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Institute of Electronics

AGH-UST
Cracow, Poland

pietron@agh.edu.pl

Dominik Żurek
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ABSTRACT

This work is focused on the pruning of some convolutional neural networks (CNNs) and improving
theirs efficiency on graphic processing units (GPU) by using a direct sparse algorithm. The Nvidia
deep neural network (cuDnn) library is the most effective implementations of deep learning (DL)
algorithms for GPUs. GPUs are the most commonly used accelerators for deep learning computations.
One of the most common techniques for improving the efficiency of CNN models is weight pruning
and quantisation. There are two main types of pruning: structural and non-structural. The first enables
much easier acceleration on many type of accelerators, but with this type it is difficult to achieve a
sparsity level and accuracy as high as that obtained with the second type. Non-structural pruning
with retraining can generate a weight tensors up to ∼ 90% or more of sparsity in some deep CNN
models.In this article the pruning algorithm is presented which makes it possible to achieve high
sparsity levels without accuracy drop. In the next stage the linear and non-linear quantisation is
adapted for further time and footprint reduction. This paper is an extended of previously published
[1] concerning effective pruning techniques and present real models pruned with high sparsities and
reduced precision which can achieve better performance than the CuDnn library.

1 Introduction

Deep convolutional neural networks (CNNs) achieve some of the best results in various artificial intelligence tasks
including image processing [2][3], [4] or natural language processing [5][6][7]. Deep neural networks for running
training and inference process on large datasets need specialised accelerators such as GPGPUs or other dedicated
hardware accelerators. Over the years, scientists have been looking for methods to accelerate the calculations of the
convolution operation. The direct convolution algorithm to perform convolutions requires N2 multiplications and
N(N-1) additions where N is the size of the input. For the same input the Fast Fourier Transform (FFT) method
reduces operation complexity to O(Nlog2(N)) [8]. The Winograd algorithm is suitable for small fixed-size kernels and
requires 2.25 times fewer multiplications than direct convolution [9]. The convolution operation can be realised by
matrix-multiplication [10], especially on the GPGPU which is highly tuned for performing this operation [11]. The
NVIDIA deep neural network library (cuDNN)1 performs convolution with different algorithms (Winograd, FFT and
GEMM) depending upon filter size, batch size and data representation. Apart from choosing different algorithms
for speeding up convolution there are some other algorithms based on complexity and memory footprint reduction.
Some CNN models for image processing, natural language processing or other task can be heavily pruned and theirs
weights and activations bit-width can be reduced. Depending upon the level of sparsity, it can be worth performing the
convolution through the application of the direct sparse convolution method proposed by Chen [12] and extended by
Żurek et al. [1]. The work concentrates on two main issues. The first is about methods for complexity reduction. It

1https://developer.nvidia.com/cudnn
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explains pruning and quantisation methodologies on chosen CNN models and theirs results. The second is focused
on investigating when it is worth using sparse operations, instead of using dedicated NVIDIA libraries to run the
convolution layer. As the main optimization strategy we propose the introduction of a unified sparse level for each of
the output channels in each convolutional layer. The second strategy is determining the most optimal number of thread
blocks for each convolutional layer separately. The presented approach is optimized towards the optimal arrangement of
the data in order to obtain speedup with the direct convolution approach using the sparse format. These steps are crucial
for achieving optimal efficiency. This work shows real examples of CNN models where it is possible to obtain the high
level of sparsity so that acceleration using the presented algorithm vs cuDnn could be possible. These examples are
well known CNN models like VGG and Resnet-50 architectures used on smaller and less complex data sets. The high
sparsity levels were obtained by the presented pruning approach. Apart from achieving a high sparsity the accuracy
levels were also improved. Finally, the impact on time efficiency of using half precision (FP-16) in a direct sparse
convolution is explored. It is compared with cuDnn, where for 16-bit data representation, NVIDIA Tensor Cores
specialised arithmetic units are used. In the presented work both linear and nonlinear approaches of quantisation were
applied on pretrained and pruned models. To our knowledge, this is the first work that shows the acceleration of the
unstructured sparsity of weights compared to the dense approach using real models with highly optimized direct sparse
convolution algorithm.

