in the global communicator and

a user-definable ‘parallel’ attribute (see Table 3):

1. If |θ| < nodes + 1 and parallel = ‘jacobian’: create
sub-communicators consisting of multiple nodes.

2. If |θ| > nodes + 1 and parallel = ‘jacobian’: create
multiple sub-communicators within each compute node.

3. If parallel = ‘jacobian_local’: create one sub-
communicator per compute node.

The default behaviour of QuOp MPI is parallelisation of
COMM-|θ〉 exclusively (parallel = ‘global’) . Together,
COMM-|θ〉 and COMM-∇θ f allow the user to specify an MPI
process configuration that is optimal for their hardware and sim-
ulation scale.

5. Package Overview

QuOp MPI is a Python module that provides an object-
orientated approach to QVA design and parallel simulation.
Foremost, it presents an approachable workflow in which users
can write efficient and scalable quantum simulations without re-
quiring prerequisite knowledge of complied programming lan-
guages or parallel programming techniques. This is under-
pinned by flexible class structures and parallelisation schemes
that have been designed to streamline the integration of addi-
tional parallel simulation methods.

quop_mpi

observable

state

param

toolkitoperator

sparse

operator

diagonal

operator

circulant

propagator

qaoa

qwoa

AnsatzUnitary

algorithm

unitary

unitary

unitary

Figure 6: The user-level package structure of the QuOp MPI Python module.

6

«instance»
unitary

{sparse evolution}

«instance»
unitary

{diagonal evolution}

«instance»
unitary

{circulant evolution}

«instance»
qwoa

«instance»
qaoa

unitary

Unitary
«function»
operator

evolution

«function»
observable

«function»
param

«function»
state Ansatz

1..*

Figure 7: QuOp MPI class structure. The Unitary class provides an interface
to a state evolution method that is compatible with the COMM-|θ〉 paralleli-
sation scheme (see Section 4) that, when aggregated with an operator and
param function, implements the action of a Ûphase or Ûmix on |ψ〉. The Ansatz
class coordinates evaluation and minimisation of f when aggregated with a list
of unitary instances, a state function and an observable function (see Ta-
ble 2). QuOp MPI includes unitary classes for circulant, diagonal and sparse
matrix exponents (see Section 3), and two Ansatz instances, qaoa and qwoa,
which implement simulation of the QAOA and QWOA.

plan(self, int N, Intracomm MPI COMM):
Determine the COMM-|θ〉 parallel partitioning scheme of
|θ〉 over Intracomm MPI_COMM for a system of size
int N and allocate memory required by external libraries
(e.g. C, C++, or Fortran subroutines) called via the
propagate method.

copy plan(self, unitary u):
Copy a parallel partitioning scheme from the
int local_i, int local_i_offset and
array(int) partition_table attributes of a planned
unitary. Carry out planning tasks as described above.

propagate(self, float/array(float) thetas):
Compute the action of a Ûphase or Ûmix in MPI parallel
over COMM-|θ〉 given input θi and attributes
Intracomm MPI_COMM,
array(complex) initial_state (the partitioned |ψ〉),
array(complex) final_state (the partitioned |θ〉) and
matrix exponents(s) obj operator.

destroy(self):
End background processes and free memory allocated in
plan or copy_plan that are not managed by the Python
garbage collector.

Table 1: Unimplemented methods in the Unitary class. A backend for par-
allel evaluation of a Ûphase or Ûmix unitary is incorporated into QuOp MPI
through implementation of these methods in an unitary subclass. Attribute
types array and Intracomm are defined as in Table 2. Type complex

refers to the NumPy numerical type for double-precision complex numbers
numpy.complex128.

Function: operator

Associated class: Unitary

Binds to attributes: int system_size,
int local_i, array(int) partition_table,
array(float) variational_parameters, int seed,
Intracomm MPI_COMM.
Description: Implements parallel generation of a mix-
ing or phase-shift matrix exponent for a given unitary

state propagation method. The matrix obj operator

may be constant or parameterised by an arbitrary num-
ber of θi passed via the variational_parameters at-
tribute. In the latter case, operator is called with each
update of θi.

Function: param
Associated class: Unitary

Binds to attributes: int system_size,
obj operator, int n_params, int seed,
Intracomm MPI_COMM.
Description: Generates initial θi for a unitary in-
stance. Required positional argument n_params spec-
ifies the size of the associated |θi|. The obj operator

attribute references the matrix exponent returned by the
bound operator function.

Function: observable

Associated class: Ansatz

Binds to Attributes: int system_size,
int local_i, int local_i_offset,
array(int) partition_table,Intracomm MPI_COMM

Description: Implements parallel generation of
diag(Q̂), returning a local vector partition as an
array(float) of size local_i with a global offset
of local_i_offset.

Function: state

Associated class: Ansatz

Binds to attributes: int system_size,
int local_i, int local_i_offset,
array(int) partition_table, Intracomm MPI_COMM

Description: Implements parallel generation of |ψ0〉,
returning a local vector partition as described above.

Table 2: QuOp MPI function types. Passed to the Ansatz class by the cor-
responding ‘set’ method (see Table 3), positional arguments are mapped to at-
tributes of the either the Unitary and Ansatz classes. An arbitrary number
of keyword arguments are permitted. Attributes local_i, local_i_offset
and partition_table are defined in accordance with Equations (26) and (27)
with partition_table containing the global start and end partition indexes of
the distributed state vector. Integer seed is provided for reproducible pseudo-
random number generation. Type array refers to a 1-dimensional NumPy
ndarray and type Intracomm refers to an MPI4Py MPI intra-communicator.

7

set unitaries [required]:
Define Û via a list of unitary instances.

set observables [required]:
Define diag(Q̂) via a quality function.

set initial state [default |ψ0〉 = |+〉]:
Define |ψ0〉 via a state function.

set depth [default D = 1]:
Define D.

set optimiser [default Scipy BFGS, tol = 1−5]:
Specify the classical optimiser.

set seed [default seed = 0]:
Specify a random seed for QuOp MPI functions.

set parallel [default COMM-|θ〉 only]:
Specify the parallelisation scheme.

set log [optional]:
Specify simulation data-logging.

(un)set observable map [optional]:
Define g in q = g(diag(Q̂)), where g : RN → RN .

(un)set objective map [optional]:
Define h in f (θ) = h(〈θ|Q̂|θ〉), where h : R→ R.

gen initial params:
Generate and return θ0.

evolve state:
Compute |θ f 〉 for input θ0.

execute:
Minimise f (θ)

benchmark:
Minimise f (θ) over D = (dmin, ..., dmax).

get final state:
Return |θ f 〉 at rank = 0 of the global MPI communicator.

get probabilities:
Return 〈si|θ f 〉 at rank = 0 of the global MPI communicator.

get expectation value:
Return f(θ f) at rank = 0 of the global MPI communicator.

save:
Write |θ〉, diag(Q̂), θ and the optimisation result to disk.

print optimiser result:
Print the result summary of the classical optimiser.

Table 3: An overview of the public Ansatz class methods. Methods tagged as ‘required’ must be called before initialisation of QVA state propagation via the
evolve_state, execute or benchmark methods.

The user-level structure of QuOp MPI is shown in Figure 6.
The package is centred around the Ansatz and Unitary ‘tem-
plate’ classes. The Ansatz class manages the parallelisation
scheme, definition, execution of the QVA and the recording of
simulation results for a specific QVA. The Unitary class pro-
vides a scaffolding with which parallel algorithms for the com-
putation of the action of Ûphase or Ûmix on |ψ〉 are integrated
with QuOp MPI. Overviews of the key methods of the Ansatz
class and the user-implemented methods required to integrate a
state evolution method into QuOp MPI via the Unitary class
are given in Tables 1 and 3 respectively.

