
ar
X

iv
:2

21
1.

05
03

8v
2

 [
m

at
h.

D
S]

 1
9

D
ec

 2
02

2

An Algorithmic Pipeline for Solving Equations over Discrete Dynamical
Systems Modelling Hypothesis on Real Phenomena

Alberto Dennunzioa, Enrico Formentib, Luciano Margarac, Sara Rivab

aDipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy
bUniversité Côte d’Azur, CNRS, I3S, France

cDepartment of Computer Science and Engineering, University of Bologna, Cesena Campus, Via Sacchi 3, Cesena, Italy

Abstract

This paper provides an algorithmic pipeline for studying the intrinsic structure of a finite discrete dynamical
system (DDS) modelling an evolving phenomenon. Here, by intrinsic structure we mean, regarding the dynamics
of the DDS under observation, the feature of resulting from the ‘cooperation’ of the dynamics of two or more
smaller DDS. The intrinsic structure is described by an equation over DDS which represents a hypothesis over
the phenomenon under observation. The pipeline allows solving such an equation, i.e., validating the hypothesis
over the phenomenon, as far the asymptotic behavior and the number of states of the DDS under observation
are concerned. The results are about the soundness and completeness of the pipeline and they are obtained by
exploiting the algebraic setting for DDS introduced in [10].

Keywords: discrete modelling, finite discrete dynamical systems, hypothesis on phenomena

1. Introduction

Finite Discrete Dynamical Systems (DDS for short) are useful tools that have been used since at least the sev-
enties of the last century for modelling many evolving phenomena, especially those rising from complex systems,
that can go through a finite number of states. They can be found in many disciplines ranging for instance from
biology to chemistry, stepping through computer science, physics, economics, sociology, etc.. Boolean automata
networks, genetic regulations networks, and metabolic networks are just a few examples of DDS used in bioinfor-
matics [6, 16, 17, 3, 9]. Cellular Automata with a finite number of cells and a finite alphabet are other examples
of DDS exploited in a wide range of scientific domains for modelling complex phenomena [1, 2, 13, 14, 7].

When studying an evolving phenomenon modelled by a DDS, an important task is describing its dynamical
behavior from experimental data. Namely, one aims at providing a finer structure of the observed dynamics, or,
in other terms, answering the following question which the central issue of this paper:

Question 1. Is the dynamics that we observe (from experimental data for instance) the action of a single basic system

or does it come from the cooperation between two or more simpler systems?

In this sense, a DSS can be viewed as a complex object with a certain intrinsic structure, i.e., the feature
of resulting from cooperating basic components. It is crucial, of course, to precise the meaning of the word
‘cooperation’ in Question 1. In [10], two forms of cooperation have been devised. The additive form, denoted
by +, in which two DDS with independent dynamics provide together the observed system and the product one,
denoted by ·, in which the observed system results from the joint parallel action of two DDS. The formalisation
of these concepts leads to endow the set of all DDS with the algebraic structure of commutative semiring [10].
In this way, to face Question 1 it is quite natural consider multivariate monomials of the type a · xw to represent

Email addresses: alberto.dennunzio@unimib.it (Alberto Dennunzio), enrico.formenti@unice.fr (Enrico
Formenti), luciano.margara@unibo.it (Luciano Margara), sara.riva@univ-cotedazur.fr (Sara Riva)

Preprint submitted to Elsevier December 20, 2022

http://arxiv.org/abs/2211.05038v2

a hypothesis about a finer structure of a given DDS. Here, considering a · xw means that in the first place the
observed DDS is supposed to result from the joint parallel action of a known DDS, i.e., the coefficient a, and w

copies of some yet unknown DDS x . Following this new point of view, a polynomial P(x1, . . . , xV) is hence a
more complex and realistic hypothesis on the observed DDS b and then Question 1 can rephrased as:

Question 2. Does the dynamics that we observe result from several independent smaller systems, each of them having

dynamics determined by the joint parallel action of a known part and an unknown part to be computed? In other

words, does the equation P(x1, . . . , xV) = b have a solution? If any, what are its solutions?

We stress that answering this question is always possible since the constant right-hand side bounds the space
of admissible solutions. However, it might be highly non trivial, as illustrated in [10] for classes of more general
polynomial equations P(x1, . . . , xV) = Q(x1, . . . , xV), although DDS have very simple dynamics. Indeed, since
the set of states is finite, all their points are ultimately periodic and then any system ultimately evolves towards
one of its cycle sets, each of them consisting of periodic points and called attractor, that together describe the
so-called asymptotic behavior of the system.

Since we aim at proposing a solid and effective tool to be used in applications that answers Question 2, in
this paper we start to focus our attention on equations involving a multivariate polynomial without products of
distinct variables. From now on, when no confusion is possible, we will always refer to that type of equations.

Our idea for solving the equation P(x1, . . . , xV) = b is based on three abstractions of such an equation: the
c-abstraction, the a-abstraction and the t-abstraction. By means of the abstractions, potential solutions of the
considered equation are filtered out. Indeed, each abstraction provides the DDSs with a specific property induced
by the equation. Namely, the c-abstraction allows computing all DDS that satisfy the condition on the cardinality
of the state set induced by the original equation. The a-abstraction provides all DDS having a set of attractors that
satisfies the equation obtained by the original one when constants and variables are restricted to their asymptotic
behavior. Finally, the t-abstraction is similar to the a-abstraction but it focuses on the transient behaviour, i.e., on
the states that do not belong to any attractor. We stress that the set of the solutions of the equation P(x1, . . . , xV) =

b just turns out be the intersection of the sets of DDSs selected by these three abstractions. For this reason, the
enumeration of all solutions of each abstraction is needed to reach the goal.

As a first important step, in this paper we consider the c- and a-abstractions and, as results, we provide two
methods solving the corresponding abstraction equations, leaving the t-abstraction for a future work. Let us
explain their relevance. First of all, as we will see, solving the only a-abstraction equation requires a non trivial
pipeline (i.e., a sequence of processes with the output of one process being the input of the next one), including
the computation of the w-th root of the asymptotic behavior of a DDS, that is a necessary intermediate step.
Furthermore, the results allow understanding the structure of the asymptotic behavior of a phenomenon and it
is well-known that this is very important in applicative scenarios.

Both the procedures make use of Multi-valued Decision Diagrams (MDD)([5, 8, 4]) suitably defined according
to our settings. Actually, they have been applied in several domains for representing formal objects in a com-
pressed form. Their advantage is that they perform many operations without decompressing information. In this
work, MDD are exploited to provide in an efficient way the needed solutions of all the further equations and
systems derived from the abstractions, especially the a-abstraction. Moreover, they allow efficiently performing
some important operations that are required by our procedures as for instance the product of solutions and the
intersection of sets of them.

The paper is structured as follows. Next section introduces the background on DDS and the their semiring.
The c- and the a-abstraction equations are dealt with in Section 3 and Section 4, respectively. Section 5 illustrates
by a full worked out example how the solutions of the two abstraction equation can be combined. In the last
section we draw our conclusions and some perspectives.

2. Background and basic facts

A Discrete Dynamical System (DDS) is a pair (X , f) where X is a finite set of states and f : X → X is a function
called next state map. Any DDS (X , f) can be identified with the directed graph G = (V, E), called dynamics graph,
where V = X and E = {(v, f (v)) | v ∈ V} is the graph of f .

2

Let S be a DDS (X , f) and let G be its dynamics graph. If Y is any subset of X such that f (Y) ⊆ Y, then the
DDS

�

Y, f |Y
�

is said to be the dynamical subsystem of (X , f) induced by Y (here, f |Y means the restriction of
f to Y). Clearly, the dynamics graph of

�

Y, f |Y
�

is nothing but the subgraph of G induced by Y. A state v ∈ X

is a periodic point of S if there exists an integer p > 0 such that f p(v) = v. The smallest p with the previous
property is called period of v. If p = 1, the state v is simply a fixed point. A cycle (of length p) of S is any set
C = {v, f (v), ..., f p−1(v)} where v ∈ X is a periodic point of period p. Clearly, the set P of all the periodic points
of S can be viewed as union of disjoint cycles. Moreover, both (C, f |C) and (P, f |P) are dynamical subsystems
of S and their dynamics graphs just consist of one among, resp., all, the strongly connected components of G.
In the sequel, we will identify C and P with the DDS (C, f |C) and (P, f |P) (and then with their dynamics graphs
too), respectively.

Two DDS are isomorphic if their dynamics graph are so in the usual sense of graph theory. When this happens,
the systems are indistinguishable from the dynamical point of view. In particular, periodic points and cycles of
a system are in one-to-one correspondence with periodic points and cycles of the other system. Therefore, the
dynamical subsystems induced by them in the respective DDS are isomorphic too.

Recall that the disjoint union of two sets X1 and X2 is the set X1 ⊔ X2 = (X1 × {0}) ∪ (X2 × {1}). In [10],
an abstract algebraic setting for DDS was introduced. In particular, the following operations over the set of DDS
were defined where the notion of disjoint union is extended to functions.

Definition 1 (Sum and product of DDS). The sum (X1, f1) + (X2, f2) and the product (X1, f1) · (X2, f2) of any

two DDS (X1, f1) and (X2, f2) are the DDS (X1 ⊔X2, f1 ⊔ f2) and (X1 ×X2, f1 × f2), respectively, where the function

f1 ⊔ f2 : X1 ⊔X2→ X1 ⊔X2 is defined as:

∀(v, i) ∈ X1 ⊔X2 (f1 ⊔ f2)(v, i) =

¨

(f1(v), i) if v ∈ X1 ∧ i = 0

(f2(v), i) if v ∈ X2 ∧ i = 1
,

while f1× f2 : X1×X2→ X1×X2 is the standard product of functions defined as ∀(v1, v2) ∈ X1×X2, (f1× f2)(v1, v2) =

(f1(v1), f2(v2)) (also called direct product in the graph literature).