2 Related work

Convolution efficiency optimization have recently become quite popular research subject. Jordá et al. [13] present
the way in which the cuDnn library calculates convolution layers dependent upon parameter configurations and data
representation. Lavin et al. [9] introduces Winograd convolution implementation which is based on minimal filtering
algorithm. This approach for a small filter and batch size was 2.26 times faster than the previous version of cuDnn.
Adámek et al. [8] proposes an FFT based convolution on GPGPU by the shared memory implementation of the
overlap-and-save method, and for certain sizes, a 30% speed increase was achieved in comparison to cuDnn. The
direct sparse convolutions method was proposed in [14]. The authors used the CSR format to store the weights and
perform the convolution operation by use of the sparse matrix multiplication. This approach achieved 3.1-7.3 times
speed increase comparison to dense convolution in the AlexNet model, on Intel Atom, Xeon and Xeon Phi processors.
Lu et al. [15] proposed FPGA’s sparse convolution implementation which in VGG16 is almost three times faster than
FPGA’s dense implementation. The same type of convolution was applied on the GPU in [12], where the speed increase
for AlexNet [16], GoogleLeNet [17] and ResNet [18] models were respectively 1.74, 1.34 and 1.43 times that of
the GEMM implementation in the CUBLAS2 library. Żurek et al. [1] introduced improvements to the direct sparse
convolutions method which enabled the achievement of better performance than the cuDnn library in some specific
cases of sparsity level. The comparison of results of the proposed method with the cuDnn library method was conducted
for 32-bit and 16-bit representations of the data. The VGG-16, CNN-non-static and 1x1 layers from ResNet models
were used as benchmarks. The greatest accelerations were achieved for convolution type 1D, where for sparsity level
equaling around 90 % the speed was doubled. For the remaining types of convolution with the same sparsity level,
depending on the layer type, the acceleration level was around twelve percent. An important role in sparse convolution
is played by weight pruning, which can produce a number of zero weights. Information about the level of weight
sparsity can be used after the pruning step in order to decide if it is worth running direct sparse implementation or
cuDnn. In [19], the authors prove that retraining with pruning can reduce the drop in accuracy caused by removing
unimportant weights. Pruning is one of the most popular solutions when it comes to memory compression and the
acceleration of deep learning models [19], [20], [21]. Some of the most popular approaches of pruning methods are:
pruning without retraining with local search heuristics [19],[22], lottery tickets search [20], movement pruning [21]
and [23] or based on variational dropout [24]. The methods based on retraining use masks (static or dynamic) in each
epoch which are mainly based on absolute values of weights or gradients. In most of the mentioned works there is
no real use of the results obtained from unstructured sparsity in the GPU. In [25], [26], [27], [28], [29], [30] and [31]
research work concentrates on structural pruning. The approaches presented in these papers are focused mainly on
pruning whole channels in a filters by using different techniques. In the following articles [32], [33], [24], [20], [21]
algorithms for unstructured pruning are described without any hardware accelerator mappings. Quantisation is the next
step by which it is possible to reduce workload and memory further. Many quantisation approaches were applied for
deep learning [34] [35] [36] using linear or nonlinear quantisation, regularization modifications, clustering [37] and
other techniques [22].

2https://developer.nvidia.com/cublas
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3 Framework for deep learning compression

In this section, the framework for deep learning model compression is described - UnSparse-Opt. The UnSparse-Opt
compression framework consists of two main components: pruning and quantisation module. First, the pruning
algorithm based on retraining produces layers with certain number of zero weights. Then these layers are mapped to
direct sparse implementation. In the next phase, quantisation incorporated with linear and nonlinear bit width reduction
is applied. Finally, efficiency of layers with reduced number of weights and bit format is compared with CuDnn. Based
on these results, the network is configured to be partially run with the direct sparse approach. This process is described
in Algorithm 1.

Algorithm 1 Main scheme applying reduced bit format and unstructured sparsity in GPU
Require: sparsity thresholds for specific layers

1: pruning
2: quantisation
3: comparing pruned and quantized layers efficiency with cuDnn
4: network configuration

3.1 Pruning algorithm

The proposed pruning method is based on retraining. Pruning with retraining guarantees much better final sparsity
levels. The algorithm incorporates the evolutionary technique with rewinding during its execution. Rewinding allows to
assign to not pruned weights values which they have before last training epoch [38]. The evolutionary part consists
of genetic operators that can mutate and cross over the model with random solutions from an online built ranked list.
The input parameters of the Algorithm 2 are: ε - threshold for accuracy changes, Nit - number of iterations of the
algorithm, α - constant for weights update in mask increment process, RL - length of ranked list of best solutions,
[∆0,∆1, ...,∆N ] - vector of units of sparsity by which the pruning is done in a layer in single step, γ - threshold for
mutation and crossover. The novelty of this pruning approach is that it combines few features of other algorithms
all together (rewinding [38], gradient analysis [21]) in one evolutionary approach. The algorithm prunes the model
incrementally by using the dynamic layers sensitivity. Therefore, it differs from genetic approach in [?] where constant
masks are used.

The representation of the pruned model F pΘ is the following tuple:

F pΘ = (FΘ,M,O,G). (1)

where FΘ is the original model with set of convolutional and fully-connected layers fθi , which are executed with
specified order (eq. 2):

FΘ(X) = fθL(fθL−1
...(fθ0(X))), (2)

M is the masks set (eq. 3):
M = {M0,M1, ...,ML}, (3)

O is the set of the optimizer parameters (type of the optimizer and learning rate), G is the gradient statistics tensor.

The weights of convolutional and fully-connected layers are represented by Θ (eq.4) tensor:

Θ = {θ0, θ1, ..., θL}, (4)

The mask is a binary tensor which consists of ’0’ and ’1’ elements. Each mask Mi is assigned to specific convolutional
or fully-connected layer and has the same shape SHθi=Ci ×Di ×Hi ×Wi as its weights tensor (eq. 5, Ci - number of
input channels, Di - number of output channels, Hi - filter height, Wi - filter width, in case of fully connected layer:
Wi ← 1 and Hi ← 1).