As shown in Figure 7 and Table 1, a QuOp MPI compati-
ble method for simulating the action of a Ûphase or Ûmix on |ψ〉
is implemented through the creation of an Unitary subclass
(unitary) which defines methods responsible for determina-
tion of the COMM-|θ〉 parallel partitioning scheme (see Fig-
ure 4), computation of the action of the unitary and manage-
ment of the ancilla requirements of any external subroutines.

The propagator submodule contains predefined unitary

classes together with an operator submodule containing func-
tions for the generation of compatible matrix exponents Ô or Ŵ.
Three unitary classes are included as part of the diagonal,
sparse and circulant submodules, which simulate Ûphase,
Ûmix with sparse matrix exponents and Ûmix circulant matrix
exponents (see Section 3).

Submodules state, param and observable provide func-
tions that, when passed to the Ansatz class, define |ψ0〉, θ0 and
diag(Q̂) for a particular QVA.

Two predefined QVAs are included in the algorithm sub-
module, qwoa and qaoa. These Ansatz subclasses implement
the QWOA and QAOA respectively. The toolkit submodule
provides convenience functions to assist in constructing matrix
operators and quantum states involving the tensor product of
Pauli matrices and bit-string qubit states.

Finally, QuOp MPI is highly extensible through its support
for user-defined functions for the generation of the matrix ex-
ponents, θ0, diag(Q̂) and |ψ0〉, as described in Table 2.

Within this structure, QuOp MPI thus presents several levels
of usage:

1. Simulation of the QWOA or QAOA using the qwoa or
qaoa classes with user defined diag(Q̂).

2. Simulation of the QWOA or QAOA using user-defined
parallel generation of diag(Q̂).

3. Design and simulation of a QVA with the Ansatz class
with included or user defined functions specifying matrix
exponents, θ0, diag(Q̂) and |ψ0〉.

4. Integration of additional state evolution methods for Ûmix
or Ûphase through the creation of Unitary subclasses.

8

QuOp MPI/examples/maxcut/maxtcut.py

1 from quop mpi . a l g o r i t h m import qaoa
2 from quop mpi import o b s e r v a b l e
3 from quop mpi . t o o l k i t import I , Z
4 import ne tworkx as nx
5

6 graph = nx . c i r c u l a r l a d d e r g r a p h (4)
7

8 n q u b i t s = graph . n u m b e r o f n o d e s ()
9 s y s t e m s i z e = 2 ** n q u b i t s

10

11 def m a x c u t q u a l i t i e s (graph , n q u b i t s) :
12 C = 0
13 f o r edge in graph . edges () :
14 C += 0 . 5 * (I (n q u b i t s) + \

15 (Z (edge [0] , n q u b i t s) @ Z (edge [1] , n q u b i t s)))
16 re turn C . d i a g o n a l ()
17

18 a l g = qaoa (s y s t e m s i z e)
19

20 a l g . s e t q u a l i t i e s (o b s e r v a b l e . s e r i a l ,
21 { ” f u n c t i o n ” : m a x c u t q u a l i t i e s ,
22 ” a r g s ” : [graph , n q u b i t s] })
23

24 a l g . s e t d e p t h (2)
25 a l g . e x e c u t e ()
26 a l g . p r i n t o p t i m i s e r r e s u l t ()
27 a l g . s ave (” maxcut ” , ” d e p t h 2 ” , ”w”)

Figure 8: Example 1: Simulation of the QAOA applied to the max-cut problem.

QuOp MPI/examples/maxcut plots.py

Figure 9: Graph for which the max-cut problem is solved in Examples
1 and 2. The most probable solution for |θ〉QAOA and |θ〉ex-QAOA (s̄ =

(0, 1, 0, 1, 1, 0, 1, 0)) is shown by vertex colouring with purple (darker) indicat-
ing a 0 and green (lighter) indicating a 1. This partitioning corresponds to the
optimal solution for which C(s̄) = q90 = 0.

6. Usage Examples

The following introduces typical QuOp MPI usage by simu-
lating the QAOA, ex-QAOA, QAOAz and QWOA as applied to
the max-cut and portfolio-re-balancing optimisation problems.

6.1. The max-cut problem.

The max-cut problem seeks to partition the vertices of a
graph such that a maximum number of neighbouring nodes
are assigned to two disjoint sets [3]. A quantum encoding
of the max-cut problem is a bijective mapping of the vertices
of a graph G to n qubits, with the set membership indicated
by the corresponding qubit state. For example, a two vertex
graph with vertices {0, 1} has a solution space that is completely
represented by an equal superposition over a two-qubit sys-
tem: {{0, 1}} → |00〉, {{0}, {1}} → |01〉, {{0}, {1}} → |10〉 and
{{0, 1}} → |11〉.

The cost function is then implemented as

C(s) =
∑

E(i, j)∈G

1
2

(
I + ZiZ j

)
, (28)

QuOp MPI/examples/maxcut plots.py

Figure 10: The initial solution probability distribution for the max-cut problem
simulated in Examples 1 and 2.

where Zi is a Pauli Z gate acting on the ith qubit, E(i, j) is an
edge in G connecting vertex i to vertex j, and ZiZ j has eigen-
value 1 if qubits i and j are in the same state or −1 otherwise.

6.1.1. QAOA
In Example 1 the QAOA is applied to the max-cut problem

for the graph shown in Figure 9. The predefined Ansatz sub-
class qaoa forms the basis of the simulation.

To generate the graph we use the external module networkx
(Line 6). On Lines 11 to 16, the cost function is defined. By us-
ing the I and Z functions from the toolkit submodule, we are
able to directly implement Equation (28). The matrices com-
puted on Lines 14 and 15 are in a SciPy sparse matrix format.

Lines 18 to 27 demonstrate standard use of the qaoa class.
An instance of the class is instantiated for system_size= N.
Next, the diag(Q̂) is defined via the set_qualities method.
For this, we pass the serial observable function along with
a dictionary of its keyword arguments. The serial func-
tion assists with memory-efficient simulation given a serial
observable function by calling the function at the root MPI
process and distributing its output over COMM-|θ〉. The ansatz
depth (D = 2) is then defined via the set_depth method.

Now that the qaoa instance is fully specified, simulation of
the algorithm (as defined in Equation (12)) proceeds via the

9

QuOp MPI/examples/max-cut extended/maxcut extended.py

1 from quop mpi import Ansa tz
2 from quop mpi . p r o p a g a t o r import d i a g o n a l , s p a r s e
3 from quop mpi . o b s e r v a b l e import s e r i a l
4 from quop mpi . param . r and import un i fo rm
5 from quop mpi . t o o l k i t import I , Z
6 import numpy as np
7 import ne tworkx as nx
8

9 graph = nx . c i r c u l a r l a d d e r g r a p h (4)
10

11 n q u b i t s = graph . n u m b e r o f n o d e s ()
12 n e d g e s = 2 * graph . n u m b e r o f e d g e s ()
13

14 s y s t e m s i z e = 2 ** n q u b i t s
15

16 def m a x c u t t e r m s (graph , n q u b i t s) :
17 t e r m s = []
18 f o r edge in graph . edges :
19 t e rm = 0 . 5 * (I (n q u b i t s) + Z (edge [0] , n q u b i t s) @ \

20 Z (edge [1] , n q u b i t s))
21 t e r m s . append (te rm . d i a g o n a l ())
22 re turn t e r m s
23

24 def m a x c u t q u a l i t i e s (t e r m s) :
25 re turn np . sum (te rms , a x i s =0)