It is not difficult to see that the set of all DDS equipped with the sum and product operations turns out to be a
semiring R in which both the operations are commutative (up to an isomorphism). In the sequel, the symbols 0
and 1 stand for their neutral elements. Moreover, for any natural k > 0 and any DDS S, the sum S+. . .+S =

∑k
S

and the product S · . . . · S =
∏k

S of k copies of S will be naturally denoted by kS and Sk, respectively. In this
way, we can state the following proposition which is nothing but the counterpart in our setting of the well-known
standard multinomial theorem.

Proposition 1. For any positive naturals w, l, and any DDS S1, . . .Sl it holds that

(S1 + . . .+ Sl)
w =

∑

k1+...+kl=w
0≤k1,...,kl≤w

�

w

k1, ..., kl

� l
∏

t=1

S
kt

t .

Now, consider the semiring R[x1, x2, . . . , xV] of polynomials over R in the variables x1, x2, . . . , xV , naturally
induced by R. Polynomial equations of the following form model hypotheses about a certain dynamics deduced
from experimental data:

a1 · xw1
1 + a2 · xw2

2 + . . .+ am · xwm

m
= b (1)

The known term b is the DDS deduced from experimental data. The coefficients az (with z ∈ {1, . . . , m}) are hy-
pothetical DDS that should cooperate to produce the observed dynamics b. Finding valid values for the unknowns
in (1) provides a finer structure for b which can bring further knowledge about the observed phenomenon. We
point out that Equation (1) might contain duplicated pairs (xz , wz) since it is the direct formulation of a hypothe-
sis over that phenomenon. Indeed, the process of such a formulation might run into a x

wz
z which has been already

considered but it has to be differently weighted.

3

3. Abstraction over the cardinality of the set of states (c-abstraction)

Given a polynomial equation over DDS, a natural abstraction concerns the number of states of the DDS
involved in it. Performing such an abstraction leads to new equation in which the coefficients of the polynomial,
the variables, and the constant term become those natural numbers corresponding to the cardinalities of the state
sets of the DDSs involved in the original equation.

Definition 2 (c-abstraction). The c-abstraction of a DDS S is the cardinality of its set of states. With an abuse of

notation, the c-abstraction of S is denoted by |S|.

The following lemma links c-abstractions with the operations over DDS.

Lemma 1 ([10]). For any pair of DDS S1 and S2, it holds that |S1 + S2|= |S1|+ |S2| and |S1 · S2|= |S1| · |S2|.

Using the notion of c-abstraction and the previous lemma, Equation (1) turns into the following c-abstraction

equation:

|a1| · |x1|w1 + |a2| · |x2|w2 + ...+ |am| · |xm|wm = |b| . (2)

To reach our overall goal, we need to enumerate all solutions of Equation (2). In this way, all possible cardinalities
of the state sets of the unknown DDSs from the original Equation (1) will be identified. To perform that task, we
proceed as follows. First of all, we present the enumeration problem from a combinatorial point of view. Then,
we will provide an algorithmic approach allowing the enumeration of the solutions of Equation (2) in an efficient
way.

Let us consider the case with just one monomial (i.e., m = 1) corresponding to a simpler equation of form
|a| · |x |w = |b| (basic case). It is clear that

• if w = 0, then |x |w is the c-abstraction of a DDS consisting of a unique cycle of length one (a fixed point)
and |a|= |b|, while the equation is impossible, otherwise;

• if w 6= 0, the equation admits a (unique) solution iff w
p

|b|/|a| is an integer number.

Given now an equation with m > 1 monomials, it is clear that each state of the DDS b must come from one of
them. Thus, we have to consider the all the ways of arranging |b| states among m monomials. Since there can be
arrangements in which not all the monomials are involved, by the Stars and Bars method (see [12], for instance),
the number of such arrangements is

�|b|+m−1
m−1

�

. Moreover, any arrangement consisting of b1, . . . , bm states from b

in the respective monomials, i.e., any weak composition b1, . . . , bm of |b| into exactly m parts, gives rise to the
following system













|a1| · |x1|w1 = b1

|a2| · |x2|w2 = b2
...

|am| · |xm|wm = bm

, (3)

where
∑m

z=1 bz = |b| and each equation falls into the basic case.
Therefore, we need an efficient method that solves all feasible Systems (3), i.e., those systems admitting a

solution. Since any System (3) consists of equations that are all from the basic case and establishing whether
each of them admits a solution is easy, the method can be designed in such a way that the space of possible
solutions to be explored is reduced.

Due to the combinatorial nature of the problem, we provide a method based on a Multi-valued Decision Dia-

grams (MDD) to enumerate the solutions of a c-abstraction equation. Recall that an MDD is a rooted acyclic graph
able to represent a multivalued function having a finite set as domain and the set {t rue, f alse} as codomain. Both
vertices and edge are labelled. In the structure, each level represents a variable, except for the final one with the
true terminal node (called tt). The first level contains the root node (called root). A path from the root to the tt

4

node represents a valid set of variable assignments given by the labels of the edges of that path. We stress that
there can be distinct vertices (possibly on the same level) with the same label. For a sake of simplicity, we will
often define the specific MDDs under the unconventional assumption that vertices form a multiset. This abuse
will allow us to identify vertexes with the values of their labels. For more on MDD, we redirect the interested
reader to [5, 8, 4].

Consider any c-abstraction equation with m monomials and a number V of distinct variables. We associate
such an equation with an MDD (V, E,ℓab) in which there are V levels (one for each variable) and one final level
for the tt node. The vertices form the multiset V =

∑

i∈{1,...,V+1} Vi where V1 = {root}, VV+1 = {tt}, and for each
level i ∈ {2, . . . ,V} the set Vi ⊆ {0, ..., |b|} of the vertexes of the level i will be defined in the sequel. Indeed,
the structure is built level by level. Moreover, for any node α ∈ V , let val(α) = α if α 6= root and α 6= tt, while
val(root) = 0 and val(tt) = |b|.

To define the edges outgoing from the vertexes of any level along with the corresponding labels and then
the vertexes of the next level too, first of all we associate each level i with the inequality

∑m

z=1 var(i, z) · |az| ·
|xz|wz ≤ |b|, where var(i, z) = 1 if |xz | is the variable associated with the level i, 0 otherwise, and the set
Di = {d ∈ N |

∑m

z=1 var(i, z) · |az | · |xz |wz ≤ |b| with |xz | = d} ∪ {0} of the labels of the edges outgoing from the
vertexes of the level i. These labels represent the possible values for the variable corresponding to the level i.

Now, for each level i ∈ {1, . . . ,V − 1}, for any vertex α ∈ Vi and any β ∈ {0, ..., |b|} it holds that β ∈ Vi+1 and
(α,β) ∈ E iff there exists d ∈ Di such that

β = val(α) +
∑m

z=1 var(i, z) · |az| · dwz ≤ val(tt).

Similarly, regarding the level V, for any vertex α ∈ VV , it holds that (α, tt) ∈ E iff there exists d ∈ Di such that

val(tt) = val(α) +
∑m

z=1 var(V, z) · |az | · dwz .

In both cases the edge (α,β) is associated with the label ℓab((α,β)) = d. In this way, the labelling function
ℓab : E→

⋃

i∈{1,...,V} Di has been defined too.
The value val(α) associated with any node α represents the amount of states obtained from a partial set of

variable assignments, i.e., a set of assignments involving the variables until the level the node α belongs to, each
of them corresponding to a path from root to α. The c-abstraction equation admits no solution if there is no path
from root to tt on the associated MDD.

Finally, the MDD is reduced by performing a pReduction i.e. a procedure that merges equivalent nodes (on
the same layer) and delete all nodes (and the corresponding edges) which are not on a path from root to tt [15].

Example 1. Consider the following equation:

2 · |x3|+ 5 · |x1|2 + 4 · |x2|+ 4 · |x1|4 + 4 · |x3|2 = 593 .

Hence, there are
�593+5−1

5−1

�

= 5.239776465 × 109 way of arranging |b| = 593 states among m = 5 monomials.

However, not all of them give rise to solutions of that equation. According to the definition, the resulting reduced

MDD is illustrated in Figure 1. The first level of the structure represents the possible values for the variable |x1|. In

the second one, the red edges along with the corresponding label represent the possible values for |x2|, in the case

|x1|= 1, while the blue ones are the possible assignments for |x2|, in the case |x1|= 3. The last edge layer represents

the possible values for |x3|.
We stress that the MDD allows the exploration of the solution space of the equation in a efficient way. In fact,

at each level only a part of the possible values for a variable are considered depending on the feasible assignments
of the variables of the previous levels. Moreover, the MDD can gain up to an exponential factor in representation
space through the reduction process.

The worst case space complexity is O(|b|V +δ), in terms of number of nodes and edges, where δ =
∑V

i=1 |Di |.
The p-reduction reduces the total number of edges to δ′≪ δ and the bound of the number of nodes of any level
to µ≤ |b|, giving rise to a lower complexity O(µV+δ′). Actually, this bound is never reached in our experiments.
As an illustrative case, consider Example 1. The MDD could have up to 1188 nodes and 352835 edges, but its
reduced version has only 10 nodes and 18 edges (see Figure 1).

Let us recall that the equation over c-abstractions is a polynomial equation over natural numbers. Therefore,
simplifications are possible and the whole approach can be applied to the simplified equation.

5

r

9 369

321 173 573 521 437 593

t t

1 3

78
41 141 128 107

146
561738

51

8
10

2 4 6
0

Figure 1: The reduced MDD representing all the solutions of 2 · |x3|+5 · |x1|2 +4 · |x2|+4 · |x1|4+4 · |x3|2 = 593. There are V = 3 variables,
which are represented in the structure in the following order: |x1|, |x2|, and |x3|.