Mi ∈ {0, 1}SHθi (5)

The size Sθi of θi, Mi and Gi is equal to Ci ·Di ·Hi ·Wi. The number of zero elements in a mask is equal to the
sparsity level (eq. 6):

sparsityi =
Sθi −

∑Sθi
j=0Mi[j]

Sθi
. (6)

3
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The weighted sparsity is computed as the sum of products in which each multiplication consists of size of the layer and
its sparsity. The sum is divided by the number of all weights in the network (eq.7 and 8):

S =

L∑
j=0

Cj ·Dj ·Hj ·Wj (7)

sparsityws =

L∑
j=0

Cj ·Dj ·Hj ·Wj · sparsityj
S

(8)

The Algorithm 2 starts from scratch with random initial weights (alg. 2, line 1). The masks are initiated in random way
with starting sparsity level after model weights initialization (Algorithm 2, line 2). Then, algorithm initiates sensitivity
list (line 3), ranked list with RL copies of the initial model FΘ (line 4), ∆ and sparsity vectors (line 6-7). In each
iteration t, some subset of l layers is chosen for further pruning (line 10). This step helps to gather statistics about layers
sensitivity and diagnoses which layer may inhibit the learning process. The batch training is then performed (line 11).
After each batch, the chosen layer weights are set to zero using the element wise multiplication with the layer mask (eq.
9):

θi = θi �Mi (9)

After the batch training, gradient analysis is performed (line 12). The gradient statistics are measured during the training.
The whole training process is batch partitioned and each batch training bases on stochastic gradient-descent. The tensor
G stores mean values of weight gradients during the one training epoch. It expresses the importance of weights during
learning process (eq. 10, B is number of batches in an epoch, Xj is the j-th batch, t is the iteration number):

Gti =
1

B

B∑
j=0

δFΘ(Xj)

δθi
(10)

After that, the accuracy of current configuration is measured on a validation set (line 13), then sensitivity is computed
(line 14). Based on this, sensitivity and delta parameter of the chosen layers l are updated (line 16) and (line 17, eq. 11).
If the sensitivity is negative the ∆i is decreased. The updating factor in eq.11 is scaled by β parameter. In presented
experiments β is 10.

∆i = ∆i +
sensitivityi ·∆i

β
(11)

The sensitivity is compared with ε parameter (line 18). If the current model accuracy is better than than lowest accuracy
in models ranked list, the pruned model is written to the ranked list set (line 19-21). In the ranked list Θ, M , G and
accuracy of the model are written. Next, the worst solution from ranked list is removed (line 22). The ranked list
has constant length, which is equal to RL parameter. Then mask is updated (line 24). First, gi[c, d, h, w] importance
indicators for all weights are computed. They are the weighted sum of absolute weight value and absolute average
magnitude of its gradient (eq. 12). The α parameter defines how important these factors are. In all experiments α
parameter is set to 0.1. The gradient statistics help not only focus on weights magnitudes but also the dynamics of their
changes.

gi[c, d, h, w] = α · abs(Gi[c, d, h, w]) + (1− α) · abs(θi[c, d, h, w]) (12)

In the next step the threshold parameter εS is set. The value of εS should guarantee new sparsity level which is computed
by adding ∆i to the layer sparsity value (eq. 13):

sparsityti = sparsityt−1
i + ∆i (13)

Finally, the mask is updated by eq. 14:

Mi[c, d, h, w] =

{
0 if gθi [c, d, h, w] < εS
1 if gθi [c, d, h, w] > εS

(14)

4
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If the progress in training the model is not satisfactory (line 25) the mutation or crossover is performed (line 26-33).
Finally, rewinding is executed (line 34). Mutation is just a random sparsity change by αm ·∆i in a previously chosen
layers (line 28 and 29). The sparsity of the new mask in mutated layer is received by subtracting scaled ∆i value from
its previous sparsity level (eq.15):

sparsityti = sparsityt−1
i − αm ·∆i (15)

Based on the sparsity change, the εS parameter is recomputed and the layer mask is updated by eq. 14. The new mask
M ′l is received. Finally, the new mutated model is evolved by the element wise multiplication (eq. 9) of the weights
with the new mutated masks in l layers (eq.16):

M ′ = {M0,M1, ...,M
′
l , ...,ML} (16)

The crossover takes the random solution from ranked list (R[r]). Next, it gets its mask (MR[r]). Finally, the masks of
layers l are inserted into mask M of the current solution and give new mask M ′ (eq. 17 and 18, line 31 and 32).

cross(M,MR[r], l)→M ′ (17)

M ′ = {M0,M1, ...,M
R[r]
l , ...,ML} (18)

4 Quantisation

After the process of network distillation by the pruning process, quantization can be performed as the next step of
reducing model complexity. Quantization is the procedure of constraining values from a continuous set or more dense
domain to a relatively discrete set. It is possible to define a general mapping from a floating-point data x ∈ S to a
fixed-point q ∈ Q using a function fQ : S → Q as follows (assuming signed representation):

q = fQ(x) = µ+ σ · round(σ−1 · (x− µ)). (19)

In our case, µ = 0 and σ = 2−frac_bits where:

int_bits = ceil(log2(max
x∈S
|x|)) (20)

and
frac_bits = total_bits− int_bits− 1. (21)

The scaling factor σ is essentially just a shift up or down. A drawback is that a great deal of precision may be lost if
the distribution of the data set S is skewed by a large mean. Yet another approach can define the number of integer
and fractional bits to represent regions of a distribution that will represent a large percentage of the range. In these
cases, there will be saturation of a small percentage of the data, such as outliers, through the quantization procedure
which may or may not significantly affect the accuracy. To determine the effects of saturation, one can experiment
with different saturation levels. Therefore, histogram analysis is used in UnSparse-Opt to analyze outliers and set the
best levels of saturation for activation of quantization. In presented experiments the threshold for activation saturation
was set to 0.99. It means that values higher than 0.99·max(A) are saturated to 0.99·max(A) (max(A) is maximum
activation value).