26

27 compu ted t e rms = m a x c u t t e r m s (graph , n q u b i t s)
28

29 UQ = d i a g o n a l . u n i t a r y (
30 d i a g o n a l . o p e r a t o r . s e r i a l ,
31 o p e r a t o r k w a r g s ={ ” f u n c t i o n ” : maxcu t t e rms ,
32 ” a r g s ” : [graph , n q u b i t s] } ,
33 u n i t a r y n p a r a m s =n edges ,
34 p a r a m e t e r f u n c t i o n =un i fo rm)
35

36 UW = s p a r s e . u n i t a r y (s p a r s e . o p e r a t o r . hypercube ,
37 p a r a m e t e r f u n c t i o n =un i fo rm)
38

39 a l g = Ansa tz (s y s t e m s i z e)
40

41 a l g . s e t u n i t a r i e s ([UQ, UW])
42

43 a l g . s e t o b s e r v a b l e s (s e r i a l ,
44 { ” f u n c t i o n ” : m a x c u t q u a l i t i e s ,
45 ” a r g s ” : [compu ted t e rms] })
46

47 a l g . e x e c u t e ()
48 a l g . p r i n t o p t i m i s e r r e s u l t ()
49 a l g . s ave (” m a x c u t e x t e n d e d ” , ” d e p t h 1 ” , ”w”)

Example 2: Simulation of the ex-QAOA applied to the max-cut problem.

QuOp MPI/examples/maxcut plots.py

Figure 11: Solution quality probability distribution of |θ〉QAOA as simulated in
Example 1.

execute method. By calling execute without specifying θ we
choose to use default param functions which generate θi from a
uniform distribution over (0π, 2π].

Finally, the optimiser result is displayed using the
print_optimiser_result method and the simulation results
are saved to the HDF5 file ‘maxcut.h5’ under the ‘depth 2’
group. As compared to a starting expectation value of 7.43,
the final value of the objective function (fun) is approximately
2.30 with variational parameters (x) 3.59, 6.88, 3.95 and 5.92.

Figures 10 and 11, illustrates the initial and final probability
distributions with respect to unique values of qi. After applica-
tion of the QAOA to the initial superposition, probability den-
sity is concentrated at high-quality solutions with the optimal
solution (q90 = 0) having the highest probability of measure-
ment.

QuOp MPI/examples/maxcut/maxcut parallel qualities.py

1 def maxcut (l o c a l i , l o c a l i o f f s e t , g raph=None) :
2

3 n q u b i t s = graph . n u m b e r o f n o d e s ()
4 n e d g e s = graph . n u m b e r o f e d g e s ()
5

6 q = np . f u l l (l o c a l i , n edges , d t y p e = np . f l o a t 6 4)
7

8 s t a r t = l o c a l i
9 end = l o c a l i + l o c a l i o f f s e t

10

11 f o r i in range (s t a r t , end) :
12 bs = np . b i n a r y r e p r (i , w id th = n q u b i t s)
13 f o r edge in graph . edges :
14 i f bs [edge [0]] != bs [edge [1]] :
15 q [i − l o c a l i o f f s e t] −= 1
16

17 re turn q

Example 3: User-defined quality function for the max-cut problem.

6.1.2. Extended-QAOA
Having demonstrated the effectiveness of the QAOA in find-

ing high-quality max-cut solutions, we will now explore the ap-
plication of the ex-QAOA to the same task. Example 2 demon-
strates the implementation of ex-QAOA using the Ansatz

class. As in Example 1, the graph and its adjacency matrix
are generated using networkx.

The functions needed to implement Equation (13) and Equa-
tion (10) are defined from Lines 16 to 22 and Lines 24 to 25
respectively. The first of these, maxcut_terms, returns an ar-
ray of the summation terms in Equation (28) with which the
maxcut_qualities function returns diag(Q̂).

A two-step calculation of the solution qualities is chosen as
the ex-QAOA phase-shift operator associates a θi with each

10

QuOp MPI/examples/portfolio rebalancing/qwoa portfolio.py

1 from quop mpi . a l g o r i t h m import qwoa
2 from quop mpi import o b s e r v a b l e
3 import pandas as pd
4

5 q u a l i t i e s d f = pd . r e a d c s v (' q w o a q u a l i t i e s . c sv ')
6 q u a l i t i e s = q u a l i t i e s d f . v a l u e s [: , 1]
7

8 s y s t e m s i z e = l e n (q u a l i t i e s)
9

10 a l g = qwoa (s y s t e m s i z e)
11

12 a l g . s e t q u a l i t i e s (
13 o b s e r v a b l e . a r r a y ,
14 { ' a r r a y ' : q u a l i t i e s })

15

16 a l g . s e t l o g (
17 ' q w o a p o r t f o l i o l o g ' ,
18 ' qwoa ' ,
19 a c t i o n = 'w ')
20

21 a l g . benchmark (
22 range (1 , 6) ,
23 3 ,
24 p a r a m p e r s i s t = True ,
25 f i l e n a m e = ' q w o a p o r t f o l i o ' ,
26 s a v e a c t i o n = 'w ')

Example 4: Simulation of the QWOA applied to the portfolio re-balancing problem.

term of a Pauli-matrix decomposition of diag(Q̂). The phase-
shift-unitary is implemented using the propagator submodule
diagonal. An instance of the diagonal submodule unitary
class (UQ) is defined on Lines 29 to 34. The first argument
specifies the operator function responsible for generating the
Pauli-matrix terms Σ j. The second specifies a dictionary of
user-defined keyword arguments for the operator function.
The third argument specifies the number of θi associated with
UQ and, finally, the fourth argument specifies the param func-
tion used to initialise the unitary’s variational parameters. The
param function generates θi as described in Section 6.1.1.

The operator function diagonal.serial executes the se-
rial maxcut_terms function at the root MPI process and dis-
tributes the array of Pauli-matrix terms over COMM-|θ〉. The
unitary_n_params keyword argument describes the number
of operator terms returned by diagonal.serial, which are
mapped to a sequence of Ûphase unitaries each parameterised by
a unique θi.

Definition of the mixing-unitary UW occurs on Lines 36
to 37. As with UQ, the first argument specifies the
operator function and the parameter_function argu-
ment specifies the param function. The operator func-
tion sparse.operator.hypercube generates a parallel-
partitioned instance of the hypercube mixing operator (see
Equation (20)).

On Line 41 the defined unitaries UQ and UW are passed
to an instance of the Ansatz class via the set_unitaries

method. The objective function is then defined by passing
the maxcut_qualities function to the set_observables

method.
The ex-QAOA simulation is then executed on Line 47. As

D has not been specified via the set_depth method, the algo-
rithm is simulated with the default ansatz depth of D = 1 (see
Figure 12).

6.1.3. Parallel Computation of the Cost Function
As a corollary of condition two in Section 2.2 it will gen-

erally be the case that computation of any particular C(s) is
independent of the rest of the cost function values. In such in-
stances, the generation of diag(Q̂) is an embarrassingly parallel

problem, and, as such, users are encouraged to implement par-
allel quality functions. A parallel observable function for the
max-cut problem is shown in Example 3 as per the requirements
described in Table 2. At run-time, this function is called by each
rank in COMM-|θ〉 to generate the qi specific to the local vector
partitions.

QuOp MPI/examples/maxcut extended/maxcut extended plots.py

Figure 12: Final probability distribution of the max-cut solutions following the
execution of the ex-QAOA defined in Example (2).

6.2. Portfolio Re-balancing
To explore the case of constrained optimisation using the

QWOA and the QAOAz we will consider the problem of port-
folio re-balancing. For each asset in a portfolio of size M, an
investor must choose one of the following positions:

1. Short position: buying and selling an asset with the expec-
tation that it will drop in value.

2. Long position: buying and holding the asset with the ex-
pectation that it will rise in value.

3. No position: taking neither the long or short position.

A quantum encoding of the possible solutions uses two qubits
per asset.