Figure 2: A DDS with four cycles (l = 3): (C1
1 ⊕ C2

2 ⊕ C1
3) in our notation.

4. Abstraction over the asymptotic behaviour (a-abstraction)

In this section we deal with a further abstraction, namely, the asymptotic one, describing the long-term be-
haviour of a DDS, i.e., its ultimate periodic behaviour. In particular, we provide a method for solving the version
of Equation (1) obtained considering the asymptotic behaviour of constants and variables.

Notation. In the sequel, for any pair of positive integers n and p, Cn
p

will stand for the union of any n disjoint

cycles of length p of a DDS S. To stress that we are dealing with sets consisting of union of disjoint cycles, each of

them identifying a dynamical subsystem of S, the operations of disjoint union and product of two of such sets, or,

by identification, the sum and product of the corresponding dynamical (sub)systems, will be denoted by ⊕ and ⊙
instead of + and ·, respectively. According to this notation, it is clear that Cn1

p
⊕Cn2

p
= Cn1+n2

p
for any pair of positive

naturals n1, n2 and kCn
p
= Ckn

p
for any positive natural k. Finally, for any positive natural i and any positive naturals

p1, . . . , pi , denote λi = lcm(p1, . . . , pi).

Definition 3 (a-abstraction). The a-abstraction of a DDS S, denoted by �S, is the dynamical subsystem of S induced

by the set P of all its periodic points, or, by identification, the set P itself.

Remark 1. It immediately follows from the previous definition that the a-abstraction of the sum, resp., the product,

of two DDS, is the sum, resp., the product of the a-abstractions of the two DDS. Moreover, the a-abstraction of a DDS

S can be written as

�S =

l
⊕

i=1

Cni

pi
,

for some positive naturals l, n1, . . . , nl , and pairwise distinct positive naturals p1, . . . , pl , where, for each i ∈ {1, ..., l},
ni is the number of disjoint cycles of length pi (see Figure 2 for an illustrative example).

The following proposition provides an explicit expression for the product of several unions of cycles. It will
be very useful in the sequel.

6

Proposition 2. For any natural l > 1 and any positive naturals n1, . . . , nl , p1, . . . , pl , it holds that

l
⊙

i=1

Cni

pi
= C

1
λl

∏l

i=1(pini)

λl
.

Proof. We proceed by finite induction over l. First of all, we prove that the statement is true for l = 2, i.e.,

Cn1
p1
⊙ Cn2

p2
= C

1
λ2
·p1n1·p2n2

λ2
. (4)

Let us consider the case n1 = n2 = 1. Since C1
p1

and C1
p2

can be viewed as finite cyclic groups of order p1 and
p2, respectively, each element of the product of such cyclic groups has order lcm(p1, p2) or, in other words, each
element of C1

p1
⊙ C1

p2
belongs to some cycle of length λ2. So, C1

p1
⊙ C1

p2
just consists of (p1 · p2)/λ2 cycles, all of

length λ2, and therefore

C1
p1
⊙ C1

p2
= C

1
λ2
·p1·p2

λ2
.

In the case n1 6= 1 or n2 6= 1, since the product is distributive over the sum, we get

Cn1
p1
⊙ Cn2

p2
=

n1⊕

i=1

C1
p1
⊙

n2⊕

j=1

C1
p2
=

n1⊕

i=1

n2⊕

j=1

(C1
p1
⊙ C1

p2
) =

n1⊕

i=1

n2⊕

j=1

C
1
λ2
·p1·p2

λ2
= C

1
λ2
·p1n1 ·p2n2

λ2
.

Assume now that the equality holds for any l > 1. Then, we get

l+1
⊙

i=1

Cni

pi
= C

1
λl

∏l

i=1(pini)

λl
⊙ Cnl+1

pl+1
= C

1
lcm(λl ,pl+1)

·
∏l

i=1(pi ni)·(pl+1nl+1)

lcm(λl ,pl+1)
= C

1
λl+1
·
∏l+1

i=1(pini)

λl+1
.

Therefore, the equality also holds for l + 1 and this concludes the proof.

We now consider the w-th power of the union of cycles of a certain lengths and the w-th power of the sum of
such unions. Before proceeding, for any DDS S, we naturally define S0 as C1

1 , i.e., the neutral element 1 of the
product operation.

Corollary 1. For any natural numbers w≥ 1, n≥ 1, and p ≥ 1, it holds that:

(Cn
p
)w = C pw−1 nw

p
.

Proof. It is an immediate consequence of Proposition 2.

Proposition 3. For any positive naturals l > 1, w> 1, n1, . . . , nl , and p1, . . . , pl , it holds that

�

l
⊕

i=1

Cni

pi

�w

=
⊕

k1+...+kl=w
0≤k1 ,...,kl≤w

�

w

k1, . . . , kl

�

C

1
λ∗

l
·
∏l

i=1(pini)
ki

λ∗
l

where, for any tuple k1, . . . , ki , λ
∗
i

is the lcm of those p j with j ∈ {1, . . . , i} and k j 6= 0 (while λ∗
i
= 1 iff all k j = 0).

7

Proof. By Proposition 1, Proposition 2, and Corollary 1, we get

�

l
⊕

i=1

Cni

pi

�w

=
⊕

k1+...+kl=w
0≤k1,...,kl≤w

�

w

k1, . . . , kl

� l
⊙

t=1

(Cnt

pt
)kt

=
⊕

k1+...+kl=w
0≤k1,...,kl≤w

�

w

k1, . . . , kl

� l
⊙

t=1,kt 6=0

C pt
kt −1nt

kt

pt

=
⊕

k1+...+kl=w
0≤k1,...,kl≤w

�

w

k1, . . . , kl

�

C

1
λ∗

l
·

∏l

t=1
kt 6=0

(p
kt
t n

kt
t)

!

λ∗
l

=
⊕

k1+...+kl=w
0≤k1,...,kl≤w

�

w

k1, . . . , kl

�

C

1
λ∗

l
·
∏l

i=1(pi ni)
ki

λ∗
l

.

We can now write the a-abstraction equation obtained by considering just the asymptotic behavior of all
constants and variables in Equation (1):

�a1 ·�xw1

1 + . . .+�am ·�xwm

m
=�b , (5)

where, according to Remark 1, for each z ∈ {1, . . . , m} the a-abstraction of the coefficient az and the a-abstraction
of the known term b are

�az =

lz⊕

i=1

Cnzi

pzi
and �b =

lb⊕

j=1

C
n j

p j
.

To solve the a-abstraction equation, we first carry out some simplifications. First of all, we consider the actual
number m ≤ m of distinct pairs (�xz , wz) appearing in such an equation. In this way, Equation (5) can be rewritten
as

ℓ1⊕

i=1

Cn1i

p1i
⊙ X1 ⊕ . . .⊕

ℓ
m⊕

i=1

Cn
mi

p
mi
⊙ X

m
=

lb⊕

j=1

C
n j

p j
, (6)

where, for each z ∈ {1, . . . ,m}, Xz denotes �xwz
z , ℓz is the number of the distinct lengths of the cycles forming the

coefficient of Xz , and, with an abuse of notation, the number n′
zi

of cycles of length pzi inside that coefficient is
still denoted by nzi even though it may hold that n′

zi
6= nzi .

Equation (6) is still hard to solve in this form. We can further simplify it by performing a contraction step

which consists in rewriting it in an equivalent way as union of systems of the following type, one for each vector
(n11

1 , . . . , n11
lb
) obtained varying each n11

j
∈
�

0, . . . , n j

	

with j ∈ {1, . . . , lb}:














Cn11
p11
⊙ X1 =

lb⊕

j=1

C
n11

j

p j

C1
1 ⊙�y =

lb⊕

j=1

C
n j−n11

j

p j

(7a)

(7b)

where �y = (
ℓ1⊕

i=2
Cn1i

p1i
⊙ X1)⊕ (

ℓ2⊕

i=1
Cn2i

p2i
⊙ X2)⊕ . . .⊕ (

ℓ
m⊕

i=1
Cn

mi
p
mi
⊙ X

m
).

At this point, let us repeat as long as possible the application of the contraction step over the last equation of
each system obtained by the previous contraction step. We stress that such an application essentially consists in

8

i) updating �y by removing a term Cnzi
pzi
⊙ Xz with z ∈ {1, . . . ,m} and i ∈ {1, . . . ,ℓz},

ii) considering all possible vectors (nzi
1 , . . . , nzi

lb
) obtained varying each nzi

j
with j ∈ {1, . . . , lb} from 0 to the

remaining number of cycles of length p j of the right-hand side,

iii) introducing, for each of the above mentioned vectors, a new system obtained by adding the following
equation

Cnzi

pzi
⊙ Xz =

lb⊕

j=1

C
nzi

j

p j

to the considered initial system just before the equation involving �y.

iv) updating the right-hand side of the equation involving �y by removing nzi
j

cycles from the unions of cycles
of length p j .

In this way, we eventually get that Equation (6) can be equivalently rewritten as a union of systems, each of them
having the following form















































Cn11
p11
⊙ X1 =

lb⊕

j=1
C

n11
j

p j

Cn12
p12
⊙ X1 =

lb⊕

j=1
C

n12
j

p j

...

C
n1ℓ1
p1ℓ1
⊙ X1 =

lb⊕

j=1
C

n
1ℓ1
j

p j

Cn21
p21
⊙ X2 =

lb⊕

j=1
C

n21
j

p j

...