To compare linear quantization results, a nonlinear technique based on clustering was implemented. This approach
goes through all fully-connected and convolutional layers in a loop and clusters the weights using KMeans algorithm
(Algorithm 3, line 4). The weights are clustered to specified number of clusters ω. Then, to each weight in a layer the
identifier of the cluster is assigned (line 5-7), which is the closest one to its original value. The clusters centroids are
quantize to ψ bit-width format (line 8-10, in presented experiments ψ is 8-bit). Finally, the codebook is created in
which weights to cluster centroids mappings are stored. During forwarding pass each original weight value is mapped
to wq , which is reduced cluster centroid representation (line 12). This approach gives additional memory compression.
The similar approach can be found in [37].

5
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Algorithm 2 Pruning - main algorithm
Require: ε, α, ∆, γ, RL, Nit

1: FΘ ← init model
2: M ← init mask
3: SL← init sensitivity list
4: R← init ranked list
5: L′← {0, 1, ..., L}
6: R′ ← {0, 1, ..., RL}
7: ∆← set initial ∆i values
8: sparsity← set initial sparsity0

i
9: for t = 1 to Nit do

10: sample l from L’
11: FΘ← train batches
12: G← compute gradient statistics
13: accuracyt← compute accuracy of FΘ

14: sensitivityt ← accuracyt-accuracyt−1

15: accuracyt−1← accuracyt

16: SL← update layers sensitivity
17: ∆← update delta
18: if sensitivityt > ε then
19: F ′Θ ← get worst model from ranked list
20: if accuracyt > accuracy of F ′Θ then
21: R← write pruned model F pΘ to ranked list
22: R← remove the worst pruned model F ′Θ from ranked list
23: end if
24: M ← increment_mask(M , ∆, α, l)
25: else
26: sample p from N (0, 1)
27: if p > γ then
28: sample αm from N (0, 1)
29: F pΘ ← mutation(F pΘ, l, αm)
30: else
31: sample r from R’
32: F pΘ ← cross(F pΘ, R[r], l)
33: end if
34: FΘ ← rewinding(FΘ, M )
35: end if
36: end for

Algorithm 3 Nonlinear quantisation
Require: ω, ψ

1: L← get model fc and conv layers
2: cq ← empty list //initial list for quantised centroids
3: for l in L do
4: C, θca ← KMeans(θl, ω) //C is a list of centroids, θca is a list of weights to centroids assignment
5: for w in l do
6: w← θca[w]
7: end for
8: for c in C do
9: cq[c]← quantise_centroids(c, ψ) //eq.20-22

10: end for
11: for w in l do
12: wq ← cq[w]
13: end for
14: end for

6
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5 Convolution operation using a sparse operation on GPGPU

To perform convolution, the approach which was proposed in our previous work is used [1]. The input data are stored
in NCHW format (batch size, channel, height, width). The weights are stored in the CSR format, which requires the
building of three arrays: rowptr (RPi), coldix (Λi) and weights (θi). In order to avoid calculating indexes from the
input array, which will be used to perform convolution, the Λi array is modified to store these pre-computed indexes
[39]. As proposed in the previous work [1], the number of non-zero elements is the same for each output channel
(RPi[j + 1]−RPi[j] returns the same value for each j-th output channel). This number is equal to the highest number
of non-zero elements which occurred in the output channels after the pruning process. That standardised sparse level
was gained by marking some zero values as "non-zero". The CSR format treats them as normal value. As a result of this,
it is not necessary to extract the sparsity level separately for each output channel. This measure ultimately decreases the
calculation time by about 26%- 28% depending upon convolution type.

The details of the calculating convolution through the use of a sparse operation on GPU are presented in Algorithm 4.
Each single thread block calculates one output channel. Therefore, the indexes (shidx) from which elements from θi
and Λi tensors are calculated through the usage of the following formula:

shidx = RPi[toutz mod Di] + touty · Yw + toutx (22)

where toutx , touty and toutz are x, y and z global coordinates of thread [40], and Yw is output width. Based on these
indexes tensors are copied from global to shared memory (Algorithm 4, lines 6-8).

Algorithm 4 Calculating convolution using a sparse operation on GPU. Symbols: X -input data; Xsize- size of single
sample of input data; Λi, θi and RPi (coldix arrays, weights array and rowptr - array from CSR format); Nnz - number
of non zero elements in each output channel;
Require: sbS , Di, toutx , touty , toutz sh, Xw, Xsize, Yw wpad, sw

1: NB ← (bS · outC)÷ sbS
2: XG ← XC //copy X from CPU to GPU
3: ΛG← ΛCi //copy Λ from CPU to GPU
4: θG ← θCi //copy Θ from CPU to GPU
5: RPG← RPCi //copy RP from CPU to GPU
6: shidx = RPG[toutz mod Di] + touty · Yw + toutx
7: ΛS ← ΛG [shidx] //copy Λ from global to shared memory of GPU
8: θS ← θG [shidx] //copy Θ from global to shared memory of GPU
9: for j = 0 to Nnz do