1. |01〉 → short position

11

QuOp MPI/examples/portfolio rebalancing/qaoaz portfolio.py

1 from quop mpi import Ansatz , o b s e r v a b l e , s t a t e , param
2 from quop mpi . p r o p a g a t o r import d i a g o n a l , s p a r s e
3 from quop mpi . t o o l k i t import kron , k ron power
4 from quop mpi . t o o l k i t import s t r i n g , X, Y
5 from q a o a z q u a l i t i e s import q a o a z p o r t f o l i o
6 from numpy import s q r t
7

8 def p a r i t y r i n g (i , j , n q u b i t s) :
9 p a r i t y = X(i , n q u b i t s) @ X(j , n q u b i t s) \

10 + Y(i , n q u b i t s) @ Y(j , n q u b i t s)
11 re turn p a r i t y
12

13 def p a r i t y m i x e r (q u b i t s , n q u b i t s) :
14

15 odd = 0
16 even = 0
17

18 n s u b s e t = l e n (q u b i t s)
19

20 f o r i in range (n s u b s e t − 1) :
21

22 i f (i % 2 != 0) :
23 odd += p a r i t y r i n g (q u b i t s [i] ,
24 q u b i t s [(i + 1) % n s u b s e t] ,
25 n q u b i t s)
26

27 e l i f i % 2 == 0 :
28 even += p a r i t y r i n g (q u b i t s [i] ,
29 q u b i t s [(i + 1) % n s u b s e t] ,
30 n q u b i t s)
31

32 mixer = [odd , even]
33

34 i f l e n (q u b i t s) % 2 != 0 :
35 l a s t = p a r i t y r i n g (q u b i t s [−1] ,
36 q u b i t s [1] ,
37 n q u b i t s)
38

39 mixer . append (l a s t)
40

41 re turn mixer
42

43 def mixer (n q u b i t s) :
44 s h o r t q u b i t s = [i f o r i in range (0 , n q u b i t s , 2)]
45 l o n g q u b i t s = [i f o r i in range (1 , n q u b i t s , 2)]
46 s h o r t m i x e r = p a r i t y m i x e r (s h o r t q u b i t s , n q u b i t s)
47 l o n g m i x e r = p a r i t y m i x e r (l o n g q u b i t s , n q u b i t s)
48 re turn s h o r t m i x e r + l o n g m i x e r

49

50 def p a r i t y s t a t e (n q u b i t s , D) :
51 M = n q u b i t s / / 2
52 t e r m 1 = kron power (s t r i n g (' 01 ') , D)
53 t e r m 2 = kron power (
54 1 / s q r t (2) * (s t r i n g (' 11 ') + s t r i n g (' 00 ')) ,
55 M−D)
56 s t a t e = kron ([te rm 1 , t e r m 2])
57 re turn s t a t e
58

59 n q u b i t s = 8
60 s y s t e m s i z e = 2** n q u b i t s
61

62 UQ = d i a g o n a l . u n i t a r y (
63 q a o a z p o r t f o l i o ,
64 p a r a m e t e r f u n c t i o n = param . r and . un i fo rm)
65

66 UW = s p a r s e . u n i t a r y (
67 s p a r s e . o p e r a t o r . s e r i a l ,
68 o p e r a t o r k w a r g s = {

69 ' f u n c t i o n ' : mixer ,
70 ' a r g s ' : [n q u b i t s] } ,
71 p a r a m e t e r f u n c t i o n = param . r and . un i fo rm)
72

73 a l g = Ansa tz (s y s t e m s i z e)
74

75 a l g . s e t u n i t a r i e s ([UQ, UW])
76

77 a l g . s e t i n i t i a l s t a t e (
78 s t a t e . s e r i a l ,
79 { ' f u n c t i o n ' : p a r i t y s t a t e ,
80 ' a r g s ' : [n q u b i t s , 2] })
81

82 a l g . s e t o b s e r v a b l e s (0)
83

84 a l g . s e t l o g (
85 ' q a o a z p o r t f o l i o l o g ' ,
86 ' qaoaz ' ,
87 a c t i o n = 'w ')
88

89 a l g . benchmark (
90 range (1 , 6) ,
91 3 ,
92 p a r a m p e r s i s t = True ,
93 f i l e n a m e = ' q a o a z p o r t f o l i o ' ,
94 s a v e a c t i o n = 'w ')

Example 5: Simulation of the QAOAz applied to the portfolio re-balancing problem.

2. |10〉 → long position

3. |00〉 or |11〉 → no position

The discrete mean-variance Markowitz model provides a
means of evaluating the quality associated with a given com-
bination of positions. It can be expressed through minimisation
of the cost function,

C(s) = ω

M∑
i, j=1

σi jZiZ j − (1 − ω)
M∑

i=1

riZi, (29)

subject to the constraint,

χasset(s) =

M∑
i=1

zi. (30)

In this formulation, the Pauli-Z gates Zi encode a particular
portfolio where, for each asset, eigenvalue zi ∈ {1,−1, 0} rep-

resents a choice of long, short or no position. Associated with
each asset is the expected return ri and covariance σi j between
assets i and j; which are calculated using historical data. The
risk parameter, ω, weights consideration of ri and σi j such that
as ω → 0 the optimal portfolio is one providing maximum re-
turns. In contrast, as ω → 1, the optimal portfolio is the one
that minimises risk. The constraint χasset(s) works to maintain
the relative net position with respect to a pre-existing portfolio
[33].

In the following examples, we demonstrate the application of
the QWOA and QAOAz to a small ‘portfolio’ consisting of four
assets taken from the ASX 100, under the constraint χasset(s) =

2.

6.2.1. Comparison of the QWOA and QAOAz.
As outlined in Section 2.4.2, QWOA uses an indexing unitary

U†# to encode constraints on the solution space. As QuOp MPI
is interested only in the unitary dynamics of the quantum state

12

evolution, implementation of the indexing unitary simply re-
quires that the user supply a quality function that returns the re-
stricted solution space in a consistent order. For the QWOA ex-
ample, the set of valid solutions was calculated using the mod-
ule ‘qwoa qualities.py’, which was originally written for [33].
It makes use of the pandas-webreader package [34] to source
the daily adjusted close price of a given list of stocks from the
Yahoo Finance website [35]. When run as the main program,
‘qwoa qualities.py’ returns the diag(Q̂) corresponding to solu-
tions in S′ using historical data between user-specified dates
and outputs diag(Q̂) to a CSV file. For this example, the stocks
AMP.AX, ANZ.AX and AMC.AX were considered between
1/1/2017 and 12/31/2018.

The QWOA algorithm is included with QuOp MPI as a pre-
defined module. As such, its simulation, shown in Example
4, is similar in structure to the QAOA program outlined in
Section 6.1.1. However, as in this instance, because diag(Q̂)
is stored in a CSV file, we use the external package Pan-
das to read the quality values and the diagonal submodule
operator function serial_array to pass these values to the
set_qualities method on Lines 12 to 14.

Note that the size of the simulation is determined by the num-
ber of valid solutions |S′|. This is distinct from a quantum im-
plementation of the QWOA algorithm as, while its Ûmix occurs
over S′, its Ûphase still acts on S. However, because |ψ0〉QWOA
is initialised as an equal superposition over S′, quantum states
associated with invalid solutions do not influence the idealised
quantum dynamics. Hence, we can gain a significant perfor-
mance advantage at no cost to simulation accuracy by restrict-
ing the classical simulation to S′.