C
n
mℓm

p
mℓm
⊙ X

m
=

lb⊕

j=1
C

n
mℓm
j

p j

. (8)

Referring to Equation (6), we stress that, for each j ∈ {1, ..., lb}, it holds that the number of cycles of length p j

involved in know term is just n j =
∑

m

z=1

∑ℓz
i=1 nzi

j
, where nzi

j
represents the number of those that the monomial

Cnzi
pzi
⊙ Xz contributes to form.

Now, to solve any equation Cnzi
pzi
⊙ Xz =

lb⊕

j=1
C

nzi
j

p j
from (8), it is enough to solve the following lb equations

Cnzi

pzi
⊙ Xz = C

nzi
1

p1
, . . . , Cnzi

pzi
⊙ Xz = C

nzi
lb

plb
(9)

and compute the Cartesian product among their solutions. Since, for each j ∈ {1, . . . , lb}, equation Cnzi
pzi
⊙Xz = C

nzi
j

p j

can be rewritten as

C1
pzi
⊙ Xz = C

nzi
j
/nzi

p j
,

if nzi
j
/nzi is a natural number, while it has no solution, otherwise, solving Equation (6) reduces to identify all the

Systems (8) and perform the products and intersections of the solutions of a certain number of simpler equations,
called basic equations, with the following form:

C1
p
⊙ X = Cn

q
, (10)

where X is some Xz , p ∈
�

p11, p12, . . . , p
mℓ

m

	

, q ∈
�

p1, ..., plb

	

, and, making reference to the right-hand side, n is
smaller or equal to n j , i.e., the number of cycles of length q = p j .

9

To solve Equation (6), we need an efficient method that: 1) enumerates the solutions of all Equations (10),
i.e., the values of Xz , 2) computes the suitable products of these solutions and the intersections of sets of them,
3) retrieves the value of �xz from Xz . The algorithmic pipeline illustrated in Figure 3 just performs all these tasks.
Since a finite but potentially large number of basic equations have to be solved, the pipeline is designed in order
that first of all the basic equations admitting solution are identified. In this way, Systems (8) involving basic equa-
tions without solutions are avoided, or, in other words, only feasible contraction steps, i.e., feasible Systems (8)
generated by contraction steps are considered. An MDD-based technique that enumerates the solutions of any
basic equation is illustrated in Section 4.1 (task 1), while the identification of all the feasible contraction steps
is presented in Section 4.2 along with the way of solving their corresponding feasible systems starting from the
solutions of basic equations (task 2). Finally, Section 4.3 explains how to compute the DDS �xz starting from the
solutions Xz (task 3).

4.1. An MDD-based method for solving a basic equation

In this section we are going to solve a basic equation by means of a suitable MDD1. Let us start by considering
any basic equation C1

p
⊙ X = Cn

q
. According to Remark 1, each of its solutions is expressed as a sum of unions of

disjoint cycles.

By Proposition 2, among a certain number of cycles all of length p′ and that form an addend of a solution,
one cycle of length p′ gives rise to r cycles of length q inside Cn

q
when it is multiplied by C1

p
iff r divides q,

p′ = q

p
· r, gcd(p, q

p
· r) = r, and lcm(p, q

p
· r) = q. If such a cycle C1

p′ satisfies the previous conditions, then it is
called feasible and r is said to be a feasible divisor of q. Following this idea, let Dp,q = {d1, . . . , de} be the set
of the feasible divisors of q. Therefore, the basic equation admits at least one solution iff there exists a set of
non negative integers y1, . . . , ye such that

∑e

i=1 di · yi = n. In that case, the solution corresponding to the tuple

y1, . . . , ye is the sum of all those C
di ·yi

p′ with yi 6= 0 and where p′ = q

p · di .

We now describe a method based on Symmetry Breaking MDD (SB-MDD) enumerating the solutions of the
considered basic equation. First of all, let us introduce the MDD Mp,q,n which is the labelled digraph (V, E,ℓab)

with vertices forming V =
∑Z

i=1 Vi , where Z = ⌊ n
min Dp,q

⌋ + 1, V1 = {root}, Vi is a multiset of {1, . . . , n − 1} for

i ∈ {2, . . . , Z − 1}, and, finally, VZ = {tt}. For any node α ∈ V , let val(α) = α if α 6= root and α 6= tt, val(root) = 0,
and val(tt) = n.

The structure is defined level by level as follows. For each level i ∈ {1, . . . , Z − 2}, for any α ∈ Vi and any
β ∈ {1, . . . , n− 1}, it holds that β ∈ Vi+1 and (α,β) ∈ E iff β − val(α) ∈ Dp,q and β ≤ val(tt). As far as the level
i = Z − 1 is concerned, for any α ∈ Vi it holds that (α, tt) ∈ E iff val(tt) − val(α) ∈ Dp,q and β ≤ val(tt). The
labelling map ℓab : E→ Dp,q associates any edge (α,β) ∈ E with the value ℓab(α,β) = val(β)− val(α) ∈ Dp,q.

Once Mp,q,n is built and reduced according to the p-Reduction from [15], all the solutions of the considered
basic equation can be computed. Indeed, each solution corresponds to the sequence of the edge labels of a path
from root to tt consisting of possibly repeated values of Dp,q with sum equal to n. From such a sequence it is
immediate to identify the above mentioned tuple y1, . . . , ye and then the corresponding solution.

We stress that possible permutations of each of the above mentioned sequences can be provided by Mp,q,n. In
other words, distinct paths from root to tt can lead to the same solution of the given basic equation. To reduce
the size of such a MDD, during its construction and before the p-reduction, a symmetry breaking constraint can
be imposed: for each node α 6= tt the only allowed outgoing edges are those having a label which is less or equal
to that of any of its incoming edges. In this way, any sequence of edge labels read on the paths of the structure
turns out to be ordered and the size of the structure becomes smaller. The obtained MDD is called SB-MDD, i.e.,
one which satisfies the symmetry breaking constraint.

Example 2. Consider the basic equation C1
4 ⊙ X = C12

12 . The set of divisors of q = 12 (smaller or equal to n= 12) is

{12,6,4,3,2,1}. Thus, Dp,q = {4,2,1}. In fact, the following situations occur

1This subsection and the next one are an improved version of the conference paper [11].

10

INPUT

Equation (5)

Simplification phase

Equation (5) is
simplified into
Equation (6)

Identification and Resolution

of Basic Equations (10)

All SB-MDD Mpzi ,p j ,
n

nzi

are generated

No Equation (10)
has solutions

OUTPUT

;

Identification of feasible

Contraction Steps (Systems (8))

Generation of all Systems (8) by the
MDD CS = CS1 × CS2 × . . . × CSlb

No path in CS

Solve a System (8)
(Cartesian Products and Intersections)

For each Cnzi
pzi
⊙ Xz =

lb⊕

j=1
C

nzi
j

p j
, a Cartesian

product of SB-MDD is computed. Suitable
intersections of the sets of solutions involving

the same variable Xz are then performed.

No System (8)
has solutions

wz-th roots

The wz-th roots of variables Xz are computed.
No Root exists

OUTPUT

Solutions of
Equation (5)

Figure 3: The MDD-based algoritmic pipeline for solving an a-abstraction equation.

11

r = 12 and p′ = 36→ gcd(4,36) 6= 12 and lcm(4,36) 6= 12
r = 6 and p′ = 18→ gcd(4,18) 6= 6 and lcm(4,18) 6= 12
r = 4 and p′ = 12→ gcd(4,12) = 4 and lcm(4,12) = 12

r = 3 and p′ = 9→ gcd(4,9) 6= 3 and lcm(4,9) 6= 12
r = 2 and p′ = 6→ gcd(4,6) = 2 and lcm(4,6) = 12
r = 1 and p′ = 3→ gcd(4,3) = 1 and lcm(4,3) = 12

Figure 4 shows the result of the reduction over M4,12,12. Solutions correspond to sequences of edge labels of paths

from root to tt. These sequences form the following set:

{[4,4,4], [4,4,2,2], [4,4,2, 1,1], [4,4,1,1,1, 1], [4, 2,2,2,2], [4,2,2, 2,1,1], [4,2,2,1, 1,1,1], [4,2,1,1, 1,1,1,1],

[4,1,1,1,1,1,1,1,1], [2,2,2,2, 2,2], [2,2,2,2,2, 1,1], [2,2,2,2,1, 1,1,1], [2,2,2,1, 1,1,1,1,1],

[2,2,1,1,1,1,1,1,1,1], [2,1,1,1,1, 1,1, 1,1,1, 1], [1, 1,1, 1,1,1, 1,1, 1,1,1,1]}.
Each element r of a sequence belongs to Dp,q = {4,2,1} and it corresponds to a cycle of length p′ = q

p
·r of the solution

r

1 2 4

2 3 4 5 6 8

3 4 5 6 6 7 8 9 10

4 5 6 7 8 8 9 10 10 11

5 6 7 8 10 9 10 11

6 7 8 9 10 11

7 8 9 10 11

8 9 10 11

9 10 11

10 11

11

t t

1

2
4

1 1 2 1 2
4

1 1 1 2 1 1 2 1 2

4

1 1 1 1 21 1 1 2 1 1

2

1 1 1 1 2 1 1 1 1 1

2
1

1 1 1 1

2

1 1 1

1

1 1 1 1 1

1

1 1 1 1

1

1 1 1

1

1 1

11

1

1

Figure 4: The reduced SB-MDD representing all the solutions of C1
4 ⊙ X = C12

12 .

represented by that sequence. As an example, the sequence [4,4,2,1,1] gives rise to 2 cycles of length p′ = q

p
·4= 12,

1 cycle of length p′ = q

p
· 2= 6, and 2 cycles of length p′ = q

p
· 1= 3, i.e., the solution C2

12 ⊕ C1
6 ⊕ C2

3 .