10: wr ← θs[j] //weight from shared array into registers
11: λr ← Λs[j] //shift value from shared coldix array into registers
12: outr ← 0
13: for t = 0 to sbS do
14: tinp ← Xp + toutx · sh · (Xw + wpad) + touty · sw
15: xr ← X[tinp + λr + t ·Xsize]
16: outr ← outr + wr · xr
17: end for
18: outG← outr

19: end for
20: outC ← outG //copy out results to CPU

At the beginning it is necessary to determine the sub-batch size (sbS) value. This constant denotes the number of input
vectors from the input batch which are handled by each single threads block (see Fig. 3). Finally, the total number of
running thread blocks is equal to:

NB =
bS ·D
sbS

(23)

During the calculation of the convolution, non-zero values from the θi array and pre-calculated indices of the input
vector from the Λi array are loaded from shared memory into the thread local memory (Algorithm 4, lines 10 and 11).
These values are reused for sbS input vectors (Algorithm 4, lines 13-17). This procedure enables maximum limitation
of the reading from shared memory. Similar to the weights and indexes values, part of the input data is loaded from

7
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Figure 1: Calculating convolution using a sparse operation

global memory and stored into registers (line 15). The addresses of input data (tinp), which need to be copied into
registers, are calculated for each working thread though the usage of the following formula:

tinp = Xp + toutx · sh · (Xw + wpad) + touty · sw (24)

where Xp is pointer to input array, sh, sw are height and width of stride, Xw is input width and wpad means width of
padding.

Each single thread is responsible for calculating one single output value by multiplication of the weight with a
corresponding input value accumulating the partial sum and writing the final result to the global memory (Algorithm 4,
lines 14-16 and 18). This process is shown in Fig. 4. In this case, the weights matrix contains only two non-zero values
- w1 (the red cell in the upper right corner of the 3x3 filter) and w2 (the blue cell in the bottom left corner of the 3x3
filter). Both weights and input feature maps are marked as constants for CUDA kernel in order to hold them in the L2
cache, and coalesced memory access is provided [40].

6 Results

The proposed solution was verified in a number of experiments using the UnSparse-Opt framework. First, pruning was
run on several models and datasets in different machine learning tasks. The accuracy of the pruned models was then
tested. Next, quantisation effects were measured. Finally, the direct sparse convolution was performed on the models to
compare this strategy with cuDnn efficiency.

6.1 Pruning and quantisation

In this section, the results of the pruning and quantisation of the Resnet50, VGG16, FasterRCNN [42] and 1D CNN
autoencoders [43] are shown. The models were run on CIFAR10, CIFAR100 and ImageNet (for classfication tasks),
VOC Pascal (for object detection) and MSL (for anomaly detection). In Tables 1 and 2, the achieved level of sparsity by
the pruning algorithm is described for VGG16 and Resnet50 on CIFAR10 and CIFAR100. The accuracy metric is top1.
It measures the proportion of examples for which the predicted label matches the target label. The dense models are the

8
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Figure 2: The total number of thread’s block using to perform convolution for a single layer [1]

Method Top1
baseline→ pruned

Weighted Sparsity
[%]

UnSparse-Opt 90.01→ 92.5 96.2
Li* [27] 93.25→ 93.4 64.0

Liu* [28] 92.47→ 91.75 36.0
VCNN [33] 93.25→ 93.18 73.34
Wang* [29] 93.13→ 93.15 91.8

StructuredBP [41] 92.8→ 92.5 75.17
SparseVD [24] 92.45→ 92.45 98.46

Huang et al. [32] 92.77→ 89.37 92.8
DCP* [30] 93.99→ 94.57 93.58

Table 1: VGG16 pruning results on CIFAR10 (* - structural pruning method)

baseline models (left side of→ in Tables 1, 2 and 4, the right side of→ is accuracy of pruned model). In the results,
values for weighted sparsity are given. We can see that aside from high sparsity and huge memory reduction, the top1
accuracy is increased (error is reduced). In the case of Resnet50, it is noteworthy that the achieved pruned version is
one of the smallest (memory footprint) of the TOP40 models run on the CIFAR100 (see ranking [44]). Additionally,
a comparison of the results between the described pruning algorithm and others in the literature is presented. In the
case of VGG16 run on CIFAR10 (Table 1) the sparsity achieved by the algorithm is the second result after SparseVD
[24], but has a slightly better final accuracy (+0.05%). Most of the methods in Table 1 are structural pruning-based
algorithms. In the case of Resnet50 run on CIFAR100, our method outperforms other methods with regard to the level
of sparsity (more than 90%, Table 2) and top1 accuracy. It is worth noting that accuracy after pruning of Resnet50 on
CIFAR100 is one of the best achieved with this model without dataset augmentation (78.23%). The VGG16 model run

9
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Figure 3: The total number of thread’s block using to perform convolution for a single layer [1]

Method Top1
baseline→ pruned

Weighted Sparsity
[%]

UnSparse-Opt 67.06→ 78.23 90.14
Gradual Pruning* [31] 71.48→ 70.81 30

SFP* [26] 74.29→ 74.1 64
Chen* [25] 70.01→ 69.77 36.1

Table 2: Resnet50 pruning results on CIFAR100 (* - structural pruning method)

on CIFAR100 was pruned with 90% sparsity level in all layers with very small drop in top1 (65.8% (baseline)→ 65.4%
(pruned)).