In Section 6.1.1, the final state |θ〉 and diag(Q̂) were saved
to an HDF5 file and analysis of algorithm performance was de-
termined via computation on these arrays. Studying the com-
plete quantum state is essential to understanding the dynamics
associated with a particular QVA application. Still, often a re-
searcher is concerned more immediately with f(θ f) with respect
to changes in D or |S′|. For this reason QuOp MPI supports the
recording of important simulation metrics in a log file. Created
via the set_log method on Lines 16 to 19, the first argument
specifies the name of the CSV output log file, the second ar-
gument specifies the simulation label, and the third argument
specifies the write action, which follows the convention of a to
append or w to (over)write. With a log file set the system size
N, ansatz depth D, optimised objective function value f(θ f),
state norm 〈θ f 〉, in-program simulation time, MPI communica-
tor size, number of |θ〉 evaluations and the success status of the
optimiser are recorded for each simulation instance.

To study how fQWOA(θ f) changes as D increases we call the
benchmark method on Lines 21 to 26. The first argument is an
iterable object that provides a sequence of D values, the second
is the number of repeat simulations at each D. The keyword
arguments filename and save_action specify that |θ f 〉QWOA

and diag(Q̂) be saved to the new HDF5 file ‘qwoa portfolio.h5’.
The param_persist argument specifies a schema for θ0. If
True, for D > 1 the best-performing θ at depth D are used as
the θ0 for the first D ansatz iterations at depth D + 1.

A QAOAz approach to the portfolio optimisation problem
uses two parity mixers that act on the short and long qubits,
respectively, such that the S is partitioned into subgraphs of the
same χasset(s) value. For this example, we are considering four
assets so the two parity mixers act on separate subspaces of H
as shown below:

|l〉 |s〉 |l〉 |s〉 |l〉 |s〉 |l〉 |s〉

0 1 2 3 4 5 6 7

Where |l〉 denotes a ‘long’ qubit, |s〉 denotes a ‘short’ qubit,
and the numbering indicates the global index of each qubit.

To constrain probability amplitude to S′, |ψ0〉QAOAz is pre-
pared as

|ψ0〉QAOAz = |01〉⊗A
(

1
√

2
(|00〉 + |11〉)2N−A

)
, (31)

where A is the desired value of χasset(s). This creates a (non-
equal) superposition of states across all qubit subgraphs with a
net parity of A.

To implement this algorithm in QuOp MPI we use the
Ansatz class, the sparse propagator submodule, the
diagonal propagator submodule, the observable submod-
ule, state submodule and param submodule. The toolkit

functions string, X and Y are also used to define the parity
mixers and |ψ0〉QAOAz.

As with Example 4, the quality function is located in the
external module ‘qaoaz portfolio.py’, which is included in
QuOp MPI/examples/portfolio. It follows the same method as
‘qwoz portflio.py’, differing in that it has been written as a par-
allel quality function (see Section 6.1.3) that returns local par-
titions of the complete S.

The dual parity mixing operators are defined over three func-
tions. The first of these (Lines 8 to 11) defines a generalisation
of the Pauli-matrix terms used for the Bodd, Beven and Blast mix-
ing operations in Equation (10). The second function (Lines
13 to 41) takes a list of qubit indexes specifying a subspace of
H and the total number of qubits as its arguments and returns
Bodd, Beven and Blast acting on the subspace. The third function,
portfolio_mixer (Lines 43 to 48), takes a number of qubits
as its argument. It partitions the input number of qubits into
subgroups, as depicted in Figure 2, and returns a list containing
the six mixing operators in the SciPy CSR sparse matrix format.

A function to generate |ψ0〉portfolio is defined on lines 50 to
57 where, on Lines 52 and 53, the kron_power function takes
NumPy array a and integer N as its arguments and returns a⊗N

and, on Line 54, the string function generates a qubit state
from its bit-string representation. The function kron, on Line
56, takes a list of arrays and returns their tensor product.

We then proceed to the definition of ÛQAOAz using the
Ansatz class. An initial state other than an equal superpo-
sition is specified using the set_initial_state method on
Lines 77 to 80. It follows the same input convention as the
previously described ‘set’ methods. The wrapper function
state.serial is used to parse and distribute the output of the
serial parity_state function.

13

As, in this instance, the diagonal of the phase-shift matrix
exponent is equal to diag(Q̂), the objective function is defined
by calling set_observables on Line 82 with an integer ar-
gument that specifies the position of the mixing operator in the
input list of unitaries (Line 75).

Finally, an output log is specified, and the benchmark method
is called to trial the QVA over the same range of D and number
of repeats as the QWOA simulations. The benchmark method
generates a reproducible sequence of integers used as random
seeds for all param functions in the param submodule. In this
way, we ensure that the QWOA and QAOAz simulations are
carried out over the same set of θ0 at the starting ansatz depth
of D = 1.

A comparison of the two algorithms is shown in Figure 13
where the f(θ f) was taken from the log file. For this brief
comparison the QWOA f(θ f) outperforms the QAOAz for all
D > 1.

QuOp MPI/examples/portfolio rebalancing/portfolio plots.py

Figure 13: Optimised objective function value f(θ f) for the portfolio rebalanc-
ing problem using the QWOA and QAOAz.

7. Performance

The performance of QuOp MPI was assessed on the ‘Mag-
nus’ system at the Pawsey Supercomputing Centre - a Cray
XC40 Series Supercomputer with an Aries interconnect rated
at 72 gigabits-per-second per node. Each node consisted of two
Intel Xeon E5-2690V3 ‘Haswell’ CPUs with 12 cores clocked
at 2.6 GHz and 64 GB of RAM.

The strong scaling behaviour of the QAOA and QWOA evo-
lution methods on a single compute node is shown in Fig-
ures 14a and 14b. As defined in Equations (12) and (21), each
of the unitaries contains a phase-shift-unitary followed by a
mixing-unitary. For |θ〉QAOA these are implemented using the
diagonal and sparse unitary classes and, for |θ〉QWOA, the
diagonal and circulant unitary classes. A parallel advan-
tage in QAOA state evolution is observed for systems of at least
12 qubits, with a system of 20 qubits scaling with an efficiency
greater than 0.5 up to eight CPU cores. For QWOA, parallel ad-
vantage beyond two CPU cores starts at 12 qubits, with a system
of 16 qubits achieving a speedup of 15.1 with an efficiency of
0.63 at 24 CPU cores.

Strong scaling behaviour for QAOA and QWOA evolution
across multiple nodes is shown in Figures 14c and 14d. Effi-
cient scaling of state evolution to two nodes occurs at 17 qubits
for QAOA and 15 qubits for QWOA. For QAOA at 24 qubits,
a speedup of 5.23 times at an efficiency of 0.44 was achieved
at 12 nodes (288 cores) with respect to the wall-time of a fully
occupied single node (24 cores). For QWOA, the equivalent
comparison shows a speedup of 9.25 with an efficiency of 0.77
at 12 nodes.

The QWOA and QAOA state evolution methods were pro-
filed using Arm Map 19.0.1 to quantify the degree of commu-
nication overhead in a distributed computing environment as
shown by Figure 16. For QAOA state evolution at 22 qubits,
the overhead ranged from a total of 17.2 % at one node and
49.3 % at six nodes. The increase in communication overhead
is responsible for the decrease in strong scaling efficiency with
QAOA state evolution at 22 qubits having an efficiency that falls
below 0.5 for nodes greater than six (see Figure 14c). Almost
all of the QAOA state evolution MPI call time is spent in collec-
tive calls, of which the majority are ‘Alltoallv’ calls responsible
for the sending and receiving of state vector elements during
matrix multiplication. State evolution for the QWOA is domi-
nated by a one-dimensional Fourier transform computed in MPI
parallel using the FFTW3 package. For QWOA state evolution
at 19 qubits, the time spent in MPI calls ranges from 4.8 % for
one node and 19.6 % at six nodes, a modest increase that is in
line with the efficient scaling depicted in Figure 14d.