{C3
12, C2

12 ⊕ C2
6 , C2

12 ⊕ C1
6 ⊕ C2

3 , C2
12 ⊕ C4

3 , C1
12 ⊕ C4

6 , C1
12 ⊕ C3

6 ⊕ C2
3 , C1

12 ⊕ C2
6 ⊕ C4

3 , C1
12 ⊕ C1

6 ⊕ C6
3 ,

C1
12 ⊕ C8

3 , C6
6 , C5

6 ⊕ C2
3 , C4

6 ⊕ C4
3 , C3

6 ⊕ C6
3 , C2

6 ⊕ C8
3 , C1

6 ⊕ C10
3 , C12

3 }.
12

r

2

2

t t

2

2

Figure 5: The SB-MDD (before reduction) representing all the solutions of C1
2 ⊙X = C5

4 . The red part is deleted by the pReduction procedure.

The method based on the above described SB-MDD also establishes the instances of equations without solu-
tions via the following criteria:

• if p cannot divide q;

• if Dp,q is the empty set;

• if, after the reduction process, no valid paths from root to tt remain in the SB-MDD structure.

The following example just illustrates how the method establishes whether an instance of a basic equation has
no solutions.

Example 3. Consider the equation C1
2 ⊙ X = C5

4 . The set of divisors of q (smaller or equal to n) is {4,2,1}. Thus,

Dp,q = {2}. Indeed, the following situations occur

r = 4 and p′ = 8→ gcd(2,8) 6= 4 and lcm(2,8) 6= 4
r = 2 and p′ = 4→ gcd(2,4) = 2 and lcm(2,4) = 4
r = 1 and p′ = 2→ gcd(2,2) 6= 1 and lcm(2,2) 6= 4

Figure 5 shows M5,4,2 before the reduction procedure. The red part is deleted when the reduction phase is performed.

The SB-MDD has no paths from the root to tt node, and, hence, the equation has no solutions.

Experiments show how this method can achieve interesting performances in time and memory [11].

4.2. Contraction steps

We now present how all feasible Systems (8) can be first generated starting from Equation (6) and then solved.
Since Systems (8) may lead to basic equations without solutions and the same basic equation may be reached
several times as far as distinct systems are considered, first of all the basic equations that can be involved have
to be individuated and among them only the necessary ones, i.e., those admitting a solution, have to be solved
just once.

The identification of all the involved basic equations consists in considering all the SB-MDD Mpzi ,p j,n/nzi
defined

by varying z ∈ {1, . . . ,m}, i ∈ {1, . . . ,ℓz}, j ∈ {1, . . . , lb}, and n ∈ {1, . . . , n j}. Then, those SB-MDD corresponding
to necessary basic equations are computed, i.e., all the necessary basic equations are solved.

We now describe an MDD able to generate all feasible Systems (8). Such an MDD is CS = CS1 × . . .× CSlb
,

i.e., the Cartesian product of lb MDD, where each CS j aims at providing, according to the set of the necessary
equations, all the feasible ways by which the monomials of Equation (6) can concur to form the n j cycles of length

p j of the known term�b. Clearly, by the Stars and Bars method those ways are at most
�n j+ℓ−1
ℓ−1

�

and, hence, there

are at most
∏lb

j=1

�n j+ℓ−1
ℓ−1

�

feasible Systems (8). Furthermore, by definition, the whole MDD CS will provide all

the feasible ways by which all the cycles of�b can be formed.
Each CS j is a labelled digraph

�

Vj , E j,ℓab j

�

in which there are m · ℓz levels, one for each monomial Cnzi
pzi
⊙ Xz

from the left-hand side of Equation (6), besides the level containing the only terminal node tt. The vertex set

13

is Vj = (
∑

z∈{1,...,m} i∈{1,...,ℓz} Vj,zi) + Vj,(m+1)1 where Vj,11 = {root}, Vj,(m+1)1 = {tt}, and for each pair (z, i) with
z ∈ {1, . . . ,m} and i ∈ {1, . . . ,ℓz} the set Vj,zi ⊆ {0, . . . , n j} of the vertexes of the level (z, i) will be defined in the
sequel. Indeed, the graph is built level by level. Moreover, for any node α ∈ Vj , let val(α) = α if α 6= root and
α 6= tt, while val(root) = 0 and val(tt) = n j . To define the edges outgoing from the vertexes of any level along
with the corresponding label and then the vertexes of the next level too, first of all we associate each level (z, i)

with the set Dpzi ,p j
= {d ∈ N | 1 ≤ d ≤ n j and Mpzi,p j ,d/nzi

is defined by a necessary equation} ∪ {0} of the labels
of the edges outgoing from the vertexes of that level. Now, for each level (z, i) with z 6=m and i 6= ℓz , for any
vertex α ∈ Vj,zi and any β ∈ {0, . . . , n j}, it holds that

• β ∈ Vj,z(i+1) and (α,β) ∈ E j iff β − val(α) ∈ Dpzi ,p j
and β ≤ val(tt), whenever i < ℓz;

• β ∈ Vj,(z+1)1 and (α,β) ∈ E j iff β − val(α) ∈ Dpzi ,p j
and β ≤ val(tt), whenever i = ℓz.

Concerning the level (m,ℓz), for any vertex α ∈ Vj,mℓz it holds that (α, tt) ∈ E j iff val(tt) − val(α) ∈ Dp
mℓz

,p j
.

Every edge (α,β) ∈ E j is associated with the label ℓab j(α,β) = val(β)− val(α) ∈ Dpzi ,p j
, where (z, i) is such that

α ∈ Vj,zi. In this way, the labelling map ℓab j : E j →
⋃

z∈{1,...,m} i∈{1,...,ℓ
m
} Dpzi ,p j

has been defined too.
We stress that any edge outgoing from vertexes of the level (z, i) represents the cycles of length p j that

the monomial Cnzi
pzi
⊙ Xz can contribute to form together with the monomials corresponding to the other edges

encountered on a same path from root to tt. The label of the edge is just the number nzi
j

of those cycles and the
sum of all the labels of the edges in any path from root to tt is just the number n j cycles of length p j to be formed
by the monomials Cnzi

pzi
⊙ Xz of the left-hand side of Equation (6). The value val(α) associated with a node α

of a path from root to tt is the partial result of that sum, i.e., the number of cycles of length p j formed by the
monomials encountered on the subpath from root to α.

At this point, the MDD CS is built and, according to the definition of cartesian product of MDDs, the involved
MDDs are stacked on top of each other in such a way that each CS j turns out to be on top of CS j+1 and the
terminal node of CS j is collapsed with the root of CS j+1. Any path from the root to the terminal node of CS

represents a possible way by which the monomials Cnzi
pzi
⊙ Xz of the left-hand side of Equation (6) can concur to

form all the cycles of�b, or, in other words, it corresponds to a possible solution of Equation (6). In particular,
since for each pair (z, i) a level (z, i) appears in every CS j , the set of the lb edges in any of the above mentioned
paths of CS, each of them outgoing from vertexes of the same level (z, i) in one CS j , defines a feasible way of
solving the equation from System (8)

Cnzi

pzi
⊙ Xz =

lb⊕

j=1

C
nzi

j

p j
,

i.e., a way by which the monomial Cnzi
pzi
⊙ Xz gives rise at the same time to nzi

1 cycles of length p1, nzi
2 cycles of

length p2, . . . , and nzi
lb

cycles of length plb
. Therefore, all the monomials encountered in a path of CS contribute

to form a possibly feasible System (8).

Example 4. Consider the equation:

C1
4 ⊙ X1 ⊕ C1

2 ⊙ X2 = C4
2 ⊕ C4

4 ⊕ C7
6 ⊕ C7

12.

There are 44 distinct basic equations and among them 27 equations are necessary. Indeed, besides the basic equations

defined by p = 4 and q ∈ {2,6}, the following ones have no solution: C1
2 ⊙ X2 = C1

4 , C1
2 ⊙ X2 = C3

4 , C1
2 ⊙ X2 = C1

12,

C1
2 ⊙ X2 = C3

12, C1
2 ⊙ X2 = C5

12, and C1
2 ⊙ X2 = C7

12.

To illustrate one CS j , let us consider j = 2, or, in other words, the MDD providing all the possible ways by which the

two monomials of the given equation can concur to form C4
4 . Thus, CS2 has 2 levels, one for each monomial. Any edge

outgoing from a level represents the cycles of length 4, along the number of them, that the monomial corresponding

to that level can contribute to form. The first level, corresponding to the monomial C1
4 ⊙ X1, only contains the node

root. According to the necessary equations defined p = 4 and q = 4, the first monomial is able by itself to form n11
2

cycles of length 4 where n11
2 ∈ {1,2,3,4}. Regarding the second monomial, it is able by itself to form either n21

2 = 2
or n21

2 = 4 cycles of length 4. As Figure 6 shows, the MDD CS2 also represents the cases n11
2 = 0 and/or n21

2 = 0, i.e.,

14

r

2 3 410

t t

C1
4 ⊙ X1

C1
2 ⊙ X2

0
1 2 3

4

4
2

0

Figure 6: The MDD CS2 represents all the possible ways by which, according to the set of necessary equations, the two monomials can concur
to form C4

4 . The red part is deleted by the pReduction procedure. The value val(α) associated with each node α is also reported.

r C1
4 ⊙ X1 ⊕ C1

2 ⊙ X2 = C4
2

C1
4 ⊙ X1 ⊕ C1

2 ⊙ X2 = C4
4

C1
4 ⊙ X1 ⊕ C1

2 ⊙ X2 = C7
6

C1
4 ⊙ X1 ⊕ C1

2 ⊙ X2 = C7
12

t t

0

4

2 40

024

0

7

7531

0246

Figure 7: The MDD CS represents all the feasible ways by which, according to the set of necessary equations, the monomials of the equation
from Example 4 can concur to form its right-hand side. According to the cartesian product of MDD, the yellow nodes are at the same time
the tt node of a CS j and the root node of CS j+1. The four MDDs are depicted by different colours (the red MDD corresponds to that from
Figure 6). In each CS j the first (resp., second) level corresponds to the monomial C1

4 ⊙ X1 (resp., C1
2 ⊙ X2). The values val(α) associated to

nodes are omitted for simplicity.

where at least one of the two monomials does not contribute to the generation of such cycles at all. Any path from

root to tt provides a feasible way by which the two monomials concur to form n2 = 4 cycles of length p2 = 4. Figure

7 illustrates the MDD CS = CS1 × CS2 × CS3 × CS4 associated with the given equation and obtained by stacking

each CS j on top of CS j+1. Any path from the root to the terminal node of CS represents a possible way by which the

monomials of the left-hand side of the given equation can concur to form all the cycles of its known term.