Our results were achieved by running 200 epochs of the training process with a ranked list length equal to 16. The
batch size was set to 100 for CIFAR10 and to 128 for CIFAR100. The learning rate was 0.01. The VGG16 backbone
in the FasterRCNN object-detection network was the next model compressed by UnSparse-Opt. The FasterRCNN
feature extractor consists of thirteen VGG16 convolutional layers. The results are shown in Table 2. The metric is
mAP (mean average precision). Average precision computes the average precision value for recall value over 0 to 1
[42]. The mAP is the average of AP. The weighted sparsity is 85% with a negligible drop in mAP (71.5% (baseline)→
71.1% (pruned)). In the third layer (of size 64x128), the eighth layer (of size 256x512) and all layers of size 512x512, it
was possible to achieve a level of sparsity greater than or equal to 92% without any significant drop in accuracy. This
sparsity level guarantees direct sparse acceleration (see subsection 4.2).

The next models taken in the experiments were CNN autoencoders. The CNN autoencoders are one of the most
efficient models used in anomaly detection tasks [43]. The simulations were performed on the Mars Science Laboratory
(MSL) dataset [45]. The dataset is separated into twenty-seven independent entities. In the presented experiments, one
autoencoder architecture was trained and pruned separately on five chosen entities from the MSL dataset (M-2, M-6,
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Figure 4: Calculating convolution using a sparse operation

Method F1 Weighted Sparsity
[%]

M-2
baseline autoencoder-dense 0.78 0.0

pruned autoencoder 0.78 77.0
M-6

baseline autoencoder-dense 0.29 0.0
pruned autoencoder 0.29 77.0

F-7
baseline autoencoder-dense 0.35 0.0

pruned autoencoder 0.34 77.0
D-16

baseline autoencoder-dense 0.33 0.0
pruned autoencoder 0.34 77.0

T-9
baseline autoencoder-dense 0.47 0.0

pruned autoencoder 0.61 77.0
Table 3: Autoencoder pruning results on MSL dataset [45]

F-7, D-16 and T-9). The model consists of twelve 1D convolutional layers (with 3x3 and 1x1 filters). Six of them are
in the encoder and the next six are in the decoder module. The results of the pruned CNN autoencoders are shown in
Table 3. In all cases, layers have been pruned to a sparsity level of 77%. The accuracy metric is F1. It is well-suited for
anomaly detection tasks, as it is more resistant to class imbalance than other metrics such as top1 accuracy (which are
susceptible to yield high values when the normal class in testing data is large and the anomaly class is underrepresented).
As it is shown in Table 3 the F1 score is still above or at the same level as it is in a dense baseline models.

The results on ImageNet are described in Table 4. The results show that it is not possible to achieve levels of sparsities
for Resnet50 and VGG16 which can give acceleration using a direct sparse approach (see subsection 4.2). The presented
pruning algorithm and other well-known methods achieve weighted sparsities between 70%-80% (Table 4). In the case
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Method Top1
baseline→ pruned

Weighted Sparsity
[%]

Resnet50
UnSparse-Opt 76.13→ 74.51 74.8

UnSparse-Opt - 1x1 layers 76.13→ 68.0 90.0 in 1x1 layers
GenExp [?] 76.15→ 76.17 80.0

DC [?] 76.15→ 76.35 70.0
BEDL [?] 76.15→ 76.35 80.0
CFAR [38] 76.15→ 76.35 80.0

VGG16
UnSparse-Opt 73.36→ 73.0 95.0

GenExp [?] 69.2→ 69.25 95.2
ADMM-NN [?] 69.0→ 69.0 95.0

DC [?] 71.33→ 71.17 92.5
Table 4: Pruning results on ImageNet for Resnet50 and VGG16

weights/activations CIFAR100 ImageNet VOC Pascal MSL
VGG16 * -1.7% -7.1% n/a n/a
VGG16 ** -0.1% +0.1% n/a n/a
Resnet50 * -3.6% -6.1% n/a n/a
Resnet50 ** +0.1% +0.1% n/a n/a

CNN-AE * (avg) n/a n/a n/a -5.5%
CNN-AE ** (avg) n/a n/a n/a +0.2%

FasterRCNN * n/a n/a -1.9% n/a
FasterRCNN ** n/a n/a +0.1% n/a

Table 5: Accuracy drops in quantisation for Resnet50, VGG16, CNN-AE (autoencoder) and FasterRCNN (*4b/16b,
**16b/16b).

of sparsity levels which guarantee speedup in direct sparse (92% in 3x3 filters and 90% in 1x1 filters, see subsection
4.2), the drop of accuracy in Resnet50 is around 8-9% (Table 4). In the case of VGG16, the weighted sparsity is quite
high in all presented algorithms (92.5%-95.2%, Table 4). In VGG16, the largest layers are three fully-connected and
they have the highest pruning scores. Some convolutional layers have sparsities slightly lower than 90%, which makes
them more time efficient in cuDnn than in the direct sparse method. The batch size used in experiments for ImageNet
was 256. The learning rate was set to 0.01.