Scalability of the state evolution methods for qaoa and qwoa

at a constant MPI process load (weak scaling) is shown in
Figure 15 with respect to cores on a single node and a clus-
ter of multiple nodes. In each instance, imperfect weak scal-
ing is observed as, for both QAOA and QWOA, increases in
n are accompanied by an increased degree of inter-qubit cou-
pling. For high process loads, the qaoa state evolution method
scales more efficiently than qwoa state evolution, which is con-
sistent with the structure of the corresponding mixing opera-
tors. For the QAOA the hypercube matrix operator has a sparse
banded-diagonal structure that, for locali mod 2 = 0, induces
a communication overhead of O(log2(size)). In contrast, the
complete-graph mixing operator of the QWOA requires com-
munication between all of the MPI processes resulting a com-
munication overhead of O(size).

As a measure of solution quality, deviation from the norm
was calculated for the state evolution results shown in Fig-
ures 14 and 15. Figure 17 shows the total deviation divided
by the system size to indicate the per-state accuracy. For both
QAOA and QWOA the deviation is on the order of 10−13 or
below, which is consistent with double precision accuracy.

The effectiveness of the various optimisation algorithms in-
cluded with the SciPy and NLOpt packages was considered
with respect to simulation of the QAOA and QWOA. This com-
parison adopted methodology outlined in the NLOpt documen-
tation [31]. A system of 16 qubits (N = 216) was considered
with a randomly generated diag(Q̂) consisting of values from a
uniform distribution over (0, 1]. Five sets of θ0 were generated
for D = 5 (|θ| = 10) and the algorithms simulated using the op-
timisers listed in the caption of Figure 18. For each of the five

14

(a) (b) (c) (d)

Figure 14: Strong scaling speedup and efficiency for the qaoa and qwoa state evolution methods running on a single and multiple nodes. For each trial, a qaoa

or qwoa instance was instantiated with a diag(Q̂) consisting of uniformly distributed floats in (0, 1]. The ansatz depth was set to D = 15 such that calling the
Ansatz evolve_state method resulted in 15 repeats of the state evolution subroutines implementing the phase-shift and mixing-unitaries. The θ0 were prepared
identically for all trials at the same number of qubits from the uniform distribution (0, 2π]. For (a) and (b) speedup is reported proportional to the time taken using
a single CPU core (1 MPI process). The qaoa the single-node wall-times were 3.27 s, 5.35 s, 17.3 s and 265 s for 12, 13, 14 and 16 qubits respectively and, for
qwoa, 2.39 s, 2.50 s, 5.05 s, 24.0 s and 727 s for 10, 12, 14, 16 and 20 qubits respectively. Efficiency is defined as the speedup divided by the number of CPU cores.
For (c) and (d) all trails run on fully occupied nodes and the reported speedup is proportional to the time taken on one fully occupied node (24 MPI processes). For
qaoa the single-node wall-times were 7.64 s, 17.8 s, 97.5 s, 496 s and 2365 s for 12, 13, 14 and 16 qubits respectively and, for qwoa, 4.26 s, 7.03 s, 60.0 s and 967
s for 10, 12, 14, 16 and 20 qubits respectively. Efficiency in (c) and (d) is defined as the speedup divided by the number of nodes.

(a) (b) (c) (d)

Figure 15: The weak scaling efficiency for the qaoa and qwoa state evolution methods with state vector partitions of size local_i as indicated by the corresponding
plot legends. For (a) and (b), efficiency is defined as T (1)/T (Cores) where T (1) is the wall-time for one MPI process with a system size of local_i. For (c) and
(d), efficiency is defined as T (1)/T (Nodes) where T (1) is the wall-time for one Node of 24 MPI processes with local_i state vector elements and all nodes were
fully occupied at 24 MPI process per-node.

Figure 16: The percentage of program wall-time spent in MPI calls for the
qaoa and qwoa state evolution methods at 22 and 19 qubits, respectively, as
reported by Arm Map version 19.0.1. All nodes were fully occupied at 24 MPI
processes per node.

Figure 17: Average deviation from the norm for the |θ f 〉QAOA (left) and
|θ f 〉QWOA (right) depicted in Figures 14 and 15

15

Figure 18: A comparison of the optimisation algorithms included with the
SciPy and NLOpt packages. The plots depict algorithms that satisfied the con-
vergence criteria in at least one out of the five trials. The complete list of consid-
ered algorithms is SciPy: BFGS, CG, Nelder-Mead, trust-constr, Powell, TNC
and NLOpt: LD LBFGS, LN BOBYQA, LN PRAXIS, LN NELDERMEAD,
LN SBPLX, LD MMA, LD CCSAQ. The comparison was carried out on 17
nodes over 48 hours.

sets of θ0 the lowest θ f was used to define five instances of the
modified objective function

f ′(θ) =
∣∣∣min(fθi) − f

∣∣∣, (32)

where min(fθi) is the minimum f(θ f) found by any of the con-
sidered optimisation algorithms with initial variational parame-
ters θi. Each optimisation algorithm was then trialled with start-
ing parameters θi and the objective function defined as in Equa-
tion (32). A particular algorithm was considered to have ‘suc-
ceeded’ if it converged to a point satisfying f ′(θ) < b, where
b = 0.8 was chosen as it produced an informative measure
across a large subset of the considered optimisers.

For the QAOA trials the minimum final objective function
values fQAOA(θ f) were 0.162 (Powell), 0.156 (BFGS), 0.120
(BOBYQA), 0.228 (LD LBFGS) and 0.154 (LD LBFGS).
For the QWOA the fQWOA(θ f) were 0.074 (BFGS), 0.086
(LN SBPLX), 0.078 (BFGS), 0.06 (BFGS) and 0.073 (Powell).
As shown in Figure 18, BFGS was the only algorithm which
consistently satisfied the convergence test for both the QAOA
and the QWOA. This result, in combination with a relatively
low number of associated |θ〉 evaluations, supports the use of
BFGS as the default QuOp MPI optimisation algorithm.

Figure 19: Speedup achieved with parallel computation of ∇θ f for the QWOA
at 16 qubits with the diag(Q̂) and θ0 defined as described in Figure 14. Each
node introduced an additional COMM-|θ〉 sub-communicator with 24 MPI pro-
cesses.

Figure 20: The optimised objective function fQWOA(θ f) for QWOA simulations
as described in Figure 19 using 1, 2, 4, 8 and 16 compute nodes. Markers
indicate the maximum number of θ simulated for the given number of nodes at
a cumulative program wall-time of one hour.

Figure 21: The percentage of program wall-time spent in MPI calls for execu-
tion of the QWOA at D = 14 (see Figure 19) as reported by Arm Map version
19.0.1.

The scaling behaviour for parallel computation of the gra-
dient ∇θ f is shown in Figure 19 for simulation of the QWOA
algorithm with 18 qubits at D = 8, 14, 17. This mode of par-
allelism scales very efficiently; at 16 nodes, there was a maxi-
mum speedup of 15.0 with an efficiency of 0.94 (D = 14) and
a minimum speedup of 9.17 with an efficiency of 0.57 (D = 8).
As shown by Figure 21, additional nodes resulted in a negligi-
ble increase in MPI overhead as communication between sub-
communicators consisted of only the updated θ and the partial
derivatives of fQAOA.

16

The convergence and simulation wall-time of QuOp MPI
was compared to TensorFlow Quantum (TFQ); a Python pack-
age released in 2020 to support research in quantum-classical
machine learning. This package was chosen for comparison as
it targets a similar userbase through its approachable Python in-
terface, focus on classically parameterised quantum algorithms
and performant simulation of the complete wavefunction [18].
TensorFlow Quantum differs from QuOp MPI in two key areas.
Firstly, it implements a gate-based approach to quantum simu-
lation and, secondly, the package utilises a GPU accelerated li-
brary that computes |θ f 〉QAOA to single-precision accuracy [25].