Now, solving any equation from a System (8) means computing the cartesian product among the solutions
of the lb equations in (9). Since each of them can be equivalently rewritten as a basic equation, this can be
performed by computing the cartesian product of the SB-MDD, each providing the solutions of the involved basic
equation. As usual, such a cartesian product, that we name SB-Cartesian MDD, is obtained by stacking the SB-
MDDs on top of each other. In this way, one can get the values of the Xz satisfying any equation of the System (8)
defined by a path of CS. We stress that an SB-Cartesian MDD is not a SB-MDD. In particular, although it is
satisfied by each of its component SB-MDD, the order constraint among the edge labels of any path from the root
to the terminal node of an SB-Cartesian MDD does not hold.

To provide the solutions of a System (8), for each Xz the intersection among the solutions of all the equations

15

involving the same variable Xz is required. Then, once the values of the xz will have been computed starting from
the values of Xz by means of the algorithm presented in Section 4.3, a further intersection of the sets of values of
a same xz arisen from distinct Xz (if any) will be performed. Indeed, there can be equations in distinct variables
that however are (distinct) powers of the a same variable xz. We now deal with the first mentioned intersection
(the second one is standard and it can be performed in such a way that only one root of the variables Xz that are
powers of a same xz is computed).

According to the current state of the art, there exists an algorithm that, starting from two MDD, possibly two
SB-MDD, each of them providing the solutions of an equation, builds a new MDD able to compute the intersection
between the solutions of the two equations. Essentially, each node in the new structure corresponds to two nodes,
one from each MDD, and the procedure recreates an outgoing edge in the structure if it is common to both the
MDDs. For more details, we refer the reader to [15] and [4].

Nevertheless, such an algorithm can not be used if SB-Cartesian MDDs are involved, as it happens instead in
our scenario, unless each monomial gives rise to cycles of a unique length, i.e., the solutions of each corresponding
equation are computed by a SB-MDD. Indeed, the result of the above mentioned algorithm depends on the order
by which the SB-Cartesian MDDs are considered when the intersection is performed. In [11], a new algorithm
performing the intersection has been proposed in such a way that it properly works independently of that order.
Let us recall its underlying idea.

The algorithm starts to compute the intersection among the solutions of equations provided by all the SB-
MDDs, if any. If it is not empty, such an intersection consists of a set of candidate solutions that form the so-called
initial guess. Otherwise, the initial guess is the set of the solutions provided by one of the SB-Cartesian MDDs.
The current set of candidate solutions which at the beginning is just the initial guess is updated by means of the
intersection between itself and the set of the solutions provided by one of the SB-Cartesian MDDs that have not
yet been considered. Any intersection essentially consists in visiting the chosen SB-Cartesian MDD CS to establish
whether a candidate solution is provided by one among the SB-MDD components CS j of CS. If this does not
happen, it is removed from the set of candidate solutions.

4.3. Roots of DDS

We now deal with the problem of retrieving the value of each DDS �xz once the DDS Xz have been computed.
Since each Xz is the wz-th power of �xz , we are going to introduce the concept of w-th root in the semiring of DDS
and provide an algorithm for computing the w-th roots of the a-abstractions of DDS.

First of all, let us formally define the notion of w-root of a general DDS.

Definition 4. Let w≥ 2 be a natural number. The w-th root of a DDS S is a DDS having w-th power equal to S.

Clearly, the a-abstraction of the w-th root of a DDS is the w-th root of the a-abstraction of that system. The
goal is now to compute the w-th root of the a-abstraction of any DDS. Namely, for any given a-abstraction

C s1
o1
⊕ . . .⊕ C sh

oh
,

with 0< o1 < o2 < . . . < oh, we want to solve the equation

�xw = C s1
o1
⊕ . . .⊕ C sh

oh
, (11)

where the unknown is expressed as
�x = Cn1

p1
⊕ . . .⊕ Cnl

pl
,

for some naturals l, p1, . . . , pl , n1, . . . , nl p1 < . . . < pl , and n1, . . . , nl to be determined.

Assumption. From now on, without loss of generality, we will assume p1 < . . . < pl , and o1 < . . . < oh.

Since providing a closed formula for �x is essentially unfeasible, we are going to compute the sets Cni
pi

one by
one starting from i = 1. Such a computation will be iteratively performed by considering the generation of the
sets C

s j

o j
by carrying out the w-th power of the sum of sets Cni

pi
.

16

Proposition 4. For any natural l ≥ 2, if �x = Cn1
p1
⊕ . . .⊕ Cnl

pl
is a solution of the equation �xw = C s1

o1
⊕ . . .⊕ C sh

oh
, then

all the following facts hold:

(i) l ≤ h and {p1, . . . , pl} ⊆ {o1, . . . , oh}

(ii) p1 = o1 and p2 = o2;

(iii) n1 =
w

r

s1

ow−1
1
∈ N;

(iv) n2 =

(w
p

o2s2+o1s1− wpo1s1

o2
∈ N, if lcm(o1, o2) = o2,

w

Ç
s2

ow−1
2
∈ N, otherwise.

Proof.

(i): According to Proposition 3, for each i ∈ {1, . . . , l}, a set C s
λ∗

l

with λ∗
l
= pi appears in �xw when the tuple

(k1, . . . , kl) with ki = w and ki′ = 0 for i′ 6= i is involved in the sum. Hence, {p1, . . . , pl} ⊆ {o1, . . . , oh} and l ≤ h.
(ii): Since p1 is the smallest value among all possible lcm λ∗

l
from Proposition 3 and o1 is the smallest among

the lengths o1, . . . , oh of the cycles to be generated when the w-th power of �x is performed, it must necessarily
hold that p1 = o1 in order that, in particular, cycles of length o1 are generated. Moreover, since p2 and o2 follow
in ascending order p1 and o1, respectively, and p2 is also the successor of p1 among all the above mentioned lcm,
it must also hold that p2 = o2 in order that cycles of length o2 are generated too.

(iii): Actually, it holds that (Cn1
o1
)w = C s1

o1
, which, by Corollary 1, is equivalent to C

ow−1
1 nw

1
o1

= C s1
o1

. This implies

that ow−1
1 nw

1 = s1 and, hence, n1 =
w

r

s1

ow−1
1

.

(iv): if lcm(o1, o2) > o2, when computing the w-th power of �x , by Lemma 1, Cn1
p1

does not contribute to form

C s2
o2

and, necessarily, it holds that (Cn2
o2
)w = C

ow−1
2 nw

2
o2

= C s2
o2

. So, we get ow−1
2 nw

2 = s2, the latter implying that n2 =

w

Ç
s2

ow−1
2

. If lcm(o1, o2) = o2, both Cn1
p1

and Cn2
p2

contribute to C s2
o2

. In particular, it holds that (Cn1
p1
⊕Cn2

p2
)w = C s1

o1
⊕C s2

o2
.

By Proposition 1, one finds

(Cn1
p1
)w ⊕

w−1
⊕

i=1

�

w

i

�

(Cn1
p1
)i ⊙ (Cn2

p2
)w−i ⊕ (Cn2

p2
)w = C s1

o1
⊕ C s2

o2
.

Since (Cn1
p1
)w = C s1

o1
and by Corollary 1 and Proposition 2, that can be rewritten as follows

C p2
w−1n2

w

p2
⊕

w−1
⊕

i=1

�

w

i

�

C
1

lcm(p1,p2)
·p1

i n1
i ·p2

w−i n2
w−i

lcm(p1,p2)
= C s2

o2

Recalling that lcm(o1, o2) = o2, p1 = o1, and p2 = o2, the latter equality is true iff

o2
w−1n2

w +

w−1
∑

i=1

�

w

i

�

o1
in1

io2
w−i−1 · n2

w−i = s2 ,

i.e., once both sides are first multiplied by o2 and then added to the term (o1n1)
w, iff

(o1n1 + o2n2)
w = o2s2 + (o1n1)

w .

By (i) and (iii), we get

n2 =

w
p

o2s2 + o1s1 − w
p

o1s1

o2
.

The following theorem explains how to compute ni+1 and pi+1 once n1, . . . , ni and p1, . . . , pi are also known.