In Table 5 the results of quantisation approaches are presented. The linear sixteen-bit (half precision both for weights
and activations - 16b/16b) quantisation and nonlinear cluster based four-bit quantisation were performed: weights
are mapped to 16 centroids and each centroid represented in sixteen-bit format). The sixteen-bit quantisation called
half precision can be directly used in cuDnn as an option. In the case of four bit quantisation, it can be used in future
hardware optimisations. The quantisation was run on pruned models. It is worth noting that in the case of the 16b/16b
configuration, all models have no drop in accuracy (in many cases with an improvement above a 0.1%, Table 5). In
the case of 4b/16b, the 5.5% average drop was observed on five tested 1D CNN auto-encoders. The 4b/16b does not
heavily affect accuracy of CNN models on smaller datasets (VOC Pascal and CIFAR100), but it is more sensitive in the
case of huge datasets like ImageNet (drop in accuracy about 6-7%).

6.2 Unstructured sparsity with reduced precision on GPU

In Table 6, the time efficiency of pruned and quantised VGG16 layers on CIFAR100 are compared with the cuDnn
library. In the case of VGG16, despite such high sparsity levels, an improvement over the cuDnn was not achieved for
every layer in the floating-point (Table 6). The improvement was achieved for the last three VGG16 layers (∼ 14.4%
for float and ∼ 14.2% for half data type). The direct sparse algorithm is always faster for the half version than for
float. In the case of the cuDnn library, the half convolution is always performed using the GEMM algorithm which
very often gives worse time efficiency than the float version. In the layers with following input sizes: 64× 226× 226,
256× 58× 58 and 512× 30× 30, the half approach is less efficient than float. In two types of VGG16 layers, cuDnn
outperforms the direct sparse approach used with half precision. These are layers of size 128x256 and 256x256 (Table
6). In the rest of the layers, direct sparse with half precision is most efficient option. In the case of the FasterRCNN
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Convolution size
(CHWD)

Sparsity
[%]

Sparse
- float

Sparse
- half

cuDnn -
float

cuDnn -
half

64x224x224x64 90 60.73 27.08 19.07 31.82
64x112x112x128 92 15.97 8.64 10.56 9.48

128x112x112x128 93 27,12 16.22 17.28 15.88
128x56x56x256 92 12.28 8.42 9.21 7.81
256x56x56x256 90.8 21.81 14.23 14.27 16.09
256x28x28x512 92 9.11 5.92 6.72 7.86
512x28x28x512 92 15.28 13.67 15.02 16.82
512x14x14x512 92 4.23 4.08 4.84 4.66

Table 6: CuDnn and direct sparse time results [ms] for VGG16

Data type Layer size(CHWD) cuDnn Sparse convolution
float 64x1x1x256 0.35 0.32
half 64x1x1x256 0.30 0.27
float 256x1x1x64 0.37 0.31
half 256x1x1x64 0.29 0.24

Table 7: Time results [ms] for ResNet50. 256 filters 1x1x64 and 64 filters 1x1x256 (sparsity ∼ 90%), [1]

model in the third layer (of size 64x128), the eighth layer (of size 256x512) and all layers with a number of input
and output channels equal to 512x512, it was possible to achieve sparsity above 92% without a drop in accuracy. It
guarantees similar or better efficiencies in the floating precision of direct sparse in comparison to cuDnn. In half, the
performance of these layers in the direct sparse mode is significantly better. In the case of ImageNet, it is possible to
achieve sparsities around 90% in all 512x512 layers (in the rest of the layers, sparsity is lower than 90%). These results
can guarantee some small improvements in half precision in the last VGG16 layers. Having 90% level of sparsity, it
is possible to achieve better performance than the cuDnn for the 1x1 convolution. For this type of convolution, the
cuDnn always uses the GEMM algorithm. In the case of the ResNet50 run on CIFAR100 (Table 2), it was possible
to achieve sparsity levels of between 90%-92.5% in all 1x1 filters, which makes direct sparse faster than cuDnn. The
results for 64x1x1x256 and 256x1x1x64 layers are included in Table 7. The same levels of sparsities on ImageNet give
a significant drop in accuracy (8-9%). Therefore, it is not possible to achieve acceleration with direct sparse without
significant drop in accuracy.

One dimensional convolutional layer needs the lower sparsity to be sped up using a direct sparse approach (Table 8). In
this case, the input data are in the shape of a vector, therefore to perform convolution by direct sparse method, less
memory jumps are needed than with the 2D convolution. The 77% of zero values in a kernel can give an improvement
in time efficiency for layer of size 300x64 (∼ 9% and ∼ 11% speed increase for the float and half respectively (Table
8). The autoencoders incorporated with 1D convolutional layers used for multivariate anomaly detection can be pruned
to such levels. In this case, significant speed up can be achieved (10%-30% time reduction to cuDnn). In all cases,
the complexity in MAC operations is reduced by the sparsity ratio. The 16b/16b quantisation gives additional 4/9
reduction.

The presented results were measured with the optimal value of running thread blocks (see section 5). This number
strongly depends on the sbS parameter (see. Eq. 23), and the value of this parameter was empirically optimised for
each layer and belongs to the set {2, 4, 8}. It could be observed that the optimal value is not universal for each layer.
This means that this parameter depends on the size of the convolution. According to this, the optimal values of this
parameter for older versions of GPU can be different because of the memory limitations (especially by the L2 cache
size). In the case of the other parameters the efficiency ratio between direct sparse and cuDnn should be similar for
different GPU architectures. Without setting this value by the method proposed in this paper, it would not be possible to
achieve better performance than cuDnn. In the case of the number of thread blocks being equal to bS ·D, for VGG16,
ResNet50 the performance decreased by around ∼ 10%. In the case of 1D CNN, the decrease was ∼ 12%. An even
larger decrease of performance occurred when all the data from the batch was processed by the D blocks. This value
was between ∼ 38% and ∼ 45%. The exact influence of this parameter on particular layers is presented in Table 9.