The two packages were applied to simulation of the QAOA
applied to the max-cut problem for a regular random graph
of degree three (see Section 6). Simulations were carried
out at D = 2 over two non-identical sets of five θ0 for all
even n in [14, 26]. Optimisation was carried out for a maxi-
mum of 1000 fQAOA evaluations under the convergence criteria
∆ fQAOA ≤ 10−4.

Implementation of QAOA in TFQ built on an example in-
cluded in the TFQ white-paper [18]. A quantum circuit exactly
implementing Equations (12) and (28) was generated using the
tfq.util.exponential function. This was used to define a
Keras model with a single hidden layer for which |ψ0〉QAOA was
passed to the input layer, and fQAOA(θ f) was returned by the
output layer. The model was trained up to a maximum of 1000
epochs using the ‘Adam’ optimiser, an absolute mean error loss
function, and the training data-set (|ψ0〉QAOA, 0) (where 0 is the
minimum of Equation (28)). The convergence criteria were im-
plemented using an early-stopping callback function, stopping
when the criteria were met over ten successive epochs.

The QAOA was implemented in QuOp MPI as shown in Ex-
ample 1 with the diag(Q̂) computed in parallel (see Example 3).
The L-BFGS-B algorithm provided by SciPy was selected over
the BFGS algorithm as it supported specification of the conver-
gence criteria and maximum fQAOA evaluations via its ftol and
maxfun options.

Comparison simulations were carried out on a workstation
(QuOp MPI and TFQ) and the ‘Magnus’ cluster (QuOp MPI
only). The workstation was equipped with an AMD Ryzen
Threadripper 3970X 32-Core Processor at 3.7 GHz, 64 GB of
RAM and an Nvidia RTX 3070 GPU. For all trials on the work-
station, TFQ offloaded compute to the GPU and QuOp MPI ran
with one MPI process per CPU core. Trials on the cluster ran
on a variable number of nodes that were selected with reference
to Figure 14.

Overall, the two packages performed similarly for minimi-
sation of fQAOA, with the lowest minima being 5.21 at 14
qubits (TFQ), 6.00 at 16 qubits (QuOp MPI), 6.80 at 18 qubits
(QuOp MPI), 7.82 at 20 qubits (QuOp MPI) and 8.21 at 22
qubits (TFQ). QuOp MPI had an average fQAOA(θ f) of 5.56 at
14 qubits, 6.01 at 16 qubits, 7.00 at 18 qubits, 8.09 at 20 qubits
and 8.59 at 22 qubits. The TFQ average fQAOA(θ f) were higher
with 6.05 at 14 qubits, 6.70 at 16 qubits, 7.82 at 18 qubits, 8.63
at 20 qubits and 8.93 at 22 qubits. To investigate the source
of this discrepancy, two sets of equivalent QuOp MPI max-cut
simulations were carried out at 12, 14 and 16 qubits over sets
of 50 θ0 with the fQAOA returned to single-precision for the first

(a)

(b)

Figure 22: (a) Mean number of fQAOA evaluations and (b) mean program
wall-time for simulation of the QAOA as applied to the max-cut problem for
regular random graphs of degree three using QuOp MPI on the workstation,
QuOp MPI on the ‘Magnus’ cluster and TensorFlow Quantum on the worksta-
tion. For (a) and (b) from 14 to 26 qubits the markers depict the mean value over
sets of five θ0, the lower bar indicates the set minimum and the upper bar indi-
cates the set maximum. The data shown for 28 qubits is for a single QuOp MPI
simulation. On the workstation, simulations beyond 20 qubits for QuOp MPI
and 22 qubits for TFQ were not possible due to memory constraints. The com-
pute node configurations for QuOp MPI simulations on the cluster were 12
processes on one node for 14 qubits, 24 processes on one node at four qubits,
96 processes on two nodes for 18 qubits, 144 processes on six nodes for 20
qubits, 288 processes on 12 nodes for 22 qubits, 384 processes on 16 nodes for
24 qubits, 432 processes on 18 nodes for 26 qubits and 3360 processes on 140
nodes for 28 qubits.

set and double-precision for the latter. Returning the objective
function to double-precision accuracy (the QuOp MPI default)
resulted in fQAOA(θ f) that were consistently lower than the
fQAOA(θ f) obtained with a single-precision fQAOA (0.47 lower
on average). This result indicates that the difference in simu-
lation precision likely contributes to the observed difference in
the mean fQAOA(θ f) between QuOp MPI and TFQ.

Figure 22 depicts the mean number of fQAOA evaluations
and the mean simulation wall-time for QuOp MPI and TFQ.
Over the range of comparable simulations, QuOp MPI requires
a smaller number of fQAOA evaluations. As such, QuOp MPI
on the workstation has a simulation wall-time that is close to
TFQ at 14 and 16 qubits. The simulation wall-time for TFQ
at 18 and 20 qubits is significantly lower than QuOp MPI -
which is consistent with TFQ’s use of GPU acceleration and
lower target precision. At 22 qubits, TFQ had an average wall-
time of 2595 s, with the equivalent QuOp MPI simulation tak-
ing an average of 1267 s on 12 nodes (288 cores). This was

17

the largest system simulated with TFQ, as simulations beyond
this point were not possible due to GPU memory limitations.
The distributed-memory parallelism of QuOp MPI allowed for
simulations beyond 22 qubits with an average wall-time for 24
qubits of 3516 s on 16 compute nodes (384 cores) and, for 26
qubits, 4013 s on 18 nodes (432 cores). A single simulation
at 28 qubits had a wall time of 23028 s on 140 compute nodes
(3360 cores). Altogether these results demonstrate the utility of
the high-precision simulation and scalable distributed memory
parallelism of QuOp MPI.

8. Conclusion

QuOp MPI provides a highly scalable and flexible platform
for parallel simulation and design of QVAs. As shown by exam-
ple, researchers can quickly write programs to simulate several
previously studied quantum optimisation algorithms, including
the QAOA, ex-QAOA, QWOA and QAOAz, which are capable
of running efficiently on massively parallel systems.

While this introduction to the package has focused on
combinatorial optimisation following a pattern of alternat-
ing phase-shift and mixing-unitaries, the flexibility afforded
of QuOp MPI allows for exploration of QVAs beyond this
paradigm. Also not explored has been the application of
QuOp MPI to the simulation of quantum variational eigen-
solver algorithms, which, while falling within the simulation
framework of QuOp MPI, lie outside the immediate research
interests of the authors.

Currently, QuOp MPI supports the efficient simulation of
sparse and circulant mixing operators. While this covers the
majority of mixing operators considered in the literature of
QVAs, the scope of the package would be improved by the in-
clusion of a propagation method supporting dense mixing op-
erators and a tensor network backend for the approximation of
larger quantum systems. These features are slated for a future
update.

Acknowledgements

This work was supported by resources provided by the
Pawsey Supercomputing Centre with funding from the Aus-
tralian Government and the Government of Western Australia.
EM acknowledges the support of the Australian Government
Research Training Program Scholarship. The authors would
like to thank Sam Marsh, Nicholas Slate, Tavis Bennett, Mark
Walker, Burbukje Shakjiri, Andrew Freedland, Zecheng Li,
Yuhui Wang and Jianing Sun for their valuable feedback and
code testing during the development of QuOp MPI.

References

[1] D. Matthews, How to get started in quantum computing, Nature 591
(2021) 166.

[2] M. Cerezo, A. Arrasmith, R. Babbush, et al., Variational quantum algo-
rithms, Nature Review Physics 3 (2021) 625.