17

Theorem 1. Let �x = Cn1
p1
⊕ . . .⊕ Cnl

pl
be a solution of the equation �xw = C s1

o1
⊕ . . .⊕ C sh

oh
. For any fixed natural i with

2 ≤ i < l, if n1, . . . , ni , p1, . . . , pi are known and t ∈ {i, . . . ,h}, s′1, . . . , s′
t
, o′1, . . . , o′

t
are positive integers such that

(Cn1
p1
⊕ Cn2

p2
⊕ . . .⊕ Cni

pi
)w = C

s′1
o′1
⊕ C

s′2
o′2
⊕ . . .⊕ C

s′t
o′t

, then the following facts hold:

(1) pi+1 = oξi+1
,

where ξi+1 =min
�

j ∈ {1, . . . ,h} with o j > pi | o j > o′
t
∨ (o j = o′

z
for some 1≤ z ≤ t with s′

z
< s j)

	

;

(2) ni+1 =













w
Æ

oξi+1
sξi+1
+Q∗

i
−
∑i

j=1 p jn j

oξi+1

, if lcm(p1, . . . , pi+1) = pi+1,

w
Æ

oξi+1
sξi+1
+Q∗∗

i
−
∑ j−1

e=1 pie
nie

oξi+1

, otherwise ,

where

Q∗
i
=

∑

k1+...+ki=w
0≤k1,...,ki≤w
λ∗i 6=pi+1

�

w

k1, . . . , ki

� i
∏

t=1

(pt nt)
kt ,

with λ∗
i

as in Proposition 3,

Q∗∗
i
=

∑

ki1
+...+ki j−1

=w

0≤ki1
,...,ki j−1

≤w

λ∗∗i j−1
6=pi+1

�

w

ki1
, . . . , ki j−1

� j−1
∏

t=1

(pit
nit
)kit ,

and, regarding Q∗∗
i

, the set {i1, . . . , i j} is the maximal subset of {1, . . . , i+1} such that i1 < . . . < i j , i j = i+1,

and pie
divides pi+1 for each 1 ≤ e ≤ j (i.e., lcm(pi1

, . . . , pi j
) = pi+1), and where, for each 1 ≤ e ≤ j and for

any tuple ki1
, . . . , kie

, λ∗∗
ie

denotes the lcm of those piǫ
with ǫ ∈ {1, . . . , e} and kiǫ

6= 0 (while λ∗∗
ie
= 1 iff all

kiǫ
= 0).

Proof. (1) We deal with the following two mutually exclusive cases a) and b).
Case a): for some j ∈ {1, . . . ,h} the following condition holds: there exists z ∈ {1, . . . , t} such that o j = o′

z
and

s′
z
< s j . This means that, when the w-th power is performed, cycles from the part (Cn1

p1
⊕ . . .⊕Cni

pi
) of the solution

give rise to a number s′
z

of cycles of length o′
z
= o j where s′

z
is lower than the number s j of cycles of length o j

that are expected once the w-th power of the whole solution is computed. Consider the minimum among all
the indexes j satisfying the above introduced condition. It is clear that ξi+1 is just such a minimum and oξi+1

is
the minimum among the values o j corresponding to those indexes j. Since by Corollary 1 and regarding each j

satisfying the above mentioned condition the w-th power of cycles of length o′
z
= o j gives rise to cycles of length

o′
z
, by item (i) of Proposition 4 pi+1 comes from the set {o1, . . . , oh}, and it is the successor of pi , we get that pi+1

can be nothing but oξi+1
, or, equivalently, i + 1 = ξi+1. Indeed, according to Proposition 3, if cycles of length

greater than oξi+1
were added to the part (Cn1

p1
⊕ . . . ⊕ Cni

pi
) of the solution instead of cycles of length oξi+1

, they
would give rise to cycles of greater length, barring the generation of the missing cycles of length oξi+1

.
Case b): there is no index j ∈ {1, . . . ,h} satisfying the above mentioned condition. Similar arguments from

case a) over the values o j and the corresponding indexes j such that o j > o′
t

lead to the conclusion that ξi+1 is
the minimum of such indexes, i + 1= ξi+1, and pi+1 = oξi+1

.

(2) We deal with the following two mutually exclusive cases:
Case 2.1): lcm(p1, . . . , pi+1) = pi+1. By Proposition 3, we can write

(Cn1
p1
⊕ . . .⊕ Cni+1

pi+1
)w =

⊕

k1+...+ki+1=w
0≤k1 ,...,ki+1≤w

�

w

k1, k2, ..., ki+1

�

C

1
λ∗

i+1

∏i+1
t=1(pt nt)

kt

λ∗
i+1

18

Among all the addends of the latter sum, only the ones with a multinomial coefficient defined by k1, . . . , ki+1

such that λ∗
i+1 = pi+1 give rise to cycles of length pi+1, where pi+1 = oξi+1

. In particular, it holds that

⊕

k1+...+ki+1=w
0≤k1,...,ki+1≤w
λ∗

i+1=pi+1

�

w

k1, . . . , ki+1

�

C

1
λ∗

i+1

∏i+1
t=1(pt nt)

kt

λ∗
i+1

= C
sξi+1
oξi+1

,

and, hence,
∑

k1+...+ki+1=w
0≤k1 ,k2,...,ki+1≤w

λ∗
i+1=pi+1

�

w

k1, . . . , ki+1

�

· 1

λ∗
i+1

·
i+1
∏

t=1

(pt nt)
kt = sξi+1

. (12)

Since λ∗
i+1 = oξi+1

, when both sides of Equation (12) are first multiplied by oξi+1
and then summed to the quantity

∑

k1+...+ki+1=w
0≤k1,...,ki+1≤w
λ∗

i+1 6=pi+1 ∧ ki+1=0

�

w

k1, . . . , ki+1

� i+1
∏

t=1

(pt nt)
kt =

∑

k1+...+ki=w
0≤k1 ,...,ki≤w
λ∗

i
6=pi+1

�

w

k1, . . . , ki

� i
∏

t=1

(pt nt)
kt = Q∗

i
,

Equation (12) becomes
∑

k1+...+ki+1=w
0≤k1,...,ki+1≤w

�

w

k1, . . . , ki+1

� i+1
∏

t=1

p
kt

t n
kt

t = oξi+1
sξi+1

+Q∗
i

. (13)

Indeed, by the assumption that lcm(p1, . . . , pi+1) = pi+1, there can be no tuple (k1, . . . , ki+1) from the sum of
Equation (13) such that both the conditions ki+1 6= 0 and λ∗

i+1 6= pi+1 hold. Now, Equation (13) can be rewritten
as

(p1n1 + . . . pi ni + pi+1ni+1)
w = oξi+1

sξi+1
+Q∗

i
.

Since Q∗
i

does not depend on ni+1, and, in particular, Q∗
i

can be computed on the basis of n1, . . . , ni , we get

ni+1 =

w
Æ

oξi+1
sξi+1
+Q∗

i
−
∑i

j=1 p jn j

oξi+1

Case 2.2): lcm(p1, . . . , pi+1) > pi+1. When computing the w-th power of �x the set C
sξ
oξ
= C

sξ
pi+1

can be formed

only by the contribution of those sets C
ni1
pi1

, . . . , C
ni j

pi j
(including C

ni+1
pi+1

) such that i1 < . . . < i j , i j = i + 1, and pie

divides pi+1 for each 1 ≤ e ≤ j. Since lcm(pi1
, . . . , pi j

) = pi+1, we can proceeding in the same way as the case
2.1) but with the indexes i1, . . . , i j instead of 1, . . . , i + 1, respectively. Therefore, it holds that

∑

ki1
+...+ki j

=w

0≤ki1
,...,ki j

≤w

�

w

ki1
, . . . , ki j

� j
∏

t=1

p
kit

it
n

kit

it
= oξi+1

sξi+1
+Q∗∗

i
, (14)

where

Q∗∗
i
=

∑

ki1
+...+ki j−1

=w

0≤ki1
,...,ki j−1

≤w

λ∗∗i j−1
6=pi+1

�

w

ki1
, . . . , ki j−1

� j−1
∏

t=1

(pit
nit
)kit ,

and, hence, Equation (14) can be rewritten as

(pi1
ni1
+ . . . pi j−1

ni j−1
+ pi j

ni j
)w = oξi+1

sξi+1
+Q∗∗

i
.

19

Since Q∗∗
i

does not depend on ni+1 = ni j
, and, in particular, Q∗∗

i
can be computed on the basis of ni1

, . . . , ni j−1
, we

get

ni+1 =
w
Æ

oξi+1
sξi+1

+Q∗∗
i
−
∑ j−1

e=1 pie
nie

oξi+1

,

At this point it is clear that the w-th root of a DDS is always unique, if it exists (i.e., if all ni ’s turn out to be
natural numbers).

5. Intersection between abstractions

·x2
1+ ·x2 =

•

•

•

•

•

•

•

•
•

•

•

•

•
•••

•

•

•
• • •

•

••

•

•

•
•••

•

•

•
• • •

•

••

•

•

•
•••

•

•

•
• • •

•

••

•

•

••

•

• •

•

••
•

•
•

•

•
•

•

•

•

••

•

• •

•

•

••
•

•

•

•

•

•

•

•

••

•

• •

••

•

•

•
• • •

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

• • ••
•
•
•

• • •

•
• •

•
•
•

•••
•
•
•
•

• ••• •

•
•

•

•

•

•

•
•

•

•
•
• •

•
•

•
•

••

•
•

•

•

•

•

•

•

• • •
•

• •
•

••

•

•

•

•
•

•
••

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•
•
•

• •
•
•
•

•
•

••
••
•• • • •

•

•

•

•

•

•••
•

••

•
•
•••

•

•

•

•

• •
•
•

•
•

•

•

•

•

•

••
•
•

•
•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

••

•

• •
•
••

•

•

•

•

••

Figure 8: An example of Equation 1. The coefficients a1, a2 and the know term b are depicted by their dynamics graphs.

Once considered both the c-abstraction and a-abstraction of Equation (1) and provided the two corresponding
solution sets, the final step to perform - that we name intersection between abstractions - is combining each
solution from the first set with each solution from the second one to establish what resulting pairs lead to a
possible solution of Equation (1). In other words, (x1, . . . , xV) is a solution candidate of Equation (1) if each
of the tuples (|x1|, . . . , |xV |) and (�x1, . . . ,�xV) belongs to the solution set of the c-abstraction and a-abstraction

20

equation, respectively. Moreover, a solution of the c-abstraction equation can be combined with one of the a-
abstraction equation, if for every i the total number of periodic points of �x i is at most |x i |. Let us illustrate such
a final step by the following example.