Both solutions, direct sparse convolution and the cuDnn library, were run through the usage of multiple CUDA streams
[46] but no time efficiency improvement was observed. This fact means that it is not possible to process two (or
more) convolution operations concurrently on the same GPU with versions of CUDA and cuDnn used in described
experiments.
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Data type
cuDnn time
\ algorithm

Sparse convolution time
for given sparsity

77% 83% 87,5%
float* 0.192\GEMM 0.176 0.126 0.102
half* 0.161\GEMM 0.145 0.097 0.069

float** 0.231\GEMM 0.236 0.188 0.135
half** 0.204\GEMM 0.182 0.148 0.103

Table 8: Time results [ms] for CNN 1D for input 300x64 (*kernel size 2x1, **kernel size 3x1) in CHWM format, [1]

Layer type
Number of running

threads blocks
Performance

decrease
Resnet50 1x1 D · bS 10%
Resnet50 1x1 D 38%

VGG16 D · bS 10%
VGG16 D 45%
CNN 1D D · bS 12%
CNN 1D D 41%

Table 9: Impact of the usage optimal number of the thread blocks on the performance

Each of the presented experiments were performed on the Nvidia Tesla V100-SXM2-32GB [?] with the CUDA version
11.4 and cuDnn version 8.22. The batch size in the direct sparse method vs cuDnn comparison is always equal to 128.
The final execution times are average values achieved from ten simulations. The standard deviation measured in run
experiments was smaller than 1%.

7 Conclusions and future work

This work is focused on pruning convolutional layers in various deep learning models and speeding them up on the
GPU through the use of the sparse convolution algorithm. Additionally, the pruned models are quantised to reduce the
complexity further. The UnSparse-Opt framework incorporated with pruning and quantisation algorithms is described
to perform this process. The work presents concrete cases when convolution using the direct sparse convolution can be
more efficient than cuDnn. Most improvements are achieved for 1D convolution. The 1D CNN autoencoders are one of
the described examples in which unstructured pruning with the direct sparse convolution can give a significant time
reduction vs cuDnn implementation. It has been shown that 2D convolution using direct sparse convolution in some
cases can also outperform cuDnn. This can be done on less complex datasets, where it is possible to achieve very high
sparsity levels. The achieved results on CIFAR10 and CIFAR100 datasets show this phenomenon. In the case of large
datasets like ImageNet, it has been shown that pruning algorithms can not achieve sparsity levels which can guarantee
acceleration by using direct sparse method. Additionally, we examined the influence of conducting the calculation using
reduced precision on time efficiency and model accuracy. It was shown that half precision does not affect accuracy of
the presented models. The four-bit weight quantisation is more sensitive on more complex datasets. The presented
results show that direct sparse convolution with half precision can in many cases outperform both half and float cuDnn
versions.

Future work will further explore the pruning algorithm to increase the sparsity levels. The research will also concentrate
on adapting the pruning as a neuroevolution search algorithm.

Symbols

• N – number of samples in the batch - batch size,

• top1 – top1 accuracy,

• mAP – mean average precision,

• F1 – F1 metric

• TP – number of correctly detected anomalies

• FN – anomalies mistakenly classified as normal data point

• FP – data points mistakenly classified as anomalies
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• X – input data to the model
• A – activation values
• F pΘ – pruned model
• FΘ – original dense model
• fθi – convolutional or fully-connected layer
• M – mask of the model
• G – model’s gradient statistics
• O – model optimizer
• Θ – set of weights in model layers
• gi – sum of weight and average gradient absolute magnitude
• Ci, Di – numbers of input and output channels of the layer i,
• Hi,Wi – height and width of the filter of layer i,
• ω – number of cluster in nonlinear quantisation
• ψ – centroid bit-width quantisation
• C – list of centroids
• θca – list of weight to centroid assignments
• ∆i – sparsity update factor for the layer i
• α – coefficient for indicator gθi computation
• αm – coefficient for scaling the update of sparsity in mutation operator
• γ – probability threshold for genetic operations
• ε – accuracy threshold in pruning algorithm
• εS – threshold for gθi magnitude
• β – scaling factor for ∆i parameter
• w – single weight
• wq – single quantized weight
• R – ranked list
• RL – ranked list length
• Nit – number of pruning algorithm iterations
• S – number of weights in the model
• P – number of output neurons in a layer
• Sθi – number of weights in the layer i
• SHθi – shape of weights tensor in the layer i
• B – number of batches
• L – number of convolutional and fully-connected layers in the model
• cross – crossover function
• σ, µ – linear quantisation parameters
• tinp – address of input data which is copied to thread local memory
• NB – number of thread blocks on GPU
• Xw, Yw – width of input and output data
• Xsize – size of one sample of the input data
• sh, sw – height and width of stride
• hpad, wpad – height and width of padding
• toutx , touty , toutz – CUDA thread x, y and z coordinates
• sbS – number of input vector which are loaded into single threads block
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• Nnz – number of non zero elements in each output channel

• RPi – row pointer structure for layer i

• Λi – array of CSR format, stores indexes of nonzero elements in layer i

• shidx – index of θi and Λi loaded to thread block
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