[3] E. Farhi, J. Goldstone, S. Gutmann, A Quantum Approximate Optimiza-
tion Algorithm, arXiv:1411.4028 [quant-ph] (2014).

[4] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli,
R. Biswas, From the Quantum Approximate Optimization Algorithm to a
Quantum Alternating Operator Ansatz, Algorithms 12 (2019) 34.

[5] S. Marsh, J. B. Wang, A quantum walk-assisted approximate algorithm
for bounded NP optimisation problems, Quantum Information Processing
18 (2019) 61.

[6] S. Marsh, J. B. Wang, Combinatorial optimization via highly efficient
quantum walks, Physical Review Research 2 (2020) 023302.

[7] G. G. Guerreschi, M. Smelyanskiy, Practical optimization for hybrid
quantum-classical algorithms, arXiv:1701.01450 [quant-ph] (2017).

[8] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, J. L. O’Brien, A variational eigenvalue solver on a pho-
tonic quantum processor, Nature Communications 5 (2014).

[9] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2
(2018) 79.

[10] D. B. Kell, Scientific discovery as a combinatorial optimisation problem:
How best to navigate the landscape of possible experiments?, Bioessays
34 (2012) 236.

[11] F. F. S. Sánchez, C. A. L. Lazo, F. Y. S. Quiñónez, Comparative Study of
Algorithms Metaheuristics Based Applied to the Solution of the Capaci-
tated Vehicle Routing Problem, IntechOpen, 2020.

[12] R. Liu, X. Li, K. S. Lam, Combinatorial Chemistry in Drug Discovery,
Current opinion in chemical biology 38 (2017) 117–126.

[13] R. C. Lozano, M. Carlsson, G. H. Blindell, C. Schulte, Combinatorial
Register Allocation and Instruction Scheduling, ACM Transactions on
Programming Languages and Systems 41 (2019) 17:1–17:53.

[14] H. Markowitz, Portfolio Selection, J. Finance 7 (1) (1952) 77–91.
[15] A. Palczewski, LP Algorithms for Portfolio Optimization: The Portfo-

lioOptim Package, R J. 10 (2018) 308–327.
[16] D. Willsch, M. Willsch, F. Jin, K. Michielsen, H. De Raedt, GPU-

accelerated simulations of quantum annealing and the quantum approxi-
mate optimization algorithm, arXiv:2104.03293 [physics, physics:quant-
ph] (2021).

[17] E. Matwiejew, QuOp MPI (v1.0.0).
URL https://github.com/Edric-Matwiejew/QuOp MPI/relea

ses/tag/v1.0.0

[18] M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V.
Isakov, P. Massey, M. Y. Niu, R. Halavati, E. Peters, M. Leib, A. Sko-
lik, M. Streif, D. Von Dollen, J. R. McClean, S. Boixo, D. Bacon,
A. K. Ho, H. Neven, M. Mohseni, TensorFlow Quantum: A Software
Framework for Quantum Machine Learning, arXiv:2003.02989 [cond-
mat, physics:quant-ph] (2020).

[19] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, T. S.
Humble, XACC: a system-level software infrastructure for heteroge-
neous quantum–classical computing, Quantum Science and Technology
5 (2020) 024002.

[20] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas,
S. Mandrà, A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware, npj Quan-
tum Information 5 (2019) 1–16.

[21] P. Crescenzi, V. Kann, R. Silvestri, l. L. Trevisan, Structure in Approxi-
mation Classes, SIAM Journal on Computing 28 (1999) 24.

[22] M. Frigo, S. G. Johnson, The Fastest Fourier Transform in the West:
(1997).

[23] M. Frigo, S. Johnson, The Design and Implementation of FFTW3, Pro-
ceedings of the IEEE 93 (2005) 216–231.

[24] E. Matwiejew, J. B. Wang, QSW mpi: A framework for parallel simu-
lation of quantum stochastic walks, Computer Physics Communications
260 (2021) 107724.

[25] quantum (2021).
URL https://github.com/tensorflow/quantum

[26] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum in-
formation, 10th Edition, Cambridge University Press, Cambridge ; New
York, 2010.

[27] L. Hales, S. Hallgren, An improved quantum fourier transform algorithm
and applications (2000) 515–525doi:10.1109/SFCS.2000.892139.

[28] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, M. D. Lukin, Quantum Approxi-
mate Optimization Algorithm: Performance, Mechanism, and Implemen-
tation on Near-Term Devices, Physical Review X 10 (2020) 021067.

[29] J. Nocedal, S. J. Wright, Numerical optimization, 2nd Edition, Springer
series in operations research, Springer, New York, 2006.

18

https://github.com/Edric-Matwiejew/QuOp_MPI/releases/tag/v1.0.0
https://github.com/Edric-Matwiejew/QuOp_MPI/releases/tag/v1.0.0
https://github.com/Edric-Matwiejew/QuOp_MPI/releases/tag/v1.0.0
https://github.com/tensorflow/quantum
https://github.com/tensorflow/quantum
https://doi.org/10.1109/SFCS.2000.892139

[30] E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for
Python (2001).
URL http://www.scipy.org/

[31] S. G. Johnson, The NLopt nonlinear-optimization package.
URL http://github.com/stevengj/nlopt

[32] D. Steinberg, revrand.
URL https://travis-ci.org/github/NICTA/revrand

[33] N. Slate, E. Matwiejew, S. Marsh, J. B. Wang, Quantum walk-based port-
folio optimisation, Quantum 5 (2021) 513.

[34] pandas-datareader, version Number: 0.10.0.
URL https://github.com/pydata/pandas-datareader/

[35] Yahoo Finance – stock market live, quotes, business & finance news.
URL https://au.finance.yahoo.com/

Edric Matwiejew is a PhD candidate at
The University of Western Australia with
the Quantum Information, Algorithms
and Simulation (QUISA) Research Cen-
tre led by Prof. Jingbo Wang. He devel-
ops software for the high-performance
simulation of quantum systems, which
he applies to the design of quantum al-
gorithms with near-term applications. In

his downtime, he enjoys re-imagining scientific concepts in
modular synthesizer design.

Professor Jingbo Wang is the Di-
rector of the QUISA Research Centre
(https://quisa.tech/) hosted at The Uni-
versity of Western Australia, leading an
active group in the area of quantum in-
formation, simulation, and algorithm de-
velopment. Prof. Wang and her team pi-
oneered quantum walk-based algorithms

to solve problems of practical importance otherwise intractable,
which include complex network analysis, graph theoretical
studies, machine learning, and combinatorial optimisation. She
is currently also the Head of Physics Department, Deputy Head
of School of Physics, Mathematics and Computing, and Chair
of QST (Quantum Science and Technology) Topical Group un-
der the Australian Institute of Physics.

19

http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://travis-ci.org/github/NICTA/revrand
https://travis-ci.org/github/NICTA/revrand
https://github.com/pydata/pandas-datareader/
https://github.com/pydata/pandas-datareader/
https://au.finance.yahoo.com/
https://au.finance.yahoo.com/

	1 Introduction
	2 Theoretical Background
	2.1 Quantum Variational Algorithms
	2.2 Combinatorial Optimisation with QVAs
	2.3 Unconstrained Optimisation
	2.3.1 QAOA
	2.3.2 Extended-QAOA

	2.4 Constrained Optimisation
	2.4.1 QAOAz
	2.4.2 QWOA

	3 Numerical Methods
	4 Parallelisation Schemes
	5 Package Overview
	6 Usage Examples
	6.1 The max-cut problem.
	6.1.1 QAOA
	6.1.2 Extended-QAOA
	6.1.3 Parallel Computation of the Cost Function

	6.2 Portfolio Re-balancing
	6.2.1 Comparison of the QWOA and QAOAz.

	7 Performance
	8 Conclusion