Example 5. Consider the equation

a1 · x2
1 + a2 · x2 = b

where a1, a2, and b are as in Figure 8. The corresponding c-abstraction and a-abstraction equations are

5 · |x1|2 + 4 · |x2|= 293 ,

and

C1
4 ⊙ �x1

2 ⊕ C1
3 ⊙ �x2 = C3

6 ⊕ C5
12 ,

respectively. At this point, we aim at enumerating the solutions of both the abstraction equations. Regarding the

c-abstraction one, the MDD of Figure 9 provides the following solutions:

|x1|= 7, |x2|= 12

|x1|= 5, |x2|= 42

|x1|= 3, |x2|= 62

|x1|= 1, |x2|= 72

r

245 125 45 5

t t

7 5 3 1

12 42 62 72

Figure 9: The reduced MDD representing all the solutions of 5 · |x1|2 + 4 · |x2| = 293. There are V = 2 variables. The first level and the
corresponding outgoing edges represent the variable |x1| and its possible values. The second level and the outgoing edges represent |x2|.

As far the a-abstraction equation is concerned, there are 16 basic equations and, according to the necessary ones,

the MDD CS of Figure 10 provide all the feasible way by which the two monomials C1
4 ⊙ X1 and C1

3 ⊙ X2 can concur

to form C3
6 ⊕ C5

12, where X1 = �x1
2 and X2 = �x2. Namely, only the monomial C1

3 ⊙�x2 contributes to form C3
6 (see

CS1), while there are several ways by which both of them contribute to form C5
12. If among the necessary equations

involving X1 =�x
2
1 , one considers only those admitting a non empty set of solutions x1, i.e., after the computation of

the square root of the values of X1 has been performed too, the following two feasible Systems (8) remain:

¦

C1
3 ⊙�x2 = C3

6 ⊕ C5
12

¨

C1
4 ⊙ �x1

2 = C3
12

C1
3 ⊙�x2 = C3

6 ⊕ C2
12

In both cases, the values of X2 = �x2 are computed by a Cartesian products of SB-MDDs. Due to the form of �a1 and

�a2 and the fact that the two monomials contain distinct variables, in each system there are no equations involving

21

r C1
4 ⊙ X1 ⊕ C1

3 ⊙ X2 = C3
6

C1
4 ⊙ X1 ⊕ C1

3 ⊙ X2 = C5
12

0

3

0
1 2 3 4

5

5
4 3 2 1

0

Figure 10: The MDD CS = CS1 × CS2 represents all the feasible ways by which, according to the set of necessary equations, the monomials
of the a-abstraction equation from Example 5 can concur to form its right-hand side. According to the cartesian product of MDD, the yellow
node is at the same time the tt node of CS1 and the root node of CS2. In each of the two MDD, the first (resp., second) level corresponds to
the monomial C1

4 ⊙ X1 (resp., C1
3 ⊙ X2). The values val(α) associated to nodes are omitted for simplicity.

the same variable. Hence, no intersection operation between solutions of equations is required. The solutions of the

a-abstraction equation are:

�x1 = C1
3 , �x2 = C1

6 ⊕ C2
4

�x1 = C1
3 , �x2 = C3

2 ⊕ C2
4

�x1 = 0, �x2 = C1
6 ⊕ C1

12 ⊕ C2
4

�x1 = 0, �x2 = C1
6 ⊕ C5

4

�x1 = 0, �x2 = C3
2 ⊕ C1

12 ⊕ C2
4

�x1 = 0, �x2 = C3
2 ⊕ C5

4

Some solutions (�x1, �x2) of the a-abstraction equation can be coupled to no solution (|x1|, |x2|) of the c-abstraction

equation to lead a solution of the given original equation. Namely, by the solutions of the c-abstraction equation, x1

necessarily has at least one state. Therefore, the only possible value of �x1 is C1
3 . This implies that x1 must have at

least 3 states and |x2| ≥ 14 (since �x2 consists of 14 periodic points). Then, the solutions (|x1| = 1, |x2| = 72) and

(|x1|= 7, |x2|= 12) of the c-abstraction equation can not be coupled with any solution of the c-abstraction equation.

This process leads to the identification of the following candidate solutions of the given original equation:

(x1, x2) ∈ R2 s.t. (�x1 = C1
3) and (�x2 ∈

�

C1
6 ⊕ C2

4 , C3
2 ⊕ C2

4

	

) and ((|x1|= 3∧ |x2|= 62) or (|x1|= 5∧ |x2|= 72))

6. Conclusion

This paper presents a complete algorithmic pipeline for solving both the c- and a-abstractions of polyno-
mial equations (with constant right-hand term) over DDS. The pipeline includes a number of subtleties allowing
reasonable performances that are compatible with practical applications.

Devising an algorithm that solves in an efficient way the t-abstraction of an equation over DDS is certainly
the main step for further researches concerning this subject. Actually, this is a rather complex task.

A further interesting research direction consists in trying to understand the precise computational complexity
of problems that arise when considering the different tasks of the pipeline. For example, what is the computational
complexity of establishing whether a basic equation has solutions? It is clear that the problem is in NP but we
conjecture that in fact it is in P. Along the same line of thoughts, one finds that the problem of enumerating the
solutions of a basic equation is in EnumP but is it complete for this class? Now, stepping to the more complex
problem of deciding whether an a-abstraction equation admits a solution, what is precisely its complexity class?

22

References

[1] Adamatzky, A., Goles, E., Martínez, G.J., Tsompanas, M.I., Tegelaar, M., Wosten, H.A.B., 2020. Fungal automata. Complex Syst. 29.
URL: https://www.complex-systems.com/abstracts/v29_i04_a02/ .

[2] Alonso-Sanz, R., 2012. Cellular automata and other discrete dynamical systems with memory, in: Smari, W.W., Zeljkovic, V. (Eds.),
Proceedings of HPCS, IEEE. p. 215.

[3] Aracena, J., Cabrera-Crot, L., Salinas, L., 2021. Finding the fixed points of a boolean network from a positive feed-
back vertex set. Bioinform. 37, 1148–1155. URL: https://doi.org/10.1093/bioinformatics/btaa922 ,
doi:10.1093/bioinformatics/btaa922 .

[4] Bergman, D., Cire, A.A., van Hoeve, W., 2014. MDD propagation for sequence constraints. Journal of Artificial Intelligence Research
50, 697–722.

[5] Bergman, D., Cire, A.A., Van Hoeve, W.J., Hooker, J., 2016. Decision diagrams for optimization. volume 1. Springer.
[6] Bower, J.M., Bolouri, H., 2004. Computational modeling of genetic and biochemical networks. MIT press.
[7] Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S., 1997. Additive Cellular Automata Theory and Applications. volume 1.

IEEE Press.
[8] Darwiche, A., Marquis, P., 2002. A knowledge compilation map. Journal of Artificial Intelligence Research 17, 229–264.
[9] Demongeot, J., Melliti, T., Noual, M., Regnault, D., Sené, S., 2022. On boolean automata isolated cycles and tangen-

tial double-cycles dynamics, in: Adamatzky, A. (Ed.), Automata and Complexity - Essays Presented to Eric Goles on the Oc-
casion of His 70th Birthday, Springer. pp. 145–178. URL: https://doi.org/10.1007/978-3-030-92551-2_11 ,
doi:10.1007/978-3-030-92551-2_11 .

[10] Dennunzio, A., Dorigatti, V., Formenti, E., Manzoni, L., Porreca, A.E., 2018. Polynomial equations over finite, discrete-time dynamical
systems, in: Proc. of ACRI’18, pp. 298–306.

[11] Formenti, E., Régin, J.C., Riva, S., 2021. MDDs boost equation solving on discrete dynamical systems, in: International Conference on
Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Springer. pp. 196–213.

[12] Jongsma, C., 2019. Basic set theory and combinatorics, in: Introduction to Discrete Mathematics via Logic and Proof. Springer, pp.
205–253.

[13] Marañón, G.Á., Encinas, L.H., del Rey, Á.M., 2008. A multisecret sharing scheme for color images based on cellular automata. Infor-
mation Sciences 178, 4382–4395.

[14] Nandi, S., Kar, B.K., Chaudhuri, P.P., 1994. Theory and applications of cellular automata in cryptography. IEEE Trans. Computers 43,
1346–1357.

[15] Perez, G., Régin, J.C., 2015. Efficient operations on MDDs for building constraint programming models, in: IJCAI 2015, pp. 374–380.
[16] Sené, S., 2012. On the bioinformatics of automata networks. HDR. University of Évry Val d’Essonne, France. URL:

https://tel.archives-ouvertes.fr/tel-00759287 .
[17] Siebert, H., 2009. Dynamical and structural modularity of discrete regulatory networks, in: COMPMOD, pp. 109–124.

23

https://www.complex-systems.com/abstracts/v29_i04_a02/
https://doi.org/10.1093/bioinformatics/btaa922
http://dx.doi.org/10.1093/bioinformatics/btaa922
https://doi.org/10.1007/978-3-030-92551-2_11
http://dx.doi.org/10.1007/978-3-030-92551-2_11
https://tel.archives-ouvertes.fr/tel-00759287

	1 Introduction
	2 Background and basic facts
	3 Abstraction over the cardinality of the set of states (c-abstraction)
	4 Abstraction over the asymptotic behaviour (a-abstraction)
	4.1 An MDD-based method for solving a basic equation
	4.2 Contraction steps
	4.3 Roots of DDS

	5 Intersection between abstractions
	6 Conclusion